101
|
Haney MS, Bohlen CJ, Morgens DW, Ousey JA, Barkal AA, Tsui CK, Ego BK, Levin R, Kamber RA, Collins H, Tucker A, Li A, Vorselen D, Labitigan L, Crane E, Boyle E, Jiang L, Chan J, Rincón E, Greenleaf WJ, Li B, Snyder MP, Weissman IL, Theriot JA, Collins SR, Barres BA, Bassik MC. Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat Genet 2018; 50:1716-1727. [PMID: 30397336 DOI: 10.1038/s41588-018-0254-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023]
Abstract
Phagocytosis is required for a broad range of physiological functions, from pathogen defense to tissue homeostasis, but the mechanisms required for phagocytosis of diverse substrates remain incompletely understood. Here, we developed a rapid magnet-based phenotypic screening strategy, and performed eight genome-wide CRISPR screens in human cells to identify genes regulating phagocytosis of distinct substrates. After validating select hits in focused miniscreens, orthogonal assays and primary human macrophages, we show that (1) the previously uncharacterized gene NHLRC2 is a central player in phagocytosis, regulating RhoA-Rac1 signaling cascades that control actin polymerization and filopodia formation, (2) very-long-chain fatty acids are essential for efficient phagocytosis of certain substrates and (3) the previously uncharacterized Alzheimer's disease-associated gene TM2D3 can preferentially influence uptake of amyloid-β aggregates. These findings illuminate new regulators and core principles of phagocytosis, and more generally establish an efficient method for unbiased identification of cellular uptake mechanisms across diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- Michael S Haney
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher J Bohlen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| | - David W Morgens
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - James A Ousey
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Amira A Barkal
- Institute for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - C Kimberly Tsui
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Braeden K Ego
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Roni Levin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Roarke A Kamber
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah Collins
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Tucker
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Daan Vorselen
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lorenzo Labitigan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily Crane
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Evan Boyle
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Joanne Chan
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Rincón
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - William J Greenleaf
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Billy Li
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
102
|
Li M, Pezzolesi MG. Advances in understanding the genetic basis of diabetic kidney disease. Acta Diabetol 2018; 55:1093-1104. [PMID: 30083980 DOI: 10.1007/s00592-018-1193-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
Diabetic kidney disease (DKD) is a devastating complication of Type 1 and Type 2 diabetes and leads to increased morbidity and mortality. Earlier work in families has provided strong evidence that heredity is a major determinant of DKD. Previous linkage analyses and candidate gene studies have identified potential DKD genes; however, such approaches have largely been unsuccessful. Genome-wide association studies (GWAS) have made significant contribution in identifying SNPs associated with common complex diseases. Thanks to advanced technology, new analytical approaches, and international research collaborations, many DKD GWASs have reported unique genes, highlighted novel biological pathways and suggested new disease mechanisms. This review summarizes the current state of GWAS technology; findings from GWASs of DKD and its related traits conducted over the past 15 years and discuss the future of this field.
Collapse
Affiliation(s)
- Man Li
- Division of Nephrology and Hypertension, Department of Internal Medicine,, University of Utah School of Medicine, Salt Lake City, UT, 84105, USA
- VA Boston Healthcare System, VA Cooperative Studies Program, Boston, MA, USA
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine,, University of Utah School of Medicine, Salt Lake City, UT, 84105, USA.
- Diabetes and Metabolism Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
103
|
Cañadas-Garre M, Anderson K, McGoldrick J, Maxwell AP, McKnight AJ. Genomic approaches in the search for molecular biomarkers in chronic kidney disease. J Transl Med 2018; 16:292. [PMID: 30359254 PMCID: PMC6203198 DOI: 10.1186/s12967-018-1664-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is recognised as a global public health problem, more prevalent in older persons and associated with multiple co-morbidities. Diabetes mellitus and hypertension are common aetiologies for CKD, but IgA glomerulonephritis, membranous glomerulonephritis, lupus nephritis and autosomal dominant polycystic kidney disease are also common causes of CKD. MAIN BODY Conventional biomarkers for CKD involving the use of estimated glomerular filtration rate (eGFR) derived from four variables (serum creatinine, age, gender and ethnicity) are recommended by clinical guidelines for the evaluation, classification, and stratification of CKD. However, these clinical biomarkers present some limitations, especially for early stages of CKD, elderly individuals, extreme body mass index values (serum creatinine), or are influenced by inflammation, steroid treatment and thyroid dysfunction (serum cystatin C). There is therefore a need to identify additional non-invasive biomarkers that are useful in clinical practice to help improve CKD diagnosis, inform prognosis and guide therapeutic management. CONCLUSION CKD is a multifactorial disease with associated genetic and environmental risk factors. Hence, many studies have employed genetic, epigenetic and transcriptomic approaches to identify biomarkers for kidney disease. In this review, we have summarised the most important studies in humans investigating genomic biomarkers for CKD in the last decade. Several genes, including UMOD, SHROOM3 and ELMO1 have been strongly associated with renal diseases, and some of their traits, such as eGFR and serum creatinine. The role of epigenetic and transcriptomic biomarkers in CKD and related diseases is still unclear. The combination of multiple biomarkers into classifiers, including genomic, and/or epigenomic, may give a more complete picture of kidney diseases.
Collapse
Affiliation(s)
- M. Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - K. Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - J. McGoldrick
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - A. P. Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
| | - A. J. McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| |
Collapse
|
104
|
Mrp1 is involved in lipid presentation and iNKT cell activation by Streptococcus pneumoniae. Nat Commun 2018; 9:4279. [PMID: 30323255 PMCID: PMC6189046 DOI: 10.1038/s41467-018-06646-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023] Open
Abstract
Invariant natural killer T cells (iNKT cells) are activated by lipid antigens presented by CD1d, but the pathway leading to lipid antigen presentation remains incompletely characterized. Here we show a whole-genome siRNA screen to elucidate the CD1d presentation pathway. A majority of gene knockdowns that diminish antigen presentation reduced formation of glycolipid-CD1d complexes on the cell surface, including members of the HOPS and ESCRT complexes, genes affecting cytoskeletal rearrangement, and ABC family transporters. We validated the role in vivo for the multidrug resistance protein 1 (Mrp1) in CD1d antigen presentation. Mrp1 deficiency reduces surface clustering of CD1d, which decreased iNKT cell activation. Infected Mrp1 knockout mice show decreased iNKT cell responses to antigens from Streptococcus pneumoniae and were associated with increased mortality. Our results highlight the unique cellular events involved in lipid antigen presentation and show how modification of this pathway can lead to lethal infection. The CD1d pathway present lipid antigens resulting in the activation of iNKT cells but the complete pathway remains to be fully elucidated. Here, Chandra et al. use an siRNA screen and identify Mrp1 as crucial for CD1d lipid presentation and activation of iNKT in the context of Streptococcus pneumoniae infection.
Collapse
|
105
|
Silencing ELMO3 Inhibits the Growth, Invasion, and Metastasis of Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3764032. [PMID: 30345300 PMCID: PMC6174816 DOI: 10.1155/2018/3764032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
ELMO3 is a member of the engulfment and cell motility (ELMO) protein family, which plays a vital role in the process of chemotaxis and metastasis of tumor cells. However, remarkably little is known about the role of ELMO3 in cancer. The present study was conducted to investigate the function and role of ELMO3 in gastric cancer (GC) progression. The expression level of ELMO3 in gastric cancer tissues and cell lines was measured by means of real-time quantitative PCR (qPCR) and Western blot analysis. RNA interference was used to inhibit ELMO3 expression in gastric cancer cells. Then, wound-healing assays, Transwell assays, MTS assays, flow cytometry, and fluorescence microscopy were applied to detect cancer cell migration, cell invasion, cell proliferation, the cell cycle, and F-actin polymerization, respectively. The results revealed that ELMO3 expression in GC tumor tissues was significantly higher than in the paired adjacent tissues. Moreover, knockdown of ELMO3 by a specific siRNA significantly inhibited the processes of cell proliferation, invasion, metastasis, regulation of the cell cycle, and F-actin polymerization. Collectively, the results indicate that ELMO3 participates in the processes of cell growth, invasion, and migration, and ELMO3 is expected to be a potential diagnostic and prognostic marker for GC.
Collapse
|
106
|
Haley R, Wang Y, Zhou Z. The small GTPase RAB-35 defines a third pathway that is required for the recognition and degradation of apoptotic cells. PLoS Genet 2018; 14:e1007558. [PMID: 30138370 PMCID: PMC6107108 DOI: 10.1371/journal.pgen.1007558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023] Open
Abstract
In metazoans, apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Multiple small GTPases in the Rab family are known to function in phagosome maturation by regulating vesicle trafficking. We discovered rab-35 as a new gene important for apoptotic cell clearance from a genetic screen targeting putative Rab GTPases in Caenorhabditis elegans. We further identified TBC-10 as a putative GTPase-activating protein (GAP), and FLCN-1 and RME-4 as two putative Guanine Nucleotide Exchange Factors (GEFs), for RAB-35. We found that RAB-35 was required for the efficient incorporation of early endosomes to phagosomes and for the timely degradation of apoptotic cell corpses. More specifically, RAB-35 promotes two essential events that initiate phagosome maturation: the switch of phagosomal membrane phosphatidylinositol species from PtdIns(4,5)P2 to PtdIns(3)P, and the recruitment of the small GTPase RAB-5 to phagosomal surfaces. These functions of RAB-35 were previously unknown. Remarkably, although the phagocytic receptor CED-1 regulates these same events, RAB-35 and CED-1 appear to function independently. Upstream of degradation, RAB-35 also facilitates the recognition of apoptotic cells independently of the known CED-1 and CED-5 pathways. RAB-35 localizes to extending pseudopods and is further enriched on nascent phagosomes, consistent with its dual roles in regulating apoptotic cell-recognition and phagosome maturation. Epistasis analyses indicate that rab-35 acts in parallel to both of the canonical ced-1/6/7 and ced-2/5/10/12 clearance pathways. We propose that RAB-35 acts as a robustness factor, defining a novel pathway that aids these canonical pathways in both the recognition and degradation of apoptotic cells.
Collapse
Affiliation(s)
- Ryan Haley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Ying Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
107
|
Polarized Dock Activity Drives Shh-Mediated Axon Guidance. Dev Cell 2018; 46:410-425.e7. [PMID: 30078728 DOI: 10.1016/j.devcel.2018.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022]
Abstract
In the developing spinal cord, Sonic hedgehog (Shh) attracts commissural axons toward the floorplate. How Shh regulates the cytoskeletal remodeling that underlies growth cone turning is unknown. We found that Shh-mediated growth cone turning requires the activity of Docks, which are unconventional GEFs. Knockdown of Dock3 and 4, or their binding partner ELMO1 and 2, abolished commissural axon attraction by Shh in vitro. Dock3/4 and ELMO1/2 were also required for correct commissural axon guidance in vivo. Polarized Dock activity was sufficient to induce axon turning, indicating that Docks are instructive for axon guidance. Mechanistically, we show that Dock and ELMO interact with Boc, the Shh receptor, and that this interaction is reduced upon Shh stimulation. Furthermore, Shh stimulation translocates ELMO to the growth cone periphery and activates Rac1. This identifies Dock/ELMO as an effector complex of non-canonical Shh signaling and demonstrates the instructive role of GEFs in axon guidance.
Collapse
|
108
|
Schiavon CR, Griffin ME, Pirozzi M, Parashuraman R, Zhou W, Jinnah HA, Reines D, Kahn RA. Compositional complexity of rods and rings. Mol Biol Cell 2018; 29:2303-2316. [PMID: 30024290 PMCID: PMC6249804 DOI: 10.1091/mbc.e18-05-0274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rods and rings (RRs) are large linear- or circular-shaped structures typically described as polymers of IMPDH (inosine monophosphate dehydrogenase). They have been observed across a wide variety of cell types and species and can be induced to form by inhibitors of IMPDH. RRs are thought to play a role in the regulation of de novo guanine nucleotide synthesis; however, the function and regulation of RRs is poorly understood. Here we show that the regulatory GTPase, ARL2, a subset of its binding partners, and several resident proteins at the endoplasmic reticulum (ER) also localize to RRs. We also have identified two new inducers of RR formation: AICAR and glucose deprivation. We demonstrate that RRs can be disassembled if guanine nucleotides can be generated by salvage synthesis regardless of the inducer. Finally, we show that there is an ordered addition of components as RRs mature, with IMPDH first forming aggregates, followed by ARL2, and only later calnexin, a marker of the ER. These findings suggest that RRs are considerably more complex than previously thought and that the function(s) of RRs may include involvement of a regulatory GTPase, its effectors, and potentially contacts with intracellular membranes.
Collapse
Affiliation(s)
- Cara R Schiavon
- Cancer Biology Graduate Program, Graduate Division of Biomedical and Biological Sciences, Laney Graduate School, Atlanta, GA 30307
| | - Maxwell E Griffin
- Cancer Biology Graduate Program, Graduate Division of Biomedical and Biological Sciences, Laney Graduate School, Atlanta, GA 30307
| | - Marinella Pirozzi
- EuroBioImaging Facility, Institute of Protein Biochemistry, 80131 Naples, Italy
| | - Raman Parashuraman
- EuroBioImaging Facility, Institute of Protein Biochemistry, 80131 Naples, Italy
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322
| | - H A Jinnah
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
109
|
Liang Y, Wang S, Zhang Y. Downregulation of Dock1 and Elmo1 suppresses the migration and invasion of triple-negative breast cancer epithelial cells through the RhoA/Rac1 pathway. Oncol Lett 2018; 16:3481-3488. [PMID: 30127952 PMCID: PMC6096110 DOI: 10.3892/ol.2018.9077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Dedicator of cytokinesis 1 (Dock1), a guanine nucleotide exchange factor, has been proven to facilitate cell survival, motility and proliferation via the activation of Ras-related C3 botulinum toxin substrate 1 (Rac1). Engulfment and cell motility 1 (Elmo1) serves as a mammalian homolog of Ced-12, which has been evolutionarily conserved from worm to human. The present study aimed to investigate the roles and mechanisms of Dock1 and Elmo1 in the migration and invasion of triple-negative breast cancer (TNBC) epithelial cells. Cell Counting kit-8, cell migration and cell invasion assays were performed to assess cell viability, migration and invasion, respectively. A plate clone formation assay was performed to determine cell proliferation. Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to evaluate mRNA and protein expression. The results revealed that the downregulation of Dock1 and Elmo1 inhibited cell viability, suppressed migration and invasion, and reduced Rac1 activity in MDA-MB-231 cells. Furthermore, downregulation of Dock1 and Elmo1 also attenuated the expression of migration-associated proteins and affected the Ras homolog gene family, member A (RhoA)/Rac1 pathway in MDA-MB-231 cells. In conclusion, the results of the present study suggested that the downregulation of Dock1 and Elmo1 suppresses the migration and invasion of TNBC epithelial cells through the RhoA/Rac1 pathway.
Collapse
Affiliation(s)
- Yueyang Liang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Shushu Wang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
110
|
Martinez D, Zuhdi N, Reyes M, Ortega B, Giovannone D, Lee VM, de Bellard ME. Screen for Slit/Robo signaling in trunk neural cells reveals new players. Gene Expr Patterns 2018; 28:22-33. [PMID: 29427758 PMCID: PMC5980643 DOI: 10.1016/j.gep.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/15/2023]
Abstract
Slits ligands and their Robo receptors are involved in quite disparate cell signaling pathways that include axon guidance, cell proliferation, cell motility and angiogenesis. Neural crest cells emerge by delamination from neural cells in the dorsal neural tube, and give rise to various components of the peripheral nervous system in vertebrates. It is well established that these cells change from a non-migratory to a highly migratory state allowing them to reach distant regions before they differentiate. However, but the mechanism controlling this delamination and subsequent migration are still not fully understood. The repulsive Slit ligand family members, have been classified also as true tumor suppressor molecules. The present study explored in further detail what possible Slit/Robo signals are at play in the trunk neural cells and neural crest cells by carrying out a microarray after Slit2 gain of function in trunk neural tubes. We found that in addition to molecules known to be downstream of Slit/Robo signaling, there were a large set of molecules known to be important in maintaining cells in non-motile, epithelia phenotype. Furthermore, we found new molecules previously not associated with Slit/Robo signaling: cell proliferation markers, Ankyrins and RAB intracellular transporters. Our findings suggest that neural crest cells use and array of different Slit/Robo pathways during their transformation from non-motile to highly motile cells.
Collapse
Affiliation(s)
- Darwin Martinez
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Nora Zuhdi
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Michelle Reyes
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Blanca Ortega
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Dion Giovannone
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Vivian M Lee
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Maria Elena de Bellard
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States.
| |
Collapse
|
111
|
Li W, Sun J, Ling J, Li J, He C, Liu Y, Chen H, Men M, Niu Z, Deng Y, Li M, Li T, Wen J, Sang S, Li H, Wan Z, Richard EM, Chapagain P, Yan D, Liu XZ, Mei L, Feng Y. ELMOD3, a novel causative gene, associated with human autosomal dominant nonsyndromic and progressive hearing loss. Hum Genet 2018; 137:329-342. [PMID: 29713870 DOI: 10.1007/s00439-018-1885-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 11/26/2022]
Abstract
Autosomal dominant nonsyndromic hearing loss (ADNSHL) is a highly genetically heterogeneous disorder. Up to date only approximately 37 ADNSHL-causing genes have been identified. The goal of this study was to determine the causative gene in a five-generation Chinese family with ADNSHL. A Chinese family was ascertained. Simultaneously, two affected individuals and one normal hearing control from the family were analyzed by whole exome capture sequencing. To assess the functional effect of the identified variant, in-vitro studies were performed. novel missense variant, c.512A>G (p.His171Arg) in exon 8 of the ELMO domain-containing 3 (ELMOD3) gene, was identified as a causative variant in this family affected by late-onset and progressive ADNSHL. The variant was validated by Sanger sequencing and found to co-segregate with the phenotype within the pedigree and was absent in 500 ethnically matched unrelated normal hearing control subjects. To our knowledge, this is the first report of a family with ADNSHL caused by ELMOD3 mutation. Western blots and immunofluorescence staining demonstrated that p.His171Arg resulted in abnormal expression levels of ELMOD3 and abnormal subcellular localization. Furthermore, the analysis of the stability of the wild-type (WT) and mutant ELMOD3 protein shows that the decay of p.His171Arg is faster than that of the WT, suggesting a shorter halflife of the c.512A > G variant. A novel variant in the ELMOD3 gene, encoding a member of the engulfment and cell motility (ELMO) family of GTPase-activating proteins, was identified for the first time as responsible for ADNSHL.
Collapse
Affiliation(s)
- Wu Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jie Sun
- Department of Otolaryngology, The Eight Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, China
| | - Jie Ling
- Institute of Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Meichao Men
- Health Management Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhijie Niu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yuyuan Deng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Meng Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Taoxi Li
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Jie Wen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Shushan Sang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhengqing Wan
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Elodie M Richard
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
- Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| |
Collapse
|
112
|
Turki A, Mzoughi S, Mtitaoui N, Khairallah M, Marmouch H, Hammami S, Mahjoub T, Almawi WY. Gender differences in the association of ELMO1 genetic variants with type 2 diabetes in Tunisian Arabs. J Endocrinol Invest 2018; 41:285-291. [PMID: 28752301 DOI: 10.1007/s40618-017-0734-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Polymorphisms of the engulfment and cell motility 1 (ELMO1) gene were recently associated with type 2 diabetes (T2DM) and its complications. We investigated the association of rs10255208, rs7782979, and rs2041801 ELMO1 gene variants with T2DM in Tunisian Arabs. METHODS Subjects comprised 900 T2DM patients and 600 normoglycemic controls. ELMO1 genotyping was done by PCR-RFLP; the contribution of ELMO1 variants to T2DM was analyzed by Haploview and regression analysis. RESULTS Minor allele frequencies of rs7782979 and rs10255208 ELMO1 variants were significantly higher among unselected T2DM cases than controls, and significant differences in the distribution of rs7782979 genotypes were seen between T2DM cases and control subjects, which was seen in male but not female subjects. Three-locus ELMO1 haplotype analysis identified haplotype GAA to be positively associated, and haplotypes GCA, AAA, and GCG to be negatively associated with T2DM. The distribution of these haplotypes was gender-dependent for some (GCA, GCG, AAG), and gender-independent for others (GAA, AAA). This translated into altered risk of T2DM in male or female subjects, which persisted after adjusting for BMI, systolic and diastolic blood pressure, and serum lipid profile. CONCLUSION These results confirm role for ELMO1 as T2DM susceptibility locus, which appears to be gender-dependent.
Collapse
Affiliation(s)
- A Turki
- Research Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - S Mzoughi
- Research Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - N Mtitaoui
- Research Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - M Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - H Marmouch
- Department of Endocrinology and Internal Medicine, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - S Hammami
- Department of Endocrinology and Internal Medicine, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - T Mahjoub
- Research Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - W Y Almawi
- Faculty of Sciences, El Manar University, Tunis, Tunisia.
| |
Collapse
|
113
|
DNA Methylation Levels of the ELMO Gene Promoter CpG Islands in Human Glioblastomas. Int J Mol Sci 2018; 19:ijms19030679. [PMID: 29495584 PMCID: PMC5877540 DOI: 10.3390/ijms19030679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Complete surgical resection of glioblastoma is difficult due to the invasive nature of this primary brain tumor, for which the molecular mechanisms behind remain poorly understood. The three human ELMO genes play key roles in cellular motility, and have been linked to metastasis and poor prognosis in other cancer types. The aim of this study was to investigate methylation levels of the ELMO genes and their correlation to clinical characteristics and outcome in patients diagnosed with glioblastoma. To measure DNA methylation levels we designed pyrosequencing assays targeting the promoter CpG island of each the ELMO genes. These were applied to diagnostic tumor specimens from a well-characterized cohort of 121 patients who received standard treatment consisting of surgery, radiation therapy, plus concomitant and adjuvant chemotherapy. The promoter methylation levels of ELMO1 and ELMO2 were generally low, whereas ELMO3 methylation levels were high, in the tumor biopsies. Thirteen, six, and 18 biopsies were defined as aberrantly methylated for ELMO1, ELMO2, and ELMO3, respectively. There were no significant associations between the methylation status of any of the ELMO gene promoter CpG islands and overall survival, progression-free survival, and clinical characteristics of the patients including intracranial tumor location. Therefore, the methylation status of the ELMO gene promoter CpG islands is unlikely to have prognostic value in glioblastoma.
Collapse
|
114
|
Tajiri H, Uruno T, Shirai T, Takaya D, Matsunaga S, Setoyama D, Watanabe M, Kukimoto-Niino M, Oisaki K, Ushijima M, Sanematsu F, Honma T, Terada T, Oki E, Shirasawa S, Maehara Y, Kang D, Côté JF, Yokoyama S, Kanai M, Fukui Y. Targeting Ras-Driven Cancer Cell Survival and Invasion through Selective Inhibition of DOCK1. Cell Rep 2018; 19:969-980. [PMID: 28467910 DOI: 10.1016/j.celrep.2017.04.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/02/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Oncogenic Ras plays a key role in cancer initiation but also contributes to malignant phenotypes by stimulating nutrient uptake and promoting invasive migration. Because these latter cellular responses require Rac-mediated remodeling of the actin cytoskeleton, we hypothesized that molecules involved in Rac activation may be valuable targets for cancer therapy. We report that genetic inactivation of the Rac-specific guanine nucleotide exchange factor DOCK1 ablates both macropinocytosis-dependent nutrient uptake and cellular invasion in Ras-transformed cells. By screening chemical libraries, we have identified 1-(2-(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-2-oxoethyl)-5-pyrrolidinylsulfonyl-2(1H)-pyridone (TBOPP) as a selective inhibitor of DOCK1. TBOPP dampened DOCK1-mediated invasion, macropinocytosis, and survival under the condition of glutamine deprivation without impairing the biological functions of the closely related DOCK2 and DOCK5 proteins. Furthermore, TBOPP treatment suppressed cancer metastasis and growth in vivo in mice. Our results demonstrate that selective pharmacological inhibition of DOCK1 could be a therapeutic approach to target cancer cell survival and invasion.
Collapse
Affiliation(s)
- Hirotada Tajiri
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahiro Shirai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daisuke Takaya
- RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mayuki Watanabe
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan
| | | | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Miho Ushijima
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumiyuki Sanematsu
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruki Honma
- RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Takaho Terada
- RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal (Université de Montréal), Montréal, QC H2W 1R7, Canada
| | | | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
115
|
Davies SP, Reynolds GM, Stamataki Z. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Front Immunol 2018; 9:44. [PMID: 29422896 PMCID: PMC5790054 DOI: 10.3389/fimmu.2018.00044] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gary M Reynolds
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
116
|
Wever CM, Geoffrion D, Grande BM, Yu S, Alcaide M, Lemaire M, Riazalhosseini Y, Hébert J, Gavino C, Vinh DC, Petrogiannis-Haliotis T, Dmitrienko S, Mann KK, Morin RD, Johnson NA. The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples. Leuk Lymphoma 2018; 59:2159-2174. [PMID: 29295643 DOI: 10.1080/10428194.2017.1413186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.
Collapse
Affiliation(s)
- Claudia M Wever
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | | | - Bruno M Grande
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Stephen Yu
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Miguel Alcaide
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Maryse Lemaire
- b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Yasser Riazalhosseini
- e Department of Human Genetics , McGill University , Montreal , Canada.,f McGill University and Genome Quebec Innovation Centre , Montreal , Canada
| | - Josée Hébert
- g Department of Medicine, Faculty of Medicine , Université de Montréal , Montreal , Canada.,h Research Centre and Division of Hematology-Oncology Maisonneuve-Rosemont Hospital , The Québec Leukemia Cell Bank , Montreal , Canada
| | - Christina Gavino
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | - Donald C Vinh
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | | | | | - Koren K Mann
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Ryan D Morin
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Nathalie A Johnson
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
117
|
Sarode GS, Sarode SC, Maniyar N, Sharma NK, Patil S. Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon. Oncol Rev 2017; 11:343. [PMID: 29285321 PMCID: PMC5733395 DOI: 10.4081/oncol.2017.343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 01/05/2023] Open
Abstract
The effective removal of cells undergoing programmed cell death, which is referred to as efferocytosis, prevents the leakage of intracellular contents into the surrounding tissue, which could lead to tissue damage and inflammation. Efferocytosis involves a coordinated orchestration of multiple steps that lead to a swift, coherent and immunologically silent removal of dying cells. The release of wound healing cytokines, which resolve inflammation and enhance tissue repair, is an important feature of efferocytosis. However, in addition to the healing cytokines released during efferocytosis, the immunosuppressive action of cytokines promotes the tumor microenvironment, enhances the motility of cancer cells and promotes the evasion of antitumor immunity. The aim of the present review was to comprehensively discuss the efferocytosis phenomenon, the important players associated with this process and their role in cancer-related biological events.
Collapse
Affiliation(s)
- Gargi Sachin Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Nikunj Maniyar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Shankargouda Patil
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
118
|
Pandey A, Yadav V, Sharma A, Khurana JP, Pandey GK. The unc-53 gene negatively regulates rac GTPases to inhibit unc-5 activity during Distal tip cell migrations in C. elegans. Cell Adh Migr 2017; 12:195-203. [PMID: 28678595 DOI: 10.1080/19336918.2017.1345413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The unc-53/NAV2 gene encodes for an adaptor protein required for cell migrations along the anteroposterior (AP) axes of C. elegans. This study identifies unc-53 as a novel component of signaling pathways regulating Distal tip cell (DTC) migrations along the AP and dorsoventral (DV) axes. unc-53 negatively regulates and functions downstream of ced-10/Rac pathway genes; ced-10/Rac and mig-2/RhoG, which are required for proper DTC migration. Moreover, unc-53 exhibits genetic interaction with abl-1 and unc-5, the 2 known negative regulators of ced-10/Rac signaling. Our genetic analysis supports the model, where abl-1 negatively regulates unc-53 during DTC migrations and requirement of unc-53 function during both AP and DV DTC migrations could be due to unc-53 mediated regulation of unc-5 activity.
Collapse
Affiliation(s)
- Amita Pandey
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Vipul Yadav
- b Department of Genetics , University of Delhi South Campus , New Delhi , India
| | - Aditi Sharma
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Jitendra P Khurana
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Girdhar K Pandey
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| |
Collapse
|
119
|
Boateng R, Nguyen KCQ, Hall DH, Golden A, Allen AK. Novel functions for the RNA-binding protein ETR-1 in Caenorhabditis elegans reproduction and engulfment of germline apoptotic cell corpses. Dev Biol 2017; 429:306-320. [PMID: 28648844 PMCID: PMC5603194 DOI: 10.1016/j.ydbio.2017.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 01/31/2023]
Abstract
RNA-binding proteins (RBPs) are essential regulators of gene expression that act through a variety of mechanisms to ensure the proper post-transcriptional regulation of their target RNAs. RBPs in multiple species have been identified as playing crucial roles during development and as having important functions in various adult organ systems, including the heart, nervous, muscle, and reproductive systems. ETR-1, a highly conserved ELAV-Type RNA-binding protein belonging to the CELF/Bruno protein family, has been previously reported to be involved in C. elegans muscle development. Animals depleted of ETR-1 have been previously characterized as arresting at the two-fold stage of embryogenesis. In this study, we show that ETR-1 is expressed in the hermaphrodite somatic gonad and germ line, and that reduction of ETR-1 via RNA interference (RNAi) results in reduced hermaphrodite fecundity. Detailed characterization of this fertility defect indicates that ETR-1 is required in both the somatic tissue and the germ line to ensure wild-type reproductive levels. Additionally, the ability of ETR-1 depletion to suppress the published WEE-1.3-depletion infertility phenotype is dependent on ETR-1 being reduced in the soma. Within the germline of etr-1(RNAi) hermaphrodite animals, we observe a decrease in average oocyte size and an increase in the number of germline apoptotic cell corpses as evident by an increased number of CED-1::GFP and acridine orange positive apoptotic germ cells. Transmission Electron Microscopy (TEM) studies confirm the significant increase in apoptotic cells in ETR-1-depleted animals, and reveal a failure of the somatic gonadal sheath cells to properly engulf dying germ cells in etr-1(RNAi) animals. Through investigation of an established engulfment pathway in C. elegans, we demonstrate that co-depletion of CED-1 and ETR-1 suppresses both the reduced fecundity and the increase in the number of apoptotic cell corpses observed in etr-1(RNAi) animals. Combined, this data identifies a novel role for ETR-1 in hermaphrodite gametogenesis and in the process of engulfment of germline apoptotic cell corpses.
Collapse
Affiliation(s)
- Ruby Boateng
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Ken C Q Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Andy Golden
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna K Allen
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
120
|
The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans. J Neurosci 2017; 36:9710-21. [PMID: 27629720 DOI: 10.1523/jneurosci.0453-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. SIGNIFICANCE STATEMENT The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway.
Collapse
|
121
|
Nonaka S, Hori A, Nakanishi Y, Kuraishi T. Phagocytosis Assay for Apoptotic Cells in Drosophila Embryos. J Vis Exp 2017. [PMID: 28809832 DOI: 10.3791/56352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The molecular mechanisms underlying the phagocytosis of apoptotic cells need to be elucidated in more detail because of its role in immune and inflammatory intractable diseases. We herein developed an experimental method to investigate phagocytosis quantitatively using the fruit fly Drosophila, in which the gene network controlling engulfment reactions is evolutionally conserved from mammals. In order to accurately detect and count engulfing and un-engulfing phagocytes using whole animals, Drosophila embryos were homogenized to obtain dispersed cells including phagocytes and apoptotic cells. The use of dispersed embryonic cells enables us to measure in vivo phagocytosis levels as if we performed an in vitro phagocytosis assay in which it is possible to observe all phagocytes and apoptotic cells in whole embryos and precisely quantify the level of phagocytosis. We confirmed that this method reproduces those of previous studies that identified the genes required for the phagocytosis of apoptotic cells. This method allows the engulfment of dead cells to be analyzed, and when combined with the powerful genetics of Drosophila, will reveal the complex phagocytic reactions comprised of the migration, recognition, engulfment, and degradation of apoptotic cells by phagocytes.
Collapse
Affiliation(s)
- Saori Nonaka
- Graduate School of Medical Sciences, Kanazawa University
| | - Aki Hori
- Graduate School of Medical Sciences, Kanazawa University
| | | | | |
Collapse
|
122
|
Fond AM, Ravichandran KS. Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:25-49. [PMID: 27558816 PMCID: PMC6721615 DOI: 10.1007/978-3-319-39406-0_2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient clearance of apoptotic cells is an evolutionarily conserved process crucial for homeostasis in multicellular organisms. The clearance involves a series of steps that ultimately facilitates the recognition of the apoptotic cell by the phagocytes and the subsequent uptake and processing of the corpse. These steps include the phagocyte sensing of "find-me" signals released by the apoptotic cell, recognizing "eat-me" signals displayed on the apoptotic cell surface, and then intracellular signaling within the phagocyte to mediate phagocytic cup formation around the corpse and corpse internalization, and the processing of the ingested contents. The engulfment of apoptotic cells by phagocytes not only eliminates debris from tissues but also produces an anti-inflammatory response that suppresses local tissue inflammation. Conversely, impaired corpse clearance can result in loss of immune tolerance and the development of various inflammation-associated disorders such as autoimmunity, atherosclerosis, and airway inflammation but can also affect cancer progression. Recent studies suggest that the clearance process can also influence antitumor immune responses. In this review, we will discuss how apoptotic cells interact with their engulfing phagocytes to generate important immune responses, and how modulation of such responses can influence pathology.
Collapse
Affiliation(s)
- Aaron M Fond
- Center for Cell Clearance, and the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, and the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
123
|
Kim K, Lee J, Lee SA, Moon H, Park B, Kim D, Joo YE, Park D. Intermolecular steric inhibition of Ephexin4 is relieved by Elmo1. Sci Rep 2017; 7:4404. [PMID: 28667327 PMCID: PMC5493634 DOI: 10.1038/s41598-017-04810-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022] Open
Abstract
Ephexin4, a guanine nucleotide-exchange factor for RhoG, promotes engulfment of apoptotic cells and cancer cell migration in a RhoG-dependent manner, which is synergistically augmented by Elmo1, an Ephexin4-interacting protein. However, the underlying molecular mechanism remains elusive. Here, we report a mechanism by which Elmo1 cooperates with Ephexin4 to activate RhoG. We found that Ephexin4 activity was increased by elimination of its SH3 domain which intermolecularly interacts with the N20 region of Ephexin4. This interaction prevented RhoG from binding to Ephexin4 and thus inhibited RhoG activation. Moreover, we also found that Elmo1 associated with the SH3 domain as well as the N20 region and competed with the SH3 domain for binding to the N20 region, interrupting the interaction of the SH3 domain with the N20 region and thereby promoting RhoG binding to Ephexin4. In addition, the activity of Ephexin4 lacking the SH3 domain was comparable to that of Ephexin4 with Elmo1. Taken together, the data suggest that Elmo1 relieves the steric hindrance of Ephexin4 generated by the intermolecular interaction of the SH3 domain and makes Ephexin4 more accessible to RhoG.
Collapse
Affiliation(s)
- Kwanhyeong Kim
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Juyeon Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Sang-Ah Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Boyeon Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Deokhwan Kim
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Daeho Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea. .,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
124
|
Programmed Cell Death During Caenorhabditis elegans Development. Genetics 2017; 203:1533-62. [PMID: 27516615 DOI: 10.1534/genetics.115.186247] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general.
Collapse
|
125
|
Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med 2017; 49:e331. [PMID: 28496201 PMCID: PMC5454446 DOI: 10.1038/emm.2017.52] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
The clearance of apoptotic cells is an essential process for tissue homeostasis. To this end, cells undergoing apoptosis must display engulfment signals, such as ‘find-me' and ‘eat-me' signals. Engulfment signals are recognized by multiple types of phagocytic machinery in phagocytes, leading to prompt clearance of apoptotic cells. In addition, apoptotic cells and phagocytes release tolerogenic signals to reduce immune responses against apoptotic cell-derived self-antigens. Here we discuss recent advances in our knowledge of engulfment signals, the phagocytic machinery and the signal transduction pathways for apoptotic cell engulfment.
Collapse
|
126
|
Valdivia A, Goicoechea SM, Awadia S, Zinn A, Garcia-Mata R. Regulation of circular dorsal ruffles, macropinocytosis, and cell migration by RhoG and its exchange factor, Trio. Mol Biol Cell 2017; 28:1768-1781. [PMID: 28468978 PMCID: PMC5491185 DOI: 10.1091/mbc.e16-06-0412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/11/2022] Open
Abstract
The small GTPase RhoG and its exchange factor, Trio, regulate the formation and size of circular dorsal ruffles and associated functions, including macropinocytosis and cell migration. Circular dorsal ruffles (CDRs) are actin-rich structures that form on the dorsal surface of many mammalian cells in response to growth factor stimulation. CDRs represent a unique type of structure that forms transiently and only once upon stimulation. The formation of CDRs involves a drastic rearrangement of the cytoskeleton, which is regulated by the Rho family of GTPases. So far, only Rac1 has been consistently associated with CDR formation, whereas the role of other GTPases in this process is either lacking or inconclusive. Here we show that RhoG and its exchange factor, Trio, play a role in the regulation of CDR dynamics, particularly by modulating their size. RhoG is activated by Trio downstream of PDGF in a PI3K- and Src-dependent manner. Silencing RhoG expression decreases the number of cells that form CDRs, as well as the area of the CDRs. The regulation of CDR area by RhoG is independent of Rac1 function. In addition, our results show the RhoG plays a role in the cellular functions associated with CDR formation, including macropinocytosis, receptor internalization, and cell migration. Taken together, our results reveal a novel role for RhoG in the regulation of CDRs and the cellular processes associated with their formation.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606.,Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322
| | | | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Ashtyn Zinn
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
127
|
Kim SY, Kim S, Bae DJ, Park SY, Lee GY, Park GM, Kim IS. Coordinated balance of Rac1 and RhoA plays key roles in determining phagocytic appetite. PLoS One 2017; 12:e0174603. [PMID: 28376111 PMCID: PMC5380344 DOI: 10.1371/journal.pone.0174603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/10/2017] [Indexed: 12/30/2022] Open
Abstract
The removal of unwanted or damaged cells by phagocytes is achieved via a finely regulated cleaning process called efferocytosis. To characterize the mechanisms through which phagocytes control the intake of apoptotic cells, we investigated how the phagocyte’s appetite for engulfed cells may be coordinated by RhoA and Rac1 in the phagocytic cup. We used FRET biosensors to visualize the spatiotemporal dynamics of Rho-family GTPases, and found that RhoA, which is known to be downregulated during phagocytosis, was transiently upregulated at the phagocytic cup immediately prior to ingestion. Conversely, Rac1 was upregulated during the engulfment process and then downregulated prior to phagosomal maturation. Moreover, disturbance of the dynamic activities of RhoA led to uncontrolled engulfment, such as fast and undiscerning eating. Our results reveal that the temporal activity of RhoA GTPase alters the Rac1/RhoA balance at the phagocytic cup prior to ingestion, and that this plays a distinct role in orchestrating efferocytosis, with RhoA modulating the rate of engulfment to ensure that the phagocyte engulfs an appropriate amount of the correct material.
Collapse
Affiliation(s)
- Sang-Yeob Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (SK); (ISK)
| | - Dong-Jun Bae
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Ga-Young Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gyeong-Min Park
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KU-KIST school, Korea University, Seoul, Republic of Korea
- * E-mail: (SK); (ISK)
| |
Collapse
|
128
|
Guo X, Chen SY. Dedicator of Cytokinesis 2 in Cell Signaling Regulation and Disease Development. J Cell Physiol 2017; 232:1931-1940. [DOI: 10.1002/jcp.25512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Xia Guo
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
129
|
McCauley HA, Chevrier V, Birnbaum D, Guasch G. De-repression of the RAC activator ELMO1 in cancer stem cells drives progression of TGFβ-deficient squamous cell carcinoma from transition zones. eLife 2017; 6:e22914. [PMID: 28219480 PMCID: PMC5319840 DOI: 10.7554/elife.22914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/27/2017] [Indexed: 01/18/2023] Open
Abstract
Squamous cell carcinomas occurring at transition zones are highly malignant tumors with poor prognosis. The identity of the cell population and the signaling pathways involved in the progression of transition zone squamous cell carcinoma are poorly understood, hence representing limited options for targeted therapies. Here, we identify a highly tumorigenic cancer stem cell population in a mouse model of transitional epithelial carcinoma and uncover a novel mechanism by which loss of TGFβ receptor II (Tgfbr2) mediates invasion and metastasis through de-repression of ELMO1, a RAC-activating guanine exchange factor, specifically in cancer stem cells of transition zone tumors. We identify ELMO1 as a novel target of TGFβ signaling and show that restoration of Tgfbr2 results in a complete block of ELMO1 in vivo. Knocking down Elmo1 impairs metastasis of carcinoma cells to the lung, thereby providing insights into the mechanisms of progression of Tgfbr2-deficient invasive transition zone squamous cell carcinoma.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States
| | - Véronique Chevrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Géraldine Guasch
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| |
Collapse
|
130
|
El Chamy L, Matt N, Reichhart JM. Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0038-2016. [PMID: 28102122 PMCID: PMC11687447 DOI: 10.1128/microbiolspec.mchd-0038-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Drosophila has long served as a valuable model for deciphering many biological processes, including immune responses. Indeed, the genetic tractability of this organism is particularly suited for large-scale analyses. Studies performed during the last 3 decades have proven that the signaling pathways that regulate the innate immune response are conserved between Drosophila and mammals. This review summarizes the recent advances on Drosophila hematopoiesis and immune cellular responses, with a particular emphasis on phagocytosis.
Collapse
Affiliation(s)
- Laure El Chamy
- Laboratoire de Génétique de la drosophile et virulence microbienne, UR. EGFEM, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Mar Mikhaël Beyrouth 1104 2020, Liban
| | - Nicolas Matt
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| | - Jean-Marc Reichhart
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| |
Collapse
|
131
|
Evans IM, Kennedy SA, Paliashvili K, Santra T, Yamaji M, Lovering RC, Britton G, Frankel P, Kolch W, Zachary IC. Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis. Mol Cell Proteomics 2016; 16:168-180. [PMID: 28007913 PMCID: PMC5294206 DOI: 10.1074/mcp.m116.064428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement.
Collapse
Affiliation(s)
- Ian M Evans
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Susan A Kennedy
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ketevan Paliashvili
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Tapesh Santra
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maiko Yamaji
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Ruth C Lovering
- **Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Gary Britton
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Paul Frankel
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Walter Kolch
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.,¶Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,‖School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian C Zachary
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom;
| |
Collapse
|
132
|
Knockdown of ELMO3 Suppresses Growth, Invasion and Metastasis of Colorectal Cancer. Int J Mol Sci 2016; 17:ijms17122119. [PMID: 27999268 PMCID: PMC5187919 DOI: 10.3390/ijms17122119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023] Open
Abstract
The engulfment and cell motility (ELMOs) family of proteins plays a crucial role in tumor cell migration and invasion. However, the function of ELMO3 is poorly defined. To elucidate its role in the development and progression of colorectal cancer (CRC), we examined the expression of ELMO3 in 45 cases of paired CRC tumor tissues and adjacent normal tissues. Furthermore, we assessed the effect of the knockdown of ELMO3 on cell proliferation, cell cycle, migration, invasion and F-actin polymerization in HCT116 cells. The result shows that the expression of ELMO3 in CRC tissues was significantly increased in comparison to the adjacent normal colorectal tissues. Moreover, this overexpression was associated with tumor size (p = 0.007), tumor differentiation (p = 0.001), depth of invasion (p = 0.009), lymph node metastasis (p = 0.003), distant metastasis (p = 0.013) and tumor, node, metastasis (TNM)-based classification (p = 0.000). In in vitro experiments, the silencing of ELMO3 inhibited cell proliferation, invasion, metastasis, and F-actin polymerization, and induced Gap 1 (G1) phase cell cycle arrest. Our study demonstrates that ELMO3 is involved in the processes of growth, invasion and metastasis of CRC, and could be used a potential molecular diagnostic tool or therapy target of CRC.
Collapse
|
133
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
134
|
Sharma KR, Heckler K, Stoll SJ, Hillebrands JL, Kynast K, Herpel E, Porubsky S, Elger M, Hadaschik B, Bieback K, Hammes HP, Nawroth PP, Kroll J. ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Sci Rep 2016; 6:37172. [PMID: 27849017 PMCID: PMC5111104 DOI: 10.1038/srep37172] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/25/2016] [Indexed: 12/24/2022] Open
Abstract
Engulfment and cell motility 1 (ELMO1) functions as a guanine exchange factor for Rac1 and was recently found to protect endothelial cells from apoptosis. Genome wide association studies suggest that polymorphisms within human elmo1 act as a potential contributing factor for the development of diabetic nephropathy. Yet, the function of ELMO1 with respect to the glomerulus and how this protein contributes to renal pathology was unknown. Thus, this study aimed to identify the role played by ELMO1 in renal development in zebrafish, under hyperglycaemic conditions, and in diabetic nephropathy patients. In zebrafish, hyperglycaemia did not alter renal ELMO1 expression. However, hyperglycaemia leads to pathophysiological and functional alterations within the pronephros, which could be rescued via ELMO1 overexpression. Zebrafish ELMO1 crispants exhibited a renal pathophysiology due to increased apoptosis which could be rescued by the inhibition of apoptosis. In human samples, immunohistochemical staining of ELMO1 in nondiabetic, diabetic and polycystic kidneys localized ELMO1 in glomerular podocytes and in the tubules. However, ELMO1 was not specifically or distinctly regulated under either one of the disease conditions. Collectively, these results highlight ELMO1 as an important factor for glomerular protection and renal cell survival via decreasing apoptosis, especially under diabetic conditions.
Collapse
Affiliation(s)
- Krishna Rakesh Sharma
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karl Heckler
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sandra J Stoll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Katharina Kynast
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan Porubsky
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marlies Elger
- Institue of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Boris Hadaschik
- Department of Urology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology and FlowCore Manneim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, University Medical Centre Mannheim, Mannheim, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
135
|
Worsham MJ, Chen KM, Datta I, Stephen JK, Chitale D, Gothard A, Divine G. The biological significance of methylome differences in human papilloma virus associated head and neck cancer. Oncol Lett 2016; 12:4949-4956. [PMID: 28101231 PMCID: PMC5228097 DOI: 10.3892/ol.2016.5303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/26/2016] [Indexed: 01/02/2023] Open
Abstract
In recent years, studies have suggested that promoter methylation in human papilloma virus (HPV) positive head and neck squamous cell carcinoma (HNSCC) has a mechanistic role and has the potential to improve patient survival. The present study aimed to replicate key molecular findings from previous analyses of the methylomes of HPV positive and HPV negative HNSCC in an independent cohort, to assess the reliability of differentially methylated markers in HPV-associated tumors. HPV was measured using real-time quantitative PCR and the biological significance of methylation differences was assessed by Ingenuity Pathway Analysis (IPA). Using an identical experimental design of a 450K methylation platform, 7 of the 11 genes were detected to be significantly differentially methylated and all 11 genes were either hypo- or hypermethylated, which was in agreement with the results of a previous study. IPA's enriched networks analysis identified one network with msh homeobox 2 (MSX2) as a central node. Locally dense interactions between genes in networks tend to reflect significant biology; therefore MSX2 was selected as an important gene. Sequestration in the top four canonical pathways was noted for 5-hydroxytryptamine receptor 1E (serotonin signaling), collapsin response mediator protein 1 (semaphorin signaling) and paired like homeodomain 2 (bone morphogenic protein and transforming growth factor-β signaling). Placement of 9 of the 11 genes in highly ranked pathways and bionetworks identified key biological processes to further emphasize differences between HNSCC HPV positive and negative pathogenesis.
Collapse
Affiliation(s)
- Maria J Worsham
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Kang Mei Chen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Josena K Stephen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - George Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
136
|
Zhou S, Treloar AE, Lupien M. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations. Cancer Discov 2016; 6:1215-1229. [PMID: 27807102 DOI: 10.1158/2159-8290.cd-16-0745] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022]
Abstract
The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thousands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated with aberrant gene expression in cancer. Here, we review these findings to showcase the contribution of the noncoding genome and its alteration in the development and progression of cancer. We also highlight the opportunities to translate the biological characterization of genetic and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. SIGNIFICANCE The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our understanding of the noncoding cancer genome may thus identify new therapeutic opportunities and accelerate our capacity to find improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215-29. ©2016 AACR.
Collapse
Affiliation(s)
- Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Aislinn E Treloar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
137
|
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269:44-59. [PMID: 26683144 DOI: 10.1111/imr.12376] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvβ5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
138
|
Ho E, Ivanova IA, Dagnino L. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2892-2904. [PMID: 27627840 DOI: 10.1016/j.bbamcr.2016.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023]
Abstract
The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function.
Collapse
Affiliation(s)
- Ernest Ho
- Dept. of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Iordanka A Ivanova
- Dept. of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lina Dagnino
- Dept. of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
139
|
Affiliation(s)
- Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India E-mail:
| |
Collapse
|
140
|
Peotter JL, Phillips J, Tong T, Dimeo K, Gonzalez JM, Peters DM. Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells. Exp Cell Res 2016; 347:301-11. [PMID: 27539661 DOI: 10.1016/j.yexcr.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that an αvβ5 integrin/FAK- mediated pathway regulated the phagocytic properties of human trabecular meshwork (HTM) cells. Here we demonstrate that this process is mediated by Rac-1 and a previously unreported signaling pathway that utilizes the Tiam1 as well as a novel ILK/RhoG/ELMO2 signaling pathway. Phagocytosis in both a TM-1 cell line and normal HTM cells was mediated by Rac1 and could be significantly decreased by >75% using the Rac1 inhibitor EHop-016. Knockdown of Rac1 in TM-1 cells also inhibited phagocytosis by 40% whereas overexpression of a constitutively active Rac1 or stimulation with PDGF increased phagocytosis by 83% and 32% respectively. Tiam1 was involved in regulating phagocytosis. Knockdown of Tiam1 inhibited phagocytosis by 72% while overexpression of Tiam1 C1199 increased phagocytosis by 75%. Other upstream effectors of Rac1 found to be involved included ELMO2, RhoG, and ILK. Knockdowns of ELMO2, ILK, and RhoG caused a reduction in phagocytosis by 51%, 55% and 46% respectively. In contrast, knockdown of Vav2 and Dock1 or overexpression of Vav2 Y159/172F did not cause a significant change in phagocytosis. These data suggest a novel link between Tiam1 and RhoG/ILK /ELMO2 pathway as upstream effectors of the Rac1-mediated phagocytic process in TM cells.
Collapse
Affiliation(s)
- Jennifer L Peotter
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jenny Phillips
- The Waisman Center, University of Wisconsin, Madison, WI 53706, USA
| | - Tiegang Tong
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Kaylee Dimeo
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jose M Gonzalez
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
141
|
Cetinkaya A, Xiong J, Vargel İ, Kösemehmetoğlu K, Canter H, Gerdan Ö, Longo N, Alzahrani A, Camps M, Taskiran E, Laupheimer S, Botto L, Paramalingam E, Gormez Z, Uz E, Yuksel B, Ruacan Ş, Sağıroğlu M, Takahashi T, Reversade B, Akarsu N. Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling. Am J Hum Genet 2016; 99:299-317. [PMID: 27476657 DOI: 10.1016/j.ajhg.2016.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/09/2016] [Indexed: 12/16/2022] Open
Abstract
Vascular malformations are non-neoplastic expansions of blood vessels that arise due to errors during angiogenesis. They are a heterogeneous group of sporadic or inherited vascular disorders characterized by localized lesions of arteriovenous, capillary, or lymphatic origin. Vascular malformations that occur inside bone tissue are rare. Herein, we report loss-of-function mutations in ELMO2 (which translates extracellular signals into cellular movements) that are causative for autosomal-recessive intraosseous vascular malformation (VMOS) in five different families. Individuals with VMOS suffer from life-threatening progressive expansion of the jaw, craniofacial, and other intramembranous bones caused by malformed blood vessels that lack a mature vascular smooth muscle layer. Analysis of primary fibroblasts from an affected individual showed that absence of ELMO2 correlated with a significant downregulation of binding partner DOCK1, resulting in deficient RAC1-dependent cell migration. Unexpectedly, elmo2-knockout zebrafish appeared phenotypically normal, suggesting that there might be human-specific ELMO2 requirements in bone vasculature homeostasis or genetic compensation by related genes. Comparative phylogenetic analysis indicated that elmo2 originated upon the appearance of intramembranous bones and the jaw in ancestral vertebrates, implying that elmo2 might have been involved in the evolution of these novel traits. The present findings highlight the necessity of ELMO2 for maintaining vascular integrity, specifically in intramembranous bones.
Collapse
|
142
|
Adhesion GPCRs in immunology. Biochem Pharmacol 2016; 114:88-102. [DOI: 10.1016/j.bcp.2016.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022]
|
143
|
Abstract
The phagocytic clearance of dying cells in a tissue is a highly orchestrated series of intercellular events coordinated by a complex signaling network. Recent data from genetic, biochemical, and live-imaging approaches have greatly enhanced our understanding of the dynamics of cell clearance and how the process is orchestrated at the cellular and tissue levels. We discuss how networks regulating apoptotic cell clearance are integrated to enable a rapid, efficient, and high-capacity clearance system within tissues.
Collapse
Affiliation(s)
- Michael R Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA; Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
144
|
Wang X, Yang C. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell Mol Life Sci 2016; 73:2221-36. [PMID: 27048817 PMCID: PMC11108496 DOI: 10.1007/s00018-016-2196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/01/2023]
Abstract
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
Collapse
Affiliation(s)
- Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
145
|
Sun Y, Côté JF, Du K. Elmo2 Is a Regulator of Insulin-dependent Glut4 Membrane Translocation. J Biol Chem 2016; 291:16150-61. [PMID: 27226625 DOI: 10.1074/jbc.m116.731521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Elmo2, a member of the Elmo protein family, has been implicated in the regulation of Rac1 and Akt activation. Recently, we found that Elmo2 specifically interacts with ClipR-59. Because Akt and Rac1 have been implicated in insulin dependent Glut4 membrane translocation, we hypothesize here that Elmo2 may play a role in insulin-dependent Glut4 membrane translocation. Accordingly, we found that overexpression of Elmo2 enhanced, whereas its knockdown suppressed, insulin-dependent Glut4 membrane translocation in both 3T3-L1 adipocytes and L6 skeletal muscle cells. We also examined whether Elmo2 contributes to the insulin-mediated activation of Rac1 and Akt. We found that Elmo2 is required for insulin-induced Rac1 GTP loading, but not AKT activation, in L6 cells induced by insulin. Instead, Elmo2 is required to promote the insulin-induced membrane association of Akt. Together, our studies demonstrate that Elmo2 is a new regulator of insulin-dependent Glut4 membrane translocation through modulating Rac1 activity and Akt membrane compartmentalization.
Collapse
Affiliation(s)
- Yingmin Sun
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| | - Jean-François Côté
- the Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Keyong Du
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| |
Collapse
|
146
|
Gordon P, Okai B, Hoare JI, Erwig LP, Wilson HM. SOCS3 is a modulator of human macrophage phagocytosis. J Leukoc Biol 2016; 100:771-780. [PMID: 27106674 DOI: 10.1189/jlb.3a1215-554rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/03/2016] [Indexed: 01/20/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins are recognized as key feedback inhibitors modulating the inflammatory activities of macrophages, but comparatively little is known about whether and how they affect phagocytosis. Here, we evaluated the role of SOCS3 in driving the inflammatory phenotype and phagocytic uptake of apoptotic cells by human macrophages and the signaling pathways that are necessary for efficient phagocytosis. In M1-activated human monocyte-derived macrophages, SOCS3 silencing, using short interfering RNA technology, resulted in a decreased expression of proinflammatory markers and an increased expression of M2 macrophage markers. Strikingly, we demonstrated for the first time that SOCS3 knockdown significantly enhances the phagocytic capacity of M1 macrophages for carboxylate-modified beads and apoptotic neutrophils. With the use of live-cell video microscopy, we showed that SOCS3 knockdown radically affects the temporal dynamics of particle engulfment, enabling more rapid uptake of a second target and delaying postengulfment processing, as evidenced by deferred acquisition of phagosome maturation markers. SOCS3 knockdown impacts on phagocytosis through increased PI3K and Ras-related C3 botulinum toxin substrate 1 (Rac1) activity, pathways essential for engulfment and clearance of apoptotic cells. Enhanced phagocytosis in SOCS3-silenced cells was reversed by pharmacological PI3K inhibition. Furthermore, we revealed that actin polymerization, downstream of PI3K/Rac1 activation, was significantly altered in SOCS3-silenced cells, providing a mechanism for their greater phagocytic activity. The findings support a new model, whereby SOCS3 not only plays an important role in driving macrophage inflammatory responses but modulates key signaling pathways organizing the actin cytoskeleton to regulate the efficiency of phagocytic processes.
Collapse
Affiliation(s)
- Peter Gordon
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Blessing Okai
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Joseph I Hoare
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Lars P Erwig
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Heather M Wilson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
147
|
Boosting Apoptotic Cell Clearance by Colonic Epithelial Cells Attenuates Inflammation In Vivo. Immunity 2016; 44:807-20. [PMID: 27037190 DOI: 10.1016/j.immuni.2016.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 02/03/2016] [Indexed: 12/30/2022]
Abstract
Few apoptotic corpses are seen even in tissues with high cellular turnover, leading to the notion that the capacity for engulfment in vivo is vast. Whether corpse clearance can be enhanced in vivo for potential benefit is not known. In a colonic inflammation model, we noted that the expression of the phagocytic receptor Bai1 was progressively downmodulated. Consistent with this, BAI1-deficient mice had more pronounced colitis and lower survival, with many uncleared apoptotic corpses and inflammatory cytokines within the colonic epithelium. When we engineered and tested transgenic mice overexpressing BAI1, these had fewer apoptotic cells, reduced inflammation, and attenuated disease. Boosting BAI1-mediated uptake by intestinal epithelial cells (rather than myeloid cells) was important in attenuating inflammation. A signaling-deficient BAI1 transgene could not provide a similar benefit. Collectively, these complementary genetic approaches showed that cell clearance could be boosted in vivo, with potential to regulate tissue inflammation in specific contexts.
Collapse
|
148
|
Nichols ALA, Meelkop E, Linton C, Giordano-Santini R, Sullivan RK, Donato A, Nolan C, Hall DH, Xue D, Neumann B, Hilliard MA. The Apoptotic Engulfment Machinery Regulates Axonal Degeneration in C. elegans Neurons. Cell Rep 2016; 14:1673-1683. [PMID: 26876181 PMCID: PMC4821572 DOI: 10.1016/j.celrep.2016.01.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 01/31/2023] Open
Abstract
Axonal degeneration is a characteristic feature of neurodegenerative disease and nerve injury. Here, we characterize axonal degeneration in Caenorhabditis elegans neurons following laser-induced axotomy. We show that this process proceeds independently of the WLD(S) and Nmnat pathway and requires the axonal clearance machinery that includes the conserved transmembrane receptor CED-1/Draper, the adaptor protein CED-6, the guanine nucleotide exchange factor complex Crk/Mbc/dCed-12 (CED-2/CED-5/CED-12), and the small GTPase Rac1 (CED-10). We demonstrate that CED-1 and CED-6 function non-cell autonomously in the surrounding hypodermis, which we show acts as the engulfing tissue for the severed axon. Moreover, we establish a function in this process for CED-7, an ATP-binding cassette (ABC) transporter, and NRF-5, a lipid-binding protein, both associated with release of lipid-vesicles during apoptotic cell clearance. Thus, our results reveal the existence of a WLD(S)/Nmnat-independent axonal degeneration pathway, conservation of the axonal clearance machinery, and a function for CED-7 and NRF-5 in this process.
Collapse
Affiliation(s)
- Annika L A Nichols
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ellen Meelkop
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert K Sullivan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alessandra Donato
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cara Nolan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Brent Neumann
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
149
|
Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary. Proc Natl Acad Sci U S A 2016; 113:E1246-55. [PMID: 26884181 DOI: 10.1073/pnas.1522830113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line-derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms.
Collapse
|
150
|
Macrophages programmed by apoptotic cells inhibit epithelial-mesenchymal transition in lung alveolar epithelial cells via PGE2, PGD2, and HGF. Sci Rep 2016; 6:20992. [PMID: 26875548 PMCID: PMC4753481 DOI: 10.1038/srep20992] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/15/2016] [Indexed: 12/20/2022] Open
Abstract
Apoptotic cell clearance results in the release of growth factors and the action of signaling molecules involved in tissue homeostasis maintenance. Here, we investigated whether and how macrophages programmed by apoptotic cells inhibit the TGF-β1-induced Epithelial-mesenchymal transition (EMT) process in lung alveolar epithelial cells. Treatment with conditioned medium derived from macrophages exposed to apoptotic cells, but not viable or necrotic cells, inhibited TGF-β1-induced EMT, including loss of E-cadherin, synthesis of N-cadherin and α-smooth muscle actin, and induction of EMT-activating transcription factors, such as Snail1/2, Zeb1/2, and Twist1. Exposure of macrophages to cyclooxygenase (COX-2) inhibitors (NS-398 and COX-2 siRNA) or RhoA/Rho kinase inhibitors (Y-27632 and RhoA siRNA) and LA-4 cells to antagonists of prostaglandin E2 (PGE2) receptor (EP4 [AH-23848]), PGD2 receptors (DP1 [BW-A868C] and DP2 [BAY-u3405]), or the hepatocyte growth factor (HGF) receptor c-Met (PHA-665752), reversed EMT inhibition by the conditioned medium. Additionally, we found that apoptotic cell instillation inhibited bleomycin-mediated EMT in primary mouse alveolar type II epithelial cells in vivo. Our data suggest a new model for epithelial cell homeostasis, by which the anti-EMT programming of macrophages by apoptotic cells may control the progressive fibrotic reaction via the production of potent paracrine EMT inhibitors.
Collapse
|