101
|
Isolation of mitochondria for biogenetical studies: An update. Mitochondrion 2009; 10:253-62. [PMID: 20034597 DOI: 10.1016/j.mito.2009.12.148] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/11/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
The use of good quality preparations of isolated mitochondria is necessary when studying the mitochondrial biogenetical activities. This article explains a fast and simple method for the purification of mammalian mitochondria from different tissues and cultured cells, that is suitable for the analysis of many aspects of the organelle's biogenesis. The mitochondria isolated following the protocol described here, are highly active and capable of DNA, RNA and protein synthesis. Mitochondrial tRNA aminoacylation, mtDNA-protein interactions and specific import of added proteins into the organelles, can also be studied using this kind of preparations.
Collapse
|
102
|
Vives-Bauza C, Magrané J, Andreu AL, Manfredi G. Novel role of ATPase subunit C targeting peptides beyond mitochondrial protein import. Mol Biol Cell 2009; 21:131-9. [PMID: 19889836 PMCID: PMC2801706 DOI: 10.1091/mbc.e09-06-0483] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Mammals have three isoforms of F1F0-ATP synthase subunit c, only differing by their mitochondrial targeting peptides. Here, we show that these isoforms are non-redundant, because of different functions conferred by the targeting peptides, which in addition to mediating protein import, play a yet undiscovered role in respiratory chain maintenance. In mammals, subunit c of the F1F0-ATP synthase has three isoforms (P1, P2, and P3). These isoforms differ by their cleavable mitochondrial targeting peptides, whereas the mature peptides are identical. To investigate this apparent genetic redundancy, we knocked down each of the three subunit c isoform by RNA interference in HeLa cells. Silencing any of the subunit c isoforms individually resulted in an ATP synthesis defect, indicating that these isoforms are not functionally redundant. We found that subunit c knockdown impaired the structure and function of the mitochondrial respiratory chain. In particular, P2 silencing caused defective cytochrome oxidase assembly and function. Because the expression of exogenous P1 or P2 was able to rescue the respective silencing phenotypes, but the two isoforms were unable to cross-complement, we hypothesized that their functional specificity resided in their targeting peptides. In fact, the expression of P1 and P2 targeting peptides fused to GFP variants rescued the ATP synthesis and respiratory chain defects in the silenced cells. Our results demonstrate that the subunit c isoforms are nonredundant, because they differ functionally by their targeting peptides, which, in addition to mediating mitochondrial protein import, play a yet undiscovered role in respiratory chain maintenance.
Collapse
Affiliation(s)
- Cristofol Vives-Bauza
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | |
Collapse
|
103
|
Horvath R, Kemp JP, Tuppen HAL, Hudson G, Oldfors A, Marie SKN, Moslemi AR, Servidei S, Holme E, Shanske S, Kollberg G, Jayakar P, Pyle A, Marks HM, Holinski-Feder E, Scavina M, Walter MC, Coku J, Günther-Scholz A, Smith PM, McFarland R, Chrzanowska-Lightowlers ZMA, Lightowlers RN, Hirano M, Lochmüller H, Taylor RW, Chinnery PF, Tulinius M, DiMauro S. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 2009; 132:3165-74. [PMID: 19720722 PMCID: PMC2768660 DOI: 10.1093/brain/awp221] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as ‘benign cytochrome c oxidase deficiency myopathy’ is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T>C mt-tRNAGlu mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation and show that tissue-specific mechanisms downstream of tRNAGlu may explain the spontaneous recovery. This study provides the rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.
Collapse
Affiliation(s)
- Rita Horvath
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Caccamo A, Majumder S, Deng JJ, Bai Y, Thornton FB, Oddo S. Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J Biol Chem 2009; 284:27416-24. [PMID: 19651785 DOI: 10.1074/jbc.m109.031278] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TDP-43 is a nuclear protein involved in exon skipping and alternative splicing. Recently, TDP-43 has been identified as the pathological signature protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis. In addition, TDP-43-positive inclusions are present in Parkinson disease, dementia with Lewy bodies, and 30% of Alzheimer disease cases. Pathological TDP-43 is redistributed from the nucleus to the cytoplasm, where it accumulates. An approximately 25-kDa C-terminal fragment of TDP-43 accumulates in affected brain regions, suggesting that it may be involved in the disease pathogenesis. Here, we show that overexpression of the 25-kDa C-terminal fragment is sufficient to cause the mislocalization and cytoplasmic accumulation of endogenous full-length TDP-43 in two different cell lines, thus recapitulating a key biochemical characteristic of TDP-43 proteinopathies. We also found that TDP-43 mislocalization is associated with a reduction in the low molecular mass neurofilament mRNA levels. Notably, we show that the autophagic system plays a role in TDP-43 metabolism. Specifically, we found that autophagy inhibition increases the accumulation of the C-terminal fragments of TDP-43, whereas inhibition of mTOR, a key protein kinase involved in autophagy regulation, reduces the 25-kDa C-terminal fragment accumulation and restores TDP-43 localization. Our results suggest that autophagy induction may be a valid therapeutic target for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Antonella Caccamo
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
105
|
Li R, Liu Y, Li Z, Yang L, Wang S, Guan MX. Failures in mitochondrial tRNAMet and tRNAGln metabolism caused by the novel 4401A>G mutation are involved in essential hypertension in a Han Chinese Family. Hypertension 2009; 54:329-37. [PMID: 19546379 DOI: 10.1161/hypertensionaha.109.129270] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report here on the clinical, genetic, and molecular characterization of 1 Han Chinese family with maternally transmitted hypertension. Three of 7 matrilineal relatives in this 4-generation family exhibited the variable degree of essential hypertension at the age at onset, ranging from 35 to 60 years old. Sequence analysis of the complete mitochondrial DNA in this pedigree identified the novel homoplasmic 4401A>G mutation localizing at the spacer immediately to the 5' end of tRNA(Met) and tRNA(Gln) genes and 39 other variants belonging to the Asian haplogroup C. The 4401A>G mutation was absent in 242 Han Chinese controls. Approximately 30% reductions in the steady-state levels of tRNA(Met) and tRNA(Gln) were observed in 2 lymphoblastoid cell lines carrying the 4401A>G mutation compared with 2 control cell lines lacking this mutation. Failures in mitochondrial metabolism are apparently a primary contributor to the reduced rate of mitochondrial translation and reductions in the rate of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration in lymphoblastoid cell lines carrying the 4401A>G mutation. The homoplasmic form, mild biochemical defect, late onset, and incomplete penetrance of hypertension in this family suggest that the 4401A>G mutation itself is insufficient to produce a clinical phenotype. Thus, the other modifier factors, eg, nuclear modifier genes and environmental and personal factors, may also contribute to the development of hypertension in these subjects carrying this mutation. These data suggest that mitochondrial dysfunctions, caused by the 4401A>G mutation, are involved in the development of hypertension in this Chinese pedigree.
Collapse
Affiliation(s)
- Ronghua Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
106
|
Liu Y, Li R, Li Z, Wang XJ, Yang L, Wang S, Guan MX. Mitochondrial transfer RNAMet 4435A>G mutation is associated with maternally inherited hypertension in a Chinese pedigree. Hypertension 2009; 53:1083-90. [PMID: 19398658 PMCID: PMC2907152 DOI: 10.1161/hypertensionaha.109.128702] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondrial DNA mutations have been associated with cardiovascular disease. We report here the clinical, genetic, and molecular characterization of 1 Han Chinese family with suggestively maternally transmitted hypertension. Matrilineal relatives in this family exhibited the variable degree of hypertension at the age at onset of 44 to 55 years old. Sequence analysis of entire mitochondrial DNA in this pedigree identified the known homoplasmic 4435A>G mutation, which is located immediately at the 3 prime end to the anticodon, corresponding with the conventional position 37 of tRNA(Met), and 35 other variants belonging to the Asian haplogroup B5a. The adenine (A37) at this position of tRNA(Met) is extraordinarily conserved from bacteria to human mitochondria. This modified A37 was shown to contribute to the high fidelity of codon recognition, the structural formation, and stabilization of functional tRNAs. In fact, a 40% reduction in the levels of tRNA(Met) was observed in cells carrying the 4435A>G mutation. As a result, a failure in mitochondrial tRNA metabolism, caused by the 4435A>G mutation, led to approximately 30% reduction in the rate of mitochondrial translation. However, the homoplasmic form, mild biochemical defect, and late onset of hypertension in subjects carrying the 4435A>G mutation suggest that the 4435A>G mutation itself is insufficient to produce a clinical phenotype. The other modifier factors, such as nuclear modifier genes, environmental, and personal factors may also contribute to the development of hypertension in the subjects carrying this mutation. Our findings imply that the 4435A>G mutation may act as an inherited risk factor for the development of hypertension in this Chinese pedigree.
Collapse
Affiliation(s)
- Yuqi Liu
- Institute of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
107
|
Wenz T, Luca C, Torraco A, Moraes CT. mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription. Cell Metab 2009; 9:499-511. [PMID: 19490905 PMCID: PMC2778471 DOI: 10.1016/j.cmet.2009.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 03/12/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Regulation of mitochondrial protein expression is crucial for the function of the oxidative phosphorylation (OXPHOS) system. Although the basal machinery for mitochondrial transcription is known, the regulatory mechanisms are not completely understood. Here, we characterized mTERF2, a mitochondria-localized homolog of the mitochondrial transcription termination factor mTERF1. We show that inactivation of mTERF2 in the mouse results in a myopathy and memory deficits associated with decreased levels of mitochondrial transcripts and imbalanced tRNA pool. These aberrations were associated with decreased steady-state levels of OXPHOS proteins causing a decrease in respiratory function. mTERF2 binds to the mtDNA promoter region, suggesting that it affects transcription initiation. In vitro interaction studies suggest that mtDNA mediates interactions between mTERF2 and mTERF3. Our results indicate that mTERF1, mTERF2, and mTERF3 regulate transcription by acting in the same site in the mtDNA promoter region and thereby mediate fine-tuning of mitochondrial transcription and hence OXPHOS function.
Collapse
Affiliation(s)
- Tina Wenz
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
108
|
Möpert K, Hajek P, Frank S, Chen C, Kaufmann J, Santel A. Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization. Exp Cell Res 2009; 315:2165-80. [PMID: 19409380 DOI: 10.1016/j.yexcr.2009.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/10/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with "bulge"-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1) variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous "fusion" and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.
Collapse
|
109
|
The mitochondrial pool of free amino acids reflects the composition of mitochondrial DNA-encoded proteins: indication of a post- translational quality control for protein synthesis. Biosci Rep 2009; 28:239-49. [PMID: 18636966 DOI: 10.1042/bsr20080090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondria can synthesize a limited number of proteins encoded by mtDNA (mitochondrial DNA) by using their own biosynthetic machinery, whereas most of the proteins in mitochondria are imported from the cytosol. It could be hypothesized that the mitochondrial pool of amino acids follows the frequency of amino acids in mtDNA-encoded proteins or, alternatively, that the profile is the result of the participation of amino acids in pathways other than protein synthesis (e.g. haem biosynthesis and aminotransferase reactions). These hypotheses were tested by evaluating the pool of free amino acids and derivatives in highly-coupled purified liver mitochondria obtained from rats fed on a nutritionally adequate diet for growth. Our results indicated that the pool mainly reflects the amino acid composition of mtDNA-encoded proteins, suggesting that there is a post-translational control of protein synthesis. This conclusion was supported by the following findings: (i) correlation between the concentration of free amino acids in the matrix and the frequency of abundance of amino acids in mtDNA-encoded proteins; (ii) the similar ratios of essential-to-non-essential amino acids in mtDNA-encoded proteins and the mitochondrial pool of amino acids; and (iii), lack of a correlation between codon usage or tRNA levels and amino-acid concentrations. Quantitative information on the mammalian mitochondrial content of amino acids, such as that presented in the present study, along with functional studies, will help us to better understand the pathogenesis of mitochondrial diseases or the biochemical implications in mitochondrial metabolism.
Collapse
|
110
|
Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. Respiratory active mitochondrial supercomplexes. Mol Cell 2009; 32:529-39. [PMID: 19026783 DOI: 10.1016/j.molcel.2008.10.021] [Citation(s) in RCA: 608] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 06/19/2008] [Accepted: 10/29/2008] [Indexed: 12/16/2022]
Abstract
The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet. We have observed that (1) supercomplexes are not formed when one of their component complexes is absent; (2) there is a temporal gap between the formation of the individual complexes and that of the supercomplexes; (3) some putative respirasomes contain CoQ and cytochrome c; (4) isolated respirasomes can transfer electrons from NADH to O(2), that is, they respire. Therefore, we have demonstrated the existence of a functional respirasome and propose a structural organization model that accommodates these findings.
Collapse
Affiliation(s)
- Rebeca Acín-Pérez
- Departamento de Bioquimica, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
111
|
Leary SC, Sasarman F. Oxidative phosphorylation: synthesis of mitochondrially encoded proteins and assembly of individual structural subunits into functional holoenzyme complexes. Methods Mol Biol 2009; 554:143-162. [PMID: 19513673 DOI: 10.1007/978-1-59745-521-3_10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The bulk of ATP consumed by various cellular processes in higher eukaryotes is normally produced by five multimeric protein complexes (I-V) embedded within the inner mitochondrial membrane, in a process known as oxidative phosphorylation (OXPHOS). Maintenance of energy homeostasis under most physiological conditions is therefore contingent upon the ability of OXPHOS to meet cellular changes in bioenergetic demand, with a chronic failure to do so being a frequent cause of human disease. With the exception of Complex II, the structural subunits of OXPHOS complexes are encoded by both the nuclear and the mitochondrial genomes. The physical separation of the two genomes necessitates that the expression of the 13 mitochondrially encoded polypeptides be co-ordinated with that of relevant nuclear-encoded partners in order to assemble functional holoenzyme complexes. Complex biogenesis is a highly ordered process, and several nuclear-encoded factors that function at distinct stages in the assembly of individual OXPHOS complexes have been identified.
Collapse
Affiliation(s)
- Scot C Leary
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
112
|
Chapter 18 Analysis of Respiratory Chain Complex Assembly with Radiolabeled Nuclear‐ and Mitochondrial‐Encoded Subunits. Methods Enzymol 2009; 456:321-39. [DOI: 10.1016/s0076-6879(08)04418-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
113
|
Ferreiro-Barros CC, Tengan CH, Barros MH, Palenzuela L, Kanki C, Quinzii C, Lou J, El Gharaby N, Shokr A, De Vivo DC, DiMauro S, Hirano M. Neonatal mitochondrial encephaloneuromyopathy due to a defect of mitochondrial protein synthesis. J Neurol Sci 2008; 275:128-32. [PMID: 18835491 DOI: 10.1016/j.jns.2008.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 07/26/2008] [Accepted: 08/08/2008] [Indexed: 11/17/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous disorders due to primary mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). We studied a male infant with severe congenital encephalopathy, peripheral neuropathy, and myopathy. The patient's lactic acidosis and biochemical defects of respiratory chain complexes I, III, and IV in muscle indicated that he had a mitochondrial disorder while parental consanguinity suggested autosomal recessive inheritance. Cultured fibroblasts from the patient showed a generalized defect of mitochondrial protein synthesis. Fusion of cells from the patient with 143B206 rho(0) cells devoid of mtDNA restored cytochrome c oxidase activity confirming the nDNA origin of the disease. Our studies indicate that the patient has a novel autosomal recessive defect of mitochondrial protein synthesis.
Collapse
|
114
|
Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZMA. The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res 2008; 36:5787-99. [PMID: 18782833 PMCID: PMC2566884 DOI: 10.1093/nar/gkn576] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The molecular mechanism of human mitochondrial translation has yet to be fully described. We are particularly interested in understanding the process of translational termination and ribosome recycling in the mitochondrion. Several candidates have been implicated, for which subcellular localization and characterization have not been reported. Here, we show that the putative mitochondrial recycling factor, mtRRF, is indeed a mitochondrial protein. Expression of human mtRRF in fission yeast devoid of endogenous mitochondrial recycling factor suppresses the respiratory phenotype. Further, human mtRRF is able to associate with Escherichia coli ribosomes in vitro and can associate with mitoribosomes in vivo. Depletion of mtRRF in human cell lines is lethal, initially causing profound mitochondrial dysmorphism, aggregation of mitoribosomes, elevated mitochondrial superoxide production and eventual loss of OXPHOS complexes. Finally, mtRRF was shown to co-immunoprecipitate a large number of mitoribosomal proteins attached to other mitochondrial proteins, including putative members of the mitochondrial nucleoid.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Kawamata H, Magrané J, Kunst C, King MP, Manfredi G. Lysyl-tRNA synthetase is a target for mutant SOD1 toxicity in mitochondria. J Biol Chem 2008; 283:28321-8. [PMID: 18715867 DOI: 10.1074/jbc.m805599200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting the motor neurons. The majority of familial forms of ALS are caused by mutations in the Cu,Zn-superoxide dismutase (SOD1). In mutant SOD1 spinal cord motor neurons, mitochondria develop abnormal morphology, bioenergetic defects, and degeneration. However, the mechanisms of mitochondrial toxicity are still unclear. One possibility is that mutant SOD1 establishes aberrant interactions with nuclear-encoded mitochondrial proteins, which can interfere with their normal trafficking from the cytosol to mitochondria. Lysyl-tRNA synthetase (KARS), an enzyme required for protein translation that was shown to interact with mutant SOD1 in yeast, is a good candidate as a target for interaction with mutant SOD1 at the mitochondrion in mammals because of its dual cytosolic and mitochondrial localization. Here, we show that in mammalian cells mutant SOD1 interacts preferentially with the mitochondrial form of KARS (mitoKARS). KARS-SOD1 interactions occur also in the mitochondria of the nervous system in transgenic mice. In the presence of mutant SOD1, mitoKARS displays a high propensity to misfold and aggregate prior to its import into mitochondria, becoming a target for proteasome degradation. Impaired mitoKARS import correlates with decreased mitochondrial protein synthesis. Ultimately, the abnormal interactions between mutant SOD1 and mitoKARS result in mitochondrial morphological abnormalities and cell toxicity. mitoKARS is the first described member of a group of mitochondrial proteins whose interaction with mutant SOD1 contributes to mitochondrial dysfunction in ALS.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
116
|
Fernández-Vizarra E, Enriquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P. Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones. Curr Genet 2008; 54:13-22. [PMID: 18481068 DOI: 10.1007/s00294-008-0194-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 01/17/2023]
Abstract
Biogenesis of the oxidative phosphorylation system (OXPHOS) requires the coordinated expression of the nuclear and the mitochondrial genomes. Thyroid hormones play an important role in cell growth and differentiation and are one of the main effectors in mitochondrial biogenesis. To determine how mtDNA expression is regulated, we have investigated the response of two different tissues, the heart and liver, to the thyroid hormone status in vivo and in vitro. We show here that mtDNA expression is a tightly regulated process and that several levels of control can take place simultaneously. In addition, we show that the mechanisms operating in the control of mtDNA expression and their relevance differ between the two tissues, being gene dosage important only in heart while transcription rate and translation efficiency have more weight in liver cells. Another interesting difference is the lack of a direct effect of thyroid hormones on heart mitochondrial transcription.
Collapse
Affiliation(s)
- Erika Fernández-Vizarra
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
117
|
A homoplasmic mtDNA variant can influence the phenotype of the pathogenic m.7472Cins MTTS1 mutation: are two mutations better than one? Eur J Hum Genet 2008; 16:1265-74. [PMID: 18398437 DOI: 10.1038/ejhg.2008.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutations in mitochondrial tRNA (mt-tRNA) genes are well recognized as a common cause of human disease, exhibiting a significant degree of clinical heterogeneity. While these differences are explicable, in part, by differences in the innate pathogenicity of the mutation, its distribution and abundance, other factors, including nuclear genetic background, mitochondrial DNA (mtDNA) haplotype and additional mtDNA mutations may influence the expression of mt-tRNA mutations. We describe the clinical, biochemical and molecular findings in a family with progressive myopathy, deafness and diabetes and striking respiratory chain abnormalities due to a well-characterized heteroplasmic mt-tRNA mutation in the mt-tRNA(Ser(UCN)) (MTTS1) gene. In addition to the m.7472Cins mutation, all individuals were homoplasmic for another variant, m.7472A > C, affecting the adjacent nucleotide in the mt-tRNA(Ser(UCN)) structure. In addition to available patient tissues, we have analysed transmitochondrial cybrid clones harbouring homoplasmic levels of m.7472A > C and varying levels of the m.7472Cins mutation in an attempt to clarify the precise role of the m.7472A > C transversion in the underlying respiratory chain abnormality. Evidence from both in vivo and in vitro studies demonstrate that the m.7472A > C is able to modify the expression of the m.7472Cins mutation and would suggest that it is not a neutral variant but appears to cause a biochemical defect by itself, confirming that homoplasmic mtDNA variants can modulate the phenotypic expression of pathogenic, heteroplasmic mtDNA mutations.
Collapse
|
118
|
Rorbach J, Yusoff AA, Tuppen H, Abg-Kamaludin DP, Chrzanowska-Lightowlers ZMA, Taylor RW, Turnbull DM, McFarland R, Lightowlers RN. Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 2008; 36:3065-74. [PMID: 18400783 PMCID: PMC2396425 DOI: 10.1093/nar/gkn147] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phenotypic diversity associated with pathogenic mutations of the human mitochondrial genome (mtDNA) has often been explained by unequal segregation of the mutated and wild-type genomes (heteroplasmy). However, this simple hypothesis cannot explain the tissue specificity of disorders caused by homoplasmic mtDNA mutations. We have previously associated a homoplasmic point mutation (1624C>T) in MTTV with a profound metabolic disorder that resulted in the neonatal deaths of numerous siblings. Affected tissues harboured a marked biochemical defect in components of the mitochondrial respiratory chain, presumably due to the extremely low (<1%) steady-state levels of mt-tRNAVal. In primary myoblasts and transmitochondrial cybrids established from the proband (index case) and offspring, the marked respiratory deficiency was lost and steady-state levels of the mutated mt-tRNAVal were greater than in the biopsy material, but were still an order of magnitude lower than in control myoblasts. We present evidence that the generalized decrease in steady-state mt-tRNAVal observed in the homoplasmic 1624C>T-cell lines is caused by a rapid degradation of the deacylated form of the abnormal mt-tRNAVal. By both establishing the identity of the human mitochondrial valyl-tRNA synthetase then inducing its overexpression in transmitochondrial cell lines, we have been able to partially restore steady-state levels of the mutated mt-tRNAVal, consistent with an increased stability of the charged mt-tRNA. These data indicate that variations in the levels of VARS2L between tissue types and patients could underlie the difference in clinical presentation between individuals homoplasmic for the 1624C>T mutation.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Research Group, Institute of Neuroscience, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Sacconi S, Salviati L, Nishigaki Y, Walker WF, Hernandez-Rosa E, Trevisson E, Delplace S, Desnuelle C, Shanske S, Hirano M, Schon EA, Bonilla E, De Vivo DC, DiMauro S, Davidson MM. A functionally dominant mitochondrial DNA mutation. Hum Mol Genet 2008; 17:1814-20. [PMID: 18337306 PMCID: PMC2900892 DOI: 10.1093/hmg/ddn073] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) tRNA genes can be considered functionally recessive because they result in a clinical or biochemical phenotype only when the percentage of mutant molecules exceeds a critical threshold value, in the range of 70-90%. We report a novel mtDNA mutation that contradicts this rule, since it caused a severe multisystem disorder and respiratory chain (RC) deficiency even at low levels of heteroplasmy. We studied a 13-year-old boy with clinical, radiological and biochemical evidence of a mitochondrial disorder. We detected a novel heteroplasmic C>T mutation at nucleotide 5545 of mtDNA, which was present at unusually low levels (<25%) in affected tissues. The pathogenic threshold for the mutation in cybrids was between 4 and 8%, implying a dominant mechanism of action. The mutation affects the central base of the anticodon triplet of tRNA(Trp) and it may alter the codon specificity of the affected tRNA. These findings introduce the concept of dominance in mitochondrial genetics and pose new diagnostic challenges, because such mutations may easily escape detection. Moreover, similar mutations arising stochastically and accumulating in a minority of mtDNA molecules during the aging process may severely impair RC function in cells.
Collapse
Affiliation(s)
- Sabrina Sacconi
- Féderation des maladies neuromusculaires, CHU de Nice and INSERM U638, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Goemans CG, Boya P, Skirrow CJ, Tolkovsky AM. Intra-mitochondrial degradation of Tim23 curtails the survival of cells rescued from apoptosis by caspase inhibitors. Cell Death Differ 2008; 15:545-54. [PMID: 18174902 DOI: 10.1038/sj.cdd.4402290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Caspase inhibition can extend the survival of cells undergoing apoptosis beyond the point of mitochondrial outer membrane permeabilisation (MOMP), but this does not confer long-term protection because caspase-independent death pathways emerge. Here, we describe a novel mechanism of mitochondrial self-destruction in caspase-inhibited cells, whose hallmark is the degradation of Tim23, the essential pore-forming component of the TIM23 inner membrane translocase. We show that Tim23 degradation occurs in cycling and post-mitotic cells, it is caspase-independent but Bax/Bak dependent, and it follows cytochrome c release. The proteolytic degradation of Tim23 is induced by MOMP and is mitochondrion-autonomous, as it also occurs in isolated mitochondria undergoing permeability transition. Degradation of Tim23 is selective, as expression of several other inner membrane proteins that regulate respiratory chain function is unaffected, and is not autophagic, as it occurs similarly in autophagy-proficient and -deficient (Atg-5 knockout) cells. Depleting Tim23 with siRNA is sufficient to inhibit cell proliferation and prevent long-term survival, while expression of degradation-resistant Tim23-GFP in mitochondria delays caspase-independent cell death. Thus, mitochondrial autodigestion of Tim23 joins the array of processes contributing to caspase-independent cell death. Because mitochondrial biogenesis requires a functional protein-import machinery, preventing Tim23 degradation might, therefore, be essential for repairing damaged mitochondria in chronic degenerative diseases.
Collapse
Affiliation(s)
- C G Goemans
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
121
|
Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z. mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG. Mol Cell 2007; 27:745-57. [PMID: 17803939 PMCID: PMC1976341 DOI: 10.1016/j.molcel.2007.06.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/30/2007] [Accepted: 06/21/2007] [Indexed: 11/28/2022]
Abstract
Human mitochondria contain their own genome, encoding 13 polypeptides that are synthesized within the organelle. The molecular processes that govern and facilitate this mitochondrial translation remain unclear. Many key factors have yet to be characterized—for example, those required for translation termination. All other systems have two classes of release factors that either promote codon-specific hydrolysis of peptidyl-tRNA (class I) or lack specificity but stimulate the dissociation of class I factors from the ribosome (class II). One human mitochondrial protein has been previously identified in silico as a putative member of the class I release factors. Although we could not confirm the function of this factor, we report the identification of a different mitochondrial protein, mtRF1a, that is capable in vitro and in vivo of terminating translation at UAA/UAG codons. Further, mtRF1a depletion in HeLa cells led to compromised growth in galactose and increased production of reactive oxygen species.
Collapse
Affiliation(s)
| | - Inge Kühl
- Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Mauricette Gaisne
- Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Joao F. Passos
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 6BE, UK
| | - Mateusz Wydro
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Joanna Rorbach
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Richard Temperley
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Warren Tate
- Department of Biochemistry, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Robert Lightowlers
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia Chrzanowska-Lightowlers
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Corresponding author
| |
Collapse
|
122
|
Dunning CJR, McKenzie M, Sugiana C, Lazarou M, Silke J, Connelly A, Fletcher JM, Kirby DM, Thorburn DR, Ryan MT. Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 2007; 26:3227-37. [PMID: 17557076 PMCID: PMC1914096 DOI: 10.1038/sj.emboj.7601748] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/15/2007] [Indexed: 11/09/2022] Open
Abstract
In humans, complex I of the respiratory chain is composed of seven mitochondrial DNA (mtDNA)-encoded and 38 nuclear-encoded subunits that assemble together in a process that is poorly defined. To date, only two complex I assembly factors have been identified and how each functions is not clear. Here, we show that the human complex I assembly factor CIA30 (complex I intermediate associated protein) associates with newly translated mtDNA-encoded complex I subunits at early stages in their assembly before dissociating at a later stage. Using antibodies we identified a CIA30-deficient patient who presented with cardioencephalomyopathy and reduced levels and activity of complex I. Genetic analysis revealed the patient had mutations in both alleles of the NDUFAF1 gene that encodes CIA30. Complex I assembly in patient cells was defective at early stages with subunits being degraded. Complementing the deficiency in patient fibroblasts with normal CIA30 using a novel lentiviral system restored steady-state complex I levels. Our results indicate that CIA30 is a crucial component in the early assembly of complex I and mutations in its gene can cause mitochondrial disease.
Collapse
Affiliation(s)
- C J R Dunning
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - M McKenzie
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - C Sugiana
- Murdoch Childrens Research Institute and Genetic Health Services Victoria, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - M Lazarou
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - J Silke
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - A Connelly
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - J M Fletcher
- Department of Genetic Medicine, Women's and Children's Hospital and University of Adelaide, Adelaide, Australia
| | - D M Kirby
- Murdoch Childrens Research Institute and Genetic Health Services Victoria, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - D R Thorburn
- Murdoch Childrens Research Institute and Genetic Health Services Victoria, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - M T Ryan
- Department of Biochemistry, La Trobe University, Melbourne, Australia
- Department of Biochemistry, La Trobe University, Plenty Road, Melbourne, Victoria 3086, Australia. Tel.: +61 3 9479 2156; Fax: +61 3 9479 2467; E-mail:
| |
Collapse
|
123
|
Li Y, D'Aurelio M, Deng JH, Park JS, Manfredi G, Hu P, Lu J, Bai Y. An Assembled Complex IV Maintains the Stability and Activity of Complex I in Mammalian Mitochondria. J Biol Chem 2007; 282:17557-62. [PMID: 17452320 DOI: 10.1074/jbc.m701056200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mammalian mitochondrial electron transfer system, the majority of electrons enter at complex I, go through complexes III and IV, and are finally delivered to oxygen. Previously we generated several mouse cell lines with suppressed expression of the nuclearly encoded subunit 4 of complex IV. This led to a loss of assembly of complex IV and its defective function. Interestingly, we found that the level of assembled complex I and its activity were also significantly reduced, whereas levels and activity of complex III were normal or up-regulated. The structural and functional dependence of complex I on complex IV was verified using a human cell line carrying a nonsense mutation in the mitochondrially encoded complex IV subunit 1 gene. Our work documents that, although there is no direct electron transfer between them, an assembled complex IV helps to maintain complex I in mammalian cells.
Collapse
Affiliation(s)
- Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Liang H, Bai Y, Li Y, Richardson A, Ward WF. PGC-1alpha-induced mitochondrial alterations in 3T3 fibroblast cells. Ann N Y Acad Sci 2007; 1100:264-79. [PMID: 17460188 DOI: 10.1196/annals.1395.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peroxisome proliferation activator receptor (PPAR) gamma-coactivator 1alpha (PGC-1alpha), a transcription coactivator, functions as a master regulator of a wide array of metabolic and physiological processes and is an essential factor in the process of mitochondrial biogenesis. Transfection of NIH 3T3 fibroblasts with a mouse cDNA for PGC-1alpha led to the induction of markers of mitochondrial biogenesis, that is, mitochondrial transcription factor A (mtTFA), cytochrome c, and mitochondrial DNA (mtDNA). Mitochondrial biogenesis-associated net protein synthesis appears to be accomplished by a reduction in the rate of mitochondrial protein degradation with little or no change in the rate of protein synthesis. Overexpression of PGC-1alpha did not adversely affect cellular proliferation. Cellular ATP levels were increased in the transfected cells and they were more resistant to oxidative stress than the control nontransfected 3T3 cells. This resistance to oxidative stress was manifested by both an improved viability and the maintenance of mitochondrial membrane potential in the transfected cells when exposed to t-butyl hydroperoxide (t-BOOH). It therefore appears that PGC-1alpha overexpression stimulates mitochondrial biogenesis in 3T3 cells making them more resistant to oxidative stressors.
Collapse
Affiliation(s)
- Huiyun Liang
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
125
|
McKenzie M, Lazarou M, Thorburn DR, Ryan MT. Analysis of mitochondrial subunit assembly into respiratory chain complexes using Blue Native polyacrylamide gel electrophoresis. Anal Biochem 2007; 364:128-37. [PMID: 17391635 DOI: 10.1016/j.ab.2007.02.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/16/2007] [Accepted: 02/16/2007] [Indexed: 12/01/2022]
Abstract
The mitochondrial respiratory chain consists of multi-subunit protein complexes embedded in the inner membrane. Although the majority of subunits are encoded by nuclear genes and are imported into mitochondria, 13 subunits in humans are encoded by mitochondrial DNA. The coordinated assembly of subunits encoded from two genomes is a poorly understood process, with assembly pathway defects being a major determinant in mitochondrial disease. In this study, we monitored the assembly of human respiratory complexes using radiolabeled, mitochondrially encoded subunits in conjunction with Blue Native polyacrylamide gel electrophoresis. The efficiency of assembly was found to differ markedly between complexes, and intermediate complexes containing newly synthesized mitochondrial DNA-encoded subunits could be observed for complexes I, III, and IV. In particular, we detected human cytochrome b as a monomer and as a component of a novel approximately 120 kDa intermediate complex at early chase times before being totally assembled into mature complex III. Furthermore, we show that this approach is highly suited for the rapid detection of respiratory complex assembly defects in fibroblasts from patients with mitochondrial disease and, thus, has potential diagnostic applications.
Collapse
Affiliation(s)
- Matthew McKenzie
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia.
| | | | | | | |
Collapse
|
126
|
Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 2007; 27:4228-37. [PMID: 17438127 PMCID: PMC1900046 DOI: 10.1128/mcb.00074-07] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Complex I of the respiratory chain is composed of at least 45 subunits that assemble together at the mitochondrial inner membrane. Defects in human complex I result in energy generation disorders and are also implicated in Parkinson's disease and altered apoptotic signaling. The assembly of this complex is poorly understood and is complicated by its large size and its regulation by two genomes, with seven subunits encoded by mitochondrial DNA (mtDNA) and the remainder encoded by nuclear genes. Here we analyzed the assembly of a number of mtDNA- and nuclear-gene-encoded subunits into complex I. We found that mtDNA-encoded subunits first assemble into intermediate complexes and require significant chase times for their integration into the holoenzyme. In contrast, a set of newly imported nuclear-gene-encoded subunits integrate with preexisting complex I subunits to form intermediates and/or the fully assembly holoenzyme. One of the intermediate complexes represents a subassembly associated with the chaperone B17.2L. By using isolated patient mitochondria, we show that this subassembly is a productive intermediate in complex I assembly since import of the missing subunit restores complex I assembly. Our studies point to a mechanism of complex I biogenesis involving two complementary processes, (i) synthesis of mtDNA-encoded subunits to seed de novo assembly and (ii) exchange of preexisting subunits with newly imported ones to maintain complex I homeostasis. Subunit exchange may also act as an efficient mechanism to prevent the accumulation of oxidatively damaged subunits that would otherwise be detrimental to mitochondrial oxidative phosphorylation and have the potential to cause disease.
Collapse
Affiliation(s)
- Michael Lazarou
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | | | | | | | | |
Collapse
|
127
|
Srivastava S, Barrett JN, Moraes CT. PGC-1alpha/beta upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations. Hum Mol Genet 2007; 16:993-1005. [PMID: 17341490 PMCID: PMC2652746 DOI: 10.1093/hmg/ddm045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have studied the functional effects of nonsense mitochondrial DNA (mtDNA) mutations in the COXI and ND5 genes in a colorectal tumor cell line. Surprisingly, these cells had an efficient oxidative phosphorylation (OXPHOS); however, when mitochondria from these cells were transferred to an osteosarcoma nuclear background (osteosarcoma cybrids), the rate of respiration markedly declined suggesting that the phenotypic expression of the mtDNA mutations was prevented by the colorectal tumor nuclear background. We found that there was a significant increase in the steady-state levels of PGC-1alpha and PGC-1beta transcriptional coactivators in these cells and a parallel increase in the steady-state levels of several mitochondrial proteins. Accordingly, adenoviral-mediated overexpression of PGC-1alpha and PGC-1beta in the osteosarcoma cybrids stimulated mitochondrial respiration suggesting that an upregulation of PGC-1alpha/beta coactivators can partially rescue an OXPHOS defect. In conclusion, upregulation of PGC-1alpha and PGC-1beta in the colorectal tumor cells can be part of an adaptation mechanism to help overcome the severe consequences of mtDNA mutations on OXPHOS.
Collapse
Affiliation(s)
- Sarika Srivastava
- Department of Neurology, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - John N. Barrett
- Department of Physiology & Biophysics, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Department of Cell Biology & Anatomy, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- To whom correspondence should be addressed at: Tel: +1 3052435858; Fax: +1 3052433914;
| |
Collapse
|
128
|
Valente L, Tiranti V, Marsano RM, Malfatti E, Fernandez-Vizarra E, Donnini C, Mereghetti P, De Gioia L, Burlina A, Castellan C, Comi GP, Savasta S, Ferrero I, Zeviani M. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet 2007; 80:44-58. [PMID: 17160893 PMCID: PMC1785320 DOI: 10.1086/510559] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 10/25/2006] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial protein translation is a complex process performed within mitochondria by an apparatus composed of mitochondrial DNA (mtDNA)-encoded RNAs and nuclear DNA-encoded proteins. Although the latter by far outnumber the former, the vast majority of mitochondrial translation defects in humans have been associated with mutations in RNA-encoding mtDNA genes, whereas mutations in protein-encoding nuclear genes have been identified in a handful of cases. Genetic investigation involving patients with defective mitochondrial translation led us to the discovery of novel mutations in the mitochondrial elongation factor G1 (EFG1) in one affected baby and, for the first time, in the mitochondrial elongation factor Tu (EFTu) in another one. Both patients were affected by severe lactic acidosis and rapidly progressive, fatal encephalopathy. The EFG1-mutant patient had early-onset Leigh syndrome, whereas the EFTu-mutant patient had severe infantile macrocystic leukodystrophy with micropolygyria. Structural modeling enabled us to make predictions about the effects of the mutations at the molecular level. Yeast and mammalian cell systems proved the pathogenic role of the mutant alleles by functional complementation in vivo. Nuclear-gene abnormalities causing mitochondrial translation defects represent a new, potentially broad field of mitochondrial medicine. Investigation of these defects is important to expand the molecular characterization of mitochondrial disorders and also may contribute to the elucidation of the complex control mechanisms, which regulate this fundamental pathway of mtDNA homeostasis.
Collapse
Affiliation(s)
- Lucia Valente
- Pierfranco and Luisa Mariani Center for Research on Children's Mitochondrial Disorders, Division of Molecular Neurogenetics, National Neurological Institute "Carlo Besta," Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 2006; 38:283-91. [PMID: 17091399 PMCID: PMC1885940 DOI: 10.1007/s10863-006-9052-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c oxidase or complex IV, catalyzes the final step in mitochondrial electron transfer chain, and is regarded as one of the major regulation sites for oxidative phosphorylation. This enzyme is controlled by both nuclear and mitochondrial genomes. Among its 13 subunits, three are encoded by mitochondrial DNA and ten by nuclear DNA. In this work, an RNA interference approach was taken which led to the generation of mouse A9 cell derivatives with suppressed expression of nuclear-encoded subunit IV (COX IV) of this complex. The amounts of this subunit are decrease by 86% to 94% of normal level. A detail biosynthetic and functional analysis of several cell lines with suppressed COX IV expression revealed a loss of assembly of cytochrome c oxidase complex and, correspondingly, a reduction in cytochrome c oxidase-dependent respiration and total respiration. Furthermore, dysfunctional cytochrome c oxidase in the cells leads to a compromised mitochondrial membrane potential, a decreased ATP level, and failure to grow in galactose medium. Interestingly, suppression of COX IV expression also sensitizes the cells to apoptosis. These observations provide the evidence of the essential role of the COX IV subunit for a functional cytochrome c oxidase complex and also demonstrate a tight control of cytochrome c oxidase over oxidative phosphorylation. Finally, our results further shed some insights into the pathogenic mechanism of the diseases caused by dysfunctional cytochrome c oxidase complex.
Collapse
Affiliation(s)
- Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, 7703 Floyd Curl, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
130
|
Hájek P, Chomyn A, Attardi G. Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J Biol Chem 2006; 282:5670-81. [PMID: 17121834 DOI: 10.1074/jbc.m608168200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A reverse genetics approach was utilized to discover new proteins that interact with the mitochondrial fusion mediator mitofusin 2 (Mfn2) and that may participate in mitochondrial fusion. In particular, in vivo formaldehyde cross-linking of whole HeLa cells and immunoprecipitation with purified Mfn2 antibodies of SDS cell lysates were used to detect an approximately 42-kDa protein. This protein was identified by liquid chromatography and tandem mass spectrometry as stomatin-like protein 2 (Stoml2), previously described as a peripheral plasma membrane protein of unknown function associated with the cytoskeleton of erythrocytes (Wang, Y., and Morrow, J. S. (2000) J. Biol. Chem. 275, 8062-8071). Immunoblot analysis with anti-Stoml2 antibodies showed that Stoml2 could be immunoprecipitated specifically with Mfn2 antibody either from formaldehyde-cross-linked and SDS-lysed cells or from cells lysed with digitonin. Subsequent immunocytochemistry and cell fractionation experiments fully supported the conclusion that Stoml2 is indeed a mitochondrial protein. Furthermore, demonstration of mitochondrial membrane potential-dependent import of Stoml2 accompanied by proteolytic processing, together with the results of sublocalization experiments, suggested that Stoml2 is associated with the inner mitochondrial membrane and faces the intermembrane space. Notably, formaldehyde cross-linking revealed a "ladder" of high molecular weight protein species, indicating the presence of high molecular weight Stoml2-Mfn2 hetero-oligomers. Knockdown of Stoml2 by the short interfering RNA approach showed a reduction of the mitochondrial membrane potential, without, however, any obvious changes in mitochondrial morphology.
Collapse
Affiliation(s)
- Petr Hájek
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
131
|
Guan MX, Yan Q, Li X, Bykhovskaya Y, Gallo-Teran J, Hajek P, Umeda N, Zhao H, Garrido G, Mengesha E, Suzuki T, del Castillo I, Peters JL, Li R, Qian Y, Wang X, Ballana E, Shohat M, Lu J, Estivill X, Watanabe K, Fischel-Ghodsian N. Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 2006; 79:291-302. [PMID: 16826519 PMCID: PMC1559489 DOI: 10.1086/506389] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 05/12/2006] [Indexed: 01/29/2023] Open
Abstract
The human mitochondrial 12S ribosomal RNA (rRNA) A1555G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the A1555G mutation is a primary factor underlying the development of deafness but is not sufficient to produce a deafness phenotype. However, it has been proposed that nuclear-modifier genes modulate the phenotypic manifestation of the A1555G mutation. Here, we identified the nuclear-modifier gene TRMU, which encodes a highly conserved mitochondrial protein related to transfer RNA (tRNA) modification. Genotyping analysis of TRMU in 613 subjects from 1 Arab-Israeli kindred, 210 European (Italian pedigrees and Spanish pedigrees) families, and 31 Chinese pedigrees carrying the A1555G or the C1494T mutation revealed a missense mutation (G28T) altering an invariant amino acid residue (A10S) in the evolutionarily conserved N-terminal region of the TRMU protein. Interestingly, all 18 Arab-Israeli/Italian-Spanish matrilineal relatives carrying both the TRMU A10S and 12S rRNA A1555G mutations exhibited prelingual profound deafness. Functional analysis showed that this mutation did not affect importation of TRMU precursors into mitochondria. However, the homozygous A10S mutation leads to a marked failure in mitochondrial tRNA metabolisms, specifically reducing the steady-state levels of mitochondrial tRNA. As a consequence, these defects contribute to the impairment of mitochondrial-protein synthesis. Resultant biochemical defects aggravate the mitochondrial dysfunction associated with the A1555G mutation, exceeding the threshold for expressing the deafness phenotype. These findings indicate that the mutated TRMU, acting as a modifier factor, modulates the phenotypic manifestation of the deafness-associated 12S rRNA mutations.
Collapse
Affiliation(s)
- Min-Xin Guan
- Division and Program in Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Moshal KS, Singh M, Sen U, Rosenberger DSE, Henderson B, Tyagi N, Zhang H, Tyagi SC. Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. Am J Physiol Heart Circ Physiol 2006; 291:H2825-35. [PMID: 16877562 DOI: 10.1152/ajpheart.00377.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperhomocysteinemia (HHcy) is associated with atherosclerosis, stroke, and dementia. Hcy causes extracellular matrix remodeling by the activation of matrix metalloproteinase-9 (MMP-9), in part, by inducing redox signaling and modulating the intracellular calcium dynamics. Calpains are the calcium-dependent cysteine proteases that are implicated in mitochondrial damage via oxidative burst. Mitochondrial abnormalities have been identified in HHcy. The mechanism of Hcy-induced extracellular matrix remodeling by MMP-9 activation via mitochondrial pathway is largely unknown. We report a novel role of calpains in mitochondrial-mediated MMP-9 activation by Hcy in cultured rat heart microvascular endothelial cells. Our observations suggested that calpain regulates Hcy-induced MMP-9 expression and activity. We showed that Hcy activates calpain-1, but not calpain-2, in a calcium-dependent manner. Interestingly, the enhanced calpain activity was not mirrored by the decreased levels of its endogenous inhibitor calpastatin. We presented evidence that Hcy induces the translocation of active calpain from cytosol to mitochondria, leading to MMP-9 activation, in part, by causing intramitochondrial oxidative burst. Furthermore, studies with pharmacological inhibitors of calpain (calpeptin and calpain-1 inhibitor), ERK (PD-98059) and the mitochondrial uncoupler FCCP suggested that calpain and ERK-1/2 are the major events within the Hcy/MMP-9 signal axis and that intramitochondrial oxidative stress regulates MMP-9 via ERK-1/2 signal cascade. Taken together, these findings determine the novel role of mitochondrial translocation of calpain-1 in MMP-9 activation during HHcy, in part, by increasing mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Karni S Moshal
- Dept. of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Diaz F, Fukui H, Garcia S, Moraes CT. Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 2006; 26:4872-81. [PMID: 16782876 PMCID: PMC1489173 DOI: 10.1128/mcb.01767-05] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/30/2005] [Accepted: 04/18/2006] [Indexed: 11/20/2022] Open
Abstract
Cytochrome c oxidase (COX) biogenesis requires COX10, which encodes a protoheme:heme O farnesyl transferase that participates in the biosynthesis of heme a. We created COX10 knockout mouse cells that lacked cytochrome aa3, were respiratory deficient, had no detectable complex IV activity, and were unable to assemble COX. Unexpectedly, the levels of respiratory complex I were markedly reduced in COX10 knockout clones. Pharmacological inhibition of COX did not affect the levels of complex I, and transduction of knockout cells with lentivirus expressing wild-type or mutant COX10 (retaining residual activity) restored complex I to normal levels. Pulse-chase experiments could not detect newly assembled complex I, suggesting that either COX is required for assembly of complex I or the latter is quickly degraded. These results suggest that in rapidly dividing cells, complex IV is required for complex I assembly or stability.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
134
|
Bornstein B, Mas J, Patrono C, Fernández-Moreno M, González-Vioque E, Campos Y, Carrozzo R, Martín M, Hoyo P, Santorelli F, Arenas J, Garesse R. Comparative analysis of the pathogenic mechanisms associated with the G8363A and A8296G mutations in the mitochondrial tRNA(Lys) gene. Biochem J 2006; 387:773-8. [PMID: 15554876 PMCID: PMC1135008 DOI: 10.1042/bj20040949] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two mutations (G8363A and A8296G) in the mtDNA (mitochondrial DNA) tRNA(Lys) gene have been associated with severe mitochondrial diseases in a number of reports. Their functional significance, however, remains unknown. We have already shown that homoplasmic cybrids harbouring the A8296G mutation display normal oxidative phosphorylation, although the possibility of a subtle change in mitochondrial respiratory capacity remains an open issue. We have now investigated the pathogenic mechanism of another mutation in the tRNA(Lys) gene (G8363A) by repopulating an mtDNA-less human osteosarcoma cell line with mitochondria harbouring either this genetic variant alone or an unusual combination of the two mutations (A8296G+G8363A). Cybrids homoplasmic for the single G8363A or the A8296G+G8363A mutations have defective respiratory-chain enzyme activities and low oxygen consumption, indicating a severe impairment of the oxidative phosphorylation system. Generation of G8363A cybrids within a wild-type or the A8296G mtDNA genetic backgrounds resulted in an important alteration in the conformation of the tRNA(Lys), not affecting tRNA steady-state levels. Moreover, mutant cybrids have an important decrease in the proportion of amino-acylated tRNA(Lys) and, consequently, mitochondrial protein synthesis is greatly decreased. Our results demonstrate that the pathogenicity of the G8363A mutation is due to a change in the conformation of the tRNA that severely impairs aminoacylation in the absence of changes in tRNA stability. The only effect detected in the A8296G mutation is a moderate decrease in the aminoacylation capacity, which does not affect mitochondrial protein biosynthesis.
Collapse
Affiliation(s)
- Belén Bornstein
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- †Servicio de Bioquímica, Hospital Severo Ochoa, Leganés, Madrid, Spain
| | - José Antonio Mas
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Clarice Patrono
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- ‡Unit of Molecular Medicine, Children's Hospital ‘Bambino Gesù’, Rome, Italy
| | - Miguel Angel Fernández-Moreno
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Emiliano González-Vioque
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Yolanda Campos
- §Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Rosalba Carrozzo
- ‡Unit of Molecular Medicine, Children's Hospital ‘Bambino Gesù’, Rome, Italy
| | | | - Pilar del Hoyo
- §Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | | | - Joaquín Arenas
- §Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Rafael Garesse
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
135
|
Deng JH, Li Y, Park JS, Wu J, Hu P, Lechleiter J, Bai Y. Nuclear suppression of mitochondrial defects in cells without the ND6 subunit. Mol Cell Biol 2006; 26:1077-86. [PMID: 16428459 PMCID: PMC1347011 DOI: 10.1128/mcb.26.3.1077-1086.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we characterized a mouse cell line, 4A, carrying a mitochondrial DNA mutation in the subunit for respiratory complex I, NADH dehydrogenase, in the ND6 gene. This mutation abolished the complex I assembly and disrupted the respiratory function of complex I. We now report here that a galactose-resistant clone, 4AR, was isolated from the cells carrying the ND6 mutation. 4AR still contained the homoplasmic mutation, and apparently there was no ND6 protein synthesis, whereas the assembly of other complex I subunits into complex I was recovered. Furthermore, the respiratory activity and mitochondrial membrane potential were fully recovered. To investigate the genetic origin of this compensation, the mitochondrial DNA (mtDNA) from 4AR was transferred to a new nuclear background. The transmitochondrial lines failed to grow in galactose medium. We further transferred mtDNA with a nonsense mutation at the ND5 gene to the 4AR nuclear background, and a suppression for mitochondrial deficiency was observed. Our results suggest that change(s) in the expression of a certain nucleus-encoded factor(s) can compensate for the absence of the ND6 or ND5 subunit.
Collapse
Affiliation(s)
- Jian-Hong Deng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jun Wu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Peiqing Hu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - James Lechleiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Corresponding author. Mailing address: Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229. Phone: (210) 567-0561. Fax: (210) 567-3803. E-mail:
| |
Collapse
|
136
|
Bai Y, Park JS, Deng JH, Li Y, Hu P. Restoration of Mitochondrial Function in Cells with Complex I Deficiency. Ann N Y Acad Sci 2006; 1042:25-35. [PMID: 15965042 DOI: 10.1196/annals.1338.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mammalian mitochondrial NADH dehydrogenase (complex I) is the major entry point for the electron transport chain. It is the largest and most complicated respiratory complex consisting of at least 46 subunits, 7 of which are encoded by mitochondrial DNA (mtDNA). Deficiency in complex I function has been associated with various human diseases including neurodegenerative diseases and the aging process. To explore ways to restore mitochondrial function in complex I-deficient cells, various cell models with mutations in genes encoding subunits for complex I have been established. In this paper, we discuss various approaches to recover mitochondrial activity, the complex I activity in particular, in cultured cells.
Collapse
Affiliation(s)
- Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
137
|
Möllers M, Maniura-Weber K, Kiseljakovic E, Bust M, Hayrapetyan A, Jaksch M, Helm M, Wiesner RJ, von Kleist-Retzow JC. A new mechanism for mtDNA pathogenesis: impairment of post-transcriptional maturation leads to severe depletion of mitochondrial tRNASer(UCN) caused by T7512C and G7497A point mutations. Nucleic Acids Res 2005; 33:5647-58. [PMID: 16199753 PMCID: PMC1240115 DOI: 10.1093/nar/gki876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have studied the consequences of two homoplasmic, pathogenic point mutations (T7512C and G7497A) in the tRNA(Ser(UCN)) gene of mitochondrial (mt) DNA using osteosarcoma cybrids. We identified a severe reduction of tRNA(Ser(UCN)) to levels below 10% of controls for both mutations, resulting in a 40% reduction in mitochondrial protein synthesis rate and in a respiratory chain deficiency resembling that in the patients muscle. Aminoacylation was apparently unaffected. On non-denaturating northern blots we detected an altered electrophoretic mobility for G7497A containing tRNA molecules suggesting a structural impact of this mutation, which was confirmed by structural probing. By comparing in vitro transcribed molecules with native RNA in such gels, we also identified tRNA(Ser(UCN)) being present in two isoforms in vivo, probably corresponding to the nascent, unmodified transcripts co-migrating with the in vitro transcripts and a second, faster moving isoform corresponding to the mature tRNA. In cybrids containing either mutations the unmodified isoforms were severely reduced. We hypothesize that both mutations lead to an impairment of post-transcriptional modification processes, ultimately leading to a preponderance of degradation by nucleases over maturation by modifying enzymes, resulting in severely reduced tRNA(Ser(UCN)) steady state levels. We infer that an increased degradation rate, caused by disturbance of tRNA maturation and, in the case of the G7497A mutant, alteration of tRNA structure, is a new pathogenic mechanism of mt tRNA point mutations.
Collapse
MESH Headings
- Aminoacylation
- Base Sequence
- Cell Line
- Child
- Child, Preschool
- DNA, Mitochondrial/genetics
- Electron Transport Complex I/metabolism
- Electron Transport Complex IV/metabolism
- Humans
- Male
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Proteins/biosynthesis
- Molecular Sequence Data
- Point Mutation
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Mitochondrial
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
Collapse
Affiliation(s)
- Myriam Möllers
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
| | - Katharina Maniura-Weber
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
| | - Emina Kiseljakovic
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
- Department of Biochemistry, Medical FacultySarajevo, Cekalusa 90, Bosnia and Herzegovina
| | - Maria Bust
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
| | - Armine Hayrapetyan
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michaela Jaksch
- Institute of Clinical Chemistry and Mitochondrial GeneticsKölner Platz 1, 80804 München, Germany
| | - Mark Helm
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Rudolf J. Wiesner
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- To whom correspondence should be addressed. Tel: +49 221 478 3610; Fax: +49 221 478 3538;
| | - Jürgen-Christoph von Kleist-Retzow
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- Department of Pediatrics, University of KölnKerpener Strasse 62, 50924 Köln, Germany
| |
Collapse
|
138
|
Yan Q, Li X, Faye G, Guan MX. Mutations in MTO2 related to tRNA modification impair mitochondrial gene expression and protein synthesis in the presence of a paromomycin resistance mutation in mitochondrial 15 S rRNA. J Biol Chem 2005; 280:29151-7. [PMID: 15944150 PMCID: PMC2905382 DOI: 10.1074/jbc.m504247200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear gene(s) have been shown to modulate the phenotypic expression of mitochondrial DNA mutations. We report here the identification and characterization of the yeast nuclear gene MTO2 encoding an evolutionarily conserved protein involved in mitochondrial tRNA modification. Interestingly, mto2 null mutants expressed a respiratory-deficient phenotype when coexisting with the C1409G mutation of mitochondrial 15 S rRNA at the very conservative site for human deafness-associated 12 S rRNA A1491G and C1409T mutations. Furthermore, the overall rate of mitochondrial translation was markedly reduced in a yeast mto2 strain in the wild type mitochondrial background, whereas mitochondrial protein synthesis was almost abolished in a yeast mto2 strain carrying the C1409G allele. The other interesting feature of mto2 mutants is the defective expression of mitochondrial genes, especially CYTB and COX1, but only when coexisting with the C1409G allele. These data strongly indicate that a product of MTO2 functionally interacts with the decoding region of 15 S rRNA, particularly at the site of the C1409G or A1491G mutation. In addition, we showed that yeast and human Mto2p localize in mitochondria. The isolated human MTO2 cDNA can partially restore the respiratory-deficient phenotype of yeast mto2 cells carrying the C1409G mutation. These functional conservations imply that human MTO2 may act as a modifier gene, modulating the phenotypic expression of the deafness-associated A1491G or C1409T mutation in mitochondrial 12 S rRNA.
Collapse
Affiliation(s)
- Qingfeng Yan
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xiaoming Li
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Gèrard Faye
- Institut Curie, Section de Biologie, Centre Universitaire, 91405 Orsay Cèdax, France
| | - Min-Xin Guan
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- To whom correspondence should be addressed: Div. and Program in Human Genetics, Cincinnati Children's Hospital Medical Ctr., 3333 Burnet Ave., Cincinnati, OH 45229. Tel.: 513-636-3337; Fax: 513-636-2261;
| |
Collapse
|
139
|
Ješina P, Tesařová M, Fornůsková D, Vojtíšková A, Pecina P, Kaplanová V, Hansíková H, Zeman J, Houštěk J. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J 2005; 383:561-71. [PMID: 15265003 PMCID: PMC1133750 DOI: 10.1042/bj20040407] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysfunction of mitochondrial ATPase (F1F(o)-ATP synthase) due to missense mutations in ATP6 [mtDNA (mitochondrial DNA)-encoded subunit a] is a frequent cause of severe mitochondrial encephalomyopathies. We have investigated a rare mtDNA mutation, i.e. a 2 bp deletion of TA at positions 9205 and 9206 (9205DeltaTA), which affects the STOP codon of the ATP6 gene and the cleavage site between the RNAs for ATP6 and COX3 (cytochrome c oxidase 3). The mutation was present at increasing load in a three-generation family (in blood: 16%/82%/>98%). In the affected boy with severe encephalopathy, a homoplasmic mutation was present in blood, fibroblasts and muscle. The fibroblasts from the patient showed normal aurovertin-sensitive ATPase hydrolytic activity, a 70% decrease in ATP synthesis and an 85% decrease in COX activity. ADP-stimulated respiration and the ADP-induced decrease in the mitochondrial membrane potential at state 4 were decreased by 50%. The content of subunit a was decreased 10-fold compared with other ATPase subunits, and [35S]-methionine labelling showed a 9-fold decrease in subunit a biosynthesis. The content of COX subunits 1, 4 and 6c was decreased by 30-60%. Northern Blot and quantitative real-time reverse transcription-PCR analysis further demonstrated that the primary ATP6--COX3 transcript is cleaved to the ATP6 and COX3 mRNAs 2-3-fold less efficiently. Structural studies by Blue-Native and two-dimensional electrophoresis revealed an altered pattern of COX assembly and instability of the ATPase complex, which dissociated into subcomplexes. The results indicate that the 9205DeltaTA mutation prevents the synthesis of ATPase subunit a, and causes the formation of incomplete ATPase complexes that are capable of ATP hydrolysis but not ATP synthesis. The mutation also affects the biogenesis of COX, which is present in a decreased amount in cells from affected individuals.
Collapse
Affiliation(s)
- Pavel Ješina
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Markéta Tesařová
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniela Fornůsková
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Alena Vojtíšková
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Petr Pecina
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vilma Kaplanová
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Hana Hansíková
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Jiří Zeman
- †Department of Pediatrics and Institute for Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Josef Houštěk
- *Department of Bioenergetics, Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- To whom correspondence should be addressed (email )
| |
Collapse
|
140
|
Zhao H, Young WY, Yan Q, Li R, Cao J, Wang Q, Li X, Peters JL, Han D, Guan MX. Functional characterization of the mitochondrial 12S rRNA C1494T mutation associated with aminoglycoside-induced and non-syndromic hearing loss. Nucleic Acids Res 2005; 33:1132-9. [PMID: 15722487 PMCID: PMC549421 DOI: 10.1093/nar/gki262] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we report the biochemical characterization of the deafness-associated mitochondrial 12S rRNA C1494T mutation using 27 cybrid cell lines constructed by transferring mitochondria from 9 lymphoblastoid cell lines derived from a Chinese family into human mitochondrial DNA (mtDNA)-less (ρ°) cells. Six cybrids derived from two asymptomatic members, and nine cybrids derived from three symptomatic members of the Chinese family carrying the C1494T mutation exhibited ∼38 and 43% decrease in the rate of mitochondrial protein labeling, respectively, compared with twelve cybrids derived from four Chinese control individuals. These defects are apparently a primary contributor to significant reductions in the rate of overall respiratory capacity or the rate of malate/glutamate promoted respiration, or succinate/G3P-promoted respiration, or TMPD/ascorbate-promoted respiration in mutant cybrid cell lines derived from either symptomatic or asymptomatic individuals. Furthermore, the very significant/nearly identical increase in the ratio of doubling times in DMDM medium in the presence/absence of high concentration of paromomycin was observed in symptomatic or asymptomatic cybrid cell lines carrying the C1494T mutation as compared with the average rate in control cell lines. These observations provide the direct biochemical evidences that the C1494T mutation is a pathogenic mtDNA mutation associated with aminoglycoside-induced and non-syndromic hearing loss. In addition, these data provide the first biochemical evidence that nuclear background plays a critical role in the phenotypic manifestation of non-syndromic hearing loss and aminoglycoside toxicity associated with the C1494T mutation.
Collapse
Affiliation(s)
- Hui Zhao
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Wie-Yen Young
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Qingfeng Yan
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Ronghua Li
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Juyang Cao
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Qiuju Wang
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Xiaoming Li
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Jennifer L. Peters
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Dongyi Han
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Min-Xin Guan
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
- To whom correspondence should be addressed. Tel: +1 513 636 3337; Fax: +1 513 636 2261;
| |
Collapse
|
141
|
Mahata B, Bhattacharyya SN, Mukherjee S, Adhya S. Correction of translational defects in patient-derived mutant mitochondria by complex-mediated import of a cytoplasmic tRNA. J Biol Chem 2004; 280:5141-4. [PMID: 15619607 DOI: 10.1074/jbc.c400572200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of clinical disorders result from mutations in mitochondrial tRNA genes, leading to translational defects. We show here that a protein complex from the kinetoplastid protozoon Leishmania induces specific, ATP-dependent import of human cytoplasmic tRNA(1)(Lys) into human mitochondria in vitro. The imported tRNA undergoes efficient aminoacylation within the organelle and supports organellar protein synthesis. Moreover, translation in mitochondria from patients with myclonic epilepsy with ragged red fibers (MERRF) and Kearns-Sayre syndrome (KSS), containing mutant tRNA(Lys) genes, is stimulated to near-wild-type levels and the formation of aberrant polypeptides suppressed by complex-mediated import. These results suggest a novel way to introduce RNAs for the modulation of mitochondrial gene expression.
Collapse
Affiliation(s)
- Bidesh Mahata
- Genetic Engineering Laboratory, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Calcutta 7000032, India
| | | | | | | |
Collapse
|
142
|
Bayona-Bafaluy MP, Müller S, Moraes CT. Fast adaptive coevolution of nuclear and mitochondrial subunits of ATP synthetase in orangutan. Mol Biol Evol 2004; 22:716-24. [PMID: 15574809 DOI: 10.1093/molbev/msi059] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nuclear and mitochondrial genomes have to work in concert to generate a functional oxidative phosphorylation (OXPHOS) system. We have previously shown that we could restore partial OXPHOS function when chimpanzee or gorilla mitochondrial DNA (mtDNA) were introduced into human cells lacking mtDNA. However, we were unable to maintain orangutan mitochondrial DNA in a human cell. We have now produced chimpanzee, gorilla, orangutan, and baboon cells lacking mtDNA and attempted to introduce mtDNA from different apes into them. Surprisingly, we were able to maintain human mtDNA in an orangutan nuclear background, even though these cells showed severe OXPHOS abnormalities, including a complete absence of assembled ATP synthetase. Phylogenetic analysis of complex V mtDNA-encoded subunits showed that they are among the most evolutionarily divergent components of the mitochondrial genome between orangutan and the other apes. Our studies showed that adaptive coevolution of nuclear and mitochondrial components in apes can be fast and accelerate in recent branches of anthropoid primates.
Collapse
|
143
|
Mitochondrial inhibition of uracil-DNA glycosylase is not mutagenic. Mol Cancer 2004; 3:32. [PMID: 15574194 PMCID: PMC538255 DOI: 10.1186/1476-4598-3-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 12/01/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uracil DNA glycosylase (UDG) plays a major role in repair of uracil formed due to deamination of cytosine. UDG in human cells is present in both the nucleus and mitochondrial compartments. Although, UDG's role in the nucleus is well established its role in mitochondria is less clear. RESULTS In order to identify UDG's role in the mitochondria we expressed UGI (uracil glycosylase inhibitor) a natural inhibitor of UDG in the mitochondria. Our studies suggest that inhibition of UDG by UGI in the mitochondria does not lead to either spontaneous or induced mutations in mtDNA. Our studies also suggest that UGI expression has no affect on cellular growth or cytochrome c-oxidase activity. CONCLUSIONS These results suggest that human cell mitochondria contain alternatives glycosylase (s) that may function as back up DNA repair protein (s) that repair uracil in the mitochondria.
Collapse
|
144
|
Xu F, Morin C, Mitchell G, Ackerley C, Robinson B. The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. Biochem J 2004; 382:331-6. [PMID: 15139850 PMCID: PMC1133946 DOI: 10.1042/bj20040469] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 04/23/2004] [Accepted: 05/13/2004] [Indexed: 11/17/2022]
Abstract
Leigh syndrome French Canadian (LSFC) is a variant of cytochrome oxidase deficiency found in Québec and caused by mutations in the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene. Northern blots showed that the LRPPRC mRNA levels seen in skeletal muscle>heart>placenta>kidney>liver>lung=brain were proportionally almost opposite in strength to the severity of the enzymic cytochrome oxidase defect. The levels of COX (cytochrome c oxidase) I and COX III mRNA visible on Northern blots were reduced in LSFC patients due to the common (A354V, Ala354-->Val) founder mutation. The amount of LRPPRC protein found in both fibroblast and liver mitochondria from LSFC patients was consistently reduced to <30% of control levels. Import of [(35)S]methionine LRPPRC into rat liver mitochondria was slower for the mutant (A354V) protein. A titre of LRPPRC protein was also found in nuclear fractions that could not be easily accounted for by mitochondrial contamination. [35S]Methionine labelling of mitochondrial translation products showed that the translation of COX I, and perhaps COX III, was specifically reduced in the presence of the mutation. These results suggest that the gene product of LRPPRC, like PET 309p, has a role in the translation or stability of the mRNA for mitochondrially encoded COX subunits. A more diffuse distribution of LRPPRC in LSFC cells compared with controls was evident when viewed by immunofluorescence microscopy, with less LRPPRC present in peripheral mitochondria.
Collapse
Affiliation(s)
- Fenghao Xu
- *Metabolism Research Programme, The Research Institute, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | - Charles Morin
- †Department of Pediatrics and Clinical Research Unit, Hôpital de Chicoutimi, 305 St-Vallier, Chicoutimi, QC, Canada G7H 5H6
| | - Grant Mitchell
- ‡Service de Génétique Medicale, Hôpital Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC, Canada H3T 1C5
| | - Cameron Ackerley
- §Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | - Brian H. Robinson
- *Metabolism Research Programme, The Research Institute, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
- ∥Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A9
| |
Collapse
|
145
|
Limongelli A, Schaefer J, Jackson S, Invernizzi F, Kirino Y, Suzuki T, Reichmann H, Zeviani M. Variable penetrance of a familial progressive necrotising encephalopathy due to a novel tRNA(Ile) homoplasmic mutation in the mitochondrial genome. J Med Genet 2004; 41:342-9. [PMID: 15121771 PMCID: PMC1735786 DOI: 10.1136/jmg.2003.016048] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION We present a family comprising a clinically normal mother and two daughters, each with severe encephalopathy with onset in late childhood. A third daughter had died previously of an earlier onset but neuropathologically similar disease. METHODS Sequence analysis of the entire mtDNA was carried out in muscle, fibroblasts, and lymphocytes of the affected daughters and unaffected mother. Biochemical analysis of individual respiratory chain enzymes was performed on the same tissues, and on several transmitochondrial cybrid clones containing the nucleus of a 143B.206 osteosarcoma cell line and the mutant mtDNA. RESULTS Genetic analyses revealed in both daughters and mother the presence of a novel mutation in the tRNA(Ile) gene of mtDNA, which was homoplasmic in fibroblasts, lymphocytes, and skeletal muscle of the two patients. It was also homoplasmic in fibroblast and skeletal muscle samples of the mother, and approximately 97% heteroplasmic in her lymphocytes. Combined defects of complexes I and IV of the mitochondrial respiratory chain were found not only in fibroblasts of the two probands, but surprisingly also in those of their clinically unaffected mother. The respiratory chain defect segregated in transmitochondrial cybrids containing the nucleus of a 143B.206 osteosarcoma cell line and the mutant mtDNA, indicating that the latter was responsible for the biochemical phenotype. DISCUSSION Our results support the concept that homoplasmic mutations in tRNA genes can be responsible for mitochondrial disorders characterised by extremely variable penetrance. Albeit still unexplained, this phenomenon has important consequences in the nosological characterisation, clinical management, and genetic counselling of mitochondrial disorders.
Collapse
MESH Headings
- Adolescent
- Base Sequence
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/genetics
- Cell Line
- Child
- DNA Mutational Analysis
- DNA, Mitochondrial/genetics
- Electron Transport Complex IV/metabolism
- Female
- Fibroblasts/enzymology
- Genome, Human
- Humans
- Infant
- Middle Aged
- Mitochondrial Diseases/diagnosis
- Mitochondrial Diseases/genetics
- Molecular Sequence Data
- Muscle, Skeletal/enzymology
- Pedigree
- Penetrance
- Point Mutation
- Protein Biosynthesis
- RNA, Transfer, Ile/genetics
Collapse
Affiliation(s)
- A Limongelli
- Unit of Molecular Neurogenetics-Pierfranco and Luisa Mariani Centre for the Study of Children's Mitochondrial Disorders, National Neurological Institute Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
146
|
DeHaan C, Habibi-Nazhad B, Yan E, Salloum N, Parliament M, Allalunis-Turner J. Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells. Mol Cancer 2004; 3:19. [PMID: 15248896 PMCID: PMC481082 DOI: 10.1186/1476-4598-3-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 07/12/2004] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hypoxia-tolerant human glioma cells reduce oxygen consumption rate in response to oxygen deficit, a defense mechanism that contributes to survival under moderately hypoxic conditions. In contrast, hypoxia-sensitive cells lack this ability. As it has been previously shown that hypoxia-tolerant (M006x, M006xLo, M059K) and -sensitive (M010b) glioma cells express differences in mitochondrial function, we investigated whether mitochondrial DNA-encoded mutations are associated with differences in the initial response to oxygen deficit. RESULTS The mitochondrial genome was sequenced and 23 mtDNA alterations were identified, one of which was an unreported mutation (T-C transition in base pair 14634) in the hypoxia-sensitive cell line, M010b, that resulted in a single amino acid change in the gene encoding the ND6 subunit of NADH:ubiquinone oxidoreductase (Complex I). The T14634C mutation did not abrogate ND6 protein expression, however, M010b cells were more resistant to rotenone, an agent used to screen for Complex I mutations, and adriamycin, an agent activated by redox cycling. The specific function of mtDNA-encoded, membrane-embedded Complex I ND subunits is not known at present. Current models suggest that the transmembrane arm of Complex I may serve as a conformationally driven proton channel. As cellular respiration is regulated, in part, by proton flux, we used homology-based modeling and computational molecular biology to predict the 3D structure of the wild type and mutated ND6 proteins. These models predict that the T14634C mutation alters the structure and orientation of the trans-membrane helices of the ND6 protein. CONCLUSION Complex I ND subunits are mutational hot spots in tumor mtDNA. Genetic changes that alter Complex I structure and function may alter a cell's ability to respond to oxygen deficit and consolidate hypoxia rescue mechanisms, and may contribute to resistance to chemotherapeutic agents that require redox cycling for activation.
Collapse
Affiliation(s)
- Carrie DeHaan
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
- Department of Medicine St. Vincent's, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Bahram Habibi-Nazhad
- Departments of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Elizabeth Yan
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
- Department of Radiation Oncology, Tom Baker Cancer Centre, 1331 29 St. NW, Calgary AB, Canada T2N 4N2
| | - Nicole Salloum
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | - Matthew Parliament
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | - Joan Allalunis-Turner
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| |
Collapse
|
147
|
Acín-Pérez R, Bayona-Bafaluy MP, Fernández-Silva P, Moreno-Loshuertos R, Pérez-Martos A, Bruno C, Moraes CT, Enríquez JA. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 2004; 13:805-15. [PMID: 15053874 PMCID: PMC3164363 DOI: 10.1016/s1097-2765(04)00124-8] [Citation(s) in RCA: 356] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 01/26/2004] [Accepted: 02/03/2004] [Indexed: 11/20/2022]
Abstract
A puzzling observation in patients with oxidative phosphorylation (OXPHOS) deficiencies is the presence of combined enzyme complex defects associated with a genetic alteration in only one protein-coding gene. In particular, mutations in the mtDNA encoded cytochrome b gene are associated either with combined complex I+III deficiency or with only complex III deficiency. We have reproduced the combined complex I+III defect in mouse and human cultured cell models harboring cytochrome b mutations. In both, complex III assembly is impeded and causes a severe reduction in the amount of complex I, not observed when complex III activity was pharmacologically inhibited. Metabolic labeling in mouse cells revealed that complex I was assembled, although its stability was severely hampered. Conversely, complex III stability was not influenced by the absence of complex I. This structural dependence among complexes I and III was confirmed in a muscle biopsy of a patient harboring a nonsense cytochrome b mutation.
Collapse
Affiliation(s)
- Rebeca Acín-Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain
| | - María Pilar Bayona-Bafaluy
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain
- Department of Neurology, University of Miami School of Medicine, 1501 NW 9th Avenue, Miami, Florida 33136
| | - Patricio Fernández-Silva
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain
| | - Raquel Moreno-Loshuertos
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain
| | - Acisclo Pérez-Martos
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain
| | - Claudio Bruno
- Neuromuscular Disease Unit, Department of Pediatrics, Giannina Gaslini Institute, Largo G. Gaslini 5, Genova 16147, Italy
| | - Carlos T. Moraes
- Department of Neurology, University of Miami School of Medicine, 1501 NW 9th Avenue, Miami, Florida 33136
| | - José A. Enríquez
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain
- Correspondence:
| |
Collapse
|
148
|
McFarland R, Schaefer AM, Gardner JL, Lynn S, Hayes CM, Barron MJ, Walker M, Chinnery PF, Taylor RW, Turnbull DM. Familial myopathy: new insights into the T14709C mitochondrial tRNA mutation. Ann Neurol 2004; 55:478-84. [PMID: 15048886 DOI: 10.1002/ana.20004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have defined the genetic defect in a large family first described in one of the earliest reports of suspected mitochondrial myopathy, as the mutation T14709C in the mitochondrial transfer RNA(Glu) (mt-tRNA(Glu)) gene. Extraordinarily, this mutation has attained homoplasmy (100% mutated mt-tRNA(Glu)) on at least three independent occasions in this family and has done so in one individual who remains asymptomatic with no clinical evidence of disease. Heteroplasmy (dual populations of mutated and wild-type mtDNA) usually is regarded as one of the primary diagnostic criteria for pathogenicity and previous reports of the T14709C mutation detail heteroplasmy in a variety of tissues. In contrast, homoplasmy of mt-tRNA mutations generally has been regarded as evidence of a benign nature, with rare exceptions that result in organ-specific phenotypes. Discovering that T14709C, a common and severe mt-tRNA mutation, can attain homoplasmy without symptoms or clinical signs of disease has profound implications for the identification and prevalence of other pathogenic mt-tRNA mutations. Furthermore, variation in phenotype between homoplasmic individuals implies a crucial contribution from the nuclear genetic environment in determining the clinical outcome of mt-tRNA mutations.
Collapse
Affiliation(s)
- Robert McFarland
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Dubot A, Godinot C, Dumur V, Sablonnière B, Stojkovic T, Cuisset JM, Vojtiskova A, Pecina P, Jesina P, Houstek J. GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem Biophys Res Commun 2004; 313:687-93. [PMID: 14697245 DOI: 10.1016/j.bbrc.2003.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A maternally inherited and practically homoplasmic mitochondrial (mtDNA) mutation, 8527A>G, changing the initiation codon AUG into GUG, normally coding for a valine, was observed in the ATP6 gene encoding the ATPase subunit a. No alternate Met codon could replace the normal translational initiator. The patient harboring this mutation exhibited clinical symptoms suggesting a mitochondrial disease but his mother who carried the same mtDNA mutation was healthy. The mutation was absent from 100 controls and occurred once amongst 44 patients suspected of Leber Hereditary Optic Neuropathy (LHON) but devoid of typical LHON mutations. In patient fibroblasts, no effect of 8527A>G mutation could be demonstrated on the biosynthesis of mtDNA-encoded proteins, on size and the content of ATPase subunit a, on ATP hydrolysis and on mitochondrial membrane potential. In addition, ATP synthesis was barely decreased. Therefore, GUG is a functional initiation codon for the human ATP6 gene.
Collapse
Affiliation(s)
- A Dubot
- Centre National de la Recherche Scientifique, Université Claude Bernard de Lyon I, 69622 Villeurbanne France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Chrzanowska-Lightowlers ZMA, Temperley RJ, Smith PM, Seneca SH, Lightowlers RN. Functional polypeptides can be synthesized from human mitochondrial transcripts lacking termination codons. Biochem J 2004; 377:725-31. [PMID: 14585098 PMCID: PMC1223913 DOI: 10.1042/bj20031556] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 10/29/2003] [Accepted: 10/30/2003] [Indexed: 11/17/2022]
Abstract
The human mitochondrial genome (mtDNA) is a small, circular DNA duplex found in multi-copy in the mitochondrial matrix. It is almost fully transcribed from both strands to produce large polycistronic RNA units that are processed and matured. The 13 mtDNA-encoded polypeptides are translated from mt-mRNAs that have been matured by polyadenylation of their free 3'-termini. A patient with clinical features consistent with an mtDNA disorder was recently shown to carry a microdeletion, resulting in the loss of the termination codon for MTATP6 and in its juxtaposition with MTCO3. Cell lines from this patient exhibited low steady-state levels of RNA14, the bi-cistronic transcript encoding subunits 6 and 8 of the F(o)F(1)-ATP synthase, complex V, consistent with a decreased stability. Recent reports of 'non-stop' mRNA decay systems in the cytosol have failed to determine the fate of gene products derived from transcripts lacking termination codons, although enhanced decay clearly required the 'non-stop' transcripts to be translated. We wished to determine whether functional translation products could still be expressed from non-stop transcripts in the human mitochondrion. Although a minor defect in complex V assembly was noted in the patient-derived cell lines, the steady-state level of ATPase 6 was similar to controls, consistent with the pattern of de novo mitochondrial protein synthesis. Moreover, no significant difference in ATP synthase activity could be detected. We conclude that, in the absence of a functional termination codon, although mitochondrial transcripts are more rapidly degraded, they are also translated to generate stable polypeptides that are successfully integrated into functional enzyme complexes.
Collapse
|