101
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
102
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations. For instance, when coupled with oriented cell division, proliferation itself plays a role in changes in tube shape and their directed expansion. Most of these processes are regulated in response to signaling inputs from adjacent cells or soluble factors from the environment. Despite the great deal of recent investigation in this direction, the knowledge we have about the signaling pathways associated with all epithelial tubulogenesis in development and regeneration is still very limited.
Collapse
|
103
|
Fletcher AG, Cooper F, Baker RE. Mechanocellular models of epithelial morphogenesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0519. [PMID: 28348253 DOI: 10.1098/rstb.2015.0519] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 01/13/2023] Open
Abstract
Embryonic epithelia achieve complex morphogenetic movements, including in-plane reshaping, bending and folding, through the coordinated action and rearrangement of individual cells. Technical advances in molecular and live-imaging studies of epithelial dynamics provide a very real opportunity to understand how cell-level processes facilitate these large-scale tissue rearrangements. However, the large datasets that we are now able to generate require careful interpretation. In combination with experimental approaches, computational modelling allows us to challenge and refine our current understanding of epithelial morphogenesis and to explore experimentally intractable questions. To this end, a variety of cell-based modelling approaches have been developed to describe cell-cell mechanical interactions, ranging from vertex and 'finite-element' models that approximate each cell geometrically by a polygon representing the cell's membrane, to immersed boundary and subcellular element models that allow for more arbitrary cell shapes. Here, we review how these models have been used to provide insights into epithelial morphogenesis and describe how such models could help future efforts to decipher the forces and mechanical and biochemical feedbacks that guide cell and tissue-level behaviour. In addition, we discuss current challenges associated with using computational models of morphogenetic processes in a quantitative and predictive way.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK .,Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Fergus Cooper
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
104
|
Rizov M, Andreeva P, Dimova I. Molecular regulation and role of angiogenesis in reproduction. Taiwan J Obstet Gynecol 2017; 56:127-132. [PMID: 28420494 DOI: 10.1016/j.tjog.2016.06.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis is an essential process for proper functioning of the female reproductive system and for successful pregnancy realization. The multitude of factors required for physiological angiogenesis and the complexity of regulation of their temporal-spatial activities contribute to aberrations in human fertilization and pregnancy outcomes. In this study, we reviewed the current knowledge of the temporal expression patterns, functions, and regulatory mechanisms of angiogenic factors during foliculogenesis, early implantation/placentation and embryo development, as well as recurrent spontaneous abortions. Angiogenic factors including vascular endothelial growth factors and angiopoietins have documented roles in the development of primordial follicles into mature antral follicles. They also participate in decidualization, which is accompanied by the creation of an extensive network of vessels in the stromal bed that support the growth of the embryo and the placenta, and maintain early pregnancy. During placentation angiogenic and angiomodulatory cytokines, T and B lymphocytes and macrophages affect angiogenesis in a context-dependent manner. Defects in angiogenesis at the maternal-fetal interface contribute to miscarriage in humans. The establishment of more polymorphisms in the genes involved in angiogenesis/vasculogenesis, and their pathological phenotype and expression could give opportunities for prediction, creating a therapeutic strategy, and treatment of diseases related to female reproductive health and problematic conception.
Collapse
Affiliation(s)
| | | | - Ivanka Dimova
- Department of Medical Genetics, Medical University Sofia, Sofia, Bulgaria.
| |
Collapse
|
105
|
Xi W, Sonam S, Beng Saw T, Ladoux B, Teck Lim C. Emergent patterns of collective cell migration under tubular confinement. Nat Commun 2017; 8:1517. [PMID: 29142242 PMCID: PMC5688140 DOI: 10.1038/s41467-017-01390-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.
Collapse
Affiliation(s)
- Wang Xi
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Surabhi Sonam
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Department of Biomedical Engineering and Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institut Jacques Monod, Université Paris Diderot & CNRS UMR 7592, 75205, Paris cedex 13, France
| | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.
- Institut Jacques Monod, Université Paris Diderot & CNRS UMR 7592, 75205, Paris cedex 13, France.
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore.
- Department of Biomedical Engineering and Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore.
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore.
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, #14-01, MD6, 14 Medical Drive, Singapore, 117599, Singapore.
| |
Collapse
|
106
|
Sun XL, Liu DM, Li SS, Li KK, Wan WM. Pincushion of Tubule Discovery and Tubular Morphology Landscape Establishment of Block Copolymer Self-Assemblies. Macromol Rapid Commun 2017; 38. [PMID: 28980746 DOI: 10.1002/marc.201700424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/19/2017] [Indexed: 11/07/2022]
Abstract
Block copolymer (BCP) self-assembly is a versatile technique in the preparation of polymeric aggregates with varieties of morphologies. However, its morphology library is limited. Here, the discovery of pincushion of tubules is reported for the first time, via BCP self-assembly of poly(4-vinylpyridine)-b-polystyrene (P4VP-b-PS) with very high molecular weight (500 kDa) and asymmetry (2 mol% P4VP). The investigation confirms the importance of core-forming block length on morphology control of BCP self-assemblies, especially with respect to tubular structures. The morphology landscape of tubular structures is successfully established, where dumbbell of tubule, tubule, loose clew of tubules, tight clew of tubules, and pincushion of tubules can be prepared by adjusting the core-forming block length. This work therefore expands the structure library of BCP self-assemblies and opens up a new avenue for the further applications of these tubular materials.
Collapse
Affiliation(s)
- Xiao-Li Sun
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Dong-Ming Liu
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shun-Shun Li
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kang-Kang Li
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wen-Ming Wan
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
107
|
Zhang N, Membreno E, Raj S, Zhang H, Khan LA, Gobel V. The C. elegans Excretory Canal as a Model for Intracellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis in a Single Cell: labeling by GFP-fusions, RNAi Interaction Screen and Imaging. J Vis Exp 2017. [PMID: 28994812 DOI: 10.3791/56101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The four C. elegans excretory canals are narrow tubes extended through the length of the animal from a single cell, with almost equally far extended intracellular endotubes that build and stabilize the lumen with a membrane and submembraneous cytoskeleton of apical character. The excretory cell expands its length approximately 2,000 times to generate these canals, making this model unique for the in vivo assessment of de novo polarized membrane biogenesis, intracellular lumen morphogenesis and unicellular tubulogenesis. The protocol presented here shows how to combine standard labeling, gain- and loss-of-function genetic or RNA interference (RNAi)-, and microscopic approaches to use this model to visually dissect and functionally analyze these processes on a molecular level. As an example of a labeling approach, the protocol outlines the generation of transgenic animals with fluorescent fusion proteins for live analysis of tubulogenesis. As an example of a genetic approach, it highlights key points of a visual RNAi-based interaction screen designed to modify a gain-of-function cystic canal phenotype. The specific methods described are how to: label and visualize the canals by expressing fluorescent proteins; construct a targeted RNAi library and strategize RNAi screening for the molecular analysis of canal morphogenesis; visually assess modifications of canal phenotypes; score them by dissecting fluorescence microscopy; characterize subcellular canal components at higher resolution by confocal microscopy; and quantify visual parameters. The approach is useful for the investigator who is interested in taking advantage of the C. elegans excretory canal for identifying and characterizing genes involved in the phylogenetically conserved processes of intracellular lumen and unicellular tube morphogenesis.
Collapse
Affiliation(s)
- Nan Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School; College of Life Sciences, Jilin University
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School
| | - Susan Raj
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School; Faculty of Health Sciences, University of Macau
| | - Liakot A Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School;
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School;
| |
Collapse
|
108
|
Abstract
Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.
Collapse
Affiliation(s)
- Amir Houshang Bahrami
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| |
Collapse
|
109
|
Yang Q, Roiz D, Mereu L, Daube M, Hajnal A. The Invading Anchor Cell Induces Lateral Membrane Constriction during Vulval Lumen Morphogenesis in C. elegans. Dev Cell 2017; 42:271-285.e3. [PMID: 28787593 DOI: 10.1016/j.devcel.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 05/15/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
During epithelial tube morphogenesis, linear arrays of cells are converted into tubular structures through actomyosin-generated intracellular forces that induce tissue invagination and lumen formation. We have investigated lumen morphogenesis in the C. elegans vulva. The first discernible event initiating lumen formation is the apical constriction of the two innermost primary cells (VulF). The VulF cells thereafter constrict their lateral membranes along the apicobasal axis to extend the lumen dorsally. Lateral, but not apical, VulF constriction requires the prior invasion of the anchor cell (AC). The invading AC extends actin-rich protrusions toward VulF, resulting in the formation of a direct AC-VulF interface. The recruitment of the F-BAR-domain protein TOCA-1 to the AC-VulF interface induces the accumulation of force-generating actomyosin, causing a switch from apical to lateral membrane constriction and the dorsal extension of the lumen. Invasive cells may induce shape changes in adjacent cells to penetrate their target tissues.
Collapse
Affiliation(s)
- Qiutan Yang
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Daniel Roiz
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Louisa Mereu
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Michael Daube
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
110
|
Osterfield M, Berg CA, Shvartsman SY. Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model. Dev Cell 2017; 41:337-348. [PMID: 28535370 DOI: 10.1016/j.devcel.2017.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms.
Collapse
Affiliation(s)
- Miriam Osterfield
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Celeste A Berg
- Molecular and Cellular Biology Program and Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
111
|
Shashikanth N, Yeruva S, Ong MLDM, Odenwald MA, Pavlyuk R, Turner JR. Epithelial Organization: The Gut and Beyond. Compr Physiol 2017; 7:1497-1518. [DOI: 10.1002/cphy.c170003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
112
|
Olivares-Castiñeira I, Llimargas M. EGFR controls Drosophila tracheal tube elongation by intracellular trafficking regulation. PLoS Genet 2017; 13:e1006882. [PMID: 28678789 PMCID: PMC5517075 DOI: 10.1371/journal.pgen.1006882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/19/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
Development is governed by a few conserved signalling pathways. Amongst them, the EGFR pathway is used reiteratively for organ and tissue formation, and when dysregulated can lead to cancer and metastasis. Given its relevance, identifying its downstream molecular machinery and understanding how it instructs cellular changes is crucial. Here we approach this issue in the respiratory system of Drosophila. We identify a new role for EGFR restricting the elongation of the tracheal Dorsal Trunk. We find that EGFR regulates the apical determinant Crb and the extracellular matrix regulator Serp, two factors previously known to control tube length. EGFR regulates the organisation of endosomes in which Crb and Serp proteins are loaded. Our results are consistent with a role of EGFR in regulating Retromer/WASH recycling routes. Furthermore, we provide new insights into Crb trafficking and recycling during organ formation. Our work connects cell signalling, trafficking mechanisms and morphogenesis and suggests that the regulation of cargo trafficking can be a general outcome of EGFR activation. The control of organ size and shape is a critical aspect of morphogenesis, as miss-regulation can lead to pathologies and malformations. The tracheal system of Drosophila is a good model to investigate this issue as tube size is strictly regulated. In addition, tracheal system development represents also an excellent system to study the molecular mechanisms employed by signalling pathways to instruct cells to form tubular structures. Here we describe that EGFR, which triggers one of the principal conserved pathways acting reiteratively during development and homeostasis, is required to restrict tube elongation. We find that EGFR regulates the accumulation and subcellular localisation of Crumbs and Serpentine, two factors previously known to regulate tube length. We show that Crumbs and Serpentine are loaded in common endosomes, which require EGFR for proper organisation, ensuring delivery of both cargoes to their final destination. We also report that during tracheal development the apical determinant Crumbs undergoes a complex pattern of recycling, which involves internalisation and different sorting pathways. Our analysis identifies EGFR as a hub to coordinate both cell intrinsic properties, namely Crumbs-dependant apical membrane growth, and extrinsic mechanisms, Serpentine-mediated extracellular matrix modifications, which regulate tube elongation. We suggest that the regulation of the endocytic traffic of specific cargoes could be one of the molecular mechanisms downstream of the EGFR, and therefore could regulate different morphogenetic and pathological EGFR-mediated events.
Collapse
Affiliation(s)
- Ivette Olivares-Castiñeira
- Developmental Biology Department, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Marta Llimargas
- Developmental Biology Department, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
113
|
Gao Q, Zhang J, Wang X, Liu Y, He R, Liu X, Wang F, Feng J, Yang D, Wang Z, Meng A, Yan X. The signalling receptor MCAM coordinates apical-basal polarity and planar cell polarity during morphogenesis. Nat Commun 2017; 8:15279. [PMID: 28589943 PMCID: PMC5467231 DOI: 10.1038/ncomms15279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
The apical-basal (AB) polarity and planar cell polarity (PCP) provide an animal cell population with different phenotypes during morphogenesis. However, how cells couple these two patterning systems remains unclear. Here we provide in vivo evidence that melanoma cell adhesion molecule (MCAM) coordinates AB polarity-driven lumenogenesis and c-Jun N-terminal kinase (JNK)/PCP-dependent ciliogenesis. We identify that MCAM is an independent receptor of fibroblast growth factor 4 (FGF4), a membrane anchor of phospholipase C-γ (PLC-γ), an immediate upstream receptor of nuclear factor of activated T-cells (NFAT) and a constitutive activator of JNK. We find that MCAM-mediated vesicular trafficking towards FGF4, while generating a priority-grade transcriptional response of NFAT determines lumenogenesis. We demonstrate that MCAM plays indispensable roles in ciliogenesis through activating JNK independently of FGF signals. Furthermore, mcam-deficient zebrafish and Xenopus exhibit a global defect in left-right (LR) asymmetric establishment as a result of morphogenetic failure of their LR organizers. Therefore, MCAM coordination of AB polarity and PCP provides insight into the general mechanisms of morphogenesis.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Zhang
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingfeng Liu
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
114
|
Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat Cell Biol 2017; 19:653-665. [PMID: 28530658 PMCID: PMC5455977 DOI: 10.1038/ncb3528] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022]
Abstract
The hierarchical organization of properly sized blood vessels ensures the correct distribution of blood to all organs of the body, and is controlled via haemodynamic cues. In current concepts, an endothelium-dependent shear stress set point causes blood vessel enlargement in response to higher flow rates, while lower flow would lead to blood vessel narrowing, thereby establishing homeostasis. We show that during zebrafish embryonic development increases in flow, after an initial expansion of blood vessel diameters, eventually lead to vessel contraction. This is mediated via endothelial cell shape changes. We identify the transforming growth factor beta co-receptor endoglin as an important player in this process. Endoglin mutant cells and blood vessels continue to enlarge in response to flow increases, thus exacerbating pre-existing embryonic arterial-venous shunts. Together, our data suggest that cell shape changes in response to biophysical cues act as an underlying principle allowing for the ordered patterning of tubular organs.
Collapse
|
115
|
Holló G. Demystification of animal symmetry: symmetry is a response to mechanical forces. Biol Direct 2017; 12:11. [PMID: 28514948 PMCID: PMC5436448 DOI: 10.1186/s13062-017-0182-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
ᅟ Symmetry is an eye-catching feature of animal body plans, yet its causes are not well enough understood. The evolution of animal form is mainly due to changes in gene regulatory networks (GRNs). Based on theoretical considerations regarding fundamental GRN properties, it has recently been proposed that the animal genome, on large time scales, should be regarded as a system which can construct both the main symmetries – radial and bilateral – simultaneously; and that the expression of any of these depends on functional constraints. Current theories explain biological symmetry as a pattern mostly determined by phylogenetic constraints, and more by chance than by necessity. In contrast to this conception, I suggest that physical effects, which in many cases act as proximate, direct, tissue-shaping factors during ontogenesis, are also the ultimate causes – i.e. the indirect factors which provide a selective advantage – of animal symmetry, from organs to body plan level patterns. In this respect, animal symmetry is a necessary product of evolution. This proposition offers a parsimonious view of symmetry as a basic feature of the animal body plan, suggesting that molecules and physical forces act in a beautiful harmony to create symmetrical structures, but that the concert itself is directed by the latter. Reviewers This article was reviewed by Eugene Koonin, Zoltán Varga and Michaël Manuel.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology, University of Debrecen, H-4002, Debrecen, P.O. Box 400, Hungary.
| |
Collapse
|
116
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
117
|
Proteomics Analysis Identifies Orthologs of Human Chitinase-Like Proteins as Inducers of Tube Morphogenesis Defects in Drosophila melanogaster. Genetics 2017; 206:973-984. [PMID: 28404605 DOI: 10.1534/genetics.116.199323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of human chitinase-like proteins (CLPs) are associated with numerous chronic inflammatory diseases and several cancers, often correlating with poor prognosis. Nevertheless, there is scant knowledge of their function. The CLPs normally mediate immune responses and wound healing and, when upregulated, they can promote disease progression by remodeling tissue, activating signaling cascades, stimulating proliferation and migration, and by regulating adhesion. We identified Imaginal disc growth factors (Idgfs), orthologs of human CLPs CHI3L1, CHI3L2, and OVGP1, in a proteomics analysis designed to discover factors that regulate tube morphogenesis in a Drosophila melanogaster model of tube formation. We implemented a novel approach that uses magnetic beads to isolate a small population of specialized ovarian cells, cells that nonautonomously regulate morphogenesis of epithelial tubes that form and secrete eggshell structures called dorsal appendages (DAs). Differential mass spectrometry analysis of these cells detected elevated levels of four of the six Idgf family members (Idgf1, Idgf2, Idgf4, and Idgf6) in flies mutant for bullwinkle (bwk), which encodes a transcription factor and is a known regulator of DA-tube morphogenesis. We show that, during oogenesis, dysregulation of Idgfs (either gain or loss of function) disrupts the formation of the DA tubes. Previous studies demonstrate roles for Drosophila Idgfs in innate immunity, wound healing, and cell proliferation and motility in cell culture. Here, we identify a novel role for Idgfs in both normal and aberrant tubulogenesis processes.
Collapse
|
118
|
Engineering a vascularised 3D in vitro model of cancer progression. Sci Rep 2017; 7:44045. [PMID: 28276469 PMCID: PMC5343474 DOI: 10.1038/srep44045] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
The hallmark of tumours is the ability of cancerous cells to promote vascular growth, to disseminate and invade to distant organs. The metastatic process is heavily influenced by the extracellular matrix (ECM) density and composition of the surrounding tumour microenvironment. These microenvironmental cues, which include hypoxia, also regulate the angiogenic processes within a tumour, facilitating the spread of cancer cells. We engineered compartmentalized biomimetic colorectal tumouroids with stromal surrounds that comprised a range of ECM densities, composition and stromal cell populations. Recapitulating tissue ECM composition and stromal cell composition enhanced cancer cell invasion. Manipulation of ECM density was associated with an altered migration pattern from glandular buds (cellular aggregates) to epithelial cell sheets. Laminin appeared to be a critical component in regulating endothelial cell morphology and vascular network formation. Interestingly, the disruption of vascular networks by cancer cells was driven by changes in expression of several anti-angiogenic genes. Cancer cells cultured in our biomimetic tumouroids exhibited intratumoural heterogeneity that was associated with increased tumour invasion into the stroma. These findings demonstrate that our 3D in vitro tumour model exhibits biomimetic attributes that may permit their use in studying microenvironment clues of tumour progression and angiogenesis.
Collapse
|
119
|
Chung S, Kim S, Andrew DJ. Uncoupling apical constriction from tissue invagination. eLife 2017; 6. [PMID: 28263180 PMCID: PMC5338918 DOI: 10.7554/elife.22235] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG. DOI:http://dx.doi.org/10.7554/eLife.22235.001 Many organs in the human body – like the kidneys, lungs, and salivary glands – are organized as a single layer of cells that surround a hollow tube. There are a number of ways that cells can achieve this particular arrangement. In one mechanism, a small group of cells bud out of a single cell layer to become the end of a new tube or a new branch of an existing tube. Since all the cells are still connected, the first cells bring their neighbouring cells along behind them, rearranging these cells to form the walls of a tube. In addition to changing position, the cells must change their shape to form a tube. One crucial change in cell shape is called apical constriction, and involves the side of the cell facing the inside of the tube becoming smaller than the other sides. This creates cells with a wedge-like shape that can fit together to form the curved wall of the tube, similar to shaped bricks in an archway. Apical constriction has been widely studied and is controlled by proteins that act like motors moving along protein-based filaments; however the roles of apical constriction in tube formation have not been fully explained. Using the developing salivary glands of the fruit fly Drosophila melanogaster, Chung et al. confirmed that the motor protein known as myosin II controls apical constriction during tissue invagination. Further examination showed that proteins (called Fork Head and Fog) activate and localize an enzyme (Rho kinase) to control the localized accumulation of myosin II and thereby control apical constriction. Chung et al. then showed that salivary glands could still form tubes if apical constriction was blocked, indicating that it is not an essential part of tissue invagination in this organ. However, blocking apical constriction led the tube to develop unusual shapes at intermediate stages. More work is now needed to better understand the links between apical constriction, cell rearrangement and tissue invagination. These processes are fundamental for organs to form correctly in many organisms and understanding their control could have wide-ranging impacts. A better understanding of these processes may provide insight into how the tubes can form while keeping all the cells adequately supplied with oxygen and nutrients, and into diseases that result if there are defects in the invagination process. DOI:http://dx.doi.org/10.7554/eLife.22235.002
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sangjoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
120
|
Epithelial-mesenchymal transition in morphogenesis, cancer progression and angiogenesis. Exp Cell Res 2017; 353:1-5. [PMID: 28257786 DOI: 10.1016/j.yexcr.2017.02.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/18/2022]
Abstract
All organs consist of an epithelium and an associated mesenchyme, so these epithelial-mesenchymal intercations are among the most important phenomena in nature. The aim of this article is the summarize the common mechanisms involved in the establishment of epithelial mesenchymal transition in three biological processes, namely organogenesis, tumor progression and metastasis, and angiogenesis, apparently independent each from other. A common feature of these processes is the fact that specialized epithelial cells lose their features, including cell adhesion and polarity, reorganize their cytoskeleton, and acquire a mesenchymal morphology and the ability to migrate.
Collapse
|
121
|
The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity. Genetics 2017; 203:35-63. [PMID: 27183565 DOI: 10.1534/genetics.116.189357] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal's life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes.
Collapse
|
122
|
Marciano DK. A holey pursuit: lumen formation in the developing kidney. Pediatr Nephrol 2017; 32:7-20. [PMID: 26902755 PMCID: PMC5495142 DOI: 10.1007/s00467-016-3326-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
The formation of polarized epithelial tubules is a hallmark of kidney development. One of the fundamental principles in tubulogenesis is that epithelia coordinate the polarity of individual cells with the surrounding cells and matrix. A central feature in this process is the segregation of membranes into spatially and functionally distinct apical and basolateral domains, and the generation of a luminal space at the apical surface. This review examines our current understanding of the cellular and molecular mechanisms that underlie the establishment of apical-basal polarity and lumen formation in developing renal epithelia, including the roles of cell-cell and cell-matrix interactions and polarity complexes. We highlight growing evidence from animal models, and correlate these findings with models of tubulogenesis from other organ systems, and from in vitro studies.
Collapse
Affiliation(s)
- Denise K. Marciano
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. H5.102, Dallas, TX 75390-8856
| |
Collapse
|
123
|
Sogorb MA, Pamies D, Estevan C, Estévez J, Vilanova E. Roles of NTE protein and encoding gene in development and neurodevelopmental toxicity. Chem Biol Interact 2016; 259:352-357. [DOI: 10.1016/j.cbi.2016.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/10/2016] [Accepted: 07/24/2016] [Indexed: 11/30/2022]
|
124
|
Cardoso SSS, Cartwright JHE, Checa AG, Sainz-Díaz CI. Fluid-flow-templated self-assembly of calcium carbonate tubes in the laboratory and in biomineralization: The tubules of the watering-pot shells, Clavagelloidea. Acta Biomater 2016; 43:338-347. [PMID: 27402180 DOI: 10.1016/j.actbio.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED We show with laboratory experiments that self-assembled mineral tube formation involving precipitation around a templating jet of fluid - a mechanism well-known in the physical sciences from the tubular growth of so-called chemical gardens - functions with carbonates, and we analyse the microstructures and compositions of the precipitates. We propose that there should exist biological examples of fluid-flow-templated tubes formed from carbonates. We present observational and theoretical modelling evidence that the complex structure of biomineral calcium carbonate tubules that forms the 'rose' of the watering-pot shells, Clavagelloidea, may be an instance of this mechanism in biomineralization. We suggest that this is an example of self-organization and self-assembly processes in biomineralization, and that such a mechanism is of interest for the production of tubes as a synthetic biomaterial. STATEMENT OF SIGNIFICANCE The work discussed in the manuscript concerns the self-assembly of calcium carbonate micro-tubes and nano-tubes under conditions of fluid flow together with chemical reaction. We present the results of laboratory experiments on tube self-assembly together with theoretical calculations. We show how nature may already be making use of this process in molluscan biomineralization of the so-called watering-pot shells, and we propose that we may be able to take advantage of the formation mechanism to produce synthetic biocompatible micro- and nano-tubes.
Collapse
Affiliation(s)
- Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK.
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18100 Armilla, Granada, Spain; Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain.
| | - Antonio G Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, E-18071 Granada, Spain; Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18100 Armilla, Granada, Spain.
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18100 Armilla, Granada, Spain.
| |
Collapse
|
125
|
Zhu X, Gojgini S, Chen TH, Teng F, Fei P, Dong S, Segura T, Ho CM. Three dimensional tubular structure self-assembled by vascular mesenchymal cells at stiffness interfaces of hydrogels. Biomed Pharmacother 2016; 83:1203-1211. [DOI: 10.1016/j.biopha.2016.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022] Open
|
126
|
Prkci is required for a non-autonomous signal that coordinates cell polarity during cavitation. Dev Biol 2016; 416:82-97. [PMID: 27312576 DOI: 10.1016/j.ydbio.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022]
Abstract
Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization.
Collapse
|
127
|
Grussendorf KA, Trezza CJ, Salem AT, Al-Hashimi H, Mattingly BC, Kampmeyer DE, Khan LA, Hall DH, Göbel V, Ackley BD, Buechner M. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans. Genetics 2016; 203:1789-806. [PMID: 27334269 PMCID: PMC4981278 DOI: 10.1534/genetics.116.192559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling.
Collapse
Affiliation(s)
- Kelly A Grussendorf
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Christopher J Trezza
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Alexander T Salem
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Hikmat Al-Hashimi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Brendan C Mattingly
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Drew E Kampmeyer
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Liakot A Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - David H Hall
- Department of Neuroscience, Center for Caenorhabditis elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
128
|
Brinkmann BF, Steinbacher T, Hartmann C, Kummer D, Pajonczyk D, Mirzapourshafiyi F, Nakayama M, Weide T, Gerke V, Ebnet K. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation. Mol Biol Cell 2016; 27:2811-21. [PMID: 27466317 PMCID: PMC5025268 DOI: 10.1091/mbc.e16-02-0127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
Blood vessel tubulogenesis requires the establishment of apicobasal polarity of endothelial cells. A novel interaction is described of the cell adhesion molecule VE-cadherin with the cell polarity protein Pals1. The activity of VE-cadherin in regulation of endothelial lumen formation depends on its interaction with both Pals1 and Par3. Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell–cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3.
Collapse
Affiliation(s)
- Benjamin F Brinkmann
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Interdisciplinary Clinical Research Center, University of Münster, 48419 Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany
| | - Christian Hartmann
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Interdisciplinary Clinical Research Center, University of Münster, 48419 Münster, Germany
| | - Daniel Kummer
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Interdisciplinary Clinical Research Center, University of Münster, 48419 Münster, Germany
| | - Denise Pajonczyk
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany
| | - Fatemeh Mirzapourshafiyi
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Weide
- Department of Internal Medicine D, Division of Molecular Nephrology, University Hospital Münster, Albert-Schweitzer-Campus 1, University of Münster, 48419 Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Interdisciplinary Clinical Research Center, University of Münster, 48419 Münster, Germany
| |
Collapse
|
129
|
Navis A, Nelson CM. Pulling together: Tissue-generated forces that drive lumen morphogenesis. Semin Cell Dev Biol 2016; 55:139-47. [PMID: 26778757 PMCID: PMC4903947 DOI: 10.1016/j.semcdb.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Mechanical interactions are essential for bending and shaping tissues during morphogenesis. A common feature of nearly all internal organs is the formation of a tubular network consisting of an epithelium that surrounds a central lumen. Lumen formation during organogenesis requires precisely coordinated mechanical and biochemical interactions. Whereas many genetic regulators of lumen formation have been identified, relatively little is known about the mechanical cues that drive lumen morphogenesis. Lumens can be shaped by a variety of physical behaviors including wrapping a sheet of cells around a hollow core, rearranging cells to expose a lumenal cavity, or elongating a tube via cell migration, though many of the details underlying these movements remain poorly understood. It is essential to define how forces generated by individual cells cooperate to produce the tissue-level forces that drive organogenesis. Transduction of mechanical forces relies on several conserved processes including the contraction of cytoskeletal networks or expansion of lumens through increased fluid pressure. The morphogenetic events that drive lumen formation serve as a model for similar mechanical processes occurring throughout development. To understand how lumenal networks arise, it will be essential to investigate how biochemical and mechanical processes integrate to generate complex structures from comparatively simple interactions.
Collapse
Affiliation(s)
- Adam Navis
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
130
|
Betz C, Lenard A, Belting HG, Affolter M. Cell behaviors and dynamics during angiogenesis. Development 2016; 143:2249-60. [DOI: 10.1242/dev.135616] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
Vascular networks are formed and maintained through a multitude of angiogenic processes, such as sprouting, anastomosis and pruning. Only recently has it become possible to study the behavior of the endothelial cells that contribute to these networks at a single-cell level in vivo. This Review summarizes what is known about endothelial cell behavior during developmental angiogenesis, focusing on the morphogenetic changes that these cells undergo.
Collapse
Affiliation(s)
- Charles Betz
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| | - Anna Lenard
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| |
Collapse
|
131
|
Tanimizu N, Kaneko K, Itoh T, Ichinohe N, Ishii M, Mizuguchi T, Hirata K, Miyajima A, Mitaka T. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology 2016; 64:175-188. [PMID: 26926046 DOI: 10.1002/hep.28521] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/04/2016] [Accepted: 02/24/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED The intrahepatic bile duct (IHBD) is a highly organized tubular structure consisting of cholangiocytes, biliary epithelial cells, which drains bile produced by hepatocytes into the duodenum. Although several models have been proposed, it remains unclear how the three-dimensional (3D) IHBD network develops during liver organogenesis. Using 3D imaging techniques, we demonstrate that the continuous luminal network of IHBDs is established by 1 week after birth. Beyond this stage, the IHBD network consists of large ducts running along portal veins (PVs) and small ductules forming a mesh-like network around PVs. By analyzing embryonic and neonatal livers, we found that newly differentiated cholangiocytes progressively form a continuous and homogeneous luminal network. Elongation of this continuous network toward the liver periphery was attenuated by a potent Notch-signaling inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. Subsequent to this first step, the fine homogenous network is reorganized into the mature hierarchical network consisting of large ducts and small ductules. Between E17 and E18, when the homogenous network is radically reorganized into the mature hierarchical network, bile canaliculi rapidly extend and bile flow into IHBDs may increase. When formation of bile canaliculi was blocked between E16 and E18 by a multidrug resistance protein 2 inhibitor (benzbromarone), the structural rearrangement of IHBDs was significantly suppressed. CONCLUSION Establishment of the mature IHBD network consists of two sequential events: (1) formation of the continuous luminal network regulated by the Notch-signaling pathway and (2) dynamic rearrangement of the homogeneous network into the hierarchical network induced by increased bile flow resulting from the establishment of hepatobiliary connections. (Hepatology 2016;64:175-188).
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kota Kaneko
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo, Japan
| | - Tohru Itoh
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo, Japan
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayuki Ishii
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koichi Hirata
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
132
|
Caviglia S, Brankatschk M, Fischer EJ, Eaton S, Luschnig S. Staccato/Unc-13-4 controls secretory lysosome-mediated lumen fusion during epithelial tube anastomosis. Nat Cell Biol 2016; 18:727-39. [DOI: 10.1038/ncb3374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 05/11/2016] [Indexed: 12/12/2022]
|
133
|
Suizu F, Hirata N, Kimura K, Edamura T, Tanaka T, Ishigaki S, Donia T, Noguchi H, Iwanaga T, Noguchi M. Phosphorylation-dependent Akt-Inversin interaction at the basal body of primary cilia. EMBO J 2016; 35:1346-63. [PMID: 27220846 PMCID: PMC4883026 DOI: 10.15252/embj.201593003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
A primary cilium is a microtubule‐based sensory organelle that plays an important role in human development and disease. However, regulation of Akt in cilia and its role in ciliary development has not been demonstrated. Using yeast two‐hybrid screening, we demonstrate that Inversin (INVS) interacts with Akt. Mutation in the INVS gene causes nephronophthisis type II (NPHP2), an autosomal recessive chronic tubulointerstitial nephropathy. Co‐immunoprecipitation assays show that Akt interacts with INVS via the C‐terminus. In vitro kinase assays demonstrate that Akt phosphorylates INVS at amino acids 864–866 that are required not only for Akt interaction, but also for INVS dimerization. Co‐localization of INVS and phosphorylated form of Akt at the basal body is augmented by PDGF‐AA. Akt‐null MEF cells as well as siRNA‐mediated inhibition of Akt attenuated ciliary growth, which was reversed by Akt reintroduction. Mutant phosphodead‐ or NPHP2‐related truncated INVS, which lack Akt phosphorylation sites, suppress cell growth and exhibit distorted lumen formation and misalignment of spindle axis during cell division. Further studies will be required for elucidating functional interactions of Akt–INVS at the primary cilia for identifying the molecular mechanisms underlying NPHP2.
Collapse
Affiliation(s)
- Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Noriyuki Hirata
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Kohki Kimura
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Tatsuma Edamura
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Tsutomu Tanaka
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Satoko Ishigaki
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Thoria Donia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hiroko Noguchi
- Department of Pathology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| |
Collapse
|
134
|
Sundaram MV, Cohen JD. Time to make the doughnuts: Building and shaping seamless tubes. Semin Cell Dev Biol 2016; 67:123-131. [PMID: 27178486 DOI: 10.1016/j.semcdb.2016.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
A seamless tube is a very narrow-bore tube that is composed of a single cell with an intracellular lumen and no adherens or tight junctions along its length. Many capillaries in the vertebrate vascular system are seamless tubes. Seamless tubes also are found in invertebrate organs, including the Drosophila trachea and the Caenorhabditis elegans excretory system. Seamless tube cells can be less than a micron in diameter, and they can adopt very simple "doughnut-like" shapes or very complex, branched shapes comparable to those of neurons. The unusual topology and varied shapes of seamless tubes raise many basic cell biological questions about how cells form and maintain such structures. The prevalence of seamless tubes in the vascular system means that answering such questions has significant relevance to human health. In this review, we describe selected examples of seamless tubes in animals and discuss current models for how seamless tubes develop and are shaped, focusing particularly on insights that have come from recent studies in Drosophila and C. elegans.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jennifer D Cohen
- Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
135
|
Rupik W, Kowalska M, Swadźba E, Maślak R. Ultrastructural features of the differentiating thyroid primordium in the sand lizard (Lacerta agilis L.) from the differentiation of the cellular cords to the formation of the follicular lumen. ZOOLOGY 2016; 119:97-112. [DOI: 10.1016/j.zool.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/03/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022]
|
136
|
Asan A, Raiders SA, Priess JR. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes. PLoS Genet 2016; 12:e1005950. [PMID: 27035721 PMCID: PMC4817974 DOI: 10.1371/journal.pgen.1005950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/01/2016] [Indexed: 11/21/2022] Open
Abstract
Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik’s cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells. This report uses the intestine of the nematode C. elegans as a model system to address how progenitor cells form a three-dimensional organ. The fully formed intestine is a cylindrical tube of only 20 epithelial cells, and all of these cells are descendants of a single cell, the E blastomere. The E descendants form a primordium that changes shape over time as different E descendants divide and move. Cells in the primordium must continually adhere to each other during these movements to maintain the integrity of the primordium. Here, we generated a 3D graphic reconstruction of the developing intestine in order to analyze these events. We found that the cell movements are highly reproducible, suggesting that they are programmed by asymmetric gene expression in the primordium. In particular, we found that the conserved receptor LIN-12/Notch appears to modulate left-right adhesion in the primordium, leading to the asymmetric packing of cells. One of the most remarkable events in intestinal morphogenesis is the circumferential rotation of a subset of cells. We found that rotation appears to have a role in aligning the developing lumen of the intestine, and involves a conserved, UNC-6/netrin signaling pathway that is best known for its roles in the guided growth of neurons.
Collapse
Affiliation(s)
- Alparsan Asan
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephan A. Raiders
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
137
|
Xu B, Washington AM, Domeniconi RF, Ferreira Souza AC, Lu X, Sutherland A, Hinton BT. Protein tyrosine kinase 7 is essential for tubular morphogenesis of the Wolffian duct. Dev Biol 2016; 412:219-33. [PMID: 26944093 DOI: 10.1016/j.ydbio.2016.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/28/2016] [Indexed: 11/30/2022]
Abstract
The Wolffian duct, the proximal end of the mesonephric duct, undergoes non-branching morphogenesis to achieve an optimal length and size for sperm maturation. It is important to examine the mechanisms by which the developing mouse Wolffian duct elongates and coils for without proper morphogenesis, male infertility will result. Here we show that highly proliferative epithelial cells divide in a random orientation relative to the elongation axis in the developing Wolffian duct. Convergent extension (CE)-like of cell rearrangements is required for elongating the duct while maintaining a relatively unchanged duct diameter. The Wolffian duct epithelium is planar polarized, which is characterized by oriented cell elongation, oriented cell rearrangements, and polarized activity of regulatory light chain of myosin II. Conditional deletion of protein tyrosine kinase 7 (PTK7), a regulator of planar cell polarity (PCP), from mesoderm results in loss of the PCP characteristics in the Wolffian duct epithelium. Although loss of Ptk7 does not alter cell proliferation or division orientation, it affects CE and leads to the duct with significantly shortened length, increased diameter, and reduced coiling, which eventually results in loss of sperm motility, a key component of sperm maturation. In vitro experiments utilizing inhibitors of myosin II results in reduced elongation and coiling, similar to the phenotype of Ptk7 knockout. This data suggest that PTK7 signaling through myosin II regulates PCP, which in turn ensures CE-like of cell rearrangements to drive elongation and coiling of the Wolffian duct. Therefore, PTK7 is essential for Wolffian duct morphogenesis and male fertility.
Collapse
Affiliation(s)
- Bingfang Xu
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, USA
| | - Angela M Washington
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, USA
| | - Raquel Fantin Domeniconi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, USA; Department of Anatomy, Institute of Biosciences - UNESP, Botucatu, Brazil
| | - Ana Cláudia Ferreira Souza
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, USA; Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, USA
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, USA
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
138
|
Li Q, Zhang Y, Pluchon P, Robens J, Herr K, Mercade M, Thiery JP, Yu H, Viasnoff V. Extracellular matrix scaffolding guides lumen elongation by inducing anisotropic intercellular mechanical tension. Nat Cell Biol 2016; 18:311-8. [PMID: 26878396 DOI: 10.1038/ncb3310] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
The de novo formation of secretory lumens plays an important role during organogenesis. It involves the establishment of a cellular apical pole and the elongation of luminal cavities. The molecular parameters controlling cell polarization have been heavily scrutinized. In particular, signalling from the extracellular matrix (ECM) proved essential to the proper localization of the apical pole by directed protein transport. However, little is known about the regulation of the shape and the directional development of lumen into tubes. We demonstrate that the spatial scaffolding of cells by ECM can control tube shapes and can direct their elongation. We developed a minimal organ approach comprising of hepatocyte doublets cultured in artificial microniches to precisely control the spatial organization of cellular adhesions in three dimensions. This approach revealed a mechanism by which the spatial repartition of integrin-based adhesion can elicit an anisotropic intercellular mechanical stress guiding the osmotically driven elongation of lumens in the direction of minimal tension. This mechanical guidance accounts for the different morphologies of lumen in various microenvironmental conditions.
Collapse
Affiliation(s)
- Qiushi Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yue Zhang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Perrine Pluchon
- Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| | - Jeffrey Robens
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Keira Herr
- Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Myriam Mercade
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, INSA, INRA, CNRS, 31077 Toulouse, France
| | - Jean-Paul Thiery
- Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117597, Singapore.,Institute of Bioengineering and Nanotechnology (IBN), Agency for Science, Technology and Research, Singapore 138669, Singapore
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore.,Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore.,CNRS UMI3639, Singapore 117411, Singapore
| |
Collapse
|
139
|
Huebner RJ, Neumann NM, Ewald AJ. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration. Development 2016; 143:983-93. [PMID: 26839364 DOI: 10.1242/dev.127944] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/27/2016] [Indexed: 01/18/2023]
Abstract
Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling.
Collapse
Affiliation(s)
- Robert J Huebner
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD 21205, USA
| | - Neil M Neumann
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD 21205, USA
| | - Andrew J Ewald
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD 21205, USA
| |
Collapse
|
140
|
Cellular Barriers after Extravasation: Leukocyte Interactions with Polarized Epithelia in the Inflamed Tissue. Mediators Inflamm 2016; 2016:7650260. [PMID: 26941485 PMCID: PMC4749818 DOI: 10.1155/2016/7650260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
During the inflammatory response, immune cells egress from the circulation and follow a chemotactic and haptotactic gradient within the tissue, interacting with matrix components in the stroma and with parenchymal cells, which guide them towards the sites of inflammation. Polarized epithelial cells compartmentalize tissue cavities and are often exposed to inflammatory challenges such as toxics or infections in non-lymphoid tissues. Apicobasal polarity is critical to the specialized functions of these epithelia. Indeed, a common feature of epithelial dysfunction is the loss of polarity. Here we review evidence showing that apicobasal polarity regulates the inflammatory response: various polarized epithelia asymmetrically secrete chemotactic mediators and polarize adhesion receptors that dictate the route of leukocyte migration within the parenchyma. We also discuss recent findings showing that the loss of apicobasal polarity increases leukocyte adhesion to epithelial cells and the consequences that this could have for the inflammatory response towards damaged, infected or transformed epithelial cells.
Collapse
|
141
|
Martial S. Involvement of ion channels and transporters in carcinoma angiogenesis and metastasis. Am J Physiol Cell Physiol 2016; 310:C710-27. [PMID: 26791487 DOI: 10.1152/ajpcell.00218.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Angiogenesis is a finely tuned process, which is the result of the equilibrium between pro- and antiangiogenic factors. In solid tumor angiogenesis, the balance is highly in favor of the production of new, but poorly functional blood vessels, initially intended to provide growing tumors with nutrients and oxygen. Among the numerous proteins involved in tumor development, several types of ion channels are overexpressed in tumor cells, as well as in stromal and endothelial cells. Ion channels thus actively participate in the different hallmarks of cancer, especially in tumor angiogenesis and metastasis. Indeed, from their strategic localization in the plasma membrane, ion channels are key operators of cell signaling, as they sense and respond to environmental changes. This review aims to decipher how ion channels of different families are intricately involved in the fundamental angiogenesis and metastasis hallmarks, which lead from a nascent tumor to systemic dissemination. An overview of the possible use of ion channels as therapeutic targets will also be given, showing that ion channel inhibitors or specific antibodies may provide effective tools, in the near future, in the treatment of carcinomas.
Collapse
Affiliation(s)
- Sonia Martial
- Institut de Recherche sur le Cancer et le Vieillissement, CNRS UMR 7284, Inserm U1081, Université Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
142
|
Enemchukwu NO, Cruz-Acuña R, Bongiorno T, Johnson CT, García JR, Sulchek T, García AJ. Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J Cell Biol 2015; 212:113-24. [PMID: 26711502 PMCID: PMC4700478 DOI: 10.1083/jcb.201506055] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial cells cultured within collagen and laminin gels proliferate to form hollow and polarized spherical structures, recapitulating the formation of a rudimentary epithelial organ. However, the contributions of extracellular matrix (ECM) biochemical and biophysical properties to morphogenesis are poorly understood because of uncontrolled presentation of multiple adhesive ligands, limited control over mechanical properties, and lot-to-lot compositional variability in these natural ECMs. We engineered synthetic ECM-mimetic hydrogels with independent control over adhesive ligand density, mechanical properties, and proteolytic degradation to study the impact of ECM properties on epithelial morphogenesis. Normal cyst growth, polarization, and lumen formation were restricted to a narrow range of ECM elasticity, whereas abnormal morphogenesis was observed at lower and higher elastic moduli. Adhesive ligand density dramatically regulated apicobasal polarity and lumenogenesis independently of cell proliferation. Finally, a threshold level of ECM protease degradability was required for apicobasal polarity and lumen formation. This synthetic ECM technology provides new insights into how cells transduce ECM properties into complex morphogenetic behaviors.
Collapse
Affiliation(s)
- Nduka O Enemchukwu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Ricardo Cruz-Acuña
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332 Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tom Bongiorno
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Christopher T Johnson
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332 Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Todd Sulchek
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
143
|
Abstract
My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology , University of Debrecen , PO Box 28, 4010 Debrecen , Hungary
| |
Collapse
|
144
|
Teshima T, Wells K, Lourenço S, Tucker A. Apoptosis in Early Salivary Gland Duct Morphogenesis and Lumen Formation. J Dent Res 2015; 95:277-83. [DOI: 10.1177/0022034515619581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salivary glands are essential for the maintenance of oral health by providing lubrication and antimicrobial protection to the mucosal and tooth surfaces. Saliva is modified and delivered to the oral cavity by a complex multifunctional ductal system. During development, these ducts form as solid tubes, which undergo cavitation to create lumens. Apoptosis has been suggested to play a role in this cavitation process along with changes in cell polarity. Here, we show that apoptosis occurs from the very earliest stages of mouse salivary gland development, much earlier than previously reported. Apoptotic cells were observed in the center of the first epithelial stalk at early-stage embryonic day 12.5 (E12.5) according to both TUNEL staining and cleaved caspase 3 immunofluorescence. The presumptive lumen space was highlighted by the colocalization of a predictive lumen marker, cytokeratin 7. At E14.5, as lumens start to form throughout the glands, apoptotic expression decreased while cytokeratin 7 remained positive. In vitro inhibition of all caspases in E12.5 and E13.5 salivary glands resulted in wider ducts, as compared with the controls, and a defect in lumen formation. In contrast, no such defect in lumen formation was observed at E14.5. Our data indicate that apoptosis is involved during early stages of gland formation (E12.5 onward) and appears important for shaping the forming ducts.
Collapse
Affiliation(s)
- T.H.N. Teshima
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - K.L. Wells
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, UK
| | - S.V. Lourenço
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - A.S. Tucker
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, UK
| |
Collapse
|
145
|
Guidance of subcellular tubulogenesis by actin under the control of a synaptotagmin-like protein and Moesin. Nat Commun 2015; 5:3036. [PMID: 24413568 PMCID: PMC3945880 DOI: 10.1038/ncomms4036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/29/2013] [Indexed: 02/05/2023] Open
Abstract
Apical membranes in many polarized epithelial cells show specialized morphological adaptations that fulfil distinct physiological functions. The air-transporting tubules of Drosophila tracheal terminal cells represent an extreme case of membrane specialization. Here we show that Bitesize (Btsz), a synaptotagmin-like protein family member, is needed for luminal membrane morphogenesis. Unlike in multicellular tubes and other epithelia, where it influences apical integrity by affecting adherens junctions, Btsz here acts at a distance from junctions. Localized at the luminal membrane through its tandem C2 domain, it recruits activated Moesin. Both proteins are needed for the integrity of the actin cytoskeleton at the luminal membrane, but not for other pools of F-actin in the cell, nor do actin-dependent processes at the outer membrane, such as filopodial activity or membrane growth depend on Btsz. Btsz and Moesin guide luminal membrane morphogenesis through organizing actin and allowing the incorporation of membrane containing the apical determinant Crumbs. The terminal branches of the Drosophila tracheal network have intracellular tubules that grow through elongation of membrane invaginations. Here, the authors identify the synaptotagmin-like protein Bitesize as a regulator of actin-dependent luminal membrane morphogenesis.
Collapse
|
146
|
Transient junction anisotropies orient annular cell polarization in the Drosophila airway tubes. Nat Cell Biol 2015; 17:1569-76. [DOI: 10.1038/ncb3267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022]
|
147
|
Nikolova LS, Metzstein MM. Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment. Development 2015; 142:3964-73. [PMID: 26428009 DOI: 10.1242/dev.127902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
Cellular tubes have diverse morphologies, including multicellular, unicellular and subcellular architectures. Subcellular tubes are found prominently within the vertebrate vasculature, the insect breathing system and the nematode excretory apparatus, but how such tubes form is poorly understood. To characterize the cellular mechanisms of subcellular tube formation, we have refined methods of high pressure freezing/freeze substitution to prepare Drosophila larvae for transmission electron microscopic (TEM) analysis. Using our methods, we have found that subcellular tube formation may proceed through a previously undescribed multimembrane intermediate composed of vesicles bound within a novel subcellular compartment. We have also developed correlative light/TEM procedures to identify labeled cells in TEM-fixed larval samples. Using this technique, we have found that Vacuolar ATPase (V-ATPase) and the V-ATPase regulator Rabconnectin-3 are required for subcellular tube formation, probably in a step resolving the intermediate compartment into a mature lumen. In general, our ultrastructural analysis methods could be useful for a wide range of cellular investigations in Drosophila larvae.
Collapse
Affiliation(s)
- Linda S Nikolova
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
148
|
Talin is required to position and expand the luminal domain of the Drosophila heart tube. Dev Biol 2015; 405:189-201. [DOI: 10.1016/j.ydbio.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
|
149
|
Yu JA, Castranova D, Pham VN, Weinstein BM. Single-cell analysis of endothelial morphogenesis in vivo. Development 2015; 142:2951-61. [PMID: 26253401 PMCID: PMC4582182 DOI: 10.1242/dev.123174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
Vessel formation has been extensively studied at the tissue level, but the difficulty in imaging the endothelium with cellular resolution has hampered study of the morphogenesis and behavior of endothelial cells (ECs) in vivo. We are using endothelial-specific transgenes and high-resolution imaging to examine single ECs in zebrafish. By generating mosaics with transgenes that simultaneously mark endothelial nuclei and membranes we are able to definitively identify and study the morphology and behavior of individual ECs during vessel sprouting and lumen formation. Using these methods, we show that developing trunk vessels are composed of ECs of varying morphology, and that single-cell analysis can be used to quantitate alterations in morphology and dynamics in ECs that are defective in proper guidance and patterning. Finally, we use single-cell analysis of intersegmental vessels undergoing lumen formation to demonstrate the coexistence of seamless transcellular lumens and single or multicellular enclosed lumens with autocellular or intercellular junctions, suggesting that heterogeneous mechanisms contribute to vascular lumen formation in vivo. The tools that we have developed for single EC analysis should facilitate further rigorous qualitative and quantitative analysis of EC morphology and behavior in vivo.
Collapse
Affiliation(s)
- Jianxin A Yu
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Castranova
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Van N Pham
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brant M Weinstein
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
150
|
Chadha KC, Nair B, Godoy A, Rajnarayanan R, Nabi E, Zhou R, Patel NR, Aalinkeel R, Schwartz SA, Smith GJ. Anti-angiogenic activity of PSA-derived peptides. Prostate 2015; 75:1285-99. [PMID: 25963523 DOI: 10.1002/pros.23010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/02/2015] [Indexed: 11/11/2022]
Abstract
BACKGROUND PSA is a biomarker for diagnosis and management of prostate cancer. PSA is known to have anti-tumorigenic activities, however, the physiological role of PSA in prostate tumor progression is not well understood. METHODS Five candidate peptides identified based upon computer modeling of the PSA crystal structure and hydrophobicity were synthesized at >95% purity. The peptides in a linear form, and a constrained form forced by a di-sulfide bond joining the two ends of the peptide, were investigated for anti-angiogenic activity in HUVEC. RESULTS None of the five PSA-mimetic peptides exhibited PSA-like serine protease activity. Two of the peptides demonstrated significant anti-angiogenic activity in HUVEC based on (i) inhibition of cell migration and invasion; (ii) inhibition of tube formation in Matrigel; (iii) anti-angiogenic activity in a sprouting assay; and (iv) altered expression of pro- and anti-angiogenic growth factors. Constrained PSA-mimetic peptides had greater anti-angiogenic activity than the corresponding linearized form. Complexing of PSA with ACT eliminated PSA enzymatic activity and reduced anti-angiogenic activity. In contrast, ACT had no effect on the anti-angiogenic effects of the linear or constrained PSA-mimetic peptides. Modeling of the ACT-PSA complex demonstrated ACT sterically blocks the anti-angiogenic activity of the two bioactive peptides. CONCLUSIONS The interaction of a hydrophilic domain on the surface of the PSA molecule with a target on the cell membrane of prostate endothelial and epithelial cells was responsible for the anti-angiogenic or anti-tumorigenic activity of PSA: enzymatic activity was not associated with anti-angiogenic effects. Furthermore, since PSA and ACT are both expressed within the human prostate tissue microenvironment, the balance of their expression may represent a mechanism for endogenous regulation of tissue angiogenesis.
Collapse
Affiliation(s)
- Kailash C Chadha
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Bindukumar Nair
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
- Division of Allergy/Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo, New York
| | - Alejandro Godoy
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rajendram Rajnarayanan
- Department of Pharmacology & Toxicology, State University of New York at Buffalo, Buffalo, NewYork
| | - Erik Nabi
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Rita Zhou
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Neel R Patel
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Ravikumar Aalinkeel
- Division of Allergy/Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo, New York
| | - Stanley A Schwartz
- Division of Allergy/Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, Buffalo, New York
| | - Gary J Smith
- Department of Urologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|