101
|
Beil M, Braxmeier H, Fleischer F, Schmidt V, Walther P. Quantitative analysis of keratin filament networks in scanning electron microscopy images of cancer cells. J Microsc 2005; 220:84-95. [PMID: 16313488 DOI: 10.1111/j.1365-2818.2005.01505.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The keratin filament network is an important part of the cytoskeleton. It is involved in the regulation of shape and viscoelasticity of epithelial cells. The morphology of keratin networks depends on post-translational modifications of keratin monomers. In-vitro studies indicated that network characteristics, such as filament crosslink density, determines the biophysical properties of the filament network. This report presents a quantitative method for the morphological analysis of keratin filament networks. Visualization of filaments was based on prefixation extraction of epithelial cells and scanning electron microscopy (SEM). SEM images were processed by a skeletonization algorithm to obtain a graph structure that represents individual filaments as well as their connections. This method was applied to investigate the effects of transforming growth factor alpha (TGFalpha) on the morphology of keratin networks in pancreatic cancer cells. TGFalpha contributes to pancreatic cancer progression and activates signalling pathways phosphorylating keratin monomers. Using this new method, a significant alteration to the keratin network morphology could be detected in response to TGFalpha.
Collapse
Affiliation(s)
- M Beil
- Department of Internal Medicine I, University Hospital Ullm, D-89070, Ulm, Germany
| | | | | | | | | |
Collapse
|
102
|
Santos M, Río P, Ruiz S, Martínez-Palacio J, Segrelles C, Lara MF, Segovia JC, Paramio JM. Altered T cell differentiation and Notch signaling induced by the ectopic expression of keratin K10 in the epithelial cells of the thymus. J Cell Biochem 2005; 95:543-58. [PMID: 15786499 DOI: 10.1002/jcb.20406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transgenic mice expressing hK10 under the keratin K5 promoter display several alterations in the epidermis including decreased cell proliferation, and reduced susceptibility to tumor development. Given that K5 promoter is also active in the epithelial cells of the thymus, we explored the possible alterations of the thymus because of K10 transgene expression. We found severe thymic alterations, which affect not only the thymic epithelial cells (TEC), but also thymocytes. We observed altered architecture and premature thymus involution in the transgenic mice associated with increased apoptosis and reduced proliferation of the thymocytes. Interestingly, prior to the development of this detrimental phenotype, thymocytes of the transgenic mice also displayed altered differentiation, which is aggravated later on. Molecular characterization of this phenotype indicated that Akt activity is reduced in TEC, but not in thymocytes. In addition, we also observed altered expression of Notch family members and some of their ligands both in TEC and T cells. This produces reduced Notch activity in TEC but increased Notch activity in thymocytes, which is detectable prior to the disruption of the thymic architecture. In addition, we also detect altered Notch expression in the epidermis of bK5hK10 transgenic mice. Collectively the present data indicate that keratin K10 may induce severe alterations not only in a cell autonomous manner, but also in neighboring cells by the modulation of signals involved in cell-cell interactions.
Collapse
Affiliation(s)
- Mirentxu Santos
- Epithelial Damage, Repair and Tissue Engineering Project, CIEMAT, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Zimek A, Weber K. Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish. Eur J Cell Biol 2005; 84:623-35. [PMID: 16032930 DOI: 10.1016/j.ejcb.2005.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.
Collapse
Affiliation(s)
- Alexander Zimek
- Department of Biochemistry and Cell Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|
104
|
Abstract
Astrocytes become activated (reactive) in response to many CNS pathologies, such as stroke, trauma, growth of a tumor, or neurodegenerative disease. The process of astrocyte activation remains rather enigmatic and results in so-called "reactive gliosis," a reaction with specific structural and functional characteristics. In stroke or in CNS trauma, the lesion itself, the ischemic environment, disrupted blood-brain barrier, the inflammatory response, as well as in metabolic, excitotoxic, and in some cases oxidative crises--all affect the extent and quality of reactive gliosis. The fact that astrocytes function as a syncytium of interconnected cells both in health and in disease, rather than as individual cells, adds yet another dimension to this picture. This review focuses on several aspects of astrocyte activation and reactive gliosis and discusses its possible roles in the CNS trauma and ischemia. Particular emphasis is placed on the lessons learnt from mouse genetic models in which the absence of intermediate filament proteins in astrocytes leads to attenuation of reactive gliosis with distinct pathophysiological and clinical consequences.
Collapse
Affiliation(s)
- Milos Pekny
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Michael Nilsson
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| |
Collapse
|
105
|
Coulombe PA, Tong X, Mazzalupo S, Wang Z, Wong P. Great promises yet to be fulfilled: defining keratin intermediate filament function in vivo. Eur J Cell Biol 2005; 83:735-46. [PMID: 15679118 DOI: 10.1078/0171-9335-00443] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Keratins are abundant proteins in epithelial cells, in which they occur as a cytoplasmic network of 10 - 12 nm wide intermediate filaments (IFs). They are encoded by a large family of conserved genes in mammals, with more than 50 individual members partitioned into two sequence types. A strict requirement for the heteropolymerization of type I and type II keratin proteins during filament formation underlies the pairwise transcriptional regulation of keratin genes. In addition, individual pairs are regulated in a tissue-type and differentiation-specific manner. Elucidating the rationale behind the diversity and differential distribution of keratin proteins offers the promise of novel insight into epithelial biology. At present, we know that keratin IFs act as resilient yet pliable scaffolds that endow epithelial cells with the ability to sustain mechanical and non-mechanical stresses. Accordingly, inherited mutations altering the coding sequence of keratins underlie several epithelial fragility disorders. In addition, keratin IFs influence the cellular response to pro-apoptotic signals in specific settings, and the routing of membrane proteins in polarized epithelia. Here we review studies focused on a subset of keratin genes, K6, K16 and K17, showing a complex regulation in vivo, including a widely known upregulation during wound repair and in diseased skin. Progress in defining the function of these and other keratins through gene manipulation in mice has been hampered by functional redundancy within the family. Still, detailed studies of the phenotype exhibited by K6 and K17 null mice yielded novel insight into the properties and function of keratin IFs in vivo.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
106
|
Rogers MA, Winter H, Langbein L, Bleiler R, Schweizer J. The human type I keratin gene family: characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain. Differentiation 2005; 72:527-40. [PMID: 15617563 DOI: 10.1111/j.1432-0436.2004.07209006.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In general concurrence with recent studies, bioinformatic analysis of the chromosome 17q21.2 DNA sequence found in the EBI/Genebank database shows the presence of 27 type I keratin genes and five keratin pseudogenes present on 8 contiguous Bacterial Artificial Chromosome (BAC) sequences. This constitutes the 970 kb type I keratin gene domain. Inserted into this domain is a 350 kb region harboring 32 previously characterized keratin-associated protein genes. Of the 27 keratin genes found in this region, six have not been characterized in detail. This study reports the isolation of cDNA sequences for these keratin genes, termed K25irs1-K25irs4, Ka35, and Ka36, as well as cDNA sequences for the previously reported hair keratins hHa3-I, hHa7, and hHa8. RT-PCR analysis of 14 epithelial tissues using primers for the six novel keratins, as well as for keratins 23 and 24, shows that the six novel keratins appear to be hair follicle associated. Previous expression data, coupled with evolutionary analysis studies point to K25irs1-K25irs4 probably being inner root sheath specific keratins. Ka35 and Ka36 are, based on their exon-intron structure and expression characteristics, hair keratins. In contrast, K23 and K24 appear to be epithelial keratins associated with simple/glandular or stratified, non-cornified epithelia, respectively. A literature analysis coupled with the data presented here confirms that all of the 27 keratin genes found on this domain have been characterized at the transcriptional level. Together with K18, a type I keratin gene found on the type II keratin domain, this seems to be the entire complement of functional type I keratins in humans.
Collapse
Affiliation(s)
- Michael A Rogers
- Section of Normal and Neoplastic Epidermal Differentiation, German Cancer Research Center, Im Neuenheimer Feld 280, 69210 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
107
|
Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H. The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J Struct Biol 2005; 148:137-52. [PMID: 15477095 DOI: 10.1016/j.jsb.2004.04.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Indexed: 12/31/2022]
Abstract
Desmin, the major intermediate filament (IF) protein of muscle, is evolutionarily highly conserved from shark to man. Recently, an increasing number of mutations of the desmin gene has been described to be associated with human diseases such as certain skeletal and cardiac myopathies. These diseases are histologically characterised by intracellular aggregates containing desmin and various associated proteins. Although there is progress regarding our knowledge on the cellular function of desmin within the cytoskeleton, the impact of each distinct mutation is currently not understood at all. In order to get insight into how such mutations affect filament assembly and their integration into the cytoskeleton we need to establish IF structure at atomic detail. Recent progress in determining the dimer structure of the desmin-related IF-protein vimentin allows us to assess how such mutations may affect desmin filament architecture.
Collapse
Affiliation(s)
- Harald Bär
- Department of Cell Biology, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | | | | | | | | |
Collapse
|
108
|
Smith ED, Kudlow BA, Frock RL, Kennedy BK. A-type nuclear lamins, progerias and other degenerative disorders. Mech Ageing Dev 2005; 126:447-60. [PMID: 15722103 DOI: 10.1016/j.mad.2004.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/25/2004] [Accepted: 10/26/2004] [Indexed: 02/01/2023]
Abstract
Nuclear lamins were identified as core nuclear matrix constituents over 20 years ago. They have been ascribed structural roles such as maintaining nuclear integrity and assisting in nuclear envelope formation after mitosis, and have also been linked to nuclear activities including DNA replication and transcription. Recently, A-type lamin mutations have been linked to a variety of rare human diseases including muscular dystrophy, lipodystrophy, cardiomyopathy, neuropathy and progeroid syndromes (collectively termed laminopathies). Most diseases arise from dominant, missense mutations, leading to speculation as to how different mutations in the same gene can give rise to such a diverse set of diseases, some of which share little phenotypic overlap. Understanding the cellular dysfunctions that lead to laminopathies will almost certainly provide insight into specific roles of A-type lamins in nuclear organization. Here, we compare and contrast the LMNA mutations leading to laminopathies with emphasis on progerias, and discuss possible functional roles for A-type lamins in the maintenance of healthy tissues.
Collapse
Affiliation(s)
- Erica D Smith
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
109
|
Bär H, Fischer D, Goudeau B, Kley RA, Clemen CS, Vicart P, Herrmann H, Vorgerd M, Schröder R. Pathogenic effects of a novel heterozygous R350P desmin mutation on the assembly of desmin intermediate filaments in vivo and in vitro. Hum Mol Genet 2005; 14:1251-60. [PMID: 15800015 DOI: 10.1093/hmg/ddi136] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations of the human desmin gene on chromosome 2q35 cause a familial or sporadic form of skeletal myopathy frequently associated with cardiac abnormalities. Here, we report the pathogenic effects of a novel heterozygous R350P desmin missense mutation, which resides in the evolutionary highly conserved coil 2B domain of the alpha-helical coiled-coil desmin rod domain, on the assembly of desmin intermediate filaments (IF) in cultured cells and in vitro. By transfection experiments, we show that R350P desmin is incapable of de novo formation of a desmin IF network in vimentin-free BMGE+H, MCF7 and SW13 cells and that it disrupts the endogenous vimentin cytoskeleton in 3T3 fibroblast cells. Hence, transfected cells displayed abnormal cytoplasmic protein aggregates reminiscent of desmin-positive protein deposits seen in the immunohistochemical and ultrastructural analysis of skeletal muscle derived from the index patient of the affected family. To study the functional effects of the R350P desmin mutation at the protein level, we performed in vitro assembly studies with wild-type (WT) and mutant desmin protein. Our analysis revealed that the in vitro assembly process of R350P desmin is already disturbed at the unit length filament level and that further association reactions generate huge, tightly packed protein aggregates. On assessing the pathogenic effects of R350P desmin in various mixtures with WT desmin, we show that a ratio of 1 : 3 (R350P desmin/WT desmin) is sufficient to effectively block the normal polymerization process of desmin IFs. Our findings indicate that the heterozygous R350P desmin mutation exerts a dominant negative effect on the ordered lateral arrangement of desmin subunits. This disturbance of the lateral packing taking place in the first phase of assembly is ultimately leading to abnormal protein aggregation.
Collapse
Affiliation(s)
- Harald Bär
- Department of Cell Biology, German Cancer Research Center (DKFZ), Heidelberg
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Scheuermann MO, Murmann AE, Richter K, Görisch SM, Herrmann H, Lichter P. Characterization of nuclear compartments identified by ectopic markers in mammalian cells with distinctly different karyotype. Chromosoma 2005; 114:39-53. [PMID: 15776261 DOI: 10.1007/s00412-005-0336-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/23/2005] [Accepted: 02/23/2005] [Indexed: 12/11/2022]
Abstract
The functional organization of chromatin in cell nuclei is a fundamental question in modern cell biology. Individual chromosomes occupy distinct chromosome territories in interphase nuclei. Nuclear bodies localize outside the territories and colocalize with ectopically expressed proteins in a nuclear subcompartment, the interchromosomal domain compartment. In order to investigate the structure of this compartment in mammalian cells with distinctly different karyotypes, we analyzed human HeLa cells (3n+ = 71 chromosomes) and cells of two closely related muntjac species, the Chinese muntjac (2n = 46 chromosomes) and the Indian muntjac (2n = 6/7 chromosomes). The distribution of ectopically expressed intermediate filament proteins (vimentin and cytokeratins) engineered to contain a nuclear localization sequence (NLS) and a nuclear particle forming protein (murine Mx1) fused to a yellow fluorescent protein (YFP) was compared. The proteins were predominantly localized in regions with poor DAPI staining independent of the cells' karyotype. In contrast to NLS-vimentin, the NLS-modified cytokeratins were also found close to the nuclear periphery. In Indian muntjac cells, NLS-vimentin colocalized with Mx1-YFP as well as the NLS-cytokeratins. Since the distribution of the ectopically expressed protein markers is similar in cells with distinctly different chromosome numbers, the property of the delineated, limited compartment might indeed depend on chromatin organization.
Collapse
Affiliation(s)
- Markus O Scheuermann
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
111
|
Affiliation(s)
- Alexandra Fridkin
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | |
Collapse
|
112
|
Karabinos A, Schünemann J, Weber K. Most genes encoding cytoplasmic intermediate filament (IF) proteins of the nematode Caenorhabditis elegans are required in late embryogenesis. Eur J Cell Biol 2005; 83:457-68. [PMID: 15540462 DOI: 10.1078/0171-9335-00407] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intestinal cells of C. elegans show an unexpectedly high complexity of cytoplasmic intermediate filament (IF) proteins. Of the 11 known IF genes six are coexpressed in the intestine, i.e. genes B2, C1, C2, D1, D2, and E1. Specific antibodies and GFP-promoter constructs show that genes B2, D1, D2, and E1 are exclusively expressed in intestinal cells. Using RNA interference (RNAi) by microinjection at 25 degrees C rather than at 20 degrees C we observe for the first time lethal phenotypes for C1 and D2. RNAi at 25 degrees C also shows that the known A1 phenotype occurs already in the late embryo after microinjection and is also observed by feeding which was not the case at 20 degrees C. Thus, RNAi at 25 degrees C may also be useful for the future analysis of other nematode genes. Finally, we show that triple RNAi at 20 degrees C is necessary for the combinations B2, D1, E1 and B2, D1, D2 to obtain a phenotype. Together with earlier results on genes A1, A2, A3, B1, and C2 RNAi phenotypes are now established for all 11IF genes except for the A4 gene. RNAi phenotypes except for A2 (early larval lethality) and C2 (adult phenotype) relate to the late embryo. We conclude that in C. elegans cytoplasmic IFs are required for tissue integrity including late embryonic stages. This is in strong contrast to the mouse, where ablation of IF genes apparently does not affect the embryo proper.
Collapse
Affiliation(s)
- Anton Karabinos
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany
| | | | | |
Collapse
|
113
|
Hesse M, Watson ED, Schwaluk T, Magin TM. Rescue of keratin 18/19 doubly deficient mice using aggregation with tetraploid embryos. Eur J Cell Biol 2005; 84:355-61. [PMID: 15819413 DOI: 10.1016/j.ejcb.2004.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have previously shown that the targeted deletions of both type I keratins (K) 18 and 19 cause lethality by embryonic day (e) 9.5 due to fragility and cytolysis of trophoblast giant cells. The development of the embryo proper appeared to be unaffected and its death was caused by nutrient deficiency. In order to address the function of keratins within the embryo proper, lethality due to extraembryonic tissue failure must be overcome. One approach to rescue doubly deficient embryos is by aggregating knockout embryos with tetraploid wild-type embryos. As a general tool, tetraploid aggregation can be used to rescue embryonic lethality caused by defects in extraembryonic tissues like the placenta, trophoblast or yolk sac. We rescued K18-/- K19-/- embryos until e11.5, using this approach, proving that the loss of the keratin cytoskeleton causes defects in the trophoblast giant cell layer, but has no effect on early development of the embryo proper.
Collapse
Affiliation(s)
- Michael Hesse
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitätsklinikum Bonn, Nussallee 11, D-53115 Bonn, Germany.
| | | | | | | |
Collapse
|
114
|
Abstract
Mutation of the cytoskeletal intermediate filament proteins keratin 8 and keratin 18 (K8/K18) is associated with cirrhosis in humans, whereas transgenic mice that overexpress K18 Arg89-->Cys (R89C) have significant predisposition to liver injury. To study the mechanism of keratin-associated predisposition to liver injury, we used mouse microarrays to examine genetic changes associated with hepatocyte keratin mutation and assessed the consequences of such changes. Liver gene expression was compared in R89C versus nontransgenic or wild-type K18-overexpressing mice. Microarray-defined genetic changes were confirmed by quantitative polymerase chain reaction. Nineteen genes had a more than two-fold altered expression (nine downregulated, 10 upregulated). Upregulated genes in keratin-mutant hepatocytes included the oxidative metabolism genes cytochrome P450, S-adenosylhomocysteine (SAH) hydrolase, cysteine sulfinic acid decarboxylase, and oxidation-reduction pathway genes. Downregulated genes included fatty acid binding protein 5, cyclin D1, and some signaling molecules. Several methionine metabolism-related and glutathione synthetic pathway intermediates, including S-adenosylmethionine (SAMe) and SAH, were modulated in R89C versus control mice. R89C livers had higher lipid and protein oxidation by-products as reflected by increased malondialdehyde and oxidized albumin. In conclusion, K18 point mutation in transgenic mice modulates several hepatocyte oxidative stress-related genes and leads to lipid and protein oxidative by-products. Mutation-associated decreases in SAH and SAMe could compromise needed cysteine availability to generate glutathione during oxidative stress. Hence keratin mutations may prime hepatocytes to oxidative injury, which provides a new potential mechanism for how keratin mutations may predispose patients to cirrhosis.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Palo Alto Veterans Affairs Medical Center and Stanford University Digestive Disease Center, Palo Alto, CA, USA
| | | | | | | | | | | |
Collapse
|
115
|
Gu LH, Coulombe PA. Defining the properties of the nonhelical tail domain in type II keratin 5: insight from a bullous disease-causing mutation. Mol Biol Cell 2005; 16:1427-38. [PMID: 15647384 PMCID: PMC551504 DOI: 10.1091/mbc.e04-06-0498] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 01/03/2005] [Indexed: 12/24/2022] Open
Abstract
Inherited mutations in the intermediate filament (IF) proteins keratin 5 (K5) or keratin 14 (K14) cause epidermolysis bullosa simplex (EBS), in which basal layer keratinocytes rupture upon trauma to the epidermis. Most mutations are missense alleles affecting amino acids located in the central alpha-helical rod domain of K5 and K14. Here, we study the properties of an unusual EBS-causing mutation in which a nucleotide deletion (1649delG) alters the last 41 amino acids and adds 35 residues to the C terminus of K5. Relative to wild type, filaments coassembled in vitro from purified K5-1649delG and K14 proteins are shorter and exhibit weak viscoelastic properties when placed under strain. Loss of the C-terminal 41 residues contributes to these alterations. When transfected in cultured epithelial cells, K5-1649delG incorporates into preexisting keratin IFs and also forms multiple small aggregates that often colocalize with hsp70 in the cytoplasm. Aggregation is purely a function of the K5-1649delG tail domain; in contrast, the cloned 109 residue-long tail domain from wild type K5 is distributed throughout the cytoplasm and colocalizes partly with keratin IFs. These data provide a mechanistic basis for the cell fragility seen in individuals bearing the K5-1649delG allele, and point to the role of the C-terminal 41 residues in determining K5's assembly properties.
Collapse
Affiliation(s)
- Li-Hong Gu
- Departments of Biological Chemistry and Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
116
|
Wöll S, Windoffer R, Leube RE. Dissection of keratin dynamics: different contributions of the actin and microtubule systems. Eur J Cell Biol 2005; 84:311-28. [PMID: 15819410 DOI: 10.1016/j.ejcb.2004.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.
Collapse
Affiliation(s)
- Stefan Wöll
- Department of Anatomy, Johannes Gutenberg University Mainz, Becherweg 13, D-55128 Mainz, Germany
| | | | | |
Collapse
|
117
|
Hanada S, Harada M, Kumemura H, Omary MB, Kawaguchi T, Taniguchi E, Koga H, Yoshida T, Maeyama M, Baba S, Ueno T, Sata M. Keratin-containing inclusions affect cell morphology and distribution of cytosolic cellular components. Exp Cell Res 2005; 304:471-82. [PMID: 15748892 DOI: 10.1016/j.yexcr.2004.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 12/01/2022]
Abstract
Many neurodegenerative diseases are characterized by the presence of protein aggregates bundled with intermediate filaments (IFs) and similar structures, known as Mallory bodies (MBs), are observed in various liver diseases. IFs are anchored at desmosomes and hemidesmosomes, however, interactions with other intercellular junctions have not been determined. We investigated the effect of IF inclusions on junction-associated and cytosolic proteins in various cultured cells. We performed gene transfection of the green fluorescent protein (GFP)-tagged cytokeratin (CK) 18 mutant arg89cys (GFP-CK18 R89C) in cultured cells and observed CK aggregations as well as loss of IF networks. Among various junction-associated proteins, zonula occludens-1 and beta-catenin were colocalized with CK aggregates on immunofluorescent analyses. Similar results were obtained on immunostaining for cytosolic proteins, 14-3-3 zeta protein, glucose-6-phosphate dehydrogenase and DsRed. E-cadherin, a basolateral membrane protein in polarized epithelia, was present on both the apical and basolateral domains in GFP-CK18 R89C-transfected cells. Furthermore, cells containing CK aggregates were significantly larger than GFP-tagged wild type CK18 (GFP-WT CK18)-transfected or non-transfected cells (P < 0.01) and sometimes their morphology was significantly altered. Our data indicate that CK aggregates affect not only cell morphology but also the localization of various cytosolic components, which may affect the cellular function.
Collapse
Affiliation(s)
- Shinichiro Hanada
- Second Department of Medicine, Kurume University School of Medicine, Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan. . jp
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Substantial progress has been made regarding the elucidation of differentiation processes of the human hair follicle. This review first describes the genomic organization of the human hair keratin gene family and the complex expression characteristics of hair keratins in the hair-forming compartment. Sections describe the role and fate of hair keratins in the diseased hair follicle, particularly hereditary disorders and hair follicle-derived tumors. Also included is a report on the actual state of knowledge concerning the regulation of hair keratin expression. In the second part of this review, essentially the same principles are applied to outline more recent and, thus, occasionally fewer data on specialized epithelial keratins expressed in various tissue constituents of the external sheaths and the companion layer of the follicle. A closing outlook highlights issues that need to be explored further to deepen our insight into the biology and genetics of the hair follicle.
Collapse
Affiliation(s)
- Lutz Langbein
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
119
|
Parry DAD. Microdissection of the sequence and structure of intermediate filament chains. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:113-42. [PMID: 15837515 DOI: 10.1016/s0065-3233(05)70005-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A large number of intermediate filament (IF) chains have now been sequenced. From these data, it has been possible to deduce the main elements of the secondary structure, especially those lying within the central rod domain of the molecule. These conclusions, allied to results obtained from crosslinking studies, have shown that at least four unique but related structures are adopted by the class of structures known generically as intermediate filaments: (1) epidermal and reduced trichocyte keratin; (2) oxidized trichocyte keratin; (3) desmin, vimentin, neurofilaments, and related Type III and IV proteins; and (4) lamin molecules. It would be expected that local differences in sequences of the proteins in these four groups would occur, and that this would ultimately relate to assembly. Site-directed mutagenesis and theoretical methods have now made it possible to investigate these ideas further. In particular, new data have been obtained that allow the role played by some individual amino acids or a short stretch of sequence to be determined. Among the observations catalogued here are the key residues involved in intra- and interchain ionic interactions, as well as those involved in stabilizing some modes of molecular aggregation; the structure and role of subdomains in the head and tail domains; the repeat sequences occurring along the length of the chain and their structural significance; trigger motifs in coiled-coil segments; and helix initiation and termination motifs that terminate the rod domain. Much more remains to be done, not least of which is gaining an increased understanding of the many subtle differences that exist between different IF chains at the sequence level.
Collapse
Affiliation(s)
- David A D Parry
- Institute of Fundamental Sciences, Massey University, Palmerston North 5301, New Zealand
| |
Collapse
|
120
|
Strelkov SV, Schumacher J, Burkhard P, Aebi U, Herrmann H. Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. J Mol Biol 2004; 343:1067-80. [PMID: 15476822 DOI: 10.1016/j.jmb.2004.08.093] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 08/31/2004] [Indexed: 12/28/2022]
Abstract
Nuclear intermediate filaments (IFs) are made from fibrous proteins termed lamins that assemble, in association with several transmembrane proteins of the inner nuclear membrane and an unknown number of chromatin proteins, into a filamentous scaffold called the nuclear lamina. In man, three types of lamins with significant sequence identity, i.e. lamin A/C, lamin B1 and B2, are expressed. The molecular characteristics of the filaments they form and the details of the assembly mechanism are still largely unknown. Here we report the crystal structure of the coiled-coil dimer from the second half of coil 2 from human lamin A at 2.2A resolution. Comparison to the recently solved structure of the homologous segment of human vimentin reveals a similar overall structure but a different distribution of charged residues and a different pattern of intra- and interhelical salt bridges. These features may explain, at least in part, the differences observed between the lamin and vimentin assembly pathways. Employing a modeled lamin A coil 1A dimer, we propose that the head-to-tail association of two lamin dimers involves strong electrostatic attractions of distinct clusters of negative charge located on the opposite ends of the rod domain with arginine clusters in the head domain and the first segment of the tail domain. Moreover, lamin A mutations, including several in coil 2B, have been associated with human laminopathies. Based on our data most of these mutations are unlikely to alter the structure of the dimer but may affect essential molecular interactions occurring in later stages of filament assembly and lamina formation.
Collapse
Affiliation(s)
- Sergei V Strelkov
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
121
|
Zatloukal K, Stumptner C, Fuchsbichler A, Fickert P, Lackner C, Trauner M, Denk H. The keratin cytoskeleton in liver diseases. J Pathol 2004; 204:367-76. [PMID: 15495250 DOI: 10.1002/path.1649] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The keratin intermediate filament (IF) cytoskeleton of hepatocytes has continuously gained medical relevance over the last two decades. Originally it was mainly recognized as a differentiation marker for diagnostic purposes in pathology. However, keratin IFs were soon identified as major cellular structures to be affected in a variety of chronic liver diseases, such as alcoholic and non-alcoholic steatohepatitis (ASH, NASH), copper toxicosis, and cholestasis. Based on observations in keratin gene knock-out mice, the insight into the functional role of keratins was extended from a mere structural role providing mechanical stability to hepatocytes, to an additional role as target and modulator of toxic stress and apoptosis. The functional relevance of keratins in human diseases has recently been underlined by the identification of mutations in keratin genes in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
122
|
Reichelt J, Furstenberger G, Magin TM. Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J Invest Dermatol 2004; 123:973-81. [PMID: 15482487 DOI: 10.1111/j.0022-202x.2004.23426.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Keratin 10 (K10) is the major protein in the upper epidermis where it maintains keratinocyte integrity. Others have reported that K10 may act as a tumor suppressor upon ectopic expression in mice. Although K10(-/-) mice show significant epidermal hyperproliferation, accompanied by an activation of the mitogen-activated protein kinase (MAPK) pathway, they formed no spontaneous tumors. Here, we report that K10(-/-) mice treated with 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) developed far less papillomas than wild-type mice. BrdU(5-bromo-2'-deoxyuridine)-labeling revealed a strongly accelerated keratinocyte turnover in K10(-/-) epidermis suggesting an increased elimination of initiated keratinocytes at early stages of developing tumors. This is further supported by the absence of label-retaining cells 18 d after the pulse whereas in wild-type mice label-retaining cells were still present. The concomitant increase in K6, K16, and K17 in K10 null epidermis and the increased motility of keratinocytes is in agreement with the pliability versus resilience hypothesis, stating that K10 and K1 render cells more stable and static. The K10(-/-) knockout represent the first mouse model showing that loss of a keratin, a cytoskeletal protein, reduces tumor formation. This is probably caused by an accelerated turnover of keratinocytes, possibly mediated by activation of MAPK pathways.
Collapse
Affiliation(s)
- Julia Reichelt
- Institut fuer Physiologische Chemie, Abteilung fuer Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitaetsklinikum Bonn, Bonn, Germany.
| | | | | |
Collapse
|
123
|
Affiliation(s)
- M Bishr Omary
- From the Department of Medicine, Palo Alto Veterans Affairs Medical Center and Stanford University, Palo Alto, Calif 94304, USA
| | | | | |
Collapse
|
124
|
Hesse M, Zimek A, Weber K, Magin TM. Comprehensive analysis of keratin gene clusters in humans and rodents. Eur J Cell Biol 2004; 83:19-26. [PMID: 15085952 DOI: 10.1078/0171-9335-00354] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Here, we present the comparative analysis of the two keratin (K) gene clusters in the genomes of man, mouse and rat. Overall, there is a remarkable but not perfect synteny among the clusters of the three mammalian species. The human type I keratin gene cluster consists of 27 genes and 4 pseudogenes, all in the same orientation. It is interrupted by a domain of multiple genes encoding keratin-associated proteins (KAPs). Cytokeratin, hair and inner root sheath keratin genes are grouped together in small subclusters, indicating that evolution occurred by duplication events. At the end of the rodent type I gene cluster, a novel gene related to K14 and K17 was identified, which is converted to a pseudogene in humans. The human type II cluster consists of 27 genes and 5 pseudogenes, most of which are arranged in the same orientation. Of the 26 type II murine keratin genes now known, the expression of two new genes was identified by RT-PCR. Kb20, the first gene in the cluster, was detected in lung tissue. Kb39, a new ortholog of K1, is expressed in certain stratified epithelia. It represents a candidate gene for those hyperkeratotic skin syndromes in which no K1 mutations were identified so far. Most remarkably, the human K3 gene which causes Meesmann's corneal dystrophy when mutated, lacks a counterpart in the mouse genome. While the human genome has 138 pseudogenes related to K8 and K18, the mouse and rat genomes contain only 4 and 6 such pseudogenes. Our results also provide the basis for a unified keratin nomenclature and for future functional studies.
Collapse
Affiliation(s)
- Michael Hesse
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitätsklinikum Bonn, Germany
| | | | | | | |
Collapse
|
125
|
Zhong B, Omary MB. Actin overexpression parallels severity of pancreatic injury. Exp Cell Res 2004; 299:404-14. [PMID: 15350539 DOI: 10.1016/j.yexcr.2004.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/13/2004] [Indexed: 12/16/2022]
Abstract
Among the three major cytofilament proteins, keratin (K8/K18/K19) expression increases nearly threefold upon pancreas or liver injury, while actin and tubulin expressions are considered relatively stable. K8/K18 serves essential hepatocyte cytoprotective functions yet appears dispensable in K8-null mouse pancreata, which led us to hypothesize that actin or tubulin expressions may increase after pancreatic injury. Balb/c and FVB/n mice manifested different susceptibility to injury in two pancreatitis models, with significant induction of actin protein (threefold) and RNA after moderate or severe but not mild injury. Alterations in tubulin expression were less prominent. Basally, K8-null and wild-type pancreata expressed similar actin and tubulin levels, while the injury-induced actin protein but not RNA was more pronounced in K8-null mice. K7/K18/K19/K20 were also induced in K8-null mice after injury. Ex vivo, caerulein-triggered pancreatitis caused protein degradation (actin approximately or = tubulin > keratins) and mRNA up-regulation that was blocked by actinomycin-D (act-D) (actin approximately or = tubulin approximately or = keratin) or by NF-kappaB inhibition (keratins > actin approximately or = tubulin). Hence, actin is not as static as previously held and is overexpressed after moderate to severe pancreatic injury while keratins are induced after minimal injury. Keratin and actin induction may serve protective roles in pancreatic injury.
Collapse
Affiliation(s)
- Bihui Zhong
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | |
Collapse
|
126
|
Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 2004; 73:749-89. [PMID: 15189158 DOI: 10.1146/annurev.biochem.73.011303.073823] [Citation(s) in RCA: 515] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superfamily of intermediate filament (IF) proteins contains at least 65 distinct proteins in man, which all assemble into approximately 10 nm wide filaments and are principal structural elements both in the nucleus and the cytoplasm with essential scaffolding functions in metazoan cells. At present, we have only circumstantial evidence of how the highly divergent primary sequences of IF proteins lead to the formation of seemingly similar polymers and how this correlates with their function in individual cells and tissues. Point mutations in IF proteins, particularly in lamins, have been demonstrated to lead to severe, inheritable multi-systemic diseases, thus underlining their importance at several functional levels. Recent structural work has now begun to shed some light onto the complex fine tuning of structure and function in these fibrous, coiled coil forming multidomain proteins and their contribution to cellular physiology and gene regulation.
Collapse
Affiliation(s)
- Harald Herrmann
- Department of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
127
|
Fausther M, Villeneuve L, Cadrin M. Heat shock protein 70 expression, keratin phosphorylation and Mallory body formation in hepatocytes from griseofulvin-intoxicated mice. COMPARATIVE HEPATOLOGY 2004; 3:5. [PMID: 15307891 PMCID: PMC516018 DOI: 10.1186/1476-5926-3-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 08/12/2004] [Indexed: 01/16/2023]
Abstract
Background Keratins are members of the intermediate filaments (IFs) proteins, which constitute one of the three major cytoskeletal protein families. In hepatocytes, keratin 8 and 18 (K8/18) are believed to play a protective role against mechanical and toxic stress. Post-translational modifications such as phosphorylation and glycosylation are thought to modulate K8/18 functions. Treatment of mouse with a diet containing griseofulvin (GF) induces, in hepatocytes, modifications in organization, expression and phosphorylation of K8/18 IFs and leads, on the long term, to the formation of K8/18 containing aggregates morphologically and biochemically identical to Mallory bodies present in a number of human liver diseases. The aim of the present study was to investigate the relationship between the level and localization of the stress inducible heat shock protein 70 kDa (HSP70i) and the level and localization of K8/18 phosphorylation in the liver of GF-intoxicated mice. The role of these processes in Mallory body formation was studied, too. The experiment was carried out parallely on two different mouse strains, C3H and FVB/n. Results GF-treatment induced an increase in HSP70i expression and K8 phosphorylation on serines 79 (K8 S79), 436 (K8 S436), and K18 phosphorylation on serine 33 (K18 S33) as determined by Western blotting. Using immunofluorescence staining, we showed that after treatment, HSP70i was present in all hepatocytes. However, phosphorylated K8 S79 (K8 pS79) and K8 S436 (K8 pS436) were observed only in groups of hepatocytes or in isolated hepatocytes. K18 pS33 was increased in all hepatocytes. HSP70i colocalized with MBs containing phosphorylated K8/18. Phophorylation of K8 S79 was observed in C3H mice MBs but was not present in FVB/n MBs. Conclusions Our results indicate that GF intoxication represents a stress condition affecting all hepatocytes, whereas induction of K8/18 phosphorylation is not occurring in every hepatocyte. We conclude that, in vivo, there is no direct relationship between GF-induced stress and K8/18 phosphorylation on the studied sites. The K8/18 phosphorylation pattern indicates that different cell signaling pathways are activated in subpopulations of hepatocytes. Moreover, our results demonstrate that, in distinct genetic backgrounds, the induction of K8/18 phosphorylation can be different.
Collapse
Affiliation(s)
- Michel Fausther
- Département de chimie-biologie, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, C.P. 500, Québec, Trois-Rivières, Canada G9A 5H7
| | - Louis Villeneuve
- Département de chimie-biologie, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, C.P. 500, Québec, Trois-Rivières, Canada G9A 5H7
| | - Monique Cadrin
- Département de chimie-biologie, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, C.P. 500, Québec, Trois-Rivières, Canada G9A 5H7
| |
Collapse
|
128
|
Abstract
Intermediate filaments, actin-containing microfilaments and microtubules are the three main cytoskeletal systems of vertebrate and many invertebrate cells. Although these systems are composed of distinctly different proteins, they are in constant and intimate communication with one another. Understanding the molecular basis of this cytoskeletal crosstalk is essential for determining the mechanisms that underlie many cell-biological phenomena. Recent studies have revealed that intermediate filaments and their associated proteins are important components in mediating this crosstalk.
Collapse
Affiliation(s)
- Lynne Chang
- Feinberg School of Medicine, Northwestern University, Department of Cell and Molecular Biology, 303 East Chicago Avenue, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
129
|
Coulombe PA, Wong P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 2004; 6:699-706. [PMID: 15303099 DOI: 10.1038/ncb0804-699] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intermediate filaments are cytoskeletal polymers encoded by a large family of differentially expressed genes that provide crucial structural support in the cytoplasm and nucleus of higher eukaryotes. Perturbation of their function accounts for several genetically determined diseases in which fragile cells cannot sustain mechanical and non-mechanical stresses. Recent studies shed light on how this structural support is modulated to meet the changing needs of cells, and reveal a novel role whereby intermediate filaments influence cell growth and death through dynamic interactions with non-structural proteins.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
130
|
Mücke N, Wedig T, Bürer A, Marekov LN, Steinert PM, Langowski J, Aebi U, Herrmann H. Molecular and biophysical characterization of assembly-starter units of human vimentin. J Mol Biol 2004; 340:97-114. [PMID: 15184025 DOI: 10.1016/j.jmb.2004.04.039] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/06/2004] [Accepted: 04/20/2004] [Indexed: 11/23/2022]
Abstract
We have developed an assembly protocol for the intermediate filament (IF) protein vimentin based on a phosphate buffer system, which enables the dynamic formation of authentic IFs. The advantage of this physiological buffer is that analysis of the subunit interactions by chemical cross-linking of internal lysine residues becomes feasible. By this system, we have analyzed the potential interactions of the coiled-coil rod domains with one another, which are assumed to make a crucial contribution to IF formation and stability. We show that headless vimentin, which dimerizes under low salt conditions, associates into tetramers of the A(22)-type configuration under assembly conditions, indicating that one of the effects of increasing the ionic strength is to favor coil 2-coil 2 interactions. Furthermore, in order to obtain insight into the molecular interactions that occur during the first phase of assembly of full-length vimentin, we employed a temperature-sensitive variant of human vimentin, which is arrested at the "unit-length filament" (ULF) state at room temperature, but starts to elongate upon raising the temperature to 37 degrees C. Most importantly, we demonstrate by cross-linking analysis that ULF formation predominantly involves A(11)-type dimer-dimer interactions. The presence of A(22) and A(12) cross-linking products in mature IFs, however, indicates that major rearrangements do occur during the longitudinal annealing and radial compaction steps of IF assembly.
Collapse
Affiliation(s)
- Norbert Mücke
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Windoffer R, Wöll S, Strnad P, Leube RE. Identification of novel principles of keratin filament network turnover in living cells. Mol Biol Cell 2004; 15:2436-48. [PMID: 15004233 PMCID: PMC404035 DOI: 10.1091/mbc.e03-09-0707] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
132
|
Perng MD, Wen SF, van den IJssel P, Prescott AR, Quinlan RA. Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 2004; 15:2335-46. [PMID: 15004226 PMCID: PMC404027 DOI: 10.1091/mbc.e03-12-0893] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The R120G mutation in alphaB-crystallin causes desmin-related myopathy. There have been a number of mechanisms proposed to explain the disease process, from altered protein processing to loss of chaperone function. Here, we show that the mutation alters the in vitro binding characteristics of alphaB-crystallin for desmin filaments. The apparent dissociation constant of R120G alphaB-crystallin was decreased while the binding capacity was increased significantly and as a result, desmin filaments aggregated. These data suggest that the characteristic desmin aggregates seen as part of the disease histopathology can be caused by a direct, but altered interaction of R120G alphaB-crystallin with desmin filaments. Transfection studies show that desmin networks in different cell backgrounds are not equally affected. Desmin networks are most vulnerable when they are being made de novo and not when they are already established. Our data also clearly demonstrate the beneficial role of wild-type alphaB-crystallin in the formation of desmin filament networks. Collectively, our data suggest that R120G alphaB-crystallin directly promotes desmin filament aggregation, although this gain of a function can be repressed by some cell situations. Such circumstances in muscle could explain the late onset characteristic of the myopathies caused by mutations in alphaB-crystallin.
Collapse
Affiliation(s)
- Ming Der Perng
- School of Biological and Biomedical Sciences, The University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
133
|
Karabinos A, Zimek A, Weber K. The genome of the early chordate Ciona intestinalis encodes only five cytoplasmic intermediate filament proteins including a single type I and type II keratin and a unique IF–annexin fusion protein. Gene 2004; 326:123-9. [PMID: 14729270 DOI: 10.1016/j.gene.2003.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We screened the recently established draft genome of the early chordate Ciona intestinalis for genes encoding cytoplasmic intermediate filament (IF) proteins. The draft of the tunicate/urochordate genome contains only the five genes (IF-A, IF-B, IF-C, IF-D and IF-F) previously established by cDNA cloning. Three of these IF proteins (IF-D, IF-C, IF-A) were shown to be orthologs of vertebrate IF subfamilies I to III while two proteins (IF-B, IF-F) seemed tunicate specific. This is now firmly established for protein IF-F since the genomic data show that it arises as a fusion protein with a C-terminal annexin domain, a feature not found before in the very large collection of metazoan IF proteins. The results also confirm the previous proposal that urochordates lack orthologs of vertebrate type IV IF proteins. We discuss the striking increase of IF complexity from 5 tunicate to 65 human genes during chordate evolution. Thus the tunicate has a single keratin pair, which is expressed in the epidermis, while the human genome has at least 25 genes each for keratins I and keratins II. Finally there are four normal Ciona annexin genes in addition to the gene encoding the IF-annexin fusion proteins (IF-F).
Collapse
Affiliation(s)
- Anton Karabinos
- Department of Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | | | | |
Collapse
|
134
|
Windoffer R, Leube RE. Imaging of keratin dynamics during the cell cycle and in response to phosphatase inhibition. Methods Cell Biol 2004; 78:321-52. [PMID: 15646624 DOI: 10.1016/s0091-679x(04)78012-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg-University, 55128 Mainz, Germany
| | | |
Collapse
|
135
|
Zatloukal K, Stumptner C, Fuchsbichler A, Janig E, Denk H. Intermediate Filament Protein Inclusions. Methods Cell Biol 2004; 78:205-28. [PMID: 15646620 DOI: 10.1016/s0091-679x(04)78008-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria
| | | | | | | | | |
Collapse
|
136
|
Ku NO, Toivola DM, Zhou Q, Tao GZ, Zhong B, Omary MB. Studying simple epithelial keratins in cells and tissues. Methods Cell Biol 2004; 78:489-517. [PMID: 15646629 DOI: 10.1016/s0091-679x(04)78017-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nam-On Ku
- Department of Medicine, Palo Alto VA Medical Center and Stanford University, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
137
|
Affiliation(s)
- Richard M Robson
- Muscle Biology Group, Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
138
|
Herrmann H, Kreplak L, Aebi U. Isolation, characterization, and in vitro assembly of intermediate filaments. Methods Cell Biol 2004; 78:3-24. [PMID: 15646613 DOI: 10.1016/s0091-679x(04)78001-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, TP 3, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
139
|
Preface. Methods Cell Biol 2004. [DOI: 10.1016/s0091-679x(04)78032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
140
|
Magin TM, Hesse M, Meier-Bornheim R, Reichelt J. Developing Mouse Models to Study Intermediate Filament Function. Methods Cell Biol 2004; 78:65-94. [PMID: 15646616 DOI: 10.1016/s0091-679x(04)78004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Thomas M Magin
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitätsklinikum Bonn, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
141
|
Marceau N, Gilbert S, Loranger A. Uncovering the Roles of Intermediate Filaments in Apoptosis. Methods Cell Biol 2004; 78:95-129. [PMID: 15646617 DOI: 10.1016/s0091-679x(04)78005-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie et Département de médecine, Université Laval, G1R 2J6 QC, Canada
| | | | | |
Collapse
|
142
|
Werner NS, Windoffer R, Strnad P, Grund C, Leube RE, Magin TM. Epidermolysis bullosa simplex-type mutations alter the dynamics of the keratin cytoskeleton and reveal a contribution of actin to the transport of keratin subunits. Mol Biol Cell 2003; 15:990-1002. [PMID: 14668478 PMCID: PMC363056 DOI: 10.1091/mbc.e03-09-0687] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dominant keratin mutations cause epidermolysis bullosa simplex by transforming keratin (K) filaments into aggregates. As a first step toward understanding the properties of mutant keratins in vivo, we stably transfected epithelial cells with an enhanced yellow fluorescent protein-tagged K14R125C mutant. K14R125C became localized as aggregates in the cell periphery and incorporated into perinuclear keratin filaments. Unexpectedly, keratin aggregates were in dynamic equilibrium with soluble subunits at a half-life time of <15 min, whereas filaments were extremely static. Therefore, this dominant-negative mutation acts by altering cytoskeletal dynamics and solubility. Unlike previously postulated, the dominance of mutations is limited and strictly depends on the ratio of mutant to wild-type protein. In support, K14R125C-specific RNA interference experiments resulted in a rapid disintegration of aggregates and restored normal filaments. Most importantly, live cell inhibitor studies revealed that the granules are transported from the cell periphery inwards in an actin-, but not microtubule-based manner. The peripheral granule zone may define a region in which keratin precursors are incorporated into existing filaments. Collectively, our data have uncovered the transient nature of keratin aggregates in cells and offer a rationale for the treatment of epidermolysis bullosa simplex by using short interfering RNAs.
Collapse
Affiliation(s)
- Nicola Susann Werner
- Institut fuer Physiologische Chemie, Abteilung fuer Zellbiochemie, Universitaetsklinikum Bonn, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
143
|
Reichelt J, Magin TM. Hyperproliferation, induction of c-Myc and 14-3-3σ, but no cell fragility in keratin-10-null mice. J Cell Sci 2002; 115:2639-50. [PMID: 12077355 DOI: 10.1242/jcs.115.13.2639] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the past, keratins have been established as structural proteins. Indeed,mutations in keratin 10 (K10) and other epidermal keratins lead to severe skin fragility syndromes. Here, we present adult K10-/- mice, which reveal a novel connection between the regulation of cell proliferation and K10. Unlike most keratin mutant mice, the epidermis of adult K10-/-mice showed no cytolysis but displayed hyperproliferation of basal keratinocytes and an increased cell size. BrdU labelling revealed a shortened transition time for keratinocytes migrating outwards and DAPI staining of epidermal sheets uncovered an impaired organization of epidermal proliferation units. These remarkable changes were accompanied by the induction of c-Myc,cyclin D1, 14-3-3σ and of wound healing keratins K6 and K16. The phosphorylation of Rb remained unaltered. In line with the downregulation of K10 in squamous cell carcinomas and its absence in proliferating cells in vivo, our data suggest that the tissue-restricted expression of some members of the keratin gene family not only serves structural functions. Our results imply that the altered composition of the suprabasal cytoskeleton is able to alter the proliferation state of basal cells through the induction of c-Myc. A previous model based on transfection of K10 in immortalized human keratinocytes suggested a direct involvement of K10 in cell cycle control. While those experiments were performed in human cultured keratinocytes, our data establish, that in vivo, K10 acts by an indirect control mechanism in trans.
Collapse
Affiliation(s)
- Julia Reichelt
- Institute of Physiological Chemistry and Bonner Forum Biomedizin, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | | |
Collapse
|