101
|
Fusello A, Horowitz J, Yang-Iott K, Brady BL, Yin B, Rowh MAW, Rappaport E, Bassing CH. Histone H2AX suppresses translocations in lymphomas of Eμ-c-Myc transgenic mice that contain a germline amplicon of tumor-promoting genes. Cell Cycle 2013; 12:2867-75. [PMID: 23966158 DOI: 10.4161/cc.25922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The DNA damage response (DDR) can restrain the ability of oncogenes to cause genomic instability and drive malignant transformation. The gene encoding the histone H2AX DDR factor maps to 11q23, a region frequently altered in human cancers. Since H2ax functions as a haploinsufficient suppressor of B lineage lymphomas with c-Myc amplification and/or translocation, we determined the impact of H2ax expression on the ability of deregulated c-Myc expression to cause genomic instability and drive transformation of B cells. Neither H2ax deficiency nor haploinsufficiency affected the rate of mortality of Eμ-c-Myc mice from B lineage lymphomas with genomic deletions and amplifications. Yet H2ax functioned in a dosage-dependent manner to prevent unbalanced translocations in Eμ-c-Myc tumors, demonstrating that H2ax functions in a haploinsufficient manner to suppress allelic imbalances and limit molecular heterogeneity within and among Eμ-c-Myc lymphomas. Regardless of H2ax copy number, all Eμ-c-Myc tumors contained identical amplification of chromosome 19 sequences spanning 20 genes. Many of these genes encode proteins with tumor-promoting activities, including Cd274, which encodes the PD-L1 programmed death ligand that induces T cell apoptosis and enables cancer cells to escape immune surveillance. This amplicon was in non-malignant B and T cells and non-lymphoid cells, linked to the Eμ-c-Myc transgene, and associated with overexpression of PD-L1 on non-malignant B cells. Our data demonstrate that, in addition to deregulated c-Myc expression, non-malignant B lineage lymphocytes of Eμ-c-Myc transgenic mice may have constitutive amplification and increased expression of other tumor-promoting genes.
Collapse
Affiliation(s)
- Angela Fusello
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia Research Institute; Philadelphia, PA USA; Abramson Family Cancer Research Institute; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Scully R, Xie A. Double strand break repair functions of histone H2AX. Mutat Res 2013; 750:5-14. [PMID: 23916969 DOI: 10.1016/j.mrfmmm.2013.07.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022]
Abstract
Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin, characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form "γH2AX"). The γH2AX response contributes to the repair of double strand breaks encountered in a variety of different contexts, including those induced by ionizing radiation, physiologically programmed breaks that characterize normal immune cell development and the pathological exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the evolutionarily conserved process of sister chromatid recombination, a homologous recombination pathway involved in the suppression of genomic instability during DNA replication and directly implicated in tumor suppression. At a biochemical level, the γH2AX response provides a compelling example of how the "histone code" is adapted to the regulation of double strand break repair. Here, we review progress in research aimed at understanding how γH2AX contributes to double strand break repair in mammalian cells.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States.
| | | |
Collapse
|
103
|
Abstract
Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles of histone posttranslational modifications and the significance of AID function outside of antibody diversity.
Collapse
Affiliation(s)
- Jeremy A. Daniel
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
104
|
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71:379-404. [PMID: 23652611 DOI: 10.1007/s00018-013-1343-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | | | | | | | | | | |
Collapse
|
105
|
Chene G, Tchirkov A, Pierre-Eymard E, Dauplat J, Raoelfils I, Cayre A, Watkin E, Vago P, Penault-Llorca F. Early telomere shortening and genomic instability in tubo-ovarian preneoplastic lesions. Clin Cancer Res 2013; 19:2873-82. [PMID: 23589176 DOI: 10.1158/1078-0432.ccr-12-3947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic instability plays an important role in ovarian carcinogenesis. We investigated the level of telomere shortening and genomic instability in early and preinvasive stages of ovarian cancer, serous tubal intraepithelial carcinoma (STIC), and tubo-ovarian dysplasia (TOD). EXPERIMENTAL DESIGN Fifty-one TOD from prophylactic salpingo-oophorectomies with BRCA1 or 2 mutation, 12 STICs, 53 tubo-ovarian high-grade serous carcinoma, and 36 noncancerous controls were laser capture microdissected from formalin-fixed, paraffin-embedded sections, analyzed by comparative genomic hybridization (array CGH) and for telomere length (using quantitative real-time PCR based on the Cawthon's method). TOD and STICs were defined by morphologic scores and immunohistochemical expressions of p53, Ki67, and γH2AX. RESULTS TOD showed marked telomere shortening compared with noncancerous controls (P < 10(-7)). STICs had even shorter telomeres than TOD (P = 0.0008). Ovarian carcinoma had shorter telomeres than controls but longer than STICs and dysplasia. In TOD, telomeres were significantly shorter in those with BRCA1 mutation than in those with BRCA2 mutation (P = 0.005). In addition, γH2AX expression in TOD and STIC groups with short telomeres was significantly increased (P < 10(-7)). In dysplastic epithelium, we found subtle genomic alterations, in contrast to more important genomic imbalances in STICs. The total number of genetic alterations was the highest in ovarian cancers. CONCLUSIONS These findings suggest that genetic instability occurs in early stages of ovarian tumorigenesis. STICs and noninvasive dysplasia are likely an important step in early serous ovarian neoplasia.
Collapse
Affiliation(s)
- Gautier Chene
- Department of Histopathology, Centre Jean Perrin, ERTICA Research Team, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Brady BL, Rupp LJ, Bassing CH. Requirement for dicer in survival of proliferating thymocytes experiencing DNA double-strand breaks. THE JOURNAL OF IMMUNOLOGY 2013; 190:3256-66. [PMID: 23427252 DOI: 10.4049/jimmunol.1200957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Dicer nuclease generates small RNAs that regulate diverse biological processes through posttranscriptional gene repression and epigenetic silencing of transcription and recombination. Dicer-deficient cells exhibit impaired differentiation, activity, proliferation, and survival. Dicer inactivation in developing mouse lymphocytes impairs their proliferation and survival and alters Ag receptor gene repertoires for largely undefined reasons. To elucidate functions of Dicer in lymphocyte development and Ag receptor locus transcription and recombination, we analyzed mice with conditional Dicer deletion in thymocytes containing unrearranged or prerearranged TCRβ loci. Expression of either a preassembled functional TCRβ gene (Vβ1(NT)) or the prosurvival BCL2 protein inhibited death and partially rescued proliferative expansion of Dicer-deficient thymocytes. Notably, combined expression of Vβ1(NT) and BCL2 completely rescued proliferative expansion of Dicer-deficient thymocytes and revealed that Dicer promotes survival of cells attempting TCRβ recombination. Finally, inclusion of an endogenous preassembled DJβ complex that enhances Vβ recombination increased death and impaired proliferative expansion of Dicer-deficient thymocytes. These data demonstrate a critical role for Dicer in promoting survival of thymocytes experiencing DNA double-strand breaks (DSBs) during TCRβ recombination. Because DSBs are common and ubiquitous in cells, our findings indicate that impaired cellular survival in response to DSBs should be considered when interpreting Dicer-deficient phenotypes.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
107
|
Conditional inactivation of p53 in mature B cells promotes generation of nongerminal center-derived B-cell lymphomas. Proc Natl Acad Sci U S A 2013; 110:2934-9. [PMID: 23382223 DOI: 10.1073/pnas.1222570110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The p53 tumor suppressor exerts a central role in protecting cells from oncogenic transformation. Accordingly, the p53 gene is mutated in a large number of human cancers. In mice, germ-line inactivation of p53 confers strong predisposition to development of different types of malignancies, but the early onset of thymic lymphomas in the majority of the animals prevents detailed studies of tumorigenesis in other tissues. Here, we use the Cre/Lox approach to inactivate p53 in mature B cells in mice (referred to as "CP" B cells) and find that such p53 inactivation results in the routine development of IgM-positive CP peripheral B-cell lymphomas. The CP lymphomas generally appear to arise, even in mice subjected to immunization protocols to activate germinal center reaction, from naive B cells that had not undergone immunoglobulin (Ig) heavy chain gene class switching or somatic hypermutation. In contrast to thymic lymphomas that arise in p53-deficient mice, which generally lack clonal translocations, nearly all analyzed CP B-cell tumors carried clonal translocations. However, in contrast to spontaneous translocations in other mouse B-cell tumor models, CP B-cell tumor translocations were not recurrent and did not involve Ig loci. Therefore, CP tumors might provide models for human lymphomas lacking Ig translocations, such as splenic marginal zone B-cell lymphoma or Waldenstrom macroglobulinemia. Our studies indicate that deletion of p53 is sufficient to trigger transformation of mature B cells and support the notion that p53 deficiency may allow accumulation of oncogenic translocations in B cells.
Collapse
|
108
|
Yamane A, Robbiani DF, Resch W, Bothmer A, Nakahashi H, Oliveira T, Rommel PC, Brown EJ, Nussenzweig A, Nussenzweig MC, Casellas R. RPA accumulation during class switch recombination represents 5'-3' DNA-end resection during the S-G2/M phase of the cell cycle. Cell Rep 2013; 3:138-47. [PMID: 23291097 PMCID: PMC3563767 DOI: 10.1016/j.celrep.2012.12.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/14/2012] [Accepted: 12/12/2012] [Indexed: 01/15/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) promotes chromosomal translocations by inducing DNA double-strand breaks (DSBs) at immunoglobulin (Ig) genes and oncogenes in the G1 phase. RPA is a single-stranded DNA (ssDNA)-binding protein that associates with resected DSBs in the S phase and facilitates the assembly of factors involved in homologous repair (HR), such as Rad51. Notably, RPA deposition also marks sites of AID-mediated damage, but its role in Ig gene recombination remains unclear. Here, we demonstrate that RPA associates asymmetrically with resected ssDNA in response to lesions created by AID, recombination-activating genes (RAG), or other nucleases. Small amounts of RPA are deposited at AID targets in G1 in an ATM-dependent manner. In contrast, recruitment in the S-G2/M phase is extensive, ATM independent, and associated with Rad51 accumulation. In the S-G2/M phase, RPA increases in nonhomologous-end-joining-deficient lymphocytes, where there is more extensive DNA-end resection. Thus, most RPA recruitment during class switch recombination represents salvage of unrepaired breaks by homology-based pathways during the S-G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Arito Yamane
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Boboila C, Alt FW, Schwer B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol 2013; 116:1-49. [PMID: 23063072 DOI: 10.1016/b978-0-12-394300-2.00001-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Classical nonhomologous end joining (C-NHEJ) is one of the two major known pathways for the repair of DNA double-strand breaks (DSBs) in mammalian cells. Our understanding of C-NHEJ has been derived, in significant part, through studies of programmed physiologic DNA DSBs formed during V(D)J recombination in the developing immune system. Studies of immunoglobulin heavy-chain (IgH) class-switch recombination (CSR) also have revealed that there is an "alternative" end-joining process (A-EJ) that can function, relatively robustly, in the repair of DSBs in activated mature B lymphocytes. This A-EJ process has also been implicated in the formation of oncogenic translocations found in lymphoid tumors. In this review, we discuss our current understanding of C-NHEJ and A-EJ in the context of V(D)J recombination, CSR, and the formation of chromosomal translocations.
Collapse
Affiliation(s)
- Cristian Boboila
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | | | | |
Collapse
|
110
|
Abstract
BRCA1 is a key mediator of DNA repair pathways and participates in the maintenance of the genomic integrity of cells. The control of DNA damage repair mechanisms by BRCA1 is of great interest since molecular defects in this pathway may reflect a predictive value in terms of a cell’s sensitivity to DNA damaging agents or anticancer drugs. BRCA1 has been found to exhibit a hormone-dependent pattern of expression in breast cells. Wild-type BRCA1 is required for the inhibition of the growth of breast tumor cells in response to the pure steroidal ERα antagonist fulvestrant. Also a loss of BRCA1-mediated transcriptional activation of ERα expression results in increased resistance to ERα antagonists. Platinum-based drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, and their combination are currently included in chemotherapy regimens for breast cancer. Preclinical and clinical studies in a BRCA1-defective setting have recently indicated a rationale for the use of these compounds against hereditary breast cancers. Initial findings indicate that neoadjuvant use of cisplatin results in high rates of complete pathological response in patients with breast cancer who have BRCA1 mutations. Cisplatin produces a better response in triple-negative breast cancer (TNBC) than in non-TNBC diseases in both the neoadjuvant and adjuvant settings. This implies that TNBC cells may harbor a dysfunctional BRCA1 repair pathway.
Collapse
|
111
|
Darzynkiewicz Z, Zhao H, Halicka HD, Rybak P, Dobrucki J, Wlodkowic D. DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis. Crit Rev Clin Lab Sci 2012; 49:199-217. [PMID: 23137030 DOI: 10.3109/10408363.2012.738808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
112
|
Abstract
The histone variant H2AX is a principal component of chromatin involved in the detection, signaling, and repair of DNA double-strand breaks (DSBs). H2AX is thought to operate primarily through its C-terminal S139 phosphorylation, which mediates the recruitment of DNA damage response (DDR) factors to chromatin at DSB sites. Here, we describe a comprehensive screen of 67 residues in H2AX to determine their contributions to H2AX functions. Our analysis revealed that H2AX is both sumoylated and ubiquitylated. Individual residues defective for sumoylation, ubiquitylation, and S139 phosphorylation in untreated and damaged cells were identified. Specifically, we identified an acidic triad region in both H2A and H2AX that is required in cis for their ubiquitylation. We also report the characterization of a human H2AX knockout cell line, which exhibits DDR defects, including p53 activation, following DNA damage. Collectively, this work constitutes the first genetic complementation system for a histone in human cells. Finally, our data reveal new roles for several residues in H2AX and define distinct functions for H2AX in human cells.
Collapse
|
113
|
Sulli G, Di Micco R, d'Adda di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 2012; 12:709-20. [PMID: 22952011 DOI: 10.1038/nrc3344] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The generation of DNA lesions and the resulting activation of DNA damage response (DDR) pathways are both affected by the chromatin status at the site of damaged DNA. In turn, DDR activation affects the chromatin at both the damaged site and across the whole genome. Cellular senescence and cancer are associated with the engagement of the DDR pathways and with profound chromatin changes. In this Opinion article, we discuss the interplay between chromatin and DDR factors in the context of cellular senescence that is induced by oncogenes and in cancer.
Collapse
Affiliation(s)
- Gabriele Sulli
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | | | | |
Collapse
|
114
|
Garcia-Canton C, Anadón A, Meredith C. γH2AX as a novel endpoint to detect DNA damage: applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro 2012; 26:1075-86. [PMID: 22735693 DOI: 10.1016/j.tiv.2012.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/17/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023]
Abstract
Histone H2AX is rapidly phosphorylated to become γH2AX after exposure to DNA-damaging agents that cause double-strand DNA breaks (DSBs). γH2AX can be detected and quantified by numerous methods, giving a direct correlation with the number of DSBs. This relationship has made γH2AX an increasingly utilised endpoint in multiple scientific fields since its discovery in 1998. Applications include its use in pre-clinical drug assessment, as a biomarker of DNA damage and in in vitro mechanistic studies. Here, we review current in vitro regulatory and non-regulatory genotoxicity assays proposing the γH2AX assay as a potential complement to the current test battery. Additionally, we evaluate the use of the γH2AX assay to measure DSBs in vitro in tobacco product testing.
Collapse
Affiliation(s)
- Carolina Garcia-Canton
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, UK.
| | | | | |
Collapse
|
115
|
Yin B, Lee BS, Yang-Iott KS, Sleckman BP, Bassing CH. Redundant and nonredundant functions of ATM and H2AX in αβ T-lineage lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 189:1372-9. [PMID: 22730535 DOI: 10.4049/jimmunol.1200829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ataxia telangiectasia mutated (ATM) kinase and H2AX histone tumor suppressor proteins are each critical for maintenance of cellular genomic stability and suppression of lymphomas harboring clonal translocations. ATM is the predominant kinase that phosphorylates H2AX in chromatin around DNA double-strand breaks, including along lymphocyte Ag receptor loci cleaved during V(D)J recombination. However, combined germline inactivation of Atm and H2ax in mice causes early embryonic lethality associated with substantial cellular genomic instability, indicating that ATM and H2AX exhibit nonredundant functions in embryonic cells. To evaluate potential nonredundant roles of ATM and H2AX in somatic cells, we generated and analyzed Atm-deficient mice with conditional deletion of H2ax in αβ T-lineage lymphocytes. Combined Atm/H2ax inactivation starting in early-stage CD4(-)/CD8(-) thymocytes resulted in lower numbers of later-stage CD4(+)/CD8(+) thymocytes, but led to no discernible V(D)J recombination defect in G1 phase cells beyond that observed in Atm-deficient cells. H2ax deletion in Atm-deficient thymocytes also did not affect the incidence or mortality of mice from thymic lymphomas with clonal chromosome 14 (TCRα/δ) translocations. Yet, in vitro-stimulated Atm/H2ax-deficient splenic αβ T cells exhibited a higher frequency of genomic instability, including radial chromosome translocations and TCRβ translocations, compared with cells lacking Atm or H2ax. Collectively, our data demonstrate that both redundant and nonredundant functions of ATM and H2AX are required for normal recombination of TCR loci, proliferative expansion of developing thymocytes, and maintenance of genomic stability in cycling αβ T-lineage cells.
Collapse
Affiliation(s)
- Bu Yin
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
116
|
The quiescent cellular state is Arf/p53-dependent and associated with H2AX downregulation and genome stability. Int J Mol Sci 2012; 13:6492-6506. [PMID: 22754379 PMCID: PMC3382772 DOI: 10.3390/ijms13056492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/17/2022] Open
Abstract
Cancer is a disease associated with genomic instability and mutations. Excluding some tumors with specific chromosomal translocations, most cancers that develop at an advanced age are characterized by either chromosomal or microsatellite instability. However, it is still unclear how genomic instability and mutations are generated during the process of cellular transformation and how the development of genomic instability contributes to cellular transformation. Recent studies of cellular regulation and tetraploidy development have provided insights into the factors triggering cellular transformation and the regulatory mechanisms that protect chromosomes from genomic instability.
Collapse
|
117
|
PARP1 and DNA-PKcs synergize to suppress p53 mutation and telomere fusions during T-lineage lymphomagenesis. Oncogene 2012; 32:1761-71. [PMID: 22614020 DOI: 10.1038/onc.2012.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) interacts genetically with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress early-onset T-lineage lymphomas in the mouse, but the underlying mechanisms have remained unknown. To address this question, we analyzed a series of lymphomas arising in PARP1(-/-)/DNA-PKcs(-/-) (P1(-/-)/D(-/-)) mice. We found that, despite defective V(D)J recombination, P1(-/-)/D(-/-) lymphomas lacked clonal reciprocal translocations involving antigen-receptor loci. Instead, tumor cells were characterized by aneuploidy driven by two main mechanisms: p53 inactivation and abnormal chromosome disjunction due to telomere fusions (TFs). Aberrant accumulation of p53 was observed in 13/19 (68.4%) lymphomas. Sequence analysis revealed five p53 mutations: three missense point mutations (one transition in exon 8 and two transversions in exons 5 and 8, respectively), one in-frame 5-11 microindel in exon 7 and a 410-bp deletion encompassing exons 5-8, resulting in a truncated protein. Analysis of tumor metaphases using sequential telomere fluorescent in-situ hybridization and spectral karyotyping revealed that nine out of nine lymphomas contained TFs. Mutant but not wild-type p53 status was associated with frequent clonal and nonclonal TFs, suggesting that p53 normally limits the extent of telomere dysfunction during transformation. Chromosomes involved in TFs were more likely to be aneuploid than chromosomes not involved in TFs in the same metaphases, regardless of the p53 status, indicating that TFs promote aneuploidy via a mechanism that is distinct from p53 loss. Finally, analysis of radiation responses in P1(-/-)/D(-/-), and control primary cells and tissues indicates that loss of PARP1 increases in vivo radiosensitivity and genomic instability in DNA-PKcs-deficient mice without impairing p53 stabilization and effector functions, suggesting a more severe defect in double-strand break (DSB) repair in double mutants. Together, our findings uncover defective DSB repair leading to tumor suppressor inactivation and abnormal segregation of fused chromosomes as two novel mechanisms promoting tumorigenesis in thymocytes lacking PARP1 and DNA-PKcs.
Collapse
|
118
|
Kang MA, So EY, Ouchi T. Deregulation of DNA damage response pathway by intercellular contact. J Biol Chem 2012; 287:16246-55. [PMID: 22431734 PMCID: PMC3351312 DOI: 10.1074/jbc.m111.337212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/02/2012] [Indexed: 11/06/2022] Open
Abstract
Deregulation of the DNA damage response (DDR) pathway could compromise genomic integrity in normal cells and reduce cancer cell sensitivity to anticancer treatments. We found that intercellular contact stabilizes histone H2AX and γH2AX (H2AX phosphorylated on Ser-139) by up-regulating N/E-cadherin and γ-catenin. γ-catenin and its DNA-binding partner LEF-1 indirectly increase levels of H2AX by suppressing the promoter of the RNF8 ubiquitin ligase, which decreases levels of H2AX protein under conditions of low intercellular contact. Hyperphosphorylation of DDR proteins is induced by up-regulated H2AX. Constitutive apoptosis is caused in confluent cells but is not further induced by DNA damage. This is conceivably due to insufficient p53 activation because ChIP assay shows that its DNA binding ability is not induced in those cells. Together, our results illustrate a novel mechanism of the regulation of DDR proteins by the cadherin-catenin pathway.
Collapse
Affiliation(s)
- Meyke Ausman Kang
- From the Department of Molecular Biosciences, Interdepartmental Biological Sciences Program, Northwestern University, Evanston, Illinois 60201
- the Department of Medicine, Systems Biology Program, National University of Health Sciences, University of Chicago, Evanston, Illinois 60201, and
| | - Eui-Young So
- the Department of Medicine, Systems Biology Program, National University of Health Sciences, University of Chicago, Evanston, Illinois 60201, and
- the Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Toru Ouchi
- From the Department of Molecular Biosciences, Interdepartmental Biological Sciences Program, Northwestern University, Evanston, Illinois 60201
- the Department of Medicine, Systems Biology Program, National University of Health Sciences, University of Chicago, Evanston, Illinois 60201, and
- the Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
119
|
Malla RR, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS. uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells. Neuro Oncol 2012; 14:745-60. [PMID: 22573309 DOI: 10.1093/neuonc/nos088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastomas present as diffuse tumors with invasion into normal brain tissue and frequently recur or progress after radiation as focal masses because of glioma-initiating cells. The role of the urokinase-type plasminogen activator receptor (uPAR) and cathepsin B in stem-like phenotype has been extensively studied in several solid tumors. In the present study, we demonstrated that selection of glioma-initiating cells using CD133 expression leads to a specific enrichment of CD133(+) cells in both U87 and 4910 cells. In addition, CD133(+) cells exhibited a considerable amount of other stem cell markers, such as Nestin and Sox-2. Radiation treatment significantly enhanced uPAR and cathepsin B levels in glioma-initiating cells. To downregulate radiation-induced uPAR and cathepsin B expression, we used a bicistronic shRNA construct that simultaneously targets both uPAR and cathepsin B (pCU). Downregulation of uPAR and cathepsin B using pCU decreased radiation-enhanced uPAR and cathepsin B levels and caused DNA damage-induced apoptosis in glioma cell lines and glioma-initiating cells. The most striking finding of this study is that knockdown of uPAR and cathepsin B inhibited ongoing transcription by suppressing BrUTP incorporation at γH2AX foci. In addition, uPAR and cathepsin B gene silencing inversely regulated survivin and H2AX expression in both glioma cells and glioma-initiating cells. Pretreatment with pCU reduced radiation-enhanced expression of uPAR, cathepsin B, and survivin and enhanced DNA damage in pre-established glioma in nude mice. Taken together, our in vitro and in vivo findings suggest that uPAR and cathepsin B inhibition might serve as an adjunct to radiation therapy to target glioma-initiating cells and, therefore, for the treatment of glioma.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
| | | | | | | | | | | |
Collapse
|
120
|
Finn K, Lowndes NF, Grenon M. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 2012; 69:1447-73. [PMID: 22083606 PMCID: PMC11115150 DOI: 10.1007/s00018-011-0875-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term "checkpoint" was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Karen Finn
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
121
|
Coordinate regulation of DNA damage and type I interferon responses imposes an antiviral state that attenuates mouse gammaherpesvirus type 68 replication in primary macrophages. J Virol 2012; 86:6899-912. [PMID: 22496235 DOI: 10.1128/jvi.07119-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA damage response (DDR) is a sophisticated cellular network that detects and repairs DNA breaks. Viruses are known to activate the DDR and usurp certain DDR components to facilitate replication. Intriguingly, viruses also inhibit several DDR proteins, suggesting that this cellular network has both proviral and antiviral features, with the nature of the latter still poorly understood. In this study we show that irradiation of primary murine macrophages was associated with enhanced expression of several antiviral interferon (IFN)-stimulated genes (ISGs). ISG induction in irradiated macrophages was dependent on type I IFN signaling, a functional DNA damage sensor complex, and ataxia-telangiectasia mutated kinase. Furthermore, IFN regulatory factor 1 was also required for the optimal expression of antiviral ISGs in irradiated macrophages. Importantly, DDR-mediated activation of type I IFN signaling contributed to increased resistance to mouse gammaherpesvirus 68 replication, suggesting that the coordinate regulation of DDR and type I IFN signaling may have evolved as a component of the innate immune response to virus infections.
Collapse
|
122
|
Tanikawa C, Espinosa M, Suzuki A, Masuda K, Yamamoto K, Tsuchiya E, Ueda K, Daigo Y, Nakamura Y, Matsuda K. Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun 2012; 3:676. [PMID: 22334079 DOI: 10.1038/ncomms1676] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/11/2012] [Indexed: 01/17/2023] Open
Abstract
Histone proteins are modified in response to various external signals; however, their mechanisms are still not fully understood. Citrullination is a post-transcriptional modification that converts arginine in proteins into citrulline. Here we show in vivo and in vitro citrullination of the arginine 3 residue of histone H4 (cit-H4R3) in response to DNA damage through the p53-PADI4 pathway. We also show DNA damage-induced citrullination of Lamin C. Cit-H4R3 and citrullinated Lamin C localize around fragmented nuclei in apoptotic cells. Ectopic expression of PADI4 leads to chromatin decondensation and promotes DNA cleavage, whereas Padi4(-/-) mice exhibit resistance to radiation-induced apoptosis in the thymus. Furthermore, the level of cit-H4R3 is negatively correlated with p53 protein expression and with tumour size in non-small cell lung cancer tissues. Our findings reveal that cit-H4R3 may be an 'apoptotic histone code' to detect damaged cells and induce nuclear fragmentation, which has a crucial role in carcinogenesis.
Collapse
Affiliation(s)
- Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Catts VS, Catts SV, Jablensky A, Chandler D, Weickert CS, Lavin MF. Evidence of aberrant DNA damage response signalling but normal rates of DNA repair in dividing lymphoblasts from patients with schizophrenia. World J Biol Psychiatry 2012; 13:114-25. [PMID: 21830993 DOI: 10.3109/15622975.2011.565073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer incidence in schizophrenia is not increased commensurate with higher rates of risk exposures. Here we report an investigation of the DNA damage response, an anti-tumorigenic defence, in immortalised lymphoblasts from patients with schizophrenia. METHODS Unirradiated and irradiated (5Gy) lymphoblasts from schizophrenia patients (n = 28) and healthy controls (n = 28) were immunostained for the phosphorylated histone variant H2AX (γH2AX), an index of DNA double-strand breaks. Flow cytometry was used to assess cell cycle distribution and γH2AX immunofluorescence. Rate of DNA repair was quantified by determining the temporal change in γH2AX values following irradiation. RESULTS In unirradiated lymphoblasts, γH2AX levels were significantly increased in the schizophrenia group compared with controls (effect size = 0.86). This increase was most evident in patients with cognitive deficits. In irradiated lymphoblasts, peak radiation-induced γH2AX levels were significantly reduced in patients. No differences between patients and controls were found in the rate of DNA repair or in cell cycle distribution. CONCLUSIONS The significant differences in DNA damage response signalling observed involve modification of histone variant H2AX and thereby implicate regulatory processes determining chromatin structure in dividing lymphoblasts from patients with schizophrenia. The role that aberrant DNA damage response signalling plays in protecting patients from cancer is unclear.
Collapse
|
124
|
Abstract
The DNA damage response (DDR) cascade and ROS (reactive oxygen species) signaling are both involved in the induction of cell death after DNA damage, but a mechanistic link between these two pathways has not been clearly elucidated. This study demonstrates that ROS induction after treatment of cells with neocarzinostatin (NCS), an ionizing radiation mimetic, is at least partly mediated by increasing histone H2AX. Increased levels of ROS and cell death induced by H2AX overexpression alone or DNA damage leading to H2AX accumulation are reduced by treating cells with the antioxidant N-Acetyl-L-Cysteine (NAC), the NADP(H) oxidase (Nox) inhibitor DPI, expression of Rac1N17, and knockdown of Nox1, but not Nox4, indicating that induction of ROS by H2AX is mediated through Nox1 and Rac1 GTPase. H2AX increases Nox1 activity partly by reducing the interaction between a Nox1 activator NOXA1 and its inhibitor 14-3-3zeta. These results point to a novel role of histone H2AX that regulates Nox1-mediated ROS generation after DNA damage.
Collapse
|
125
|
Abstract
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
126
|
Chambers AL, Downs JA. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:229-61. [PMID: 22749148 DOI: 10.1016/b978-0-12-387665-2.00009-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.
Collapse
Affiliation(s)
- Anna L Chambers
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | | |
Collapse
|
127
|
Gunn A, Bennardo N, Cheng A, Stark JM. Correct end use during end joining of multiple chromosomal double strand breaks is influenced by repair protein RAD50, DNA-dependent protein kinase DNA-PKcs, and transcription context. J Biol Chem 2011; 286:42470-42482. [PMID: 22027841 PMCID: PMC3234933 DOI: 10.1074/jbc.m111.309252] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 10/19/2011] [Indexed: 12/27/2022] Open
Abstract
During repair of multiple chromosomal double strand breaks (DSBs), matching the correct DSB ends is essential to limit rearrangements. To investigate the maintenance of correct end use, we examined repair of two tandem noncohesive DSBs generated by endonuclease I-SceI and the 3' nonprocessive exonuclease Trex2, which can be expressed as an I-SceI-Trex2 fusion. We examined end joining (EJ) repair that maintains correct ends (proximal-EJ) versus using incorrect ends (distal-EJ), which provides a relative measure of incorrect end use (distal end use). Previous studies showed that ATM is important to limit distal end use. Here we show that DNA-PKcs kinase activity and RAD50 are also important to limit distal end use, but that H2AX is dispensable. In contrast, we find that ATM, DNA-PKcs, and RAD50 have distinct effects on repair events requiring end processing. Furthermore, we developed reporters to examine the effects of the transcription context on DSB repair, using an inducible promoter. We find that a DSB downstream from an active promoter shows a higher frequency of distal end use, and a greater reliance on ATM for limiting incorrect end use. Conversely, DSB transcription context does not affect end processing during EJ, the frequency of homology-directed repair, or the role of RAD50 and DNA-PKcs in limiting distal end use. We suggest that RAD50, DNA-PKcs kinase activity, and transcription context are each important to limit incorrect end use during EJ repair of multiple DSBs, but that these factors and conditions have distinct roles during repair events requiring end processing.
Collapse
Affiliation(s)
- Amanda Gunn
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Nicole Bennardo
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Anita Cheng
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jeremy M Stark
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010.
| |
Collapse
|
128
|
Abstract
Chromosomal imbalances can result from numerical or structural anomalies. Numerical chromosomal abnormalities are often referred to as aneuploid conditions. This article focuses on the occurrence of constitutional and acquired autosomal aneuploidy in humans. Topics covered include frequency, mosaicism, phenotypic findings, and etiology. The article concludes with a consideration of anticipated advances that might allow for the development of screening tests and/or lead to improvements in our understanding and management of the role that aneuploidy plays in the aging process and acquisition of age-related and constitutional conditions.
Collapse
Affiliation(s)
- Colleen Jackson-Cook
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
129
|
Cohen I, Poręba E, Kamieniarz K, Schneider R. Histone modifiers in cancer: friends or foes? Genes Cancer 2011; 2:631-47. [PMID: 21941619 DOI: 10.1177/1947601911417176] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Covalent modifications of histones can regulate all DNA-dependent processes. In the last few years, it has become more and more evident that histone modifications are key players in the regulation of chromatin states and dynamics as well as in gene expression. Therefore, histone modifications and the enzymatic machineries that set them are crucial regulators that can control cellular proliferation, differentiation, plasticity, and malignancy processes. This review discusses the biology and biochemistry of covalent histone posttranslational modifications (PTMs) and evaluates the dual role of their modifiers in cancer: as oncogenes that can initiate and amplify tumorigenesis or as tumor suppressors.
Collapse
Affiliation(s)
- Idan Cohen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | | |
Collapse
|
130
|
Abstract
Although discovered long ago, posttranslational phosphorylation of histones has been in the spotlight only recently. Information is accumulating almost daily on phosphorylation of histones and their roles in cellular physiology and human diseases. An extensive cross talk exists between phosphorylation and other posttranslational modifications, which together regulate various biological processes, including gene transcription, DNA repair, and cell cycle progression. Recent research on histone phosphorylation has demonstrated that nearly all histone types are phosphorylated at specific residues and that these modifications act as a critical intermediate step in chromosome condensation during cell division, transcriptional regulation, and DNA damage repair. As with all young fields, apparently conflicting and sometimes controversial observations about histone phosphorylations and their true functions in different species are found in the literature. Accumulating evidence suggests that instead of functioning strictly as part of a general code, histone phosphorylation probably functions by establishing cross talk with other histone modifications and serving as a platform for recruitment or release of effector proteins, leading to a downstream cascade of events. Here we extensively review published information on the complexities of histone phosphorylation, the roles of proteins recognizing these modifications and the resuting physiological outcome, and, importantly, future challenges and opportunities in this fast-moving field.
Collapse
|
131
|
Kirshner M, Galron R, Frenkel D, Mandelbaum G, Shiloh Y, Wang ZQ, Barzilai A. Malfunctioning DNA Damage Response (DDR) Leads to the Degeneration of Nigro-Striatal Pathway in Mouse Brain. J Mol Neurosci 2011; 46:554-68. [DOI: 10.1007/s12031-011-9643-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 08/26/2011] [Indexed: 12/21/2022]
|
132
|
Atsumi Y, Fujimori H, Fukuda H, Inase A, Shinohe K, Yoshioka Y, Shikanai M, Ichijima Y, Unno J, Mizutani S, Tsuchiya N, Hippo Y, Nakagama H, Masutani M, Teraoka H, Yoshioka KI. Onset of quiescence following p53 mediated down-regulation of H2AX in normal cells. PLoS One 2011; 6:e23432. [PMID: 21858116 PMCID: PMC3155552 DOI: 10.1371/journal.pone.0023432] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/17/2011] [Indexed: 12/17/2022] Open
Abstract
Normal cells, both in vivo and in vitro, become quiescent after serial cell proliferation. During this process, cells can develop immortality with genomic instability, although the mechanisms by which this is regulated are unclear. Here, we show that a growth-arrested cellular status is produced by the down-regulation of histone H2AX in normal cells. Normal mouse embryonic fibroblast cells preserve an H2AX diminished quiescent status through p53 regulation and stable-diploidy maintenance. However, such quiescence is abrogated under continuous growth stimulation, inducing DNA replication stress. Because DNA replication stress-associated lesions are cryptogenic and capable of mediating chromosome-bridge formation and cytokinesis failure, this results in tetraploidization. Arf/p53 module-mutation is induced during tetraploidization with the resulting H2AX recovery and immortality acquisition. Thus, although cellular homeostasis is preserved under quiescence with stable diploidy, tetraploidization induced under growth stimulation disrupts the homeostasis and triggers immortality acquisition.
Collapse
Affiliation(s)
- Yuko Atsumi
- Division of Genome Stability Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Herrera LA, Prada D, Andonegui MA, Dueñas-González A. The epigenetic origin of aneuploidy. Curr Genomics 2011; 9:43-50. [PMID: 19424483 PMCID: PMC2674307 DOI: 10.2174/138920208783884883] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 02/06/2023] Open
Abstract
Theodore Boveri, eminent German pathologist, observed aneuploidy in cancer cells more than a century ago and suggested that cancer cells derived from a single progenitor cell that acquires the potential for uncontrolled continuous proliferation. Currently, it is well known that aneuploidy is observed in virtually all cancers. Gain and loss of chromosomal material in neoplastic cells is considered to be a process of diversification that leads to survival of the fittest clones. According to Darwin’s theory of evolution, the environment determines the grounds upon which selection takes place and the genetic characteristics necessary for better adaptation. This concept can be applied to the carcinogenesis process, connecting the ability of cancer cells to adapt to different environments and to resist chemotherapy, genomic instability being the driving force of tumor development and progression. What causes this genome instability? Mutations have been recognized for a long time as the major source of genome instability in cancer cells. Nevertheless, an alternative hypothesis suggests that aneuploidy is a primary cause of genome instability rather than solely a simple consequence of the malignant transformation process. Whether genome instability results from mutations or from aneuploidy is not a matter of discussion in this review. It is most likely both phenomena are intimately related; however, we will focus on the mechanisms involved in aneuploidy formation and more specifically on the epigenetic origin of aneuploid cells. Epigenetic inheritance is defined as cellular information—other than the DNA sequence itself—that is heritable during cell division. DNA methylation and histone modifications comprise two of the main epigenetic modifications that are important for many physiological and pathological conditions, including cancer. Aberrant DNA methylation is the most common molecular cancer-cell lesion, even more frequent than gene mutations; tumor suppressor gene silencing by CpG island promoter hypermethylation is perhaps the most frequent epigenetic modification in cancer cells. Epigenetic characteristics of cells may be modified by several factors including environmental exposure, certain nutrient deficiencies, radiation, etc. Some of these alterations have been correlated with the formation of aneuploid cells in vivo. A growing body of evidence suggests that aneuploidy is produced and caused by chromosomal instability. We propose and support in this manuscript that not only genetics but also epigenetics, contribute in a major fashion to aneuploid cell formation.
Collapse
Affiliation(s)
- Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer (UIBC)-Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBM)-Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | |
Collapse
|
134
|
Involvement of GLTSCR2 in the DNA Damage Response. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1257-64. [PMID: 21741933 DOI: 10.1016/j.ajpath.2011.05.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/12/2011] [Accepted: 05/23/2011] [Indexed: 11/23/2022]
Abstract
The cellular DNA damage response (DDR) ensures genomic stability and protects against genotoxic stresses. Conversely, defects in the DDR contribute to genome instability, with the resulting accumulated genetic changes capable of inducing neoplastic transformation. Thus, DDR is central to both the mechanism of oncogenesis and cancer therapy. Specifically, DDR is accomplished via a complicated meshwork of evolutionary conserved proteins, including ATM, ATR, and phospho-H2AX (γH2AX). GLTSCR2 is a nucleolar protein believed to function as a tumor suppressor, although its exact molecular mechanisms have yet to be fully elucidated. As a result of our research pertaining to the role of GLTSCR2 in tumor suppression, we have determined that GLTSCR2 is involved in DDR. Under genotoxic conditions, such as cellular exposure to UV radiation or radiomimetic drugs, GLTSCR2 expression increased and later mobilized to the nucleoplasm. Moreover, GLTSCR2 knockdown attenuated both the presence of phospho-H2AX at the nuclear foci and the phosphorylation of multiple DDR proteins, including ATM, ATR, Chk2, Chk1, and H2AX. In addition, the decreased expression of GLTSCR2 sensitized cells to DNA damage, delayed DNA repair, and abolished G2/M checkpoint activation. Our observations indicate that GLTSCR2 is a key component of DDR and GLTSCR2 seems to act as a tumor suppressor by participating in optimal DDR because DNA damage is a frequent and crucial event in oncogenesis.
Collapse
|
135
|
Pan MR, Peng G, Hung WC, Lin SY. Monoubiquitination of H2AX protein regulates DNA damage response signaling. J Biol Chem 2011; 286:28599-607. [PMID: 21676867 DOI: 10.1074/jbc.m111.256297] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double strand breaks (DSBs) are the most deleterious of the DNA lesions that initiate genomic instability and promote tumorigenesis. Cells have evolved a complex protein network to detect, signal, and repair DSBs. In mammalian cells, a key component in this network is H2AX, which becomes rapidly phosphorylated at Ser(139) (γ-H2AX) at DSBs. Here we show that monoubiquitination of H2AX mediated by the RNF2-BMI1 complex is critical for the efficient formation of γ-H2AX and functions as a proximal regulator in DDR (DNA damage response). RNF2-BMI1 interacts with H2AX in a DNA damage-dependent manner and is required for monoubiquitination of H2AX at Lys(119)/Lys(120). As a functional consequence, we show that the H2AX K120R mutant abolishes H2AX monoubiquitination, impairs the recruitment of p-ATM (Ser(1981)) to DSBs, and thereby reduces the formation of γ-H2AX and the recruitment of MDC1 to DNA damage sites. These data suggest that monoubiquitination of H2AX plays a critical role in initiating DNA damage signaling. Consistent with these observations, impairment of RNF2-BMI1 function by siRNA knockdown or overexpression of the ligase-dead RNF2 mutant all leads to significant defects both in accumulation of γ-H2AX, p-ATM, and MDC1 at DSBs and in activation of NBS1 and CHK2. Additionally, the regulatory effect of RNF2-BMI1 on γ-H2AX formation is dependent on ATM. Lacking their ability to properly activate the DNA damage signaling pathway, RNF2-BMI1 complex-depleted cells exhibit impaired DNA repair and increased sensitivity to ionizing radiation. Together, our findings demonstrate a distinct monoubiquitination-dependent mechanism that is required for H2AX phosphorylation and the initiation of DDR.
Collapse
Affiliation(s)
- Mei-Ren Pan
- Department of Systems Biology, Unit 950, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | |
Collapse
|
136
|
Gostissa M, Alt FW, Chiarle R. Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol 2011; 29:319-50. [PMID: 21219174 DOI: 10.1146/annurev-immunol-031210-101329] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recurrent chromosomal translocations are characteristic features of many types of cancers, especially lymphomas and leukemias. Several basic mechanistic factors are required for the generation of most translocations. First, DNA double-strand breaks (DSBs) must be present simultaneously at the two participating loci. Second, the two broken loci must either be in proximity or be moved into proximity to be joined. Finally, cellular DNA repair pathways must be available to join the two broken loci to complete the translocation. These mechanistic factors can vary in different normal and mutant cells and, as a result, substantially influence the frequency at which particular translocations are generated in a given cell type. Ultimately, however, appearance of recurrent oncogenic translocations in tumors is, in most cases, strongly influenced by selection for the translocated oncogene during the tumorigenesis process. In this review, we discuss in depth the factors and pathways that contribute to the generation of translocations in lymphocytes and other cell types. We also discuss recent findings regarding mechanisms that underlie the appearance of recurrent translocations in tumors.
Collapse
Affiliation(s)
- Monica Gostissa
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
137
|
Jin XM, Kim HN, Shin MH, Lee IK, Lee JS, Lee JH, Kim HJ, Choi JS, Juhng SW, Choi C. H2AFX polymorphisms are associated with decreased risk of diffuse large B cell lymphoma in Koreans. DNA Cell Biol 2011; 30:1039-44. [PMID: 21631283 DOI: 10.1089/dna.2010.1130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polymorphisms of the H2A histone family member X (H2AFX) gene have been associated with decreased non-Hodgkin lymphoma (NHL, -417AA) risk and increased breast cancer (1654AG/GG, and -1420GA/AA) risk. We investigated whether H2AFX polymorphisms are associated with the risk of NHL and its subtypes in 573 NHL Korean patients and 721 cancer-free control subjects, using high resolution melting polymerase chain reaction and an automatic sequencer. There was no association between polymorphisms and the risk of overall NHL, all B cell lymphoma, or all T cell lymphoma. However, the -1420 AA genotype was associated with decreased diffuse large B cell lymphoma (DLBCL) risk (OR, 0.65; 95% CI, 0.43-0.97), and there was a trend for allele dose-effect (p-trend=0.03). The -1187 CC genotype was associated with decreased DLBCL risk with borderline significance (OR, 0.70; 95% CI, 0.48-1.02). There was a trend for an allele dose-effect with borderline significance (p-trend=0.06). These results suggest that the -1420 AA genotype of H2AFX may be associated with reduced DLBCL risks in the Korean population.
Collapse
Affiliation(s)
- Xue Mei Jin
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun-gun, Chonnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Tp53 deletion in B lineage cells predisposes mice to lymphomas with oncogenic translocations. Oncogene 2011; 30:4757-64. [PMID: 21625223 DOI: 10.1038/onc.2011.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inactivating Tp53 mutations are frequent genetic lesions in human tumors that harbor genomic instability, including B lineage lymphomas with IG translocations. Antigen receptor genes are assembled and modified in developing lymphocytes by RAG/AID-initiated genomic rearrangements that involve the induction of DNA double strand breaks (DSBs). Although TP53 inhibits the persistence of DSBs and induces apoptosis to protect cells from genomic instability and transformation, the development of spontaneous tumors harboring clonal translocations has not been reported in mice that only lack wild-type Tp53 protein or express Tp53 mutants. Tp53-deficient (Tp53(-/-)) mice succumb to T lineage lymphomas lacking clonal translocations but develop B lymphoid tumors containing immunoglobulin (Ig) translocations upon combined inactivation of DSB repair factors, RAG mutation or AID overexpression; mice expressing apoptosis-defective Tp53 mutants develop B cell lymphomas that have not been characterized for potential genomic instability. As somatic rather than germline inactivating mutations of TP53 are typically associated with human cancers and Tp53 deletion has cellular context dependent effects upon lymphocyte transformation, we generated mice with conditional Tp53 deletion in lineage-committed B lymphocytes to avoid complications associated with defective Tp53 responses during embryogenesis and/or in multi-lineage potential cells and, thereby, directly evaluate the potential physiological role of Tp53 in suppressing translocations in differentiated cells. These mb1-cre:Tp53(flox/flox) mice succumbed to lymphoid tumors containing Ig gene rearrangements and immunophenotypes characteristic of B cells from various developmental stages. Most mb1-cre:Tp53(flox/flox) tumors harbored clonal translocations, including Igh/c-myc or other oncogenic translocations generated by the aberrant repair of RAG/AID-generated DSBs. Our data indicate that Tp53 serves critical functions in B lineage lymphocytes to prevent transformation caused by translocations in cell populations experiencing physiological levels of RAG/AID-initiated DSB intermediates, and provide evidence that the somatic TP53 mutations found in diffuse large B-cell lymphoma and Burkitt's lymphoma may contribute to the development of these human malignancies.
Collapse
|
139
|
Bilateral burkitt lymphoma of the ovaries: a report of a case in a child with williams syndrome. Case Rep Med 2011; 2011:327263. [PMID: 21687537 PMCID: PMC3114539 DOI: 10.1155/2011/327263] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 12/23/2022] Open
Abstract
A 10-year-old female with Williams Syndrome (WS) presented with a two-month history of fatigue, weight loss, and bilateral ovarian masses. Histologic, immunophenotypic, and cytogenetic studies confirmed the diagnosis of Burkitt lymphoma (BL). While there is no established association between the two disorders, this is the third case in the literature of Burkitt lymphoma in a patient with Williams Syndrome.
Collapse
|
140
|
Zhang L, Reynolds TL, Shan X, Desiderio S. Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis. Immunity 2011; 34:163-74. [PMID: 21349429 DOI: 10.1016/j.immuni.2011.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/06/2010] [Accepted: 12/01/2010] [Indexed: 11/30/2022]
Abstract
V(D)J gene segment recombination is linked to the cell cycle by the periodic phosphorylation and destruction of the RAG-2 protein at the G1-to-S cell cycle transition. To examine the function of this coupling, we constructed mice in which the phosphorylation site at threonine 490 of RAG-2 was mutated to alanine. The RAG-2(T490A) mutation uncoupled DNA cleavage from cell cycle and promoted aberrant recombination. Similar aberrant recombination products were observed in mice deficient in the Skp2 ubiquitin ligase subunit, which is required for periodic destruction of RAG-2. On a p53-deficient background, the RAG-2(T490A) mutation induced lymphoid malignancies characterized by clonal chromosomal translocations involving antigen receptor genes. Taken together, these observations provide a direct link between the periodic destruction of RAG-2 and lymphoid tumorigenesis. We infer that cell cycle control of the V(D)J recombinase limits the potential genomic damage that could otherwise result from RAG-mediated DNA cleavage.
Collapse
Affiliation(s)
- Li Zhang
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
141
|
Genomic instability, defective spermatogenesis, immunodeficiency, and cancer in a mouse model of the RIDDLE syndrome. PLoS Genet 2011; 7:e1001381. [PMID: 21552324 PMCID: PMC3084200 DOI: 10.1371/journal.pgen.1001381] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/21/2011] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168−/− mice are immunodeficient and exhibit increased radiosensitivity. Rnf168−/− males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x−/−, Mdc1−/−, and Rnf8−/− cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168−/− cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals. The repair of DNA damage is fundamental as illustrated by the many human syndromes, immunodeficiencies, and cancers associated with defects in DNA damage signaling and repair. RIDDLE syndrome, caused by mutations of the human RNF168, is a novel hereditary disease clinically characterized by radiosensitivity, immunodeficiency, dysmorphic features, and learning difficulties. RNF168 is an E3 ligase that modifies histones and chromatin structure at sites of DNA breaks. In this study, we show that Rnf168 deficiency in mice leads to increased radiosensitivity, immunodeficiency, and defective spermatogenesis. Additionally, dual inactivation of Rnf168 and p53 leads to increased cancer risk. Collectively these data demonstrate important and broad physiological functions for Rnf168.
Collapse
|
142
|
Fan W, Zhou K, Zhao Y, Wu W, Chen H, Jin L, Chen G, Shi J, Wei Q, Zhang T, Du G, Mao Y, Lu D, Zhou L. Possible association between genetic variants in the H2AFX promoter region and risk of adult glioma in a Chinese Han population. J Neurooncol 2011; 105:211-8. [PMID: 21512825 DOI: 10.1007/s11060-011-0586-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/08/2011] [Indexed: 01/02/2023]
Affiliation(s)
- Weiwei Fan
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Fudan University, 220 Handan Rd, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011; 25:409-33. [PMID: 21363960 DOI: 10.1101/gad.2021311] [Citation(s) in RCA: 851] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome integrity is constantly monitored by sophisticated cellular networks, collectively termed the DNA damage response (DDR). A common feature of DDR proteins is their mobilization in response to genotoxic stress. Here, we outline how the development of various complementary methodologies has provided valuable insights into the spatiotemporal dynamics of DDR protein assembly/disassembly at sites of DNA strand breaks in eukaryotic cells. Considerable advances have also been made in understanding the underlying molecular mechanisms for these events, with post-translational modifications of DDR factors being shown to play prominent roles in controlling the formation of foci in response to DNA-damaging agents. We review these regulatory mechanisms and discuss their biological significance to the DDR.
Collapse
Affiliation(s)
- Sophie E Polo
- The Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB21QN, United Kingdom
| | | |
Collapse
|
144
|
Nakada S. Abnormalities in DNA double-strand break response beyond primary immunodeficiency. Int J Hematol 2011; 93:425-433. [PMID: 21479981 DOI: 10.1007/s12185-011-0836-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
V(D)J recombination and class switch recombination are achieved by the cooperative processes of recombination activation gene- or activation-induced cytidine deaminase-dependent DNA cleaving, DNA double-strand break (DSB) response signaling, and DNA repair. Primary immunodeficiency due to dysfunctional DNA recombination can be categorized as severe combined immunodeficiency or other conditions, based on the presence or absence of T cells. We can also classify these diseases as radiosensitive or non-radiosensitive immunodeficiencies. While diseases unable to trigger DNA cleavage do not exhibit radiosensitivity, dysfunction in DSB response signaling or repair does lead to radiosensitive immunodeficiency. Recent studies have begun to clarify the mechanisms underlying the molecular pathogenesis of such DNA DSB-related primary immunodeficiency.
Collapse
Affiliation(s)
- Shinichiro Nakada
- Center of Integrated Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
145
|
Dickey JS, Zemp FJ, Altamirano A, Sedelnikova OA, Bonner WM, Kovalchuk O. H2AX phosphorylation in response to DNA double-strand break formation during bystander signalling: effect of microRNA knockdown. RADIATION PROTECTION DOSIMETRY 2011; 143:264-269. [PMID: 21183548 PMCID: PMC3108274 DOI: 10.1093/rpd/ncq470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Upon DNA double-strand break (DSB) formation, hundreds of H2AX molecules in the chromatin flanking the break site are phosphorylated on serine residue 139, termed gamma-H2AX, so that virtually every DSB site in a nucleus can be visualised within 10 min of its formation using an antibody to gamma-H2AX. One application of this sensitive assay is to examine the induction of DNA double-strand damage in subtle non-targeted cellular effects such as the bystander effect. Here whether microRNA (miRNA) serve as a primary signalling mechanism for bystander effect propagation by comparing matched human colon carcinoma cell lines with wild-type or depleted levels of mature miRNAs was investigated. No major differences were found in the levels of induced gamma-H2AX foci in the tested cell lines, indicating that though miRNAs play a role in bystander effect manifestation, they appear not to be the primary bystander signalling molecules in the formation of bystander effect-induced DSBs.
Collapse
Affiliation(s)
- Jennifer S. Dickey
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Present address: Laboratory of Biochemistry, Division of Therapeutic Proteins, CDER, FDA, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | - Franz J. Zemp
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4Canada
| | - Alvin Altamirano
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4Canada
| | - Olga A. Sedelnikova
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - William M. Bonner
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4Canada
| |
Collapse
|
146
|
Zha S, Guo C, Boboila C, Oksenych V, Cheng HL, Zhang Y, Wesemann DR, Yuen G, Patel H, Goff PH, Dubois RL, Alt FW. ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature 2011; 469:250-4. [PMID: 21160472 PMCID: PMC3058373 DOI: 10.1038/nature09604] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/21/2010] [Indexed: 12/11/2022]
Abstract
Classical non-homologous DNA end-joining (NHEJ) is a major mammalian DNA double-strand-break (DSB) repair pathway. Deficiencies for classical NHEJ factors, such as XRCC4, abrogate lymphocyte development, owing to a strict requirement for classical NHEJ to join V(D)J recombination DSB intermediates. The XRCC4-like factor (XLF; also called NHEJ1) is mutated in certain immunodeficient human patients and has been implicated in classical NHEJ; however, XLF-deficient mice have relatively normal lymphocyte development and their lymphocytes support normal V(D)J recombination. The ataxia telangiectasia-mutated protein (ATM) detects DSBs and activates DSB responses by phosphorylating substrates including histone H2AX. However, ATM deficiency causes only modest V(D)J recombination and lymphocyte developmental defects, and H2AX deficiency does not have a measurable impact on these processes. Here we show that XLF, ATM and H2AX all have fundamental roles in processing and joining DNA ends during V(D)J recombination, but that these roles have been masked by unanticipated functional redundancies. Thus, combined deficiency of ATM and XLF nearly blocks mouse lymphocyte development due to an inability to process and join chromosomal V(D)J recombination DSB intermediates. Combined XLF and ATM deficiency also severely impairs classical NHEJ, but not alternative end-joining, during IgH class switch recombination. Redundant ATM and XLF functions in classical NHEJ are mediated by ATM kinase activity and are not required for extra-chromosomal V(D)J recombination, indicating a role for chromatin-associated ATM substrates. Correspondingly, conditional H2AX inactivation in XLF-deficient pro-B lines leads to V(D)J recombination defects associated with marked degradation of unjoined V(D)J ends, revealing that H2AX has a role in this process.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Transformed
- Chromatin/metabolism
- Chromosomes, Mammalian/genetics
- Chromosomes, Mammalian/metabolism
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Gene Rearrangement, B-Lymphocyte/genetics
- Histones/metabolism
- Mice
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/metabolism
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Recombination, Genetic
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Shan Zha
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Chunguang Guo
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Cristian Boboila
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Valentyn Oksenych
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Hwei-Ling Cheng
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Yu Zhang
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Duane R. Wesemann
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Grace Yuen
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Harin Patel
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | - Peter H. Goff
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| | | | - Frederick W. Alt
- Howard Hughes Medical Institute, The Children’s Hospital, the Immune Disease Institute and the Harvard Medical School, Boston, MA 02115
| |
Collapse
|
147
|
Zhu F, Zykova TA, Peng C, Zhang J, Cho YY, Zheng D, Yao K, Ma WY, Lau ATY, Bode AM, Dong Z. Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation. Cancer Res 2011; 71:393-403. [PMID: 21224359 DOI: 10.1158/0008-5472.can-10-2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone H2AX is a histone H2A variant that is ubiquitously expressed throughout the genome. It plays a key role in the cellular response to DNA damage and has been designated as the histone guardian of the genome. Histone H2AX deficiency decreases genomic stability and increases tumor susceptibility of normal cells and tissues. However, the role of histone H2AX phosphorylation in malignant transformation and cancer development is not totally clear. Herein, we found that ribosomal S6 kinase 2 (RSK2) directly phosphorylates histone H2AX at Ser139 and also at a newly discovered site, Ser16. Epidermal growth factor (EGF)-induced phosphorylation of histone H2AX at both sites was decreased in RSK2 knockout cells. Phosphorylated RSK2 and histone H2AX colocalized in the nucleus following EGF treatment, and the phosphorylation of histone H2AX by RSK2 enhanced the stability of histone H2AX and prevented cell transformation induced by EGF. RSK2 and DNA-PK, but not ATM or ATR, are required for EGF-induced phosphorylation of H2AX at Ser139; however, only RSK2 is required for phosphorylation of H2AX at Ser16. Phosphorylation of histone H3 was suppressed in cells expressing wild-type H2AX compared with H2AX knockout (H2AX-/-) cells. EGF-associated AP-1 transactivation activity was dramatically lower in H2AX-/- cells overexpressing wild-type H2AX than H2AX-/- cells expressing mutant H2AX-AA. Thus, the RSK2/H2AX signaling pathway negatively regulates the RSK2/histone H3 pathway and therefore maintains normal cell proliferation.
Collapse
Affiliation(s)
- Feng Zhu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Darzynkiewicz Z, Traganos F, Zhao H, Halicka HD, Skommer J, Wlodkowic D. Analysis of individual molecular events of DNA damage response by flow- and image-assisted cytometry. Methods Cell Biol 2011; 103:115-47. [PMID: 21722802 DOI: 10.1016/b978-0-12-385493-3.00006-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This chapter describes molecular mechanisms of DNA damage response (DDR) and presents flow- and image-assisted cytometric approaches to assess these mechanisms and measure the extent of DDR in individual cells. DNA damage was induced by cell treatment with oxidizing agents, UV light, DNA topoisomerase I or II inhibitors, cisplatin, tobacco smoke, and by exogenous and endogenous oxidants. Chromatin relaxation (decondensation) is an early event of DDR chromatin that involves modification of high mobility group proteins (HMGs) and histone H1 and was detected by cytometry by analysis of the susceptibility of DNA in situ to denaturation using the metachromatic fluorochrome acridine orange. Translocation of the MRN complex consisting of Meiotic Recombination 11 Homolog A (Mre11), Rad50 homolog, and Nijmegen Breakage Syndrome 1 (NMR1) into DNA damage sites was assessed by laser scanning cytometry as the increase in the intensity of maximal pixel as well as integral value of Mre11 immunofluorescence. Examples of cytometric detection of activation of Ataxia telangiectasia mutated (ATM), and Check 2 (Chk2) protein kinases using phospho-specific Abs targeting Ser1981 and Thr68 of these proteins, respectively are also presented. We also discuss approaches to correlate activation of ATM and Chk2 with phosphorylation of p53 on Ser15 and histone H2AX on Ser139 as well as with cell cycle position and DNA replication. The capability of laser scanning cytometry to quantify individual foci of phosphorylated H2AX and/or ATM that provides more dependable assessment of the presence of DNA double-strand breaks is outlined. The new microfluidic Lab-on-a-Chip platforms for interrogation of individual cells offer a novel approach for DDR cytometric analysis.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | |
Collapse
|
149
|
Abstract
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.
Collapse
Affiliation(s)
- Laura A Banaszynski
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
150
|
H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 2010; 469:245-9. [PMID: 21160476 PMCID: PMC3150591 DOI: 10.1038/nature09585] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/15/2010] [Indexed: 11/11/2022]
Abstract
DNA double stranded breaks (DSBs) are generated by the RAG endonuclease in all developing lymphocytes as they assemble antigen receptor genes1. DNA cleavage by RAG occurs only at the G1-phase of the cell cycle and generates two hairpin-sealed DNA (coding) ends that require nucleolytic opening prior to their repair by classical non-homologous end-joining (NHEJ)1–3. Although there are several cellular nucleases that could perform this function, only the Artemis nuclease is able to do so efficiently2, 3. Here we show, in vivo, that the histone protein H2AX prevents nucleases other than Artemis from processing hairpin-sealed coding ends; in the absence of H2AX, CtIP can efficiently promote the hairpin opening and resection of DNA ends generated by RAG cleavage. This CtIP-mediated resection is inhibited by γ-H2AX and by MDC-1, which binds to γ-H2AX in chromatin flanking DNA DSBs. Moreover, the ATM kinase activates antagonistic pathways that modulate this resection. CtIP DNA end resection activity is normally limited to cells at post-replicative stages of the cell cycle where it is essential for homology-mediated repair4, 5. In G1-phase lymphocytes, DNA ends that are processed by CtIP are not efficiently joined by classical NHEJ and the joints that do form frequently use micro-homologies and exhibit significant chromosomal deletions. Thus, H2AX preserves the structural integrity of broken DNA ends in G1-phase lymphocytes thereby preventing these DNA ends from accessing repair pathways that promote genomic instability.
Collapse
|