101
|
Oheim R, Tsourdi E, Seefried L, Beller G, Schubach M, Vettorazzi E, Stürznickel J, Rolvien T, Ehmke N, Delsmann A, Genest F, Krüger U, Zemojtel T, Barvencik F, Schinke T, Jakob F, Hofbauer LC, Mundlos S, Kornak U. Genetic Diagnostics in Routine Osteological Assessment of Adult Low Bone Mass Disorders. J Clin Endocrinol Metab 2022; 107:e3048-e3057. [PMID: 35276006 PMCID: PMC9202726 DOI: 10.1210/clinem/dgac147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/17/2022]
Abstract
CONTEXT Many different inherited and acquired conditions can result in premature bone fragility/low bone mass disorders (LBMDs). OBJECTIVE We aimed to elucidate the impact of genetic testing on differential diagnosis of adult LBMDs and at defining clinical criteria for predicting monogenic forms. METHODS Four clinical centers broadly recruited a cohort of 394 unrelated adult women before menopause and men younger than 55 years with a bone mineral density (BMD) Z-score < -2.0 and/or pathological fractures. After exclusion of secondary causes or unequivocal clinical/biochemical hallmarks of monogenic LBMDs, all participants were genotyped by targeted next-generation sequencing. RESULTS In total, 20.8% of the participants carried rare disease-causing variants (DCVs) in genes known to cause osteogenesis imperfecta (COL1A1, COL1A2), hypophosphatasia (ALPL), and early-onset osteoporosis (LRP5, PLS3, and WNT1). In addition, we identified rare DCVs in ENPP1, LMNA, NOTCH2, and ZNF469. Three individuals had autosomal recessive, 75 autosomal dominant, and 4 X-linked disorders. A total of 9.7% of the participants harbored variants of unknown significance. A regression analysis revealed that the likelihood of detecting a DCV correlated with a positive family history of osteoporosis, peripheral fractures (> 2), and a high normal body mass index (BMI). In contrast, mutation frequencies did not correlate with age, prevalent vertebral fractures, BMD, or biochemical parameters. In individuals without monogenic disease-causing rare variants, common variants predisposing for low BMD (eg, in LRP5) were overrepresented. CONCLUSION The overlapping spectra of monogenic adult LBMD can be easily disentangled by genetic testing and the proposed clinical criteria can help to maximize the diagnostic yield.
Collapse
Affiliation(s)
- Ralf Oheim
- Ralf Oheim, MD, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany.
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Gisela Beller
- Centre of Muscle and Bone Research, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Max Schubach
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Department of Orthopaedics and Trauma Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Department of Orthopaedics and Trauma Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Franca Genest
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Ulrike Krüger
- Core Facility Genomics, Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Tomasz Zemojtel
- Core Facility Genomics, Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10178 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Uwe Kornak
- Correspondence: Uwe Kornak, PhD, Institute of Human Genetics, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.
| |
Collapse
|
102
|
Genetic variation in WNT16 and its association with bone mineral density, fractures and osteoporosis in children with bone fragility. Bone Rep 2022; 16:101525. [PMID: 35535173 PMCID: PMC9077160 DOI: 10.1016/j.bonr.2022.101525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
Several genome-wide association studies (GWAS), GWAS meta-analyses, and mouse studies have demonstrated that wingless-related integration site 16 (WNT16) gene is associated with bone mineral density (BMD), cortical bone thickness, bone strength and fracture risk. Practically no data exist regarding the significance of WNT16 in childhood-onset osteoporosis and related fractures. We hypothesized that pathogenic variants and genetic variations in WNT16 could explain skeletal fragility in affected children. We screened the WNT16 gene by Sanger sequencing in three pediatric cohorts: 35 with primary osteoporosis, 59 with multiple fractures, and in 95 healthy controls. Altogether, we identified 12 variants in WNT16. Of them one was a rare 5′UTR variant rs1386898215 in genome aggregate and medical trans-omic databases (GnomAD, TOPMED; minor allele frequency (MAF) 0.00 and 0.000008, respectively). One variant rs1554366753, overrepresented in children with osteoporosis (MAF = 0.06 vs healthy controls MAF = 0.01), was significantly associated with lower BMD. This variant was found associated with increased WNT16 gene expression at mRNA level in fibroblast cultures. None of the other identified variants were rare (MAF < 0.001) or deemed pathogenic by predictor programs. WNT16 may play a role in childhood osteoporosis but genetic WNT16 variation is not a common cause of skeletal fragility in childhood. No pathogenic WNT16 variants were found associated with pediatric osteoporosis or fracture-prone patients Altogether, twelve WNT16 variants were found in pediatric osteoporosis or fracture-prone patients The genetic variation rs1554366753 in the WNT16 gene is associated with bone mineral density and primary osteoporosis
Collapse
|
103
|
LRP5 biallelic mutations cause a higher incidence of severe phenotype compared to LRP5 monoallelic mutation. Retina 2022; 42:1958-1964. [DOI: 10.1097/iae.0000000000003543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
104
|
Franco CN, Noe MM, Albrecht LV. Metabolism and Endocrine Disorders: What Wnt Wrong? Front Endocrinol (Lausanne) 2022; 13:887037. [PMID: 35600583 PMCID: PMC9120667 DOI: 10.3389/fendo.2022.887037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in cell biology underlies how nutrients are regenerated to maintain and renew tissues. Physiologically, the canonical Wnt signaling is a vital pathway for cell growth, tissue remodeling, and organ formation; pathologically, Wnt signaling contributes to the development of myriad human diseases such as cancer. Despite being the focus of intense research, how Wnt intersects with the metabolic networks to promote tissue growth and remodeling has remained mysterious. Our understanding of metabolism has been revolutionized by technological advances in the fields of chemical biology, metabolomics, and live microscopy that have now made it possible to visualize and manipulate metabolism in living cells and tissues. The application of these toolsets to innovative model systems have propelled the Wnt field into new realms at the forefront answering the most pressing paradigms of cell metabolism in health and disease states. Elucidating the basis of Wnt signaling and metabolism in a cell-type and tissue-specific manner will provide a powerful base of knowledge for both basic biomedical fields and clinician scientists, and has the promise to generate new, transformative therapies in disease and even processes of aging.
Collapse
Affiliation(s)
- Carolina N. Franco
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - May M. Noe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - Lauren V. Albrecht
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
105
|
Combined Transcriptomic and Protein Array Cytokine Profiling of Human Stem Cells from Dental Apical Papilla Modulated by Oral Bacteria. Int J Mol Sci 2022; 23:ijms23095098. [PMID: 35563488 PMCID: PMC9103834 DOI: 10.3390/ijms23095098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cells from the apical papilla (SCAP) are a promising resource for use in regenerative endodontic treatment (RET) that may be adversely affected by oral bacteria, which in turn can exert an effect on the success of RET. Our work aims to study the cytokine profile of SCAP upon exposure to oral bacteria and their supernatants—Fusobacterium nucleatum and Enterococcus faecalis—as well as to establish their effect on the osteogenic and immunogenic potentials of SCAP. Further, we target the presence of key proteins of the Wnt/β-Catenin, TGF-β, and NF-κB signaling pathways, which play a crucial role in adult osteogenic differentiation of mesenchymal stem cells, using the Western blot (WB) technique. The membrane-based sandwich immunoassay and transcriptomic analysis showed that, under the influence of F. nucleatum (both bacteria and supernatant), the production of pro-inflammatory cytokines IL-6, IL-8, and MCP-1 occurred, which was also confirmed at the mRNA level. Conversely, E. faecalis reduced the secretion of the aforementioned cytokines at both mRNA and protein levels. WB analysis showed that SCAP co-cultivation with E. faecalis led to a decrease in the level of the key proteins of the Wnt/β-Catenin and NF-κB signaling pathways: β-Catenin (p = 0.0068 *), LRP-5 (p = 0.0059 **), and LRP-6 (p = 0.0329 *), as well as NF-kB (p = 0.0034 **) and TRAF6 (p = 0.0285 *). These results suggest that oral bacteria can up- and downregulate the immune and inflammatory responses of SCAP, as well as influence the osteogenic potential of SCAP, which may negatively regulate the success of RET.
Collapse
|
106
|
Abstract
Osteoporosis is a skeletal disorder with enhanced bone fragility, usually affecting the elderly. It is very rare in children and young adults and the definition is not only based on a low BMD (a Z-score < - 2.0 in growing children and a Z-score ≤ - 2.0 or a T-score ≤ - 2.5 in young adults) but also on the occurrence of fragility fractures and/or the existence of underlying chronic diseases or secondary factors such as use of glucocorticoids. In the absence of a known chronic disease, fragility fractures and low BMD should prompt extensive screening for secondary causes, which can be found in up to 90% of cases. When fragility fractures occur in childhood or young adulthood without an evident secondary cause, investigations should explore the possibility of an underlying monogenetic bone disease, where bone fragility is caused by a single variant in a gene that has a major role in the skeleton. Several monogenic forms relate to type I collagen, but other forms also exist. Loss-of-function variants in LRP5 and WNT1 may lead to early-onset osteoporosis. The X-chromosomal osteoporosis caused by PLS3 gene mutations affects especially males. Another recently discovered form relates to disturbed sphingolipid metabolism due to SGMS2 mutations, underscoring the complexity of molecular pathology in monogenic early-onset osteoporosis. Management of young patients consists of treatment of secondary factors, optimizing lifestyle factors including calcium and vitamin D and physical exercise. Treatment with bone-active medication should be discussed on a personalized basis, considering the severity of osteoporosis and underlying disease versus the absence of evidence on anti-fracture efficacy and potential harmful effects in pregnancy.
Collapse
Affiliation(s)
- Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland.
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, 3015, Rotterdam, The Netherlands
| |
Collapse
|
107
|
Zhao R, Wang S, Zhao P, Dai E, Zhang X, Peng L, He Y, Yang M, Li S, Yang Z. Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy. Clin Exp Ophthalmol 2022; 50:441-448. [PMID: 35133048 DOI: 10.1111/ceo.14037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inherited ocular disease with clinical manifestations of aberrant retinal vasculature. We aimed to identify novel causative variants responsible for FEVR and provided evidence for the genetic counselling of FEVR. METHODS We applied whole-exome sequencing (WES) on the genomic DNA samples from the probands and performed Sanger sequencing for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and the activity of mutant proteins. RESULTS We identified one novel heterozygous nonsense variant, and three novel heterozygous frameshift variants including c.1801G>T (p.G601*), c.1965delC (p.H656Tfs*41), c.4445delC (p.S1482Cfs*17), and c.4482delC (p.P1495Rfs*4), which disabled the function of LRP5 on the Norrin/β-catenin signalling. Overexpression of variant-carrying LRP5 proteins resulted in down regulation of the protein levels of β-catenin and the Norrin/β-catenin signalling target genes c-Myc and Glut1. CONCLUSION Our study showed that four inherited LRP5 variants can cause autosomal dominant FEVR via down regulation of Norrin/β-catenin signalling and expanded the spectrum of FEVR-associated LRP5 variants.
Collapse
Affiliation(s)
- Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shiyuan Wang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Peiquan Zhao
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Xiang Zhang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
108
|
Schindeler A, Lee LR, O'Donohue AK, Ginn SL, Munns CF. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:826-836. [PMID: 35306687 PMCID: PMC9324990 DOI: 10.1002/jbmr.4549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) describes a series of genetic bone fragility disorders that can have a substantive impact on patient quality of life. The multidisciplinary approach to management of children and adults with OI primarily involves the administration of antiresorptive medication, allied health (physiotherapy and occupational therapy), and orthopedic surgery. However, advances in gene editing technology and gene therapy vectors bring with them the promise of gene-targeted interventions to provide an enduring or perhaps permanent cure for OI. This review describes emergent technologies for cell- and gene-targeted therapies, major hurdles to their implementation, and the prospects of their future success with a focus on bone disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Lucinda R Lee
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Alexandra K O'Donohue
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadAustralia
| | - Craig F Munns
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Department of Endocrinology and DiabetesQueensland Children's HospitalBrisbaneQLDAustralia
- Child Health Research Centre and Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
109
|
Iwamoto R, Koide M, Udagawa N, Kobayashi Y. Positive and Negative Regulators of Sclerostin Expression. Int J Mol Sci 2022; 23:ijms23094895. [PMID: 35563281 PMCID: PMC9102037 DOI: 10.3390/ijms23094895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
Collapse
Affiliation(s)
- Rina Iwamoto
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan;
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
- Correspondence: ; Tel.: +81-263-51-2238
| |
Collapse
|
110
|
Karakilic-Ozturan E, Altunoglu U, Ozturk AP, Kardelen Al AD, Yavas Abali Z, Avci S, Wollnik B, Poyrazoglu S, Bas F, Uyguner ZO, Kayserili H, Darendeliler F. Evaluation of growth, puberty, osteoporosis, and the response to long-term bisphosphonate therapy in four patients with osteoporosis-pseudoglioma syndrome. Am J Med Genet A 2022; 188:2061-2070. [PMID: 35393770 DOI: 10.1002/ajmg.a.62742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/11/2022]
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG; MIM #259770) is a rare autosomal recessively inherited disease, characterized by early-onset osteoporosis and congenital blindness, caused by loss-of-function mutations in the LRP5 gene. Beneficial effects of bisphosphonate treatment in patients with OPPG are well known, while follow-up data on growth and pubertal parameters are limited. This article provides clinical follow-up data and long-term bisphosphonate treatment results in four OPPG patients from three unrelated families, ranging between 2.5 and 7 years of age at presentation. Clinical diagnosis was molecularly confirmed in all patients, with four different germline biallelic LRP5 mutations including a novel nonsense variant c.3517C>T (p.(Gln1173*)) in two siblings with marked phenotypic variability. Anthropometric and pubertal data and bone mineral density (BMD) measurements were evaluated retrospectively. Early puberty was observed in two patients. The bisphosphonate treatment duration of patients varied around 4-7 years and improvement in BMD z-scores with bisphosphonate treatment was demonstrated in all patients (z-score changes were +5.6, +4.0, +1.0, and +1.3). Although further research is needed to identify the possible association between early puberty and OPPG, all OPPG patients should be followed up with detailed endocrinological evaluation regarding pubertal status.
Collapse
Affiliation(s)
- Esin Karakilic-Ozturan
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Umut Altunoglu
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Koc University, School of Medicine, Istanbul, Turkey
| | - Ayse Pinar Ozturk
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Asli Derya Kardelen Al
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Zehra Yavas Abali
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Sahin Avci
- Department of Medical Genetics, Koc University, School of Medicine, Istanbul, Turkey
| | - Bernd Wollnik
- University Medical Center Göttingen, Institute of Human Genetics, Göttingen, Germany
| | - Sukran Poyrazoglu
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Firdevs Bas
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Department of Medical Genetics, Koc University, School of Medicine, Istanbul, Turkey
| | - Feyza Darendeliler
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| |
Collapse
|
111
|
Ubels JL, Lin CM, Antonetti DA, Diaz-Coranguez M, Diegel CR, Williams BO. Structure and function of the retina of low-density lipoprotein receptor-related protein 5 (Lrp5)-deficient rats. Exp Eye Res 2022; 217:108977. [PMID: 35139333 PMCID: PMC9295635 DOI: 10.1016/j.exer.2022.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 11/21/2022]
Abstract
Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), result in familial exudative vitreoretinopathy (FEVR), osteoporosis-pseudoglioma syndrome (OPPG), and Norrie disease. CRISPR/Cas9 gene editing was used to produce rat strains deficient in Lrp5. The purpose of this study was to validate this rat model for studies of hypovascular, exudative retinopathies. The retinal vasculature of wildtype and Lrp5 knockout rats was stained with Giffonia simplifolia isolectin B4 and imaged by fluorescence microscopy. Effects on retinal structure were investigated by histology. The integrity of the blood-retina barrier was analyzed by measurement of permeability to Evans blue dye and staining for claudin-5. Retinas were imaged by fundus photography and SD-OCT, and electroretinograms were recorded. Lrp5 gene deletion led to sparse superficial retinal capillaries and loss of the deep and intermediate plexuses. Autofluorescent exudates were observed and are correlated with increased Evans blue permeability and absence of claudin-5 expression in superficial vessels. OCT images show pathology similar to OCT of humans with FEVR, and retinal thickness is reduced by 50% compared to wild-type rats. Histology and OCT reveal that photoreceptor and outer plexiform layers are absent. The retina failed to demonstrate an ERG response. CRISPR/Cas9 gene-editing produced a predictable rat Lrp5 knockout model with extensive defects in the retinal vascular and neural structure and function. This rat model should be useful for studies of exudative retinal vascular diseases involving the Wnt and norrin pathways.
Collapse
Affiliation(s)
- John L Ubels
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA; Department of Biology, Calvin University, 3201 Burton St., SE, Grand Rapids, MI, 49546, USA.
| | - Cheng-Mao Lin
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - David A Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Monica Diaz-Coranguez
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Cassandra R Diegel
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
112
|
Hayat R, Manzoor M, Hussain A. Wnt Signaling Pathway: A Comprehensive Review. Cell Biol Int 2022; 46:863-877. [PMID: 35297539 DOI: 10.1002/cbin.11797] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Wnt signaling is an evolutionary cell-to-cell coordination mechanism and it is highly critical for a variety of physiological processes of an organism's body, including stem cell regeneration, proliferation, division, migration, polarity of a cell, determining fate of the cell and specification of neural crest, neural symmetry and morphogenesis. Wnts are extracellular secreted glycol proteins, consisted of a family of 19 human proteins that represent the complex nature of the regulatory structure and physiological efficiency of signaling. Moreover, a Wnt/β-catenin-dependent pathway and the β-catenin-independent pathway that is further classified into the Planar Cell Polarity and Wnt/Ca2+ pathways have been established as key signaling nodes downstream of the frizzled (Fz/Fzd) receptor, and these nodes are extensively analyzed at biochemical and molecular levels. Genetic and epigenetic activities that ultimately characterize the pathway and its subsequent responses contribute to Wnt-β-catenin signaling pathway hypo or hyper-activation and is associated with the variety of human disorders progression most significantly cancers. Recognizing how this mechanism operates is crucial to the advancement of cancer prevention therapies or regenerative medicine methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rabia Hayat
- Institute of Evolution and Marine Biodiversity, Ocean university of China, Qingdao
| | - Maleeha Manzoor
- Department of Zoology, Government College University, Faisalabad
| | - Ali Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore
| |
Collapse
|
113
|
Dan H, Wang D, Huang Z, Shi Q, Zheng M, Xiao Y, Song Z. Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes for 20 families with familial exudative vitreoretinopathy. BMC Med Genomics 2022; 15:54. [PMID: 35277167 PMCID: PMC8915523 DOI: 10.1186/s12920-022-01204-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a complex form of blindness-causing retinal degeneration. This study investigated the potential disease-causing variants in 20 Chinese families with FEVR. METHODS All available family members underwent detailed ophthalmological examinations, including best-corrected visual acuity and fundus examination. All probands and most family members underwent fluorescein fundus angiography. Twenty probands underwent whole exome sequencing; 16 of them also underwent copy number variant and mitochondrial genome analysis. Bioinformatics analysis and Sanger sequencing of available family members were used to confirm the disease-causing gene variant. RESULTS Twenty families were diagnosed with FEVR based on clinical symptoms, fundus manifestations, and fundus fluorescein angiography. Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes among the 13 families. These variants were predicted to be damaging or deleterious according to multiple lines of prediction algorithms; they were not frequently found in multiple population databases. Seven variants had not previously been reported to cause FEVR: c.1039T>G p.(Phe347Val) in the FZD4 gene; c.1612C>T p.(Arg538Trp) and c.3237-2A>C in the LRP5 gene; and c.77T>A p.(Ile26Asn), c.170dupT p.(Leu57Phe fsTer60), c.236T>G p.(Met79Arg) and c.550dupA p.(Arg184Lys fsTer16) in the TSPAN12 gene. We did not detect any variants in the remaining seven families. CONCLUSIONS These results expand the spectrum of variants in the NDP, FZD4, LRP5, and TSPAN12 genes and provide insights regarding accurate diagnosis, family genetic counseling, and future gene therapy for FEVR.
Collapse
Affiliation(s)
- Handong Dan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Dongdong Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Zixu Huang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Qianqian Shi
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Miao Zheng
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Yuanyuan Xiao
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Zongming Song
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
114
|
Wang Y, Zhao R, Dai E, Peng L, He Y, Yang M, Li S. Identification of Two Novel Variants in the LRP5 Gene that Cause Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2022; 26:146-151. [PMID: 35244470 DOI: 10.1089/gtmb.2021.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR, OMIM 133780) is a severe inherited eye disease characterized by abnormal development of the retinal vasculature. Variants in the reported genes account for ∼50% of total FEVR cases. However, the pathogenesis of other 50% of FEVR cases remains unclear. Therefore, it is crucial to identify novel variants responsible for the pathogenesis of FEVR. Aims: To find causative variants responsible for FEVR in two Han Chinses families. Materials and Methods: We recruited two families with two FEVR patients and applied exome sequencing on the genomic DNA samples from the probands. Sanger sequencing was performed for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and activity of mutant proteins. Results: We identified two novel missense variants in the LRP5 gene (NM_002335), namely c.1176 C > A (p.Asp392Glu) and c.2435 A>C (p.Asp812Ala), inherited in an autosomal dominant manner. Both variants significantly reduced Norrin/β-catenin signaling activity without affecting the expression of the LRP5 protein. Conclusion: This study expands the variant spectrum of the LRP5 gene for FEVR, providing valuable information for prenatal counseling and molecular diagnosis of FEVR.
Collapse
Affiliation(s)
- Yuze Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
115
|
Hong J, Xie Z, Yang Z, Yang F, Liao H, Rao S, Huang X. Inactivation of Wnt-LRP5 signaling suppresses the proliferation and migration of ovarian cancer cells. Transl Cancer Res 2022; 10:2277-2285. [PMID: 35116545 PMCID: PMC8797788 DOI: 10.21037/tcr-20-3462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 11/15/2022]
Abstract
Background Ovarian cancer (OCa) is the most lethal gynecological malignant tumor, with few or no specific symptoms in its early stage. There are many signaling pathways involved in the process of OCa progression, among which the highly complex Wnt signaling pathway plays a unique role in the occurrence and development of OCa because of its functions of regulating gene expression, cell proliferation, migration, and invasion. Lipoprotein associated receptor protein 5/6 (LRP5/6) binds to activate this key pathway. Therefore, it is very important to study the mechanism of Wnt-LRP5 signaling pathway in the proliferation and migration of OCa. Methods In the present study, we have investigated the role of Wnt-LRP5 signaling pathway in OCa proliferation and migration for the first time using the dominant negative plasmid of LRP5 (DN-LRP5) and human OCa cells HO8910PM plus in a mouse model. Results Our data showed inactivation of LRP5 resulted in shift of epithelial-mesenchymal transition (EMT), rearrangement of the cytoskeleton, lowered activity of pro-proliferation and pro-migration cancer signaling pathways including Akt, p38 and NF-κB, eventually decreased proliferation and migration of OCa cells HO8910PM in vitro. Moreover, in vivo OCa-DN-LRP5 mouse model developed significantly smaller tumors as determined by inoculation of HO8910PM-DN-LRP5 cells into nude mice. Conclusions Collectively, our results demonstrate the dominant role of Wnt-LRP5 in OCa proliferation and migration and its potential as a valuable therapeutic target.
Collapse
Affiliation(s)
- Jing Hong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zeyu Xie
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhihua Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Fangyao Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shuquan Rao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xinhe Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
116
|
Shen L, Pan L, Ju C, Wu X. The role of Wnt/β-catenin pathway for skin-derived precursors differentiating into corneal endothelial cell-like cells. Exp Eye Res 2022; 218:109008. [DOI: 10.1016/j.exer.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
|
117
|
Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7163326. [PMID: 35116092 PMCID: PMC8807048 DOI: 10.1155/2022/7163326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.
Collapse
|
118
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
119
|
Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev 2022; 43:61-90. [PMID: 34007986 PMCID: PMC8755987 DOI: 10.1210/endrev/bnab017] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous skeletal dysplasia characterized by bone fragility, growth deficiency, and skeletal deformity. Previously known to be caused by defects in type I collagen, the major protein of extracellular matrix, it is now also understood to be a collagen-related disorder caused by defects in collagen folding, posttranslational modification and processing, bone mineralization, and osteoblast differentiation, with inheritance of OI types spanning autosomal dominant and recessive as well as X-linked recessive. This review provides the latest updates on OI, encompassing both classical OI and rare forms, their mechanism, and the signaling pathways involved in their pathophysiology. There is a special emphasis on mutations in type I procollagen C-propeptide structure and processing, the later causing OI with strikingly high bone mass. Types V and VI OI, while notably different, are shown to be interrelated by the interferon-induced transmembrane protein 5 p.S40L mutation that reveals the connection between the bone-restricted interferon-induced transmembrane protein-like protein and pigment epithelium-derived factor pathways. The function of regulated intramembrane proteolysis has been extended beyond cholesterol metabolism to bone formation by defects in regulated membrane proteolysis components site-2 protease and old astrocyte specifically induced-substance. Several recently proposed candidate genes for new types of OI are also presented. Discoveries of new OI genes add complexity to already-challenging OI management; current and potential approaches are summarized.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
120
|
Al-Barghouthi BM, Rosenow WT, Du KP, Heo J, Maynard R, Mesner L, Calabrese G, Nakasone A, Senwar B, Gerstenfeld L, Larner J, Ferguson V, Ackert-Bicknell C, Morgan E, Brautigan D, Farber CR. Transcriptome-wide association study and eQTL colocalization identify potentially causal genes responsible for human bone mineral density GWAS associations. eLife 2022; 11:77285. [PMID: 36416764 PMCID: PMC9683789 DOI: 10.7554/elife.77285] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies (GWASs) for bone mineral density (BMD) in humans have identified over 1100 associations to date. However, identifying causal genes implicated by such studies has been challenging. Recent advances in the development of transcriptome reference datasets and computational approaches such as transcriptome-wide association studies (TWASs) and expression quantitative trait loci (eQTL) colocalization have proven to be informative in identifying putatively causal genes underlying GWAS associations. Here, we used TWAS/eQTL colocalization in conjunction with transcriptomic data from the Genotype-Tissue Expression (GTEx) project to identify potentially causal genes for the largest BMD GWAS performed to date. Using this approach, we identified 512 genes as significant using both TWAS and eQTL colocalization. This set of genes was enriched for regulators of BMD and members of bone relevant biological processes. To investigate the significance of our findings, we selected PPP6R3, the gene with the strongest support from our analysis which was not previously implicated in the regulation of BMD, for further investigation. We observed that Ppp6r3 deletion in mice decreased BMD. In this work, we provide an updated resource of putatively causal BMD genes and demonstrate that PPP6R3 is a putatively causal BMD GWAS gene. These data increase our understanding of the genetics of BMD and provide further evidence for the utility of combined TWAS/colocalization approaches in untangling the genetics of complex traits.
Collapse
Affiliation(s)
- Basel Maher Al-Barghouthi
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States,Department of Biochemistry and Molecular Genetics, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Will T Rosenow
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Kang-Ping Du
- Department of Radiation Oncology, University of VirginiaCharlottesvilleUnited States
| | - Jinho Heo
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Robert Maynard
- Department of Orthopedics, Anschutz Medical Campus, University of ColoradoAuroraUnited States
| | - Larry Mesner
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States,Department of Public Health Sciences, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Gina Calabrese
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Aaron Nakasone
- Department of Mechanical Engineering, Boston UniversityBostonUnited States
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado BoulderBoulderUnited States
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University Medical CenterBostonUnited States
| | - James Larner
- Department of Radiation Oncology, University of VirginiaCharlottesvilleUnited States
| | - Virginia Ferguson
- Department of Mechanical Engineering, University of Colorado BoulderBoulderUnited States
| | - Cheryl Ackert-Bicknell
- Department of Orthopedics, Anschutz Medical Campus, University of ColoradoAuroraUnited States
| | - Elise Morgan
- Department of Mechanical Engineering, Boston UniversityBostonUnited States
| | - David Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States,Department of Biochemistry and Molecular Genetics, School of Medicine, University of VirginiaCharlottesvilleUnited States,Department of Public Health Sciences, School of Medicine, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
121
|
Recurrent CTNNB1 mutations in craniofacial osteomas. Mod Pathol 2022; 35:489-494. [PMID: 34725446 PMCID: PMC8964415 DOI: 10.1038/s41379-021-00956-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
Osteoma is a benign bone forming tumor predominantly arising on the surface of craniofacial bones. While the vast majority of osteomas develops sporadically, a small subset of cases is associated with Gardner syndrome, a phenotypic variant of familial adenomatous polyposis caused by mutations in the APC gene resulting in aberrant activation of WNT/β-catenin signaling. In a sequencing analysis on a cohort of sporadic, non-syndromal osteomas, we identified hotspot mutations in the CTNNB1 gene (encoding β-catenin) in 22 of 36 cases (61.1%), harbouring allelic frequencies ranging from 0.04 to 0.53, with the known S45P variant representing the most frequent alteration. Based on NanoString multiplex expression profiling performed in a subset of cases, CTNNB1-mutated osteomas segregated in a defined "WNT-cluster", substantiating functionality of CTNNB1 mutations which are associated with β-catenin stabilization. Our findings for the first time convincingly show that osteomas represent genetically-driven neoplasms and provide evidence that aberrant WNT/β-catenin signaling plays a fundamental role in their pathogenesis, in line with the well-known function of WNT/β-catenin in osteogenesis. Our study contributes to a better understanding of the molecular pathogenesis underlying osteoma development and establishes a helpful diagnostic molecular marker for morphologically challenging cases.
Collapse
|
122
|
Ye X, Liu X. Wnt16 signaling in bone homeostasis and osteoarthristis. Front Endocrinol (Lausanne) 2022; 13:1095711. [PMID: 36619549 PMCID: PMC9815800 DOI: 10.3389/fendo.2022.1095711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Wnts are secreted cysteine-rich glycoproteins involved in joint development and skeletal homeostasis and have been implicated in the occurrence of osteoarthritis. Over the past decade, Wnt16, a member of the Wnt family, has received widespread attention for its strong association with bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. In recent years, further studies have shed light on the role of Wnt16 a positive regulator of bone mass and protective regulator of osteoarthritis progression. Transduction mechanisms and crosstalk involving Wnt16 signaling have also been illustrated. More importantly, local Wnt16 treatment has been shown to ease osteoarthritis, inhibit bone resorption, and promote new bone formation in bone defect models. Thus, Wnt16 is now a potential therapeutic target for skeletal diseases and osteoarthritis. This paper reviews our current understanding of the mechanisms by which Wnt16 signaling regulates bone homeostasis and osteoarthritis.
Collapse
|
123
|
Campopiano MC, Fogli A, Michelucci A, Mazoni L, Longo A, Borsari S, Pardi E, Benelli E, Sardella C, Pierotti L, Dinoi E, Marcocci C, Cetani F. Case report: Early-onset osteoporosis in a patient carrying a novel heterozygous variant of the WNT1 gene. Front Endocrinol (Lausanne) 2022; 13:918682. [PMID: 36004351 PMCID: PMC9393300 DOI: 10.3389/fendo.2022.918682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
The WNT1 gene is crucial for bone development and homeostasis. Homozygous mutations in WNT1 cause severe bone fragility known as osteogenesis imperfecta type XV. Moreover, heterozygous WNT1 mutations have been found in adults with early-onset osteoporosis. We identified a 35 year-old Caucasian woman who experienced multiple vertebral fractures two months after her second pregnancy. There was no history of risk factors for secondary osteoporosis or family history of osteoporosis. Dual-energy X-ray absorptiometry confirmed a marked reduction of bone mineral density (BMD) at the lumbar spine (0.734 g/cm2, Z-score -2.8), femoral neck (0.48 g/cm2, Z-score -3.5), and total hip (0.589 g/cm2, Z-score -3.0). Blood tests excluded secondary causes of bone fragility. Genetic analysis revealed a heterozygous missense mutation (p.Leu370Val) in the WNT1 gene. Varsome classified it as a variant of uncertain significance. However, the fact that the Leucine residue at position 370 is highly conserved among vertebrate species and the variant has a very low allelic frequency in the general population would exclude the possibility of a polymorphism. The patient was treated for two years with teriparatide therapy associated with calcium and vitamin D supplements. During the follow-up period she did not report further clinical fractures. After 24 months of teriparatide, BMD increased at lumbar spine (+14.6%), femoral neck (+8.3%) and total hip (+4.9%) compared to baseline. We confirm that the heterozygous WNT1 mutation could cause a variable bone fragility and low turnover osteoporosis. We suggest that teriparatide is one of the most appropriate available therapies for this case.
Collapse
Affiliation(s)
- Maria Cristina Campopiano
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Antonella Fogli
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - Angela Michelucci
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - Laura Mazoni
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Antonella Longo
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Elena Benelli
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Chiara Sardella
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Laura Pierotti
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Elisa Dinoi
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Filomena Cetani
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
124
|
Moon D, Park HW, Surl D, Won D, Lee ST, Shin S, Choi JR, Han J. Precision Medicine through Next-Generation Sequencing in Inherited Eye Diseases in a Korean Cohort. Genes (Basel) 2021; 13:genes13010027. [PMID: 35052368 PMCID: PMC8774510 DOI: 10.3390/genes13010027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated medically or surgically actionable genes in inherited eye disease, based on clinical phenotype and genomic data. This retrospective consecutive case series included 149 patients with inherited eye diseases, seen by a single pediatric ophthalmologist, who underwent genetic testing between 1 March 2017 and 28 February 2018. Variants were detected using a target enrichment panel of 429 genes and known deep intronic variants associated with inherited eye disease. Among 149 patients, 38 (25.5%) had a family history, and this cohort includes heterogeneous phenotype including anterior segment dysgenesis, congenital cataract, infantile nystagmus syndrome, optic atrophy, and retinal dystrophy. Overall, 90 patients (60.4%) received a definite molecular diagnosis. Overall, NGS-guided precision care was provided to 8 patients (5.4%). The precision care included cryotherapy to prevent retinal detachment in COL2A1 Stickler syndrome, osteoporosis management in patients with LRP5-associated familial exudative vitreoretinopathy, and avoidance of unnecessary phlebotomy in hyperferritinemia-cataract syndrome. A revision of the initial clinical diagnosis was made in 22 patients (14.8%). Unexpected multi-gene deletions and dual diagnosis were noted in 4 patients (2.7%). We found that precision medical or surgical managements were provided for 8 of 149 patients (5.4%), and multiple locus variants were found in 2.7% of cases. These findings are important because individualized management of inherited eye diseases can be achieved through genetic testing.
Collapse
Affiliation(s)
- Dabin Moon
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hye Won Park
- Department of Ophthalmology, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Dongheon Surl
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3445; Fax: +82-2-3463-1049
| |
Collapse
|
125
|
Novel variants in the LRP4 underlying Cenani-Lenz Syndactyly syndrome. J Hum Genet 2021; 67:253-259. [PMID: 34857885 DOI: 10.1038/s10038-021-00995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Cenani-Lenz syndrome (CLS) is a rare autosomal-recessive congenital disorder affecting development of distal limbs. It is characterized mainly by syndactyly and/or oligodactyly, renal anomalies, and characteristic facial features. Mutations in the LRP4 gene, located on human chromosome 11p11.2-q13.1, causes the CLS. The gene LRP4 encodes a low-density lipoprotein receptor-related protein-4, which mediates SOST-dependent inhibition of bone formation and Wnt signaling. In the study, presented here, three families of Pakistani origin, segregating CLS in the autosomal recessive manner were clinically and genetically characterized. In two families (A and B), microsatellite-based homozygosity mapping followed by Sanger sequencing identified a novel homozygous missense variant [NM_002334.3: c.295G>C; p.(Asp99His)] in the LRP4 gene. In the third family C, exome sequencing revealed a second novel homozygous missense variant [NM_002334.3: c.1633C>T; p.(Arg545Trp)] in the same gene. To determine the functional relevance of these variants, we tested their ability to inhibit canonical WNT signaling in a luciferase assay. Wild type LRP4 was able to inhibit LRP6-dependent WNT signaling robustly. The two mutants p.(Asp99His) and p.(Arg545Trp) inhibited WNT signaling less effectively, suggesting they reduced LRP4 function.
Collapse
|
126
|
de Castro LF, Sworder BJ, Mui B, Futrega K, Berendsen A, Phillips MD, Burbach NJ, Cherman N, Kuznetsov S, Gabet Y, Holmbeck K, Robey PG. Secreted frizzled related-protein 2 (Sfrp2) deficiency decreases adult skeletal stem cell function in mice. Bone Res 2021; 9:49. [PMID: 34857734 PMCID: PMC8639730 DOI: 10.1038/s41413-021-00169-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/21/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022] Open
Abstract
In a previous transcriptomic study of human bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells"), SFRP2 was highly over-represented in a subset of multipotent BMSCs (skeletal stem cells, SSCs), which recreate a bone/marrow organ in an in vivo ectopic bone formation assay. SFRPs modulate WNT signaling, which is essential to maintain skeletal homeostasis, but the specific role of SFRP2 in BMSCs/SSCs is unclear. Here, we evaluated Sfrp2 deficiency on BMSC/SSC function in models of skeletal organogenesis and regeneration. The skeleton of Sfrp2-deficient (KO) mice is overtly normal; but their BMSCs/SSCs exhibit reduced colony-forming efficiency, reflecting low SSC self-renewal/abundancy. Sfrp2 KO BMSCs/SSCs formed less trabecular bone than those from WT littermates in the ectopic bone formation assay. Moreover, regeneration of a cortical drilled hole defect was dramatically impaired in Sfrp2 KO mice. Sfrp2-deficient BMSCs/SSCs exhibited poor in vitro osteogenic differentiation as measured by Runx2 and Osterix expression and calcium accumulation. Interestingly, activation of the Wnt co-receptor, Lrp6, and expression of Wnt target genes, Axin2, C-myc and Cyclin D1, were reduced in Sfrp2-deficient BMSCs/SSCs. Addition of recombinant Sfrp2 restored most of these activities, suggesting that Sfrp2 acts as a Wnt agonist. We demonstrate that Sfrp2 plays a role in self-renewal of SSCs and in the recruitment and differentiation of adult SSCs during bone healing. SFRP2 is also a useful marker of BMSC/SSC multipotency, and a factor to potentially improve the quality of ex vivo expanded BMSC/SSC products.
Collapse
Affiliation(s)
- Luis Fernandez de Castro
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| | - Brian J. Sworder
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA ,grid.189504.10000 0004 1936 7558Department of Molecular Medicine, Boston University, Boston, MA USA
| | - Byron Mui
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Kathryn Futrega
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Agnes Berendsen
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Matthew D. Phillips
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Nathan J. Burbach
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA ,grid.17635.360000000419368657School of Dentistry, University of Minnesota—Twin Cities, Minneapolis, MN USA
| | - Natasha Cherman
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Sergei Kuznetsov
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Yankel Gabet
- grid.12136.370000 0004 1937 0546Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Kenn Holmbeck
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Pamela G. Robey
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
127
|
Choi RB, Robling AG. The Wnt pathway: An important control mechanism in bone's response to mechanical loading. Bone 2021; 153:116087. [PMID: 34271473 PMCID: PMC8478810 DOI: 10.1016/j.bone.2021.116087] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 10/25/2022]
Abstract
The conversion of mechanical energy into biochemical changes within living cells is process known as mechanotransduction. Bone is a quintessential tissue for studying the molecular mechanisms of mechanotransduction, as the skeleton's mechanical competence is crucial for vertebrate movement. Bone cell mechanotransduction is facilitated by a number of cell biological pathways, one of the most prominent of which is the Wnt signaling cascade. The Wnt co-receptor Lrp5 has been identified as a crucial protein for mechanical signaling in bone, and modifiers of Lrp5 activity play important roles in mediating signaling efficiency through Lrp5, including sclerostin, Dkk1, and the co-receptor Lrp4. Mechanical regulation of sclerostin is mediated by certain members of the Hdac family. Other mechanisms that influence Wnt signaling-some of which are mechanoresponsive-are coming to light, including R-spondins and their role in organizing the Rnf43/Znrf3 and Lgr4/5/6 complex that liberates Lrp5. While the identity of the key Wnt proteins involved in bone cell mechanical signaling are elusive, the likely pool of key players is narrowing. Identification of Wnt-based molecular targets that can be modulated pharmacologically to make mechanical stimulation (e.g., exercise) more beneficial is an emerging approach to improving skeletal integrity and reducing fracture risk.
Collapse
Affiliation(s)
- Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
128
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
129
|
Lin J, Zheng Z, Liu J, Yang G, Leng L, Wang H, Qiu G, Wu Z. LRP5-Mediated Lipid Uptake Modulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:766815. [PMID: 34796178 PMCID: PMC8593169 DOI: 10.3389/fcell.2021.766815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Nutritional microenvironment determines the specification of progenitor cells, and lipid availability was found to modulate osteogenesis in skeletal progenitors. Here, we investigated the implications of lipid scarcity in the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) and the role of low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor transducing canonical Wnt/beta-catenin signals, in BMSC lipid uptake during osteogenesis. The osteogenic differentiation of murine BMSCs was suppressed by lipid scarcity and partially rescued by additional fatty acid treatment with oleate. The enhancement of osteogenesis by oleate was found to be dosage-dependent, along with the enhanced activation of beta-catenin and Wnt target genes. Conditional knockout (CKO) of Lrp5 gene in murine mesenchymal lineage using Lrp5fl/fl;Prrx1-cre mice led to decreased bone quality and altered fat distribution in vivo. After Lrp5 ablation using adenoviral Cre-recombinase, the accumulation of lipid droplets in BMSC cytoplasm was significantly reduced, and the osteogenesis of BMSCs was suppressed. Moreover, the impaired osteogenesis due to either lipid scarcity or Lrp5 ablation could be rescued by recombinant Wnt3a protein, indicating that the osteogenesis induced by Wnt/beta-catenin signaling was independent of LRP5-mediated lipid uptake. In conclusion, lipid scarcity suppresses BMSC osteogenic differentiation. LRP5 plays a role in the uptake of lipids in BMSCs and therefore mediates osteogenic specification.
Collapse
Affiliation(s)
- Jiachen Lin
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifa Zheng
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jieying Liu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guihua Yang
- Harmony Technology Co., Ltd., Beijing, China
| | - Ling Leng
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Wu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
130
|
Moreira MLM, de Araújo IM, de Molfetta GA, Silva WA, de Paula FJA. Repetitive stress fracture: a warning sign of genetic susceptibility to fracture? A case report of a heterozygous variant in SERPINF1. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:500-504. [PMID: 34283899 PMCID: PMC10522185 DOI: 10.20945/2359-3997000000375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
The occurrence of fractures in young individuals is frequently overlooked by physicians, especially when associated with exercise or trauma. Nevertheless, multiple fractures should always be investigated since underlying conditions can predispose to such events. We describe here the case of a young, healthy woman who sustained multiple fractures in the lower limbs, which were initially considered to be "stress fractures". Further investigation, including a panel of genes associated with osteogenesis imperfecta, revealed that the patient is a heterozygous carrier of a SERPINF1 variant. According to criteria recommended by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, this variant is classified as likely benign (PM2, PP3, PP4, BP1, and BP4). The patient's mother and brother were also asymptomatic carriers of the variant and had sustained previous minor fractures. The patient had normal biochemical profile and bone density. This condition has been rarely described and is not associated with low bone mineral density or altered bone turnover markers. This case highlights the importance of investigating multiple fractures in young patients who are otherwise healthy since these may be a warning sign of rare genetic conditions associated with fragility fractures.
Collapse
Affiliation(s)
| | - Iana Mizumukai de Araújo
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Greice Andreotti de Molfetta
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Wilson Araújo Silva
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | |
Collapse
|
131
|
Tran TT, Keller RB, Guillemyn B, Pepin M, Corteville JE, Khatib S, Fallah MS, Zeinali S, Malfait F, Symoens S, Coucke P, Witters P, Levtchenko E, Bagherian H, Nickerson DA, Bamshad MJ, Chong JX, University of Washington Center for Mendelian Genomics, Byers PH. Biallelic variants in MESD, which encodes a WNT-signaling-related protein, in four new families with recessively inherited osteogenesis imperfecta. HGG ADVANCES 2021; 2:100051. [PMID: 35047842 PMCID: PMC8756491 DOI: 10.1016/j.xhgg.2021.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
The bone disorder osteogenesis imperfecta (OI) is genetically heterogeneous. Most affected individuals have an autosomal dominant disorder caused by heterozygous variants in either of the type I collagen genes (COL1A1 or COL1A2). To date, two reports have linked Mesoderm Development LRP Chaperone (MESD) to autosomal recessive OI type XX. Four different biallelic pathogenic variants in MESD were shown to cause a progressively deforming phenotype, associated with recurrent fractures and oligodontia in five individuals in five families. Recently, compound heterozygosity for a frameshift predicted to lead to a premature termination codon in exon 2 of the 3-exon gene and a second frameshift in the terminal exon in MESD were detected in three stillbirths in one family with severe OI consistent with the neonatal lethal phenotype. We have identified four additional individuals from four independent families with biallelic variants in MESD: the earlier reported c.632dupA (p.Lys212Glufs∗19) and c.676C>T (p.Arg226∗)-which are associated with a severe form of OI-and one new pathogenic variant, c.603-606delTAAA (p.Asn201Lysfs∗15), which causes a neonatal lethal form of OI. MESD acts in the WNT signaling pathway, where it is thought to play a role in the folding of the WNT co-receptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/LRP6) and in chaperoning their transit to the cell surface. Our report broadens the phenotypic and genetic spectrum of MESD-related OI, provides additional insight into the pathogenic pathways, and underscores the necessity of MESD for normal WNT signaling in bone formation.
Collapse
Affiliation(s)
- Thao T. Tran
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B. Keller
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brecht Guillemyn
- Center for Medical Genetics Ghent, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Melanie Pepin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jane E. Corteville
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Samir Khatib
- GMDC Al Quds University, P.O. Box 5100, Abu Dis, Palestine
| | | | - Sirous Zeinali
- Department of Medical Genetics, Kawsar Human Genetics Research Center, Tehran, Iran
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fransiska Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics Ghent, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Paul Coucke
- Center for Medical Genetics Ghent, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Peter Witters
- Center for Metabolic Diseases, University Hospital Leuven, Department of Paediatric Gastroenterology, Hepatology, and Nutrition, Leuven, Belgium
| | - Elena Levtchenko
- University Hospital Leuven, Departments of Pediatric Nephrology and Development and Regeneration, Leuven, Belgium
| | - Hamideh Bagherian
- GMDC Al Quds University, P.O. Box 5100, Abu Dis, Palestine
- Department of Medical Genetics, Kawsar Human Genetics Research Center, Tehran, Iran
| | | | - Michael J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Jessica X. Chong
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | - Peter H. Byers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
132
|
Identification of Rare LRP5 Variants in a Cohort of Males with Impaired Bone Mass. Int J Mol Sci 2021; 22:ijms221910834. [PMID: 34639175 PMCID: PMC8509722 DOI: 10.3390/ijms221910834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the most common bone disease characterized by reduced bone mass and increased bone fragility. Genetic contribution is one of the main causes of primary osteoporosis; therefore, both genders are affected by this skeletal disorder. Nonetheless, osteoporosis in men has received little attention, thus being underestimated and undertreated. The aim of this study was to identify novel genetic variants in a cohort of 128 males with idiopathic low bone mass using a next-generation sequencing (NGS) panel including genes whose mutations could result in reduced bone mineral density (BMD). Genetic analysis detected in eleven patients ten rare heterozygous variants within the LRP5 gene, which were categorized as VUS (variant of uncertain significance), likely pathogenic and benign variants according to American College of Medical Genetics and Genomics (ACMG) guidelines. Protein structural and Bayesian analysis performed on identified LRP5 variants pointed out p.R1036Q and p.R1135C as pathogenic, therefore suggesting the likely association of these two variants with the low bone mass phenotype. In conclusion, this study expands our understanding on the importance of a functional LRP5 protein in bone formation and highlights the necessity to sequence this gene in subjects with idiopathic low BMD.
Collapse
|
133
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
134
|
Jeong W, Jho EH. Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Front Cell Dev Biol 2021; 9:714330. [PMID: 34589484 PMCID: PMC8473786 DOI: 10.3389/fcell.2021.714330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling plays crucial roles in development and tissue homeostasis, and its dysregulation leads to various diseases, notably cancer. Wnt/β-catenin signaling is initiated when the glycoprotein Wnt binds to and forms a ternary complex with the Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Despite being identified as a Wnt co-receptor over 20 years ago, the molecular mechanisms governing how LRP6 senses Wnt and transduces downstream signaling cascades are still being deciphered. Due to its role as one of the main Wnt signaling components, the dysregulation or mutation of LRP6 is implicated in several diseases such as cancer, neurodegeneration, metabolic syndrome and skeletal disease. Herein, we will review how LRP6 is activated by Wnt stimulation and explore the various regulatory mechanisms involved. The participation of LRP6 in other signaling pathways will also be discussed. Finally, the relationship between LRP6 dysregulation and disease will be examined in detail.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| |
Collapse
|
135
|
Ghatan S, Costantini A, Li R, De Bruin C, Appelman-Dijkstra NM, Winter EM, Oei L, Medina-Gomez C. The Polygenic and Monogenic Basis of Paediatric Fractures. Curr Osteoporos Rep 2021; 19:481-493. [PMID: 33945105 PMCID: PMC8551106 DOI: 10.1007/s11914-021-00680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Fractures are frequently encountered in paediatric practice. Although recurrent fractures in children usually unveil a monogenic syndrome, paediatric fracture risk could be shaped by the individual genetic background influencing the acquisition of bone mineral density, and therefore, the skeletal fragility as shown in adults. Here, we examine paediatric fractures from the perspective of monogenic and complex trait genetics. RECENT FINDINGS Large-scale genome-wide studies in children have identified ~44 genetic loci associated with fracture or bone traits whereas ~35 monogenic diseases characterized by paediatric fractures have been described. Genetic variation can predispose to paediatric fractures through monogenic risk variants with a large effect and polygenic risk involving many variants of small effects. Studying genetic factors influencing peak bone attainment might help in identifying individuals at higher risk of developing early-onset osteoporosis and discovering drug targets to be used as bone restorative pharmacotherapies to prevent, or even reverse, bone loss later in life.
Collapse
Affiliation(s)
- S Ghatan
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - A Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - R Li
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - C De Bruin
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - N M Appelman-Dijkstra
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - E M Winter
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - L Oei
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Carolina Medina-Gomez
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
136
|
Zhu X, Yang M, Zhao P, Li S, Zhang L, Huang L, Huang Y, Fei P, Yang Y, Zhang S, Xu H, Yuan Y, Zhang X, Zhu X, Ma S, Hao F, Sundaresan P, Zhu W, Yang Z. Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling. J Clin Invest 2021; 131:139869. [PMID: 33497368 DOI: 10.1172/jci139869] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe retinal vascular disease that causes blindness. FEVR has been linked to mutations in several genes associated with inactivation of the Norrin/β-catenin signaling pathway, but these account for only approximately 50% of cases. We report that mutations in α-catenin (CTNNA1) cause FEVR by overactivating the β-catenin pathway and disrupting cell adherens junctions. We identified 3 heterozygous mutations in CTNNA1 (p.F72S, p.R376Cfs*27, and p.P893L) by exome sequencing and further demonstrated that FEVR-associated mutations led to overactivation of Norrin/β-catenin signaling as a result of impaired protein interactions within the cadherin-catenin complex. The clinical features of FEVR were reproduced in mice lacking Ctnna1 in vascular endothelial cells (ECs) or with overactivated β-catenin signaling by an EC-specific gain-of-function allele of Ctnnb1. In isolated mouse lung ECs, both CTNNA1-P893L and F72S mutants failed to rescue either the disrupted F-actin arrangement or the VE-cadherin and CTNNB1 distribution. Moreover, we discovered that compound heterozygous Ctnna1 F72S and a deletion allele could cause a similar phenotype. Furthermore, in a FEVR family, we identified a mutation of LRP5, which activates Norrin/β-catenin signaling, and the corresponding knockin mice exhibited a partial FEVR-like phenotype. Our study demonstrates that the precise regulation of β-catenin activation is critical for retinal vascular development and provides new insights into the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shanshan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huijuan Xu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ye Yuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiong Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Weiquan Zhu
- Department of Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
137
|
Henning P, Movérare-Skrtic S, Westerlund A, Chaves de Souza PP, Floriano-Marcelino T, Nilsson KH, El Shahawy M, Ohlsson C, Lerner UH. WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M. J Inflamm Res 2021; 14:4723-4741. [PMID: 34566421 PMCID: PMC8457865 DOI: 10.2147/jir.s323435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023] Open
Abstract
Background Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family. Methods The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice. Results We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16−/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts. Conclusion These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSM-induced osteoclast formation in the calvarial bone cells, but not in the bone marrow.
Collapse
Affiliation(s)
- Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Westerlund
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pedro Paulo Chaves de Souza
- The Innovation in Biomaterials Laboratory, School of Dentistry, Federal University of Goiás, Goiânia, Brazil.,Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Thais Floriano-Marcelino
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Karin H Nilsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maha El Shahawy
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Biology, Faculty of Dentistry, Minia University, Minia, 61511, Egypt
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
138
|
Lauterlein JJL, Gossiel F, Weigl M, Eastell R, Hackl M, Hermann P, Bollerslev J, Frost M. Development of the Bone Phenotype and microRNA Profile in Adults With Low-Density Lipoprotein Receptor-Related Protein 5-High Bone Mass (LRP5-HBM) Disease. JBMR Plus 2021; 5:e10534. [PMID: 34532618 PMCID: PMC8441296 DOI: 10.1002/jbm4.10534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022] Open
Abstract
Pathogenic variants in the Wnt‐pathway co‐receptor low‐density lipoprotein (LDL) receptor‐related protein 5 (LRP5) cause high bone mass (LRP5‐HBM) due to insensitivity to the endogenous antagonist of Wnt‐signaling. Although indicating incessant progression of BMD and biomarkers reflecting bone formation, this has not been confirmed in individuals with LRP5‐HBM. We investigated how the LRP5‐HBM bone phenotype changes with age in adults and is associated with quantitative changes of bone turnover markers and bone‐related microRNAs (miRNAs) in the circulation. Whole body, lumbar spine, total hip, and femoral neck areal BMD (aBMD) and radial and tibial bone microarchitecture and geometry were assessed using DXA and HR‐pQCT scans of 15 individuals with LRP5‐HBMT253I (11 women; median age 51 years; range, 19 to 85 years) with a time interval between scans of 5.8 years (range, 4.9 to 7.6 years). Fasting P1NP and CTX were measured in 14 LRP5‐HBMT253I individuals and age‐, sex‐, and body mass index (BMI)‐matched controls, and 187 preselected miRNAs were quantified using qPCR in 12 individuals and age‐, sex‐, and BMI‐matched controls. DXA and HR‐pQCT scans were assessed in subjects who had reached peak bone mass (aged >25 years, n = 12). Femoral neck aBMD decreased by 0.8%/year (p = 0.01) and total hip by 0.3%/year, and radial volumetric BMD (vBMD) increased 0.3%/year (p = 0.03). Differences in bone turnover markers at follow‐up were not observed. Compared to controls, 11 of the 178 detectable miRNAs were downregulated and none upregulated in LRP5‐HBM individuals, and five of the downregulated miRNAs are reported to be involved in Wnt‐signaling. Bone loss at the hip in LRP5‐HBM individuals demonstrates that the bone phenotype does not uniformly progress with age. Differentially expressed miRNAs may reflect changes in the regulation of bone turnover and balance in LRP5‐HBM individuals. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jens-Jacob Lindegaard Lauterlein
- Department of Endocrinology and Metabolism Odense University Hospital Odense Denmark.,Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Fatma Gossiel
- Department of Oncology and Metabolism University of Sheffield Sheffield UK
| | | | - Richard Eastell
- Department of Oncology and Metabolism University of Sheffield Sheffield UK
| | | | - Pernille Hermann
- Department of Endocrinology and Metabolism Odense University Hospital Odense Denmark.,Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Jens Bollerslev
- Department of Endocrinology Rikshospitalet Oslo Norway.,Faculty of Medicine University of Oslo Oslo Norway
| | - Morten Frost
- Department of Endocrinology and Metabolism Odense University Hospital Odense Denmark.,Department of Clinical Research University of Southern Denmark Odense Denmark.,Steno Diabetes Centre Odense Odense University Hospital Odense Denmark
| |
Collapse
|
139
|
Lucius MD, Ji H, Altomare D, Doran R, Torkian B, Havighorst A, Kaza V, Zhang Y, Gasparian AV, Magagnoli J, Shankar V, Shtutman M, Kiaris H. Genomic variation in captive deer mouse (Peromyscus maniculatus) populations. BMC Genomics 2021; 22:662. [PMID: 34521341 PMCID: PMC8438655 DOI: 10.1186/s12864-021-07956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Deer mice (genus Peromyscus) are the most common rodents in North America. Despite the availability of reference genomes for some species, a comprehensive database of polymorphisms, especially in those maintained as living stocks and distributed to academic investigators, is missing. In the present study we surveyed two populations of P. maniculatus that are maintained at the Peromyscus Genetic Stock Center (PGSC) for polymorphisms across their 2.5 × 109 bp genome. RESULTS High density of variation was identified, corresponding to one SNP every 55 bp for the high altitude stock (SM2) or 207 bp for the low altitude stock (BW) using snpEff (v4.3). Indels were detected every 1157 bp for BW or 311 bp for SM2. The average Watterson estimator for the BW and SM2 populations is 248813.70388 and 869071.7671 respectively. Some differences in the distribution of missense, nonsense and silent mutations were identified between the stocks, as well as polymorphisms in genes associated with inflammation (NFATC2), hypoxia (HIF1a) and cholesterol metabolism (INSIG1) and may possess value in modeling pathology. CONCLUSIONS This genomic resource, in combination with the availability of P. maniculatus from the PGSC, is expected to promote genetic and genomic studies with this animal model.
Collapse
Affiliation(s)
- Matthew D Lucius
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Robert Doran
- Research Computing, Division of Information Technology, University of South Carolina, Columbia, SC, USA
| | - Ben Torkian
- Research Computing, Division of Information Technology, University of South Carolina, Columbia, SC, USA
| | - Amanda Havighorst
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
| | - Youwen Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Alexander V Gasparian
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Joseph Magagnoli
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Vijay Shankar
- Center for Human Genetics, College of Science, Clemson University, Clemson, SC, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
140
|
Thomas DM, Kannabiran C, Balasubramanian D. Identification of Key Genes and Pathways in Persistent Hyperplastic Primary Vitreous of the Eye Using Bioinformatic Analysis. Front Med (Lausanne) 2021; 8:690594. [PMID: 34485332 PMCID: PMC8409525 DOI: 10.3389/fmed.2021.690594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The failure of the embryonic hyaloid vascular system to regress naturally causes persistent hyperplastic primary vitreous (PHPV), a congenital eye disease. PHPVs molecular pathway, candidate genes, and drug targets are unknown. The current paper describes a comprehensive analysis using bioinformatics to identify the key genes and molecular pathways associated with PHPV, and to evaluate potential therapeutic agents for disease management. Methods: The genes associated with PHPV were identified using the pubmed2ensembl text mining platform. GeneCodis was employed to evaluate the Gene Ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Search Tool for the Retrieval of Interacting Genes (STRING) constructed a protein-protein interaction (PPI) network from the text mining genes (TMGs) in Cytoscape. The significant modules were clustered using Molecular Complex Detection (MCODE), and the GO and KEGG analysis for the hub genes were analyzed with the Database of Annotation, Visualization and Integrated Discovery (DAVID) tool. ClueGO, CluePedia, and ShinyGo were used to illustrate the functions and pathways of the clustered hub genes in a significant module. The Drug-Gene Interaction database (DGIdb) was used to evaluate drug-gene interactions of the hub genes to identify potential PHPV drug candidates. Results: A total of 50 genes associated with PHPV were identified. Overall, 35 enriched GO terms and 15 KEGG pathways were discovered by the gene functional enrichment analysis. Two gene modules were obtained from the PPI network constructed with 31 nodes with 42 edges using MCODE. We selected 14 hub genes as core candidate genes: TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2, primarily associated with camera-type eye morphogenesis, pancreatic cancer, the apoptotic process involved in morphogenesis, and the VEGF receptor signaling pathway. We discovered that 26 Food and Drug Administration (FDA)-approved drugs could target 7 of the 14 hub genes. Conclusions: In conclusion, the results revealed a total of 14 potential genes, 4 major pathways, 7 drug gene targets, and 26 candidate drugs that could provide the basis of novel targeted therapies for targeted treatment and management of PHPV.
Collapse
Affiliation(s)
- Derin M Thomas
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - D Balasubramanian
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
141
|
Bek JW, Shochat C, De Clercq A, De Saffel H, Boel A, Metz J, Rodenburg F, Karasik D, Willaert A, Coucke PJ. Lrp5 Mutant and Crispant Zebrafish Faithfully Model Human Osteoporosis, Establishing the Zebrafish as a Platform for CRISPR-Based Functional Screening of Osteoporosis Candidate Genes. J Bone Miner Res 2021; 36:1749-1764. [PMID: 33957005 DOI: 10.1002/jbmr.4327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Genomewide association studies (GWAS) have improved our understanding of the genetic architecture of common complex diseases such as osteoporosis. Nevertheless, to attribute functional skeletal contributions of candidate genes to osteoporosis-related traits, there is a need for efficient and cost-effective in vivo functional testing. This can be achieved through CRISPR-based reverse genetic screens, where phenotyping is traditionally performed in stable germline knockout (KO) mutants. Recently it was shown that first-generation (F0) mosaic mutant zebrafish (so-called crispants) recapitulate the phenotype of germline KOs. To demonstrate feasibility of functional validation of osteoporosis candidate genes through crispant screening, we compared a crispant to a stable KO zebrafish model for the lrp5 gene. In humans, recessive loss-of-function mutations in LRP5, a co-receptor in the Wnt signaling pathway, cause osteoporosis-pseudoglioma syndrome. In addition, several GWAS studies identified LRP5 as a major risk locus for osteoporosis-related phenotypes. In this study, we showed that early stage lrp5 KO larvae display decreased notochord mineralization and malformations of the head cartilage. Quantitative micro-computed tomography (micro-CT) scanning and mass-spectrometry element analysis of the adult skeleton revealed decreased vertebral bone volume and bone mineralization, hallmark features of osteoporosis. Furthermore, regenerating fin tissue displayed reduced Wnt signaling activity in lrp5 KO adults. We next compared lrp5 mutants with crispants. Next-generation sequencing analysis of adult crispant tissue revealed a mean out-of-frame mutation rate of 76%, resulting in strongly reduced levels of Lrp5 protein. These crispants generally showed a milder but nonetheless highly comparable skeletal phenotype and a similarly reduced Wnt pathway response compared with lrp5 KO mutants. In conclusion, we show through faithful modeling of LRP5-related primary osteoporosis that crispant screening in zebrafish is a promising approach for rapid functional screening of osteoporosis candidate genes. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jan Willem Bek
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chen Shochat
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hanna De Saffel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annekatrien Boel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department for Reproductive Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Juriaan Metz
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Frans Rodenburg
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Biology, Leiden University, Leiden, The Netherlands.,Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Andy Willaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
142
|
Koromani F, Alonso N, Alves I, Brandi ML, Foessl I, Formosa MM, Morgenstern MF, Karasik D, Kolev M, Makitie O, Ntzani E, Pietsch BO, Ohlsson C, Rauner M, Soe K, Soldatovic I, Teti A, Valjevac A, Rivadeneira F. The "GEnomics of Musculo Skeletal Traits TranslatiOnal NEtwork": Origins, Rationale, Organization, and Prospects. Front Endocrinol (Lausanne) 2021; 12:709815. [PMID: 34484122 PMCID: PMC8415473 DOI: 10.3389/fendo.2021.709815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/15/2021] [Indexed: 02/01/2023] Open
Abstract
Musculoskeletal research has been enriched in the past ten years with a great wealth of new discoveries arising from genome wide association studies (GWAS). In addition to the novel factors identified by GWAS, the advent of whole-genome and whole-exome sequencing efforts in family based studies has also identified new genes and pathways. However, the function and the mechanisms by which such genes influence clinical traits remain largely unknown. There is imperative need to bring multidisciplinary expertise together that will allow translating these genomic discoveries into useful clinical applications with the potential of improving patient care. Therefore "GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork" (GEMSTONE) aims to set the ground for the: 1) functional characterization of discovered genes and pathways; 2) understanding of the correspondence between molecular and clinical assessments; and 3) implementation of novel methodological approaches. This research network is funded by The European Cooperation in Science and Technology (COST). GEMSTONE includes six working groups (WG), each with specific objectives: WG1-Study populations and expertise groups: creating, maintaining and updating an inventory of experts and resources (studies and datasets) participating in the network, helping to assemble focus groups defined by phenotype, functional and methodological expertise. WG2-Phenotyping: describe ways to decompose the phenotypes of the different functional studies into meaningful components that will aid the interpretation of identified biological pathways. WG3 Monogenic conditions - human KO models: makes an inventory of genes underlying musculoskeletal monogenic conditions that aids the assignment of genes to GWAS signals and prioritizing GWAS genes as candidates responsible for monogenic presentations, through biological plausibility. WG4 Functional investigations: creating a roadmap of genes and pathways to be prioritized for functional assessment in cell and organism models of the musculoskeletal system. WG5 Bioinformatics seeks the integration of the knowledge derived from the distinct efforts, with particular emphasis on systems biology and artificial intelligence applications. Finally, WG6 Translational outreach: makes a synopsis of the knowledge derived from the distinct efforts, allowing to prioritize factors within biological pathways, use refined disease trait definitions and/or improve study design of future investigations in a potential therapeutic context (e.g. clinical trials) for musculoskeletal diseases.
Collapse
Affiliation(s)
- Fjorda Koromani
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nerea Alonso
- Rheumatology and Bone Disease Unit, CGEM-IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine (M.L.B.), University of Florence, Florence, Italy
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | | | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Mikhail Kolev
- Department of Mathematics, South-West University Neofit Rilski, Blagoevgrad, Bulgaria
| | - Outi Makitie
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
- Department of Health Services, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, United States
| | - Barbara Obermayer Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University Graz, Graz, Austria
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martina Rauner
- Department of Medicine III, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Kent Soe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ivan Soldatovic
- Institute of Biostatistics, University of Belgrade, Belgrade, Serbia
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, L’Aquila, Italy
| | - Amina Valjevac
- Department of Physiology, Medical Faculty University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
143
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
144
|
Formosa MM, Bergen DJM, Gregson CL, Maurizi A, Kämpe A, Garcia-Giralt N, Zhou W, Grinberg D, Ovejero Crespo D, Zillikens MC, Williams GR, Bassett JHD, Brandi ML, Sangiorgi L, Balcells S, Högler W, Van Hul W, Mäkitie O. A Roadmap to Gene Discoveries and Novel Therapies in Monogenic Low and High Bone Mass Disorders. Front Endocrinol (Lausanne) 2021; 12:709711. [PMID: 34539568 PMCID: PMC8444146 DOI: 10.3389/fendo.2021.709711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Genetic disorders of the skeleton encompass a diverse group of bone diseases differing in clinical characteristics, severity, incidence and molecular etiology. Of particular interest are the monogenic rare bone mass disorders, with the underlying genetic defect contributing to either low or high bone mass phenotype. Extensive, deep phenotyping coupled with high-throughput, cost-effective genotyping is crucial in the characterization and diagnosis of affected individuals. Massive parallel sequencing efforts have been instrumental in the discovery of novel causal genes that merit functional validation using in vitro and ex vivo cell-based techniques, and in vivo models, mainly mice and zebrafish. These translational models also serve as an excellent platform for therapeutic discovery, bridging the gap between basic science research and the clinic. Altogether, genetic studies of monogenic rare bone mass disorders have broadened our knowledge on molecular signaling pathways coordinating bone development and metabolism, disease inheritance patterns, development of new and improved bone biomarkers, and identification of novel drug targets. In this comprehensive review we describe approaches to further enhance the innovative processes taking discoveries from clinic to bench, and then back to clinic in rare bone mass disorders. We highlight the importance of cross laboratory collaboration to perform functional validation in multiple model systems after identification of a novel disease gene. We describe the monogenic forms of rare low and high rare bone mass disorders known to date, provide a roadmap to unravel the genetic determinants of monogenic rare bone mass disorders using proper phenotyping and genotyping methods, and describe different genetic validation approaches paving the way for future treatments.
Collapse
Affiliation(s)
- Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Dylan J. M. Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- The Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Celia L. Gregson
- The Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Antonio Maurizi
- Department of Applied Clinical Sciences and Biotechnological, University of L’Aquila, L’Aquila, Italy
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Garcia-Giralt
- IMIM (Hospital del Mar Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
| | - Wei Zhou
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Diana Ovejero Crespo
- IMIM (Hospital del Mar Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine (M.L.B.), University of Florence, Florence, Italy
| | - Luca Sangiorgi
- Department of Medical Genetics and Skeletal Rare Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Outi Mäkitie
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
145
|
Ubels JL, Diegel CR, Foxa GE, Ethen NJ, Lensing JN, Madaj ZB, Williams BO. Low-Density Lipoprotein Receptor-Related Protein 5-Deficient Rats Have Reduced Bone Mass and Abnormal Development of the Retinal Vasculature. CRISPR J 2021; 3:284-298. [PMID: 32833527 DOI: 10.1089/crispr.2020.0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans carrying homozygous loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), develop osteoporosis and a defective retinal vasculature known as familial exudative vitreoretinopathy (FEVR) due to disruption of the Wnt signaling pathway. The purpose of this study was to use CRISPR-Cas9-mediated gene editing to create strains of Lrp5-deficient rats and to determine whether knockout of Lrp5 resulted in phenotypes that model the bone and retina pathology in LRP5-deficient humans. Knockout of Lrp5 in rats produced low bone mass, decreased bone mineral density, and decreased bone size. The superficial retinal vasculature of Lrp5-deficient rats was sparse and disorganized, with extensive exudates and decreases in vascularized area, vessel length, and branch point density. This study showed that Lrp5 could be predictably knocked out in rats using CRISPR-Cas9, causing the expression of bone and retinal phenotypes that will be useful for studying the role of Wnt signaling in bone and retina development and for research on the treatment of osteoporosis and FEVR.
Collapse
Affiliation(s)
- John L Ubels
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA.,Department of Biology, Calvin University, Grand Rapids, Michigan, USA
| | - Cassandra R Diegel
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| | - Gabrielle E Foxa
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| | - Nicole J Ethen
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| | - Jonathan N Lensing
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| | - Zachary B Madaj
- Core Technologies and Services, Van Andel Institute, Grand Rapids, Michigan, USA; Calvin University, Grand Rapids, Michigan, USA
| | - Bart O Williams
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| |
Collapse
|
146
|
Rios JJ, Denton K, Russell J, Kozlitina J, Ferreira CR, Lewanda AF, Mayfield JE, Moresco E, Ludwig S, Tang M, Li X, Lyon S, Khanshour A, Paria N, Khalid A, Li Y, Xie X, Feng JQ, Xu Q, Lu Y, Hammer RE, Wise CA, Beutler B. Germline Saturation Mutagenesis Induces Skeletal Phenotypes in Mice. J Bone Miner Res 2021; 36:1548-1565. [PMID: 33905568 PMCID: PMC8862308 DOI: 10.1002/jbmr.4323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Jamie Russell
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy F Lewanda
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Eva Moresco
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Lyon
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anas Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Yang Li
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Xudong Xie
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Jian Q Feng
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Qian Xu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Yongbo Lu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Robert E Hammer
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
147
|
Morrell AE, Robinson ST, Ke HZ, Holdsworth G, Guo XE. Osteocyte mechanosensing following short-term and long-term treatment with sclerostin antibody. Bone 2021; 149:115967. [PMID: 33892178 PMCID: PMC8217200 DOI: 10.1016/j.bone.2021.115967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Sclerostin antibody romosozumab (EVENITY™, romosozumab-aqqg) has a dual mechanism of action on bone, increasing bone formation and decreasing bone resorption, leading to increases in bone mass and strength, and a decreased risk of fracture, and has been approved for osteoporosis treatment in patients with high risk of fragility fractures. The bone formation aspect of the response to sclerostin antibody treatment has thus far been best described as having two phases: an immediate and robust phase of anabolic bone formation, followed by a long-term response characterized by attenuated bone accrual. We herein test the hypothesis that following the immediate pharmacologic anabolic response, the changes in bone morphology result in altered (lesser) mechanical stimulation of the resident osteocytes, initiating a negative feedback signal quantifiable by a reduced osteocyte signaling response to load. This potential desensitization of the osteocytic network is probed via a novel ex vivo assessment of intracellular calcium (Ca2+) oscillations in osteocytes below the anteromedial surface of murine tibiae subjected to load after short-term (2 weeks) or long-term (8 weeks) treatment with sclerostin antibody or vehicle control. We found that for both equivalent load levels and equivalent strain levels, osteocyte Ca2+ dynamics are maintained between tibiae from the control mice and the mice that received long-term sclerostin antibody treatment. Furthermore, under matched strain environments, we found that short-term sclerostin antibody treatment results in a reduction of both the number of responsive cells and the speed of their responses, which we attribute largely to the probability that the observed cells in the short-term group are relatively immature osteocytes embedded during initial pharmacologic anabolism. Within this study, we demonstrate that osteocytes embedded following long-term sclerostin antibody treatment exhibit localized Ca2+ signaling akin to those of mature osteocytes from the vehicle group, and thus, systemic attenuation of responses such as circulating P1NP and bone formation rates likely occur as a result of processes downstream of osteocyte Ca2+ signaling.
Collapse
Affiliation(s)
- Andrea E Morrell
- Bone Bioengineering Lab, Department of Biomedical Engineering, 365 Engineering Terrace, 1210 Amsterdam Avenue, Columbia University, New York, NY 10027, United States of America.
| | - Samuel T Robinson
- Bone Bioengineering Lab, Department of Biomedical Engineering, 365 Engineering Terrace, 1210 Amsterdam Avenue, Columbia University, New York, NY 10027, United States of America.
| | - Hua Zhu Ke
- UCB Pharma, 208 Bath Road, Slough SL1 3WE, UK; Angitia Biopharmaceuticals, Guangzhou, Guangdong, China.
| | | | - X Edward Guo
- Bone Bioengineering Lab, Department of Biomedical Engineering, 365 Engineering Terrace, 1210 Amsterdam Avenue, Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
148
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
149
|
Salbach-Hirsch J, Rauner M, Hofbauer C, Hofbauer LC. New insights into the role of glycosaminoglycans in the endosteal bone microenvironment. Biol Chem 2021; 402:1415-1425. [PMID: 34323057 DOI: 10.1515/hsz-2021-0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
The bone microenvironment is a complex tissue in which heterogeneous cell populations of hematopoietic and mesenchymal origin interact with environmental cues to maintain tissue integrity. Both cellular and matrix components are subject to physiologic challenges and can dynamically respond by modifying cell/matrix interactions. When either component is impaired, the physiologic balance is lost. Here, we review the current state of knowledge of how glycosaminoglycans - organic components of the bone extracellular matrix - influence the bone micromilieu. We point out how they interact with mediators of distinct signaling pathways such as the RANKL/OPG axis, BMP and WNT signaling, and affect the activity of bone remodeling cells within the endosteal niche summarizing their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christine Hofbauer
- NCT Dresden and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), D-01307 Dresden, Germany
| |
Collapse
|
150
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|