101
|
Liu C, Cheng X, Han K, Hong L, Hao S, Sun X, Xu J, Li B, Jin D, Tian W, Jin Y, Wang Y, Fang W, Bao X, Zhao P, Chen D. A novel molecular subtyping based on multi-omics analysis for prognosis predicting in colorectal melanoma: A 16-year prospective multicentric study. Cancer Lett 2024; 585:216663. [PMID: 38246221 DOI: 10.1016/j.canlet.2024.216663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Colorectal melanoma (CRM) is a rare malignant tumor with severe complications, and there is currently a lack of systematic research. We conducted a study that combined proteomics and mutation data of CRM from a cohort of three centers over a 16-years period (2005-2021). The patients were divided into a training set consisting of two centers and a testing set comprising the other center. Unsupervised clustering was conducted on the training set to form two molecular subtypes for clinical characterization and functional analysis. The testing set was used to validate the survival differences between the two subtypes. The comprehensive analysis identified two subtypes of CRM: immune exhausted C1 cluster and DNA repair C2 cluster. The former subtype exhibited characteristics of metabolic disturbance, immune suppression, and poor prognosis, along with APC mutations. A machine learning algorithm named Support Vector Machine (SVM) was applied to predict the classification of CRM patients based on protein expression in the external testing cohort. Two subtypes of primary CRM with clinical and proteomic characteristics provides a reference for subsequent diagnosis and treatments.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Kai Han
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Libing Hong
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China; The Second Clinical School, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shuqiang Hao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xuqi Sun
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Jingfeng Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Benfeng Li
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Dongqing Jin
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Weihong Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Yanli Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
102
|
Wong P, Wisneski AD, Tsai KK, Chang TT, Hirose K, Nakakura EK, Daud AI, Maker AV, Corvera CU. Metastatic melanoma to small bowel: metastasectomy is supported in the era of immunotherapy and checkpoint inhibitors. World J Surg Oncol 2024; 22:77. [PMID: 38468341 PMCID: PMC10926580 DOI: 10.1186/s12957-024-03335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Metastatic melanoma to the small bowel is an aggressive disease often accompanied by obstruction, abdominal pain, and gastrointestinal bleeding. With advancements in melanoma treatment, the role for metastasectomy continues to evolve. Inclusion of novel immunotherapeutic agents, such as checkpoint inhibitors, into standard treatment regimens presents potential survival benefits for patients receiving metastasectomy. CASE PRESENTATION We report an institutional experience of 15 patients (12 male, 3 female) between 2014-2022 that underwent small bowel metastasectomy for metastatic melanoma and received perioperative systemic treatment. Median age of patients was 64 years (range: 35-83 years). No patients died within 30 days of their surgery, and the median hospital length of stay was 5 days. Median overall survival in these patients was 30.1 months (range: 2-115 months). Five patients died from disease (67 days, 252 days, 426 days, 572 days, 692 days postoperatively), one patient died of non-disease related causes (1312 days postoperatively), six patients are alive with disease, and three remain disease free. CONCLUSIONS This case series presents an updated perspective of the utility of metastasectomy for small bowel metastasis in the age of novel immunotherapeutic agents as standard systemic treatment. Small bowel metastasectomy for advanced melanoma performed in conjunction with perioperative systemic therapy is safe and appears to promote long-term survival and enhanced quality of life.
Collapse
Affiliation(s)
- Paul Wong
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, 505 Parnassus Ave, S549, Box 1932, San Francisco, California, 94143-1932, USA
| | - Andrew D Wisneski
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, 505 Parnassus Ave, S549, Box 1932, San Francisco, California, 94143-1932, USA
| | - Katy K Tsai
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Tammy T Chang
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, 505 Parnassus Ave, S549, Box 1932, San Francisco, California, 94143-1932, USA
| | - Kenzo Hirose
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, 505 Parnassus Ave, S549, Box 1932, San Francisco, California, 94143-1932, USA
| | - Eric K Nakakura
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, 505 Parnassus Ave, S549, Box 1932, San Francisco, California, 94143-1932, USA
| | - Adil I Daud
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ajay V Maker
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, 505 Parnassus Ave, S549, Box 1932, San Francisco, California, 94143-1932, USA
| | - Carlos U Corvera
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, 505 Parnassus Ave, S549, Box 1932, San Francisco, California, 94143-1932, USA.
| |
Collapse
|
103
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 PMCID: PMC11857949 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
104
|
van Not OJ, van den Eertwegh AJ, Haanen JB, Blank CU, Aarts MJ, van Breeschoten J, van den Berkmortel FW, de Groot JWB, Hospers GA, Ismail RK, Kapiteijn E, Bloem M, De Meza MM, Piersma D, van Rijn RS, Stevense-den Boer MA, van der Veldt AA, Vreugdenhil G, Boers-Sonderen MJ, Blokx WA, Wouters MW, Suijkerbuijk KP. Improving survival in advanced melanoma patients: a trend analysis from 2013 to 2021. EClinicalMedicine 2024; 69:102485. [PMID: 38370537 PMCID: PMC10874714 DOI: 10.1016/j.eclinm.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Background The prognosis of advanced melanoma patients has significantly improved over the years. We aimed to evaluate the survival per year of diagnosis. Methods All systemically treated patients diagnosed with advanced melanoma from 2013 to 2021 were included from the Dutch Melanoma Treatment Registry. Baseline characteristics and overall survival (OS) were compared between the different years of diagnosis. A multivariable Cox proportional hazards model was used to estimate the association between year of diagnosis and OS. Findings For this cohort study, we included 6260 systemically treated advanced melanoma patients. At baseline, there was an increase over the years in age, the percentage of patients with an ECOG PS ≥ 2, with brain metastases, and a synchronous diagnosis of primary and unresectable melanoma. Median OS increased from 11.2 months (95% CI 10.0-12.4) for patients diagnosed in 2013 to 32.0 months (95% CI 26.6-36.7) for patients diagnosed in 2019. Median OS was remarkably lower for patients diagnosed in 2020 (26.6 months; 95% CI 23.9-35.1) and 2021 (24.0 months; 95% CI 20.4-NR). Patients diagnosed in 2020 and 2021 had a higher hazard of death compared to patients diagnosed in 2019, although this was not significant. The multivariable Cox regression showed a lower hazard of death for the years of diagnosis after 2013. In contrast, patients diagnosed in 2020 and 2021 had a higher hazard of death compared to patients diagnosed in 2019. Interpretation After a continuous survival improvement for advanced melanoma patients between 2013 and 2019, outcomes of patients diagnosed in 2020 and 2021 seem poorer. This trend of decreased survival remained after correcting for known prognostic factors and previous neoadjuvant or adjuvant treatment, suggesting that it is explained by unmeasured factors, which-considering the timing-could be COVID-19-related. Funding For the Dutch Melanoma Treatment Registry (DMTR), the Dutch Institute for Clinical Auditing foundation received a start-up grant from governmental organization The Netherlands Organization for Health Research and Development (ZonMW, project number 836002002). The DMTR is structurally funded by Bristol-Myers Squibb, Merck Sharpe & Dohme, Novartis, and Roche Pharma. Roche Pharma stopped funding in 2019, and Pierre Fabre started funding the DMTR in 2019. For this work, no funding was granted.
Collapse
Affiliation(s)
- Olivier J. van Not
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht 3584CX, the Netherlands
| | - Alfons J.M. van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1118, Amsterdam 1081HZ, the Netherlands
| | - John B. Haanen
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Christian U. Blank
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- Department of Medical Oncology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Maureen J.B. Aarts
- Department of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, P. Debyelaan 25, Maastricht 6229 HX, the Netherlands
| | - Jesper van Breeschoten
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1118, Amsterdam 1081HZ, the Netherlands
| | | | | | - Geke A.P. Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen 9713GZ, the Netherlands
| | - Rawa K. Ismail
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre, Albinusdreef 2, Leiden 2333ZA, the Netherlands
| | - Manja Bloem
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, Leiden 2333ZC, the Netherlands
- Department of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Melissa M. De Meza
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, Leiden 2333ZC, the Netherlands
- Department of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Koningsplein 1, Enschede 7512KZ, the Netherlands
| | - Rozemarijn S. van Rijn
- Department of Internal Medicine, Medical Centre Leeuwarden, Henri Dunantweg 2, Leeuwarden 8934AD, the Netherlands
| | | | - Astrid A.M. van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Centre, ‘s-Gravendijkwal 230, Rotterdam 3015CE, the Netherlands
| | - Gerard Vreugdenhil
- Department of Internal Medicine, Maxima Medical Centre, De Run 4600, Eindhoven 5504DB, the Netherlands
| | - Marye J. Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, Nijmegen 6525GA, the Netherlands
| | - Willeke A.M. Blokx
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, Utrecht University, the Netherlands
| | - Michel W.J.M. Wouters
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, Leiden 2333ZC, the Netherlands
- Department of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Karijn P.M. Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht 3584CX, the Netherlands
| |
Collapse
|
105
|
Odintsov I, Sholl LM. Prognostic and predictive biomarkers in non-small cell lung carcinoma. Pathology 2024; 56:192-204. [PMID: 38199926 DOI: 10.1016/j.pathol.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally, with the highest mortality rates among both men and women. Most lung cancers are diagnosed at late stages, necessitating systemic therapy. Modern clinical management of lung cancer relies heavily upon application of biomarkers, which guide the selection of systemic treatment. Here, we provide an overview of currently approved and emerging biomarkers of non-small cell lung cancer (NSCLC), including EGFR, ALK, ROS1, RET, NTRK1-3, KRAS, BRAF, MET, ERBB2/HER2, NRG1, PD-L1, TROP2, and CEACAM5. For practical purposes, we divide these biomarkers into genomic and protein markers, based on the tested substrate. We review the biology and epidemiology of the genomic and proteomic biomarkers, discuss optimal diagnostic assays for their detection, and highlight their contribution to the contemporary clinical management of NSCLC.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
106
|
Uchi H. Optimal strategy in managing advanced melanoma. J Dermatol 2024; 51:324-334. [PMID: 38087810 PMCID: PMC11483965 DOI: 10.1111/1346-8138.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
The advent of immune checkpoint inhibitors and combination therapy with BRAF inhibitors and MEK inhibitors has dramatically improved the prognosis of advanced melanoma. However, since acral melanoma and mucosal melanoma, which are rare in Western countries but are major subtypes of melanoma in East Asia, including Japan, have a low frequency of BRAF mutations, there are currently no treatment options other than immune checkpoint inhibitors in most such cases. Furthermore, owing to a lower tumor mutation burden, immune checkpoint inhibitors are less effective in acral and mucosal melanoma than in cutaneous melanoma. The aim of this review was to summarize the current status and future prospects for the treatment of advanced melanoma, comparing cutaneous melanoma, acral melanoma, and mucosal melanoma.
Collapse
Affiliation(s)
- Hiroshi Uchi
- Department of Dermato‐OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| |
Collapse
|
107
|
Benhima N, Belbaraka R, Langouo Fontsa MD. Single agent vs combination immunotherapy in advanced melanoma: a review of the evidence. Curr Opin Oncol 2024; 36:69-73. [PMID: 38193381 DOI: 10.1097/cco.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to outline the current landscape of advanced melanoma treatment options, provide insights on selecting combination therapies within different clinical scenarios, capture clinical relevance of anti-programmed cell death protein 1 (PD-1) monotherapy, and explore the unmet needs with immune check-point inhibitors (ICI) in advanced melanoma. RECENT FINDINGS ICI based treatment consisted of single agent ICI or dual combination ICI-ICI is the standard of care of front-line treatment of metastatic or unresectable melanoma. PD-1 inhibitors (Pembrolizumab and Nivolumab) improved progression free survival (PFS) and overall survival (OS) compared to chemotherapy and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) inhibitors (Ipilimumab and Tremelimumab). The dual ICI combination (Nivolumab and Ipilimumab) provided profound and durable responses better than monotherapy, and the longest overall survival ever achieved in advanced disease, including in patients with murine sarcoma viral oncogene homolog B (BRAF)-mutated disease, but at the cost of a high risk of severe toxicity. The new dual blockage of LAG-3 and PD-1 (Nivolumab-Relatlimab) emerges as a valid option with promising efficacy outcomes and a favourable toxicity profile. Mature survival data is still needed to capture the real benefit. SUMMARY These new plethora of options pose new challenges not only for optimal treatment sequencing strategies but especially for management of adverse effects, endorsing the need to integrate a holistic and personalized approach for patient care.
Collapse
Affiliation(s)
- Nada Benhima
- Medical Oncology Department, Mohammed VI University Hospital, Marrakech, Morocco
- Medical Oncology Clinic, Jules Bordet Institute, Brussels, Belgium
| | - Rhizlane Belbaraka
- Medical Oncology Department, Mohammed VI University Hospital, Marrakech, Morocco
| | | |
Collapse
|
108
|
Li G, Zhou C, Wang L, Zheng Y, Zhou B, Li G, Ma Z, Sun P, Deng Y, Su L, Wang J, Cui H. MitoCur-1 induces ferroptosis to reverse vemurafenib resistance in melanoma through inhibition of USP14. Pigment Cell Melanoma Res 2024; 37:316-328. [PMID: 37985430 DOI: 10.1111/pcmr.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Melanoma is an aggressive malignant tumor with a poor prognosis. Vemurafenib (PLX4032, vem) is applied to specifically treat BRAF V600E-mutated melanoma patients. However, prolonged usage of vem makes patients resistant to the drug and finally leads to clinical failure. We previously tested the combination regimen of tubulin inhibitor VERU-111 with vem, as well as USP14 selective inhibitor b-AP15 in combination with vem, both of which have showed profound therapeutic effects in overcoming vem resistance in vitro and in vivo. Most importantly, we discovered that vem-resistant melanoma cell lines highly expressed E3 ligase SKP2 and DUB enzyme USP14, and we have demonstrated that USP14 directly interacts and stabilizes SKP2, which contributes to vem resistance. These works give us a clue that USP14 might be a promising target to overcome vem resistance in melanoma. MitoCur-1 is a curcumin derivative, which was originally designed to specifically target tumor mitochondria inducing redox imbalance, thereby promoting tumor cell death. In this study, we have demonstrated that it can work as a novel USP14 inhibitor, and thus bears great potential in providing an anti-tumor effect and sensitizing vem-resistant cells by inducing ferroptosis in melanoma. Application of MitoCur-1 dramatically induces USP14 inhibition and inactivation of GPX4 enzyme, meanwhile, increases the depletion of GSH and decreases SLC7A11 expression level. As a result, ferrous iron-dependent lipid ROS accumulated in the cell, inducing ferroptosis, thus sensitizes the vem-resistant melanoma cell. Interestingly, overexpression of USP14 antagonized all the ferroptosis cascade events induced by MitoCur-1, therefore, we conclude that MitoCur-1 induces ferroptosis through inhibition of USP14. We believe that by inhibition of USP14, vem resistance can be reversed and will finally benefit melanoma patients in future.
Collapse
Affiliation(s)
- Gege Li
- School of Public Health, Institute of Toxicology, Lanzhou University, Lanzhou, China
| | - Changlong Zhou
- School of Public Health, Institute of Toxicology, Lanzhou University, Lanzhou, China
| | - Lu Wang
- Nuclear Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yalong Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Guoyan Li
- School of Public Health, Institute of Toxicology, Lanzhou University, Lanzhou, China
| | - Zhongyu Ma
- School of Public Health, Institute of Toxicology, Lanzhou University, Lanzhou, China
| | - Peng Sun
- Second Department of Cardio-Thoracic Surgery, Gansu Cancer Hospital, Lanzhou, China
| | - Yuantao Deng
- Department of Anesthesiology, Gansu Cancer Hospital, Lanzhou, China
| | - Li Su
- School of Public Health, Institute of Toxicology, Lanzhou University, Lanzhou, China
| | - Junling Wang
- School of Public Health, Institute of Toxicology, Lanzhou University, Lanzhou, China
| | - Hongmei Cui
- School of Public Health, Institute of Toxicology, Lanzhou University, Lanzhou, China
| |
Collapse
|
109
|
Tikum AF, Ketchemen JP, Doroudi A, Nambisan AK, Babeker H, Njotu FN, Fonge H. Effectiveness of 225Ac-Labeled Anti-EGFR Radioimmunoconjugate in EGFR-Positive Kirsten Rat Sarcoma Viral Oncogene and BRAF Mutant Colorectal Cancer Models. J Nucl Med 2024:jnumed.123.266204. [PMID: 38360051 DOI: 10.2967/jnumed.123.266204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Eighty percent of colorectal cancers (CRCs) overexpress epidermal growth factor receptor (EGFR). Kirsten rat sarcoma viral oncogene (KRAS) mutations are present in 40% of CRCs and drive de novo resistance to anti-EGFR drugs. BRAF oncogene is mutated in 7%-10% of CRCs, with even worse prognosis. We have evaluated the effectiveness of [225Ac]Ac-macropa-nimotuzumab in KRAS mutant and in KRAS wild-type and BRAFV600E mutant EGFR-positive CRC cells in vitro and in vivo. Anti-CD20 [225Ac]Ac-macropa-rituximab was developed and used as a nonspecific radioimmunoconjugate. Methods: Anti-EGFR antibody nimotuzumab was radiolabeled with 225Ac via an 18-membered macrocyclic chelator p-SCN-macropa. The immunoconjugate was characterized using flow cytometry, radioligand binding assay, and high-performance liquid chromatography, and internalization was studied using live-cell imaging. In vitro cytotoxicity was evaluated in 2-dimensional monolayer EGFR-positive KRAS mutant DLD-1, SW620, and SNU-C2B; in KRAS wild-type and BRAFV600E mutant HT-29 CRC cell lines; and in 3-dimensional spheroids. Dosimetry was studied in healthy mice. The in vivo efficacy of [225Ac]Ac-macropa-nimotuzumab was evaluated in mice bearing DLD-1, SW620, and HT-29 xenografts after treatment with 3 doses of 13 kBq/dose administered 10 d apart. Results: In all cell lines, in vitro studies showed enhanced cytotoxicity of [225Ac]Ac-macropa-nimotuzumab compared with nimotuzumab and controls. The inhibitory concentration of 50% in the DLD-1 cell line was 1.8 nM for [225Ac]Ac-macropa-nimotuzumab versus 84.1 nM for nimotuzumab. Similarly, the inhibitory concentration of 50% was up to 79-fold lower for [225Ac]Ac-macropa-nimotuzumab than for nimotuzumab in KRAS mutant SNU-C2B and SW620 and in KRAS wild-type and BRAFV600E mutant HT-29 CRC cell lines. A similar trend was observed for 3-dimensional spheroids. Internalization peaked 24-48 h after incubation and depended on EGFR expression. In the [225Ac]Ac-macropa-nimotuzumab group, 3 of 7 mice bearing DLD-1 tumors had complete remission. Median survival was 40 and 34 d for mice treated with phosphate-buffered saline and [225Ac]Ac-macropa-rituximab (control), respectively, whereas it was not reached for the [225Ac]Ac-macropa-nimotuzumab group (>90 d). Similarly, median survival of mice bearing HT-29 xenografts was 16 and 12.5 d for those treated with [225Ac]Ac-macropa-rituximab and phosphate-buffered saline, respectively, and was not reached for those treated with [225Ac]Ac-macropa-nimotuzumab (>90 d). One of 7 mice bearing HT-29 xenografts and treated using [225Ac]Ac-macropa-nimotuzumab had complete remission. Compared with untreated mice, [225Ac]Ac-macropa-nimotuzumab more than doubled (16 vs. 41 d) the median survival of mice bearing SW620 xenografts. Conclusion: [225Ac]Ac-macropa-nimotuzumab is effective against KRAS mutant and BRAFV600E mutant CRC models.
Collapse
Affiliation(s)
- Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jessica P Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alireza Doroudi
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anand K Nambisan
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Fabrice Ngoh Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
110
|
Chen YK, Kanouni T, Arnold LD, Cox JM, Gardiner E, Grandinetti K, Jiang P, Kaldor SW, Lee C, Li C, Martin ES, Miller N, Murphy EA, Timple N, Tyhonas JS, Vassar A, Wang TS, Williams R, Yuan D, Kania RS. The Discovery of Exarafenib (KIN-2787): Overcoming the Challenges of Pan-RAF Kinase Inhibition. J Med Chem 2024; 67:1747-1757. [PMID: 38230963 DOI: 10.1021/acs.jmedchem.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
RAF, a core signaling component of the MAPK kinase cascade, is often mutated in various cancers, including melanoma, lung, and colorectal cancers. The approved inhibitors were focused on targeting the BRAFV600E mutation that results in constitutive activation of kinase signaling through the monomeric protein (Class I). However, these inhibitors also paradoxically activate kinase signaling of RAF dimers, resulting in increased MAPK signaling in normal tissues. Recently, significant attention has turned to targeting RAF alterations that activate dimeric signaling (class II and III BRAF and NRAS). However, the discovery of a potent and selective inhibitor with biopharmaceutical properties suitable to sustain robust target inhibition in the clinical setting has proven challenging. Herein, we report the discovery of exarafenib (15), a highly potent and selective inhibitor that intercepts the RAF protein in the dimer compatible αC-helix-IN conformation and demonstrates anti-tumor efficacy in preclinical models with BRAF class I, II, and III and NRAS alterations.
Collapse
Affiliation(s)
- Young K Chen
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Toufike Kanouni
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Lee D Arnold
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Jason M Cox
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Elisabeth Gardiner
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Kathryn Grandinetti
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Ping Jiang
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Stephen W Kaldor
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Catherine Lee
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Chun Li
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Eric S Martin
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Nichol Miller
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Eric A Murphy
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Noel Timple
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - John S Tyhonas
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Angie Vassar
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Tim S Wang
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Richard Williams
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Ding Yuan
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Robert S Kania
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| |
Collapse
|
111
|
Yang H, Xiao X, Zeng L, Zeng H, Zheng Y, Wang J, Li G, Dai W, He Y, Wang S, Peng J, Chen W. Integrating cfDNA liquid biopsy and organoid-based drug screening reveals PI3K signaling as a promising therapeutic target in colorectal cancer. J Transl Med 2024; 22:132. [PMID: 38310289 PMCID: PMC10837874 DOI: 10.1186/s12967-023-04675-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/29/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.
Collapse
Affiliation(s)
- Huan Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
| | - Xing Xiao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
| | - Leli Zeng
- Department of Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Haiteng Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jingshu Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guanghua Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weigang Dai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Suihai Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China.
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
112
|
Chen W, Yang C, Chen B, Xi M, Chen B, Li Q. Management of metastatic bone disease of melanoma. Melanoma Res 2024; 34:22-30. [PMID: 37939058 DOI: 10.1097/cmr.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
One of the most aggressive tumors arising from the skin, mucosa, and uvea is malignant melanoma, which easily metastasizes. Bone tissue is one of the most typical locations for distant metastasis, and around 5%-20% of patients eventually acquired skeletal metastases. For decades, the incidence of bone metastases was higher, bringing greater burden on the family, society, and healthcare system owing to the progress of targeted therapy and immunotherapy, which prolonging the survival time substantially. Moreover, bone metastases result in skeletal-related events, which influence the quality of life, obviously. Appropriate intervention is therefore crucial. To obtain the optimum cost-effectiveness, existing treatment algorithm must be integrated, which is still controversial. We have aimed to throw light on current views concerning the formation, biological and clinical features, and treatment protocol of melanoma bone metastases to guide the decision-making process.
Collapse
Affiliation(s)
- Wenyan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Chen Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Biqi Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Mian Xi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Baoqing Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Qiaoqiao Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| |
Collapse
|
113
|
Tian Y, Zhang M, Heng P, Hou H, Wang B. Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation for identification of potential ERK inhibitors. J Biomol Struct Dyn 2024; 42:2153-2161. [PMID: 37129289 DOI: 10.1080/07391102.2023.2204495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
As the downstream component of the mitogen-activated protein kinases (MAPK) pathway, the extracellular signal-regulated kinase (ERK) is responsible for phosphorylating a broad range of substrates in cell proliferation, differentiation, and survival. Direct targeting the ERK proteins by the piperidinopyrimidine urea-based inhibitors has been demonstrated to be an effective way to block the MAPK signaling pathway in inhibiting tumor growth. In order to discover better inhibitors, a computer-aided drug design (CADD) approach was employed to reveal the pharmacological characteristics and mechanisms of action. The pharmacophore model was generated on the basis of the compounds with eight features, i.e., four hydrogen bond acceptor atoms, one hydrogen bond donor atom, and three hydrophobic centers. A total of 14 hit compounds were obtained through virtual screening. Two potential inhibitors, namely VS01 and VS02, have been identified by molecular docking and molecular dynamics simulations. Both compounds are capable of attaching to the ERK pocket precisely. The binding free energies of VS01 and VS02 are about 15 kJ/mol and 4 kJ/mol stronger than that of the clinic Ulixertinib because of the characteristic hydrogen bonding, electrostatic, and hydrophilic interactions. The present theoretical investigations shed new light on the rational design of the potential ERK inhibitors to stimulate further experimental tests.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yafeng Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mi Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Panpan Heng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hua Hou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Baoshan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
114
|
García-Roman S, Garzón-Ibáñez M, Bertrán-Alamillo J, Jordana-Ariza N, Giménez-Capitán A, García-Peláez B, Vives-Usano M, Codony-Servat J, d'Hondt E, Rosell R, Molina-Vila MÁ. Vaccine antibodies against a synthetic epidermal growth factor variant enhance the antitumor effects of inhibitors targeting the MAPK/ERK and PI3K/Akt pathways. Transl Oncol 2024; 40:101878. [PMID: 38183801 PMCID: PMC10818253 DOI: 10.1016/j.tranon.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The EGFR pathway is involved in intrinsic and acquired resistance to a wide variety of targeted therapies in cancer. Vaccination represents an alternative to the administration of anti-EGFR monoclonal antibodies, such as cetuximab or panitumumab. Here, we tested if anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) could potentiate the activity of drugs targeting the ERK/MAPK and PI3K/Akt pathways. METHODS Non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and melanoma cell lines harboring KRAS, NRAS, BRAF and PIK3CA mutations were used. Anti-EGF VacAbs were obtained by immunizing rabbits with a fusion protein containing a synthetic, highly mutated variant of human EGF. Cell viability was determined by MTT, total and phosphorylated proteins by Western blotting, cell cycle distribution and cell death by flow cytometry and emergence of resistance by microscopic examination in low density cultures. RESULTS Anti-EGF VacAbs potentiated the antiproliferative effects of MEK, KRAS G12C, BRAF, PI3K and Akt inhibitors in KRAS, NRAS, BRAF and PIK3CA mutant cells and delayed the appearance of resistant clones in vitro. The effects of anti-EGF VacAbs were comparable or superior to those of panitumumab and cetuximab. The combination of anti-EGF VacAbs with the targeted inhibitors effectively suppressed EGFR downstream pathways and sera from patients immunized with an anti-EGF vaccine also blocked activation of EGFR effectors. CONCLUSIONS Anti-EGF VacAbs enhance the antiproliferative effects of drugs targeting the ERK/MAPK and PIK3CA/Akt pathways. Our data provide a rationale for clinical trials testing anti-EGF vaccination combined with inhibitors selected according to the patient's genetic profile.
Collapse
Affiliation(s)
- Silvia García-Roman
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Mónica Garzón-Ibáñez
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Jordi Bertrán-Alamillo
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Núria Jordana-Ariza
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Beatriz García-Peláez
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Marta Vives-Usano
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | | | - Rafael Rosell
- Instituto Oncológico Dr. Rosell (IOR), Dexeus University Hospital, Barcelona, Spain; Catalan Institute of Oncology and Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Miguel Ángel Molina-Vila
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain.
| |
Collapse
|
115
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
116
|
Reitmajer M, Leiter U, Nanz L, Amaral T, Flatz L, Garbe C, Forschner A. Long-term survival of stage IV melanoma patients: evaluation on 640 melanoma patients entering stage IV between 2014 and 2017. J Cancer Res Clin Oncol 2024; 150:15. [PMID: 38238578 PMCID: PMC10796594 DOI: 10.1007/s00432-023-05533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024]
Abstract
PURPOSE Since the introduction of immune checkpoint inhibitors (ICI) and targeted therapies (TT), survival rates of metastatic melanoma patients have increased significantly and complete remissions are no longer rarities. Consequently, there is an increasing number of long-term survivors who have not yet been comprehensively characterized. METHODS We included melanoma patients who entered stage IV between 2014 and 2017 and survived at least 5 years after entering stage IV. Descriptive statistics were performed to characterize the applied systemic therapies, response rates and to report which of these patients are still alive today. RESULTS 640 patients entered stage IV at the University Hospital Tuebingen. Of these, 207 patients (32%) were still alive at least 5 years after entering stage IV. Details of applied therapies and response rates were available in 176 patients (85%). About 90% of patients (n = 159) were still alive at the time of analysis. Median survival since first stage IV diagnosis was 6.0 years (range 5-9 years). An impressive majority of patients (n = 146, 83%) were no longer receiving systemic therapy at the time of evaluation. Complete remission under first line systemic therapy was seen in 36% of the patients. CONCLUSION This dataset comprises the largest available cohort of long-term surviving stage IV melanoma patients. Since 90% of patients in our cohort are still alive today, we expect an increasing number of long-term survivors in the future. Our data indicate the need for specific follow-up programs addressing the needs of long-term survivors.
Collapse
Affiliation(s)
- Markus Reitmajer
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, 72076, Tuebingen, Germany.
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, 72076, Tuebingen, Germany
| | - Lena Nanz
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, 72076, Tuebingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, 72076, Tuebingen, Germany
| | - Lukas Flatz
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, 72076, Tuebingen, Germany
| | - Claus Garbe
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, 72076, Tuebingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, 72076, Tuebingen, Germany
| |
Collapse
|
117
|
Wang L, Liu WQ, Broussy S, Han B, Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front Pharmacol 2024; 14:1307860. [PMID: 38239196 PMCID: PMC10794590 DOI: 10.3389/fphar.2023.1307860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Vascular endothelial growth factors (VEGF), Vascular endothelial growth factor receptors (VEGFR) and their downstream signaling pathways are promising targets in anti-angiogenic therapy. They constitute a crucial system to regulate physiological and pathological angiogenesis. In the last 20 years, many anti-angiogenic drugs have been developed based on VEGF/VEGFR system to treat diverse cancers and retinopathies, and new drugs with improved properties continue to emerge at a fast rate. They consist of different molecular structures and characteristics, which enable them to inhibit the interaction of VEGF/VEGFR, to inhibit the activity of VEGFR tyrosine kinase (TK), or to inhibit VEGFR downstream signaling. In this paper, we reviewed the development of marketed anti-angiogenic drugs involved in the VEGF/VEGFR axis, as well as some important drug candidates in clinical trials. We discuss their mode of action, their clinical benefits, and the current challenges that will need to be addressed by the next-generation of anti-angiogenic drugs. We focus on the molecular structures and characteristics of each drug, including those approved only in China.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- CiTCoM, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| |
Collapse
|
118
|
Shan KS, Rehman TU, Ivanov S, Domingo G, Raez LE. Molecular Targeting of the BRAF Proto-Oncogene/Mitogen-Activated Protein Kinase (MAPK) Pathway across Cancers. Int J Mol Sci 2024; 25:624. [PMID: 38203795 PMCID: PMC10779188 DOI: 10.3390/ijms25010624] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is essential for cellular proliferation, growth, and survival. Constitutive activation of this pathway by BRAF mutations can cause downstream activation of kinases, leading to uncontrolled cellular growth and carcinogenesis. Therefore, inhibition of BRAF and the downstream substrate MEK has been shown to be effective in controlling tumor growth and proliferation. Over the last decade, several BRAF and MEK inhibitors have been investigated, ranging from primarily melanoma to various cancer types with BRAF alterations. This subsequently led to several Food and Drug Administration (FDA) approvals for BRAF/MEK inhibitors for melanoma, non-small cell lung cancer, anaplastic thyroid cancer, colorectal cancer, histiocytosis neoplasms, and finally, tumor-agnostic indications. Here, this comprehensive review will cover the developments of BRAF and MEK inhibitors from melanomas to tumor-agnostic indications, novel drugs, challenges, future directions, and the importance of those drugs in personalized medicine.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33328, USA; (T.U.R.); (S.I.); (G.D.)
| | - Tauseef U. Rehman
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33328, USA; (T.U.R.); (S.I.); (G.D.)
| | - Stan Ivanov
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33328, USA; (T.U.R.); (S.I.); (G.D.)
| | - Gelenis Domingo
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33328, USA; (T.U.R.); (S.I.); (G.D.)
| | - Luis E. Raez
- Memorial Health Care, Thoracic Oncology Program, Pembroke Pines, FL 33328, USA;
| |
Collapse
|
119
|
Pushpan CK, Kresock DF, Ingersoll MA, Lutze RD, Keirns DL, Hunter WJ, Bashir K, Teitz T. Repurposing AZD5438 and Dabrafenib for Cisplatin-Induced AKI. J Am Soc Nephrol 2024; 35:22-40. [PMID: 37962623 PMCID: PMC10786615 DOI: 10.1681/asn.0000000000000261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
SIGNIFICANCE STATEMENT To combat both untoward effects of nephrotoxicity and ototoxicity in cisplatin-treated patients, two potential therapeutic oral anticancer drugs AZD5438 and dabrafenib, a phase-2 clinical trial protein kinase CDK2 inhibitor and an US Food and Drug Administration-approved drug BRAF inhibitor, respectively, were tested in an established mouse AKI model. Both drugs have previously been shown to protect significantly against cisplatin-induced hearing loss in mice. Each drug ameliorated cisplatin-induced increases in the serum biomarkers BUN, creatinine, and neutrophil gelatinase-associated lipocalin. Drugs also improved renal histopathology and inflammation, mitigated cell death by pyroptosis and necroptosis, and significantly enhanced overall survival of cisplatin-treated mice. BACKGROUND Cisplatin is an effective chemotherapy agent for a wide variety of solid tumors, but its use is dose-limited by serious side effects, including AKI and hearing loss. There are no US Food and Drug Administration-approved drugs to treat both side effects. Recently, two anticancer oral drugs, AZD5438 and dabrafenib, were identified as protective against cisplatin-induced hearing loss in mice. We hypothesize that similar cell stress and death pathways are activated in kidney and inner ear cells when exposed to cisplatin and tested whether these drugs alleviate cisplatin-induced AKI. METHODS The HK-2 cell line and adult FVB mice were used to measure the protection from cisplatin-induced cell death and AKI by these drugs. Serum markers of kidney injury, BUN, creatinine, and neutrophil gelatinase-associated lipocalin as well as histology of kidneys were analyzed. The levels of markers of kidney cell death, including necroptosis and pyroptosis, pERK, and proliferating cell nuclear antigen, were also examined by Western blotting and immunofluorescence. In addition, CDK2 knockout (KO) mice were used to confirm AZD5438 protective effect is through CDK2 inhibition. RESULTS The drugs reduced cisplatin-induced cell death in the HK-2 cell line and attenuated cisplatin-induced AKI in mice. The drugs reduced serum kidney injury markers, inhibited cell death, and reduced the levels of pERK and proliferating cell nuclear antigen, all of which correlated with prolonged animal survival. CDK2 KO mice were resistant to cisplatin-induced AKI, and AZD5438 conferred no additional protection in the KO mice. CONCLUSIONS Cisplatin-induced damage to the inner ear and kidneys shares similar cellular beneficial responses to AZD5438 and dabrafenib, highlighting the potential therapeutic use of these agents to treat both cisplatin-mediated kidney damage and hearing loss.
Collapse
Affiliation(s)
- Chithra K. Pushpan
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - Daniel F. Kresock
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - Darby L. Keirns
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - William J. Hunter
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska
| | - Khalid Bashir
- Renal Division, Department of Medicine, CHI Nephrology and Creighton University Medical Center, Omaha, Nebraska
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| |
Collapse
|
120
|
Kozyra P, Pitucha M. Revisiting the Role of B-RAF Kinase as a Therapeutic Target in Melanoma. Curr Med Chem 2024; 31:2003-2020. [PMID: 37855341 DOI: 10.2174/0109298673258495231011065225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 10/20/2023]
Abstract
Malignant melanoma is the rarest but most aggressive and deadly skin cancer. Melanoma is the result of a malignant transformation of melanocytes, which leads to their uncontrolled proliferation. Mutations in the mitogen-activated protein kinase (MAPK) pathway, which are crucial for the control of cellular processes, such as apoptosis, division, growth, differentiation, and migration, are one of its most common causes. BRAF kinase, as one of the known targets of this pathway, has been known for many years as a prominent molecular target in melanoma therapy, and the following mini-review outlines the state-of-the-art knowledge regarding its structure, mutations and mechanisms.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL, 20093, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL-20093, Poland
| |
Collapse
|
121
|
Bravo-Garzón MA, Bornstein-Quevedo L, de Camargo VP, Sanku G, Jansen AM, de Macedo MP, Rico-Restrepo M, Chacón M. BRAF-Mutated Melanoma Journey in Latin America: Expert Recommendations From Diagnosis to Treatment. Cancer Control 2024; 31:10732748241251572. [PMID: 38751033 PMCID: PMC11100406 DOI: 10.1177/10732748241251572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES • Gather a panel of Latin American experts in testing and treating BRAF-melanoma. • Describe the current landscape of BRAF-mutated melanoma in Latin America. • Outline the current gaps in testing and recommend improvements for testing and treating BRAF-mutated melanoma in the region. INTRODUCTION Melanoma prevalence in Latin America is lower than in high- and middle-income countries. However, recent data indicate that the region's incidence and mortality are rising, with more stage IV patients being diagnosed. According to international clinical practice guidelines, conducting BRAF-mutation testing in patients with stage III or stage IV melanoma and high-risk resected disease is imperative. Still, BRAF-mutation testing and targeted therapies are inconsistently available in the region. METHODS Americas Health Foundation convened a meeting of Latin American experts on BRAF-mutated melanoma to develop guidelines and recommendations for diagnosis through treatment. RESULTS AND CONCLUSIONS Some recommendations for improving diagnostics through improving access and reducing the cost of BRAF-mutation testing, enhancing efficiency in pathology laboratories, and creating country-specific local guidelines. The panel also gave treatment recommendations for neo-adjuvant therapy, adjuvant therapy, and therapy for patients with metastatic disease in Latin America.
Collapse
Affiliation(s)
- María A. Bravo-Garzón
- Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center – CTIC, Bogotá D.C., Colombia
| | | | | | | | | | | | | | - Matías Chacón
- Alexander Fleming Institute, Buenos Aires, Argentina
| |
Collapse
|
122
|
Dar MS, Shahid N, Waqas A, Baig YA, Khan AW. Dabrafenib plus Trametinib: A breakthrough in pediatric low-grade glioma therapy. Health Sci Rep 2024; 7:e1841. [PMID: 38274133 PMCID: PMC10809164 DOI: 10.1002/hsr2.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND AND AIMS Pediatric-type low-grade gliomas (pLGGs) are the most common solid tumors in children, with v-raf murine sarcoma viral oncogene homolog B (BRAF) mutations playing a significant role in their development. Dabrafenib and trametinib are targeted therapies that are recently approved by Food and Drug Administration for pediatric patients with pLGG harboring a BRAF V600E mutation. BODY This study emphasizes the role of Dabrafenib and Trametinib in pLGG. A multicenter Phase I/II trial demonstrated the superior efficacy of dabrafenib plus trametinib (D+T) compared to carboplatin plus vincristine (C+T), with higher overall response rates, clinical benefit rates, and longer progression-free survival. The safety profile of dabrafenib plus trametinib (D+T) was favorable, with fewer discontinuations and adverse events compared to the control group. CONCLUSION The introduction of D+T as a targeted therapy represents a significant advancement in the management of pLGG, necessitating further investigations to understand its long-term consequences and optimize patient care.
Collapse
Affiliation(s)
| | - Nayab Shahid
- Department of MedicineJinnah Sindh Medical UniversityKarachiPakistan
| | - Arisha Waqas
- Department of MedicineJinnah Sindh Medical UniversityKarachiPakistan
| | - Yumna Arif Baig
- Department of MedicineJinnah Sindh Medical UniversityKarachiPakistan
| | - Aimen Waqar Khan
- Department of MedicineJinnah Sindh Medical UniversityKarachiPakistan
| |
Collapse
|
123
|
Kikuchi Y, Shimada H, Hatanaka Y, Kinoshita I, Ikarashi D, Nakatsura T, Kitano S, Naito Y, Tanaka T, Yamashita K, Oshima Y, Nanami T. Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1. Int J Clin Oncol 2024; 29:1-19. [PMID: 38019341 DOI: 10.1007/s10147-023-02430-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023]
Abstract
With advances in gene and protein analysis technologies, many target molecules that may be useful in cancer diagnosis have been reported. Therefore, the "Tumor Marker Study Group" was established in 1981 with the aim of "discovering clinically" useful molecules. Later, the name was changed to "Japanese Society for Molecular Tumor Marker Research" in 2000 in response to the remarkable progress in gene-related research. Currently, the world of cancer treatment is shifting from the era of representative tumor markers of each cancer type used for tumor diagnosis and treatment evaluation to the study of companion markers for molecular-targeted therapeutics that target cancer cells. Therefore, the first edition of the Molecular Tumor Marker Guidelines, which summarizes tumor markers and companion markers in each cancer type, was published in 2016. After publication of the first edition, the gene panel testing using next-generation sequencing became available in Japan in June 2019 for insured patients. In addition, immune checkpoint inhibitors have been indicated for a wide range of cancer types. Therefore, the 2nd edition of the Molecular Tumor Marker Guidelines was published in September 2021 to address the need to revise the guidelines. Here, we present an English version of the review (Part 1) of the Molecular Tumor Marker Guidelines, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan.
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Kinoshita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Hokkaido, Japan
| | - Daiki Ikarashi
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehisa Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Tokyo, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Tokyo, Japan
| | - Yoko Oshima
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| | - Tatsuki Nanami
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| |
Collapse
|
124
|
Zhang P, Kuil LE, Buil LCM, Freriks S, Beijnen JH, van Tellingen O, de Gooijer MC. Acquired and intrinsic resistance to vemurafenib in BRAF V600E -driven melanoma brain metastases. FEBS Open Bio 2024; 14:96-111. [PMID: 37953496 PMCID: PMC10761933 DOI: 10.1002/2211-5463.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
BRAFV600 -mutated melanoma brain metastases (MBMs) are responsive to BRAF inhibitors, but responses are generally less durable than those of extracranial metastases. We tested the hypothesis that the drug efflux transporters P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2) expressed at the blood-brain barrier (BBB) offer MBMs protection from therapy. We intracranially implanted A375 melanoma cells in wild-type (WT) and Abcb1a/b;Abcg2-/- mice, characterized the tumor BBB, analyzed drug levels in plasma and brain lesions after oral vemurafenib administration, and determined the efficacy against brain metastases and subcutaneous lesions. Although contrast-enhanced MRI demonstrated that the integrity of the BBB is disrupted in A375 MBMs, vemurafenib achieved greater antitumor efficacy against MBMs in Abcb1a/b;Abcg2-/- mice compared with WT mice. Concordantly, P-gp and BCRP are expressed in MBM-associated brain endothelium both in patients and in A375 xenografts and expression of these transporters limited vemurafenib penetration into A375 MBMs. Although initially responsive, A375 MBMs rapidly developed therapy resistance, even in Abcb1a/b;Abcg2-/- mice, and this was unrelated to pharmacokinetic or target inhibition issues. Taken together, we demonstrate that both intrinsic and acquired resistance can play a role in MBMs.
Collapse
Affiliation(s)
- Ping Zhang
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityChina
- Shandong Provincial Key Laboratory of Brain Function Remodeling, Qilu HospitalShandong UniversityChina
| | - Laura Esmee Kuil
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Psychosocial Sciences and EpidemiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Levi Conrad Maria Buil
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Stephan Freriks
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos Hendrik Beijnen
- Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/MC Slotervaart HospitalAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityThe Netherlands
| | - Olaf van Tellingen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mark Cornelis de Gooijer
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
- The Christie NHS Foundation TrustManchesterUK
| |
Collapse
|
125
|
Zhang J, Tian H, Mao L, Si L. Treatment of acral and mucosal melanoma: Current and emerging targeted therapies. Crit Rev Oncol Hematol 2024; 193:104221. [PMID: 38036156 DOI: 10.1016/j.critrevonc.2023.104221] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/14/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Targeted therapies revolutionized the management of patients with advanced and metastatic cutaneous melanoma. However, despite recent advances in the understanding of the molecular drivers of melanoma and its treatment with targeted therapies, patients with rare and aggressive melanoma subtypes, including acral melanoma (AM) and mucosal melanomas (MM), show limited long-term clinical benefit from current targeted therapies. While patients with AM or MM and BRAF or KIT mutations may benefit from targeted therapies, the frequency of these mutations is relatively low, and there are no genotype-specific treatments for most patients with AM or MM who lack common driver mutations. The poor prognosis of AM and MM can also be attributed to the lack of understanding of their unique molecular landscapes and clinical characteristics, due to being under-represented in preclinical and clinical studies. We review current knowledge of the molecular landscapes of AM and MM, focusing on actionable therapeutic targets and pathways for molecular targeted therapies, to guide the development of more effective targeted therapies for these cancers. Current and emerging strategies for the treatment of these melanoma subtypes using targeted therapies are also summarized.
Collapse
Affiliation(s)
- Jiaran Zhang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Huichun Tian
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lili Mao
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
126
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
127
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
128
|
Chapdelaine AG, Ku GC, Sun G, Ayrapetov MK. The Targeted Degradation of BRAF V600E Reveals the Mechanisms of Resistance to BRAF-Targeted Treatments in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:5805. [PMID: 38136350 PMCID: PMC10741866 DOI: 10.3390/cancers15245805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The BRAF V600E mutation is frequently found in cancer. It activates the MAPK pathway and promotes cancer cell proliferation, making BRAF an excellent target for anti-cancer therapy. While BRAF-targeted therapy is highly effective for melanoma, it is often ineffective against other cancers harboring the BRAF mutation. In this study, we evaluate the effectiveness of a proteolysis targeting chimera (PROTAC), SJF-0628, in directing the degradation of mutated BRAF across a diverse panel of cancer cells and determine how these cells respond to the degradation. SJF-0628 treatment results in the degradation of BRAF V600E and a decrease in Mek activation in all cell lines tested, but the effects of the treatment on cell signaling and cell proliferation are cell-line-specific. First, BRAF degradation killed DU-4475 and Colo-205 cells via apoptosis but only partially inhibited the proliferation of other cancer cell lines. Second, SJF-0628 treatment resulted in co-degradation of MEK in Colo-205 cells but did not have the same effect in other cell lines. Finally, cell lines partially inhibited by BRAF degradation also contain other oncogenic drivers, making them multi-driver cancer cells. These results demonstrate the utility of a PROTAC to direct BRAF degradation and reveal that multi-driver oncogenesis renders some colorectal cancer cells resistant to BRAF-targeted treatment.
Collapse
Affiliation(s)
| | | | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (A.G.C.); (G.C.K.)
| | | |
Collapse
|
129
|
Sadagopan NS, Nandoliya KR, Youngblood MW, Horbinski CM, Ahrendsen JT, Magill ST. A novel BRAF::PTPRN2 fusion in meningioma: a case report. Acta Neuropathol Commun 2023; 11:194. [PMID: 38066633 PMCID: PMC10704634 DOI: 10.1186/s40478-023-01668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gene fusion events have been linked to oncogenesis in many cancers. However, gene fusions in meningioma are understudied compared to somatic mutations, chromosomal gains/losses, and epigenetic changes. Fusions involving B-raf proto-oncogene, serine/threonine kinase (BRAF) are subtypes of oncogenic BRAF genetic abnormalities that have been reported in certain cases of brain tumors, such as pilocytic astrocytomas. However, BRAF fusions have not been recognized in meningioma. We present the case of an adult female presenting with episodic partial seizures characterized by déjà vu, confusion, and cognitive changes. Brain imaging revealed a cavernous sinus and sphenoid wing mass and she underwent resection. Histopathology revealed a World Health Organization (WHO) grade 1 meningioma. Genetic profiling with next generation sequencing and microarray analysis revealed an in-frame BRAF::PTPRN2 fusion affecting the BRAF kinase domain as well as chromothripsis of chromosome 7q resulting in multiple segmental gains and losses including amplifications of cyclin dependent kinase 6 (CDK6), tyrosine protein-kinase Met (MET), and smoothened (SMO). Elevated pERK staining in tumor cells provided evidence of activated mitogen-activated protein kinase (MAPK) signaling. This report raises the possibility that gene fusion events may be involved in meningioma pathogenesis and warrant further investigation.
Collapse
Affiliation(s)
- Nishanth S Sadagopan
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Khizar R Nandoliya
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
130
|
Schina A, Pedersen S, Spenning AL, Laursen OK, Pedersen C, Haslund CA, Schmidt H, Bastholt L, Svane IM, Ellebaek E, Donia M. Sustained improved survival of patients with metastatic melanoma after the introduction of anti-PD-1-based therapies. Eur J Cancer 2023; 195:113392. [PMID: 37924648 DOI: 10.1016/j.ejca.2023.113392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The introduction of modern therapies improved the median survival of patients with metastatic melanoma (MM). Here, we determined the real-world impact of modern treatments on the long-term survival of MM. METHODS In a population-based study, we extracted all cases of MM diagnosed in four non-consecutive years marked by major changes in available 1st line treatments (2012, 2014, 2016, and 2018) from the Danish MM Database. Patients were grouped into "trial-like" and "trial-excluded" based on common trial eligibility criteria. RESULTS We observed a sustained improved survival of "trial-like" patients diagnosed in 2016 or in 2018, compared to 2012 or 2014, but no major differences in 2018 versus 2016. In contrast, while survival of "trial-excluded" patients in 2016 was better compared to 2014 and 2012, survival in 2018 was improved over all previous years. We then developed a prognostic model based on multivariable stratified Cox regression, to predict the survival of newly diagnosed MM patients. Internal validation showed excellent discrimination and calibration, with a time-area-under-the-curve above 0.79 at multiple time horizons, for up to four years after diagnosis. CONCLUSIONS The introduction of modern treatments such as anti-PD-1 has led to a sustained, improved survival of real-world patients with MM, regardless of their eligibility for clinical trials. We provide an updateable prognostic model that can be used to improve patient information. Overall, these data highlight a positive population-based impact of modern treatments and can help health technology assessment agencies worldwide to evaluate the appropriateness of drug pricing based on known cost-benefit data.
Collapse
Affiliation(s)
- Aimilia Schina
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Sidsel Pedersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Cecilia Pedersen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Eva Ellebaek
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
131
|
Alvarez J, Smith JJ. Anorectal mucosal melanoma. SEMINARS IN COLON AND RECTAL SURGERY 2023; 34:100990. [PMID: 38746826 PMCID: PMC11090490 DOI: 10.1016/j.scrs.2023.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Anorectal mucosal melanoma accounts for less than 1 % of all anorectal malignant tumors and a tendency for delayed diagnosis leads to advanced disease at presentation.1,2 Due to the rarity of the disease, there are limited prospective trials exploring the optimal treatment strategies. Generally, tumors are surgically excised, with a preference for conservative management with wide local excision. In the past decade, there have been advances with immunotherapy and other targeted therapies. Multiple clinical trials continue exploring neoadjuvant/adjuvant combination treatments in the setting of advanced or unresectable disease.
Collapse
Affiliation(s)
- Janet Alvarez
- Research Scholar, Memorial Sloan Kettering Cancer Center, Department of Surgery, 1275 York Avenue | SR-201, New York, NY 10065, USA
| | - J. Joshua Smith
- Associate Member, Associate Attending Surgeon, Memorial Sloan Kettering Cancer Center, Colorectal Service, Department of Surgery, 1275 York Avenue, SR-201, New York, NY 10065, USA
| |
Collapse
|
132
|
Sherman WJ, Romiti E, Michaelides L, Moniz-Garcia D, Chaichana KL, Quiñones-Hinojosa A, Porter AB. Systemic Therapy for Melanoma Brain and Leptomeningeal Metastases. Curr Treat Options Oncol 2023; 24:1962-1977. [PMID: 38158477 DOI: 10.1007/s11864-023-01155-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
OPINION STATEMENT Melanoma has a high propensity to metastasize to the brain which portends a poorer prognosis. With advanced radiation techniques and targeted therapies, outcomes however are improving. Melanoma brain metastases are best managed in a multi-disciplinary approach, including medical oncologists, neuro-oncologists, radiation oncologists, and neurosurgeons. The sequence of therapies is dependent on the number and size of brain metastases, status of systemic disease control, prior therapies, performance status, and neurological symptoms. The goal of treatment is to minimize neurologic morbidity and prolong both progression free and overall survival while maximizing quality of life. Surgery should be considered for solitary metastases, or large and/or symptomatic metastases with edema. Stereotactic radiosurgery offers a benefit over whole-brain radiation attributed to the relative radioresistance of melanoma and reduction in neurotoxicity. Thus far, data supports a more durable response with systemic therapy using combination immunotherapy of ipilimumab and nivolumab, though targeting the presence of BRAF mutations can also be utilized. BRAF inhibitor therapy is often used after immunotherapy failure, unless a more rapid initial response is needed and then can be done prior to initiating immunotherapy. Further trials are needed, particularly for leptomeningeal metastases which currently require the multi-disciplinary approach to determine best treatment plan.
Collapse
Affiliation(s)
- Wendy J Sherman
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| | - Edoardo Romiti
- Vita e Salute San Raffaele University in Milan, Via Olgettina, 58, 20132, Milan, MI, Italy
| | - Loizos Michaelides
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Diogo Moniz-Garcia
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | | | - Alyx B Porter
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| |
Collapse
|
133
|
Castelo-Soccio L, Kim H, Gadina M, Schwartzberg PL, Laurence A, O'Shea JJ. Protein kinases: drug targets for immunological disorders. Nat Rev Immunol 2023; 23:787-806. [PMID: 37188939 PMCID: PMC10184645 DOI: 10.1038/s41577-023-00877-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Protein kinases play a major role in cellular activation processes, including signal transduction by diverse immunoreceptors. Given their roles in cell growth and death and in the production of inflammatory mediators, targeting kinases has proven to be an effective treatment strategy, initially as anticancer therapies, but shortly thereafter in immune-mediated diseases. Herein, we provide an overview of the status of small molecule inhibitors specifically generated to target protein kinases relevant to immune cell function, with an emphasis on those approved for the treatment of immune-mediated diseases. The development of inhibitors of Janus kinases that target cytokine receptor signalling has been a particularly active area, with Janus kinase inhibitors being approved for the treatment of multiple autoimmune and allergic diseases as well as COVID-19. In addition, TEC family kinase inhibitors (including Bruton's tyrosine kinase inhibitors) targeting antigen receptor signalling have been approved for haematological malignancies and graft versus host disease. This experience provides multiple important lessons regarding the importance (or not) of selectivity and the limits to which genetic information informs efficacy and safety. Many new agents are being generated, along with new approaches for targeting kinases.
Collapse
Affiliation(s)
- Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arian Laurence
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
134
|
Ferretti LP, Böhi F, Leslie Pedrioli DM, Cheng PF, Ferrari E, Baumgaertner P, Alvarado-Diaz A, Sella F, Cereghetti A, Turko P, Wright RH, De Bock K, Speiser DE, Ferrari R, Levesque MP, Hottiger MO. Combinatorial Treatment with PARP and MAPK Inhibitors Overcomes Phenotype Switch-Driven Drug Resistance in Advanced Melanoma. Cancer Res 2023; 83:3974-3988. [PMID: 37729428 DOI: 10.1158/0008-5472.can-23-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Metastatic melanoma is either intrinsically resistant or rapidly acquires resistance to targeted therapy treatments, such as MAPK inhibitors (MAPKi). A leading cause of resistance to targeted therapy is a dynamic transition of melanoma cells from a proliferative to a highly invasive state, a phenomenon called phenotype switching. Mechanisms regulating phenotype switching represent potential targets for improving treatment of patients with melanoma. Using a drug screen targeting chromatin regulators in patient-derived three-dimensional MAPKi-resistant melanoma cell cultures, we discovered that PARP inhibitors (PARPi) restore sensitivity to MAPKis, independent of DNA damage repair pathways. Integrated transcriptomic, proteomic, and epigenomic analyses demonstrated that PARPis induce lysosomal autophagic cell death, accompanied by enhanced mitochondrial lipid metabolism that ultimately increases antigen presentation and sensitivity to T-cell cytotoxicity. Moreover, transcriptomic and epigenetic rearrangements induced by PARP inhibition reversed epithelial-mesenchymal transition-like phenotype switching, which redirected melanoma cells toward a proliferative and MAPKi-sensitive state. The combination of PARP and MAPKis synergistically induced cancer cell death both in vitro and in vivo in patient-derived xenograft models. Therefore, this study provides a scientific rationale for treating patients with melanoma with PARPis in combination with MAPKis to abrogate acquired therapy resistance. SIGNIFICANCE PARP inhibitors can overcome resistance to MAPK inhibitors by activating autophagic cell death and reversing phenotype switching, suggesting that this synergistic combination could help improve the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Lorenza P Ferretti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Phil F Cheng
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Abdiel Alvarado-Diaz
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Alessandra Cereghetti
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Roni H Wright
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
135
|
Li J, Gu A, Nong XM, Zhai S, Yue ZY, Li MY, Liu Y. Six-Membered Aromatic Nitrogen Heterocyclic Anti-Tumor Agents: Synthesis and Applications. CHEM REC 2023; 23:e202300293. [PMID: 38010365 DOI: 10.1002/tcr.202300293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancer stands as a serious malady, posing substantial risks to human well-being and survival. This underscores the paramount necessity to explore and investigate novel antitumor medications. Nitrogen-containing compounds, especially those derived from natural sources, form a highly significant category of antitumor agents. Among these, antitumor agents with six-membered aromatic nitrogen heterocycles have consistently attracted the attention of chemists and pharmacologists. Accordingly, we present a comprehensive summary of synthetic strategies and clinical implications of these compounds in this review. This entails an in-depth analysis of synthesis pathways for pyridine, quinoline, pyrimidine, and quinazoline. Additionally, we explore the historical progression, targets, mechanisms of action, and clinical effectiveness of small molecule inhibitors possessing these structural features.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
136
|
Rasmussen DM, Semonis MM, Greene JT, Muretta JM, Thompson AR, Ramos ST, Thomas DD, Pomerantz WC, Freedman TS, Levinson NM. Allosteric coupling asymmetry mediates paradoxical activation of BRAF by type II inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.536450. [PMID: 37131649 PMCID: PMC10153139 DOI: 10.1101/2023.04.18.536450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.
Collapse
Affiliation(s)
- Damien M. Rasmussen
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Manny M. Semonis
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Andrew R. Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | | | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | | | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455
| | - Nicholas M. Levinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
137
|
Hajibabaie F, Abedpoor N, Haghjooy Javanmard S, Hasan A, Sharifi M, Rahimmanesh I, Shariati L, Makvandi P. The molecular perspective on the melanoma and genome engineering of T-cells in targeting therapy. ENVIRONMENTAL RESEARCH 2023; 237:116980. [PMID: 37648188 DOI: 10.1016/j.envres.2023.116980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Melanoma, an aggressive malignant tumor originating from melanocytes in humans, is on the rise globally, with limited non-surgical treatment options available. Recent advances in understanding the molecular and cellular mechanisms underlying immune escape, tumorigenesis, drug resistance, and cancer metastasis have paved the way for innovative therapeutic strategies. Combination therapy targeting multiple pathways simultaneously has been shown to be promising in treating melanoma, eliciting favorable responses in most melanoma patients. CAR T-cells, engineered to overcome the limitations of human leukocyte antigen (HLA)-dependent tumor cell detection associated with T-cell receptors, offer an alternative approach. By genetically modifying apheresis-collected allogeneic or autologous T-cells to express chimeric antigen receptors, CAR T-cells can appreciate antigens on cell surfaces independently of major histocompatibility complex (MHC), providing a significant cancer cell detection advantage. However, identifying the most effective target antigen is the initial step, as it helps mitigate the risk of toxicity due to "on-target, off-tumor" and establishes a targeted therapeutic strategy. Furthermore, evaluating signaling pathways and critical molecules involved in melanoma pathogenesis remains insufficient. This study emphasizes the novel approaches of CAR T-cell immunoediting and presents new insights into the molecular signaling pathways associated with melanoma.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Medical Biotechnology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Medical Biotechnology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
138
|
Atahan C, Arslantas E, Ersen Danyeli A, Celik L, Bozkurt G, Ugurluer G, Corapcioglu FV, Ozyar E. A Rare Case of BRAF-mutated Metastatic Pleomorphic Xanthoastrocytoma Patient who Developed Radiodermatitis After Receiving Anti-BRAF Treatment. J Pediatr Hematol Oncol 2023; 45:e1005-e1009. [PMID: 37700448 DOI: 10.1097/mph.0000000000002754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Pleomorphic xanthoastrocytoma (PXA) is a rare type of grade 2 or 3 brain tumor that usually occurs in children and young adults. The standard treatment for PXA is maximally safe resection, usually with adjuvant radiation therapy, for high-grade tumors. BRAF V600E mutation is one of the most common molecular alterations in these tumors, with nearly 70% of cases carrying this mutation. Although BRAF inhibitors have shown promise in treating progressive or refractory disease, their use has been associated with various adverse effects, including radiodermatitis, which is a relatively common complication. This paper presents a case of a 16-year-old male patient with BRAF-mutated metastatic PXA, who developed mild radiodermatitis after receiving BRAF inhibitors with concurrent radiation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gokhan Bozkurt
- Neurosurgery, Acibadem Maslak Hospital, Istanbul, Turkey
| | | | | | | |
Collapse
|
139
|
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22:169. [PMID: 37814270 PMCID: PMC10561438 DOI: 10.1186/s12943-023-01865-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran
| | | | | | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Devendra Pratap Rao
- Department of Chemistry, Coordination Chemistry Laboratory, Dayanand Anglo-Vedic (PG) College, Kanpur-208001, U.P, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező U. 15-17, 1084, Budapest, Hungary
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ayesha Amajd
- Faculty of Organization and Management, Silesian University of Technology, 44-100, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Polo II, 3030-788, Coimbra, Portugal
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | | | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
140
|
Chen W, Park JI. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int J Mol Sci 2023; 24:14837. [PMID: 37834284 PMCID: PMC10573597 DOI: 10.3390/ijms241914837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.
Collapse
Affiliation(s)
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
141
|
Wollenberg L, Hahn E, Williams J, Litwiler K. A phase I, single-center, open-label study to investigate the absorption, distribution, metabolism and excretion of encorafenib following a single oral dose of 100 mg [ 14 C] encorafenib in healthy male subjects. Pharmacol Res Perspect 2023; 11:e01140. [PMID: 37775918 PMCID: PMC10541456 DOI: 10.1002/prp2.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/01/2023] Open
Abstract
Encorafenib is a novel kinase inhibitor of BRAF V600E as well as wild-type BRAF and CRAF and has received approval, in combination with binimetinib, to treat BRAF V600E or V600K mutation-positive unresectable or metastatic melanoma or in combination with cetuximab to treat BRAF V600E mutation-positive colorectal cancer. The absorption, distribution, metabolism and excretion (ADME) of encorafenib was studied by administering [14 C] encorafenib (100 mg containing 90 μCi of radiolabeled material) to 4 healthy male subjects (NCT01436656). Following a single oral 100-mg dose of [14 C] encorafenib to healthy male subjects, the overall recovery of radioactivity in the excreta was ≥93.9% in all four subjects, indicating that good mass balance was achieved. An equal mean of 47.2% for the radioactivity dose was eliminated in the feces and urine. The percentage of the dose eliminated in the feces (5.0%) and urine (1.8%) as unchanged encorafenib was minor. Metabolism was found to be the major clearance pathway (~88% of the recovered radioactive dose) for encorafenib in humans and is predominantly mediated through N-dealkylation of the isopropyl carbamic acid methyl ester to form the primary phase 1 direct metabolite M42.5 (LHY746). Oral absorption was estimated from the radioactive dose recovered in the urine (47.2%) and the total radioactive dose recovered in the feces as metabolites (39%). Based on these values and the assumptions that encorafenib and its metabolites are stable in feces, the fraction of oral absorption was estimated to be at least ~86%.
Collapse
Affiliation(s)
- Lance Wollenberg
- Pfizer Inc. Worldwide ResearchDevelopment and MedicalBoulderColoradoUSA
| | - Erik Hahn
- Pfizer Inc. Worldwide ResearchDevelopment and MedicalBoulderColoradoUSA
| | - Jason Williams
- Pfizer Inc. Worldwide ResearchDevelopment and MedicalLa JollaCaliforniaUSA
| | - Kevin Litwiler
- Pfizer Inc. Worldwide ResearchDevelopment and MedicalBoulderColoradoUSA
- Present address:
OnKure TherapeuticsClinical Pharmacology and DMPKBoulderColoradoUSA
| |
Collapse
|
142
|
Mezi S, Botticelli A, Scagnoli S, Pomati G, Fiscon G, De Galitiis F, Di Pietro FR, Verkhovskaia S, Amirhassankhani S, Pisegna S, Gentile G, Simmaco M, Gohlke B, Preissner R, Marchetti P. The Impact of Drug-Drug Interactions on the Toxicity Profile of Combined Treatment with BRAF and MEK Inhibitors in Patients with BRAF-Mutated Metastatic Melanoma. Cancers (Basel) 2023; 15:4587. [PMID: 37760556 PMCID: PMC10526382 DOI: 10.3390/cancers15184587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND BRAF and MEK inhibition is a successful strategy in managing BRAF-mutant melanoma, even if the treatment-related toxicity is substantial. We analyzed the role of drug-drug interactions (DDI) on the toxicity profile of anti-BRAF/anti-MEK therapy. METHODS In this multicenter, observational, and retrospective study, DDIs were assessed using Drug-PIN software (V 2/23). The association between the Drug-PIN continuous score or the Drug-PIN traffic light and the occurrence of treatment-related toxicities and oncological outcomes was evaluated. RESULTS In total, 177 patients with advanced BRAF-mutated melanoma undergoing BRAF/MEK targeted therapy were included. All grade toxicity was registered in 79% of patients. Cardiovascular toxicities occurred in 31 patients (17.5%). Further, 94 (55.9%) patients had comorbidities requiring specific pharmacological treatments. The median Drug-PIN score significantly increased when the target combination was added to the patient's home therapy (p-value < 0.0001). Cardiovascular toxicity was significantly associated with the Drug-PIN score (p-value = 0.048). The Drug-PIN traffic light (p = 0.00821) and the Drug-PIN score (p = 0.0291) were seen to be significant predictors of cardiotoxicity. Patients with low-grade vs. high-grade interactions showed a better prognosis regarding overall survival (OS) (p = 0.0045) and progression-free survival (PFS) (p = 0.012). The survival analysis of the subgroup of patients with cardiological toxicity demonstrated that patients with low-grade vs. high-grade DDIs had better outcomes in terms of OS (p = 0.0012) and a trend toward significance in PFS (p = 0.068). CONCLUSIONS DDIs emerged as a critical issue for the risk of treatment-related cardiovascular toxicity. Our findings support the utility of DDI assessment in melanoma patients treated with BRAF/MEK inhibitors.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Andrea Botticelli
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Simone Scagnoli
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (S.P.)
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Federica De Galitiis
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Francesca Romana Di Pietro
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Sofia Verkhovskaia
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna, Via Palagi, 40126 Bologna, Italy;
| | - Simona Pisegna
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (S.P.)
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.G.); (M.S.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.G.); (M.S.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Bjoern Gohlke
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10117 Berlin, Germany; (B.G.); (R.P.)
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10117 Berlin, Germany; (B.G.); (R.P.)
| | - Paolo Marchetti
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| |
Collapse
|
143
|
Helgadottir H, Ny L, Ullenhag GJ, Falkenius J, Mikiver R, Olofsson Bagge R, Isaksson K. Survival after introduction of adjuvant treatment in stage III melanoma: a nationwide registry-based study. J Natl Cancer Inst 2023; 115:1077-1084. [PMID: 37227040 PMCID: PMC10483326 DOI: 10.1093/jnci/djad081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Adjuvant treatments with PD-1 and BRAF+MEK inhibitors statistically significantly prolong recurrence-free survival in stage III cutaneous melanoma. Yet, the effect on overall survival is still unclear. Based on recurrence-free survival outcomes, these treatments have been approved and widely implemented. The treatments have considerable side effects and costs, and overall survival effect remains a highly anticipated outcome. METHODS Clinical and histopathological parameters were obtained from the Swedish Melanoma Registry for patients diagnosed with stage III melanoma between 2016 and 2020. The patients were divided depending on if they were diagnosed before or from July 2018, based on the timepoint when adjuvant treatment was introduced in Sweden. Patients were followed up until the end of 2021. In this cohort study, melanoma-specific and overall survival were calculated using the Kaplan-Meier method and Cox-regression analyses. RESULTS There were 1371 patients diagnosed with stage III primary melanoma in Sweden in 2016-2020. The 2-year overall survival rates, comparing the 634 patients in the precohort and the 737 in the postcohort, were 84.3% (95% confidence interval [CI] = 81.4% to 87.3%) and 86.1% (95% CI = 83.4% to 89.0%), respectively, with an adjusted hazard ratio of 0.91 (95% CI = 0.70 to 1.19, P = .51). Further, no statistically significant overall or melanoma-specific survival differences were seen when comparing the precohort and the postcohort in different subgroups for age, sex, or tumor characteristics. CONCLUSIONS In this nationwide population-based and registry-based study, no survival benefit was detected in patients diagnosed before or after the implementation of adjuvant treatment in stage III melanoma. These findings encourage a careful assessment of the current recommendations on adjuvant treatment.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gustav J Ullenhag
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Johan Falkenius
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Rasmus Mikiver
- Regional Cancer Center Southeast Sweden and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Roger Olofsson Bagge
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karolin Isaksson
- Department of Clinical Sciences, Surgery, Lund University, Lund, Sweden
- Department of Surgery, Kristianstad Hopsital, Kristianstad, Sweden
| |
Collapse
|
144
|
Trilla-Fuertes L, Gámez-Pozo A, Prado-Vázquez G, López-Vacas R, Soriano V, Garicano F, Lecumberri MJ, Rodríguez de la Borbolla M, Majem M, Pérez-Ruiz E, González-Cao M, Oramas J, Magdaleno A, Fra J, Martín-Carnicero A, Corral M, Puértolas T, Ramos-Ruiz R, Dittmann A, Nanni P, Fresno Vara JÁ, Espinosa E. Multi-omics Characterization of Response to PD-1 Inhibitors in Advanced Melanoma. Cancers (Basel) 2023; 15:4407. [PMID: 37686682 PMCID: PMC10486782 DOI: 10.3390/cancers15174407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Immunotherapy improves the survival of patients with advanced melanoma, 40% of whom become long-term responders. However, not all patients respond to immunotherapy. Further knowledge of the processes involved in the response and resistance to immunotherapy is still needed. In this study, clinical paraffin samples from fifty-two advanced melanoma patients treated with anti-PD-1 inhibitors were assessed via high-throughput proteomics and RNA-seq. The obtained proteomics and transcriptomics data were analyzed using multi-omics network analyses based on probabilistic graphical models to identify those biological processes involved in the response to immunotherapy. Additionally, proteins related to overall survival were studied. The activity of the node formed by the proteins involved in protein processing in the endoplasmic reticulum and antigen presentation machinery was higher in responders compared to non-responders; the activity of the immune and inflammatory response node was also higher in those with complete or partial responses. A predictor for overall survival based on two proteins (AMBP and PDSM5) was defined. In summary, the response to anti-PD-1 therapy in advanced melanoma is related to protein processing in the endoplasmic reticulum, and also to genes involved in the immune and inflammatory responses. Finally, a two-protein predictor can define survival in advanced disease. The molecular characterization of the mechanisms involved in the response and resistance to immunotherapy in melanoma leads the way to establishing therapeutic alternatives for patients who will not respond to this treatment.
Collapse
Affiliation(s)
- Lucía Trilla-Fuertes
- Molecular Oncology Laboratory, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain; (L.T.-F.); (A.G.-P.); (G.P.-V.); (R.L.-V.); (J.Á.F.V.)
| | - Angelo Gámez-Pozo
- Molecular Oncology Laboratory, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain; (L.T.-F.); (A.G.-P.); (G.P.-V.); (R.L.-V.); (J.Á.F.V.)
- Biomedica Molecular Medicine SL, 28049 Madrid, Spain
| | - Guillermo Prado-Vázquez
- Molecular Oncology Laboratory, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain; (L.T.-F.); (A.G.-P.); (G.P.-V.); (R.L.-V.); (J.Á.F.V.)
- Biomedica Molecular Medicine SL, 28049 Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology Laboratory, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain; (L.T.-F.); (A.G.-P.); (G.P.-V.); (R.L.-V.); (J.Á.F.V.)
| | - Virtudes Soriano
- Instituto Valenciano de Oncología, 46009 Valencia, Spain;
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
| | - Fernando Garicano
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital de Galdakao, 48960 Galdakao, Spain
| | - M. José Lecumberri
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - María Rodríguez de la Borbolla
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital de Valme, 41014 Sevilla, Spain
| | - Margarita Majem
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital de la Santa Creu i Sant Pau, 08001 Barcelona, Spain
| | - Elisabeth Pérez-Ruiz
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Unidad de Gestión Clínica Intercentros (UGCI) de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, 29010 Málaga, Spain
| | - María González-Cao
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital Quirón Dexeus, 08028 Barcelona, Spain
| | - Juana Oramas
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital Universitario de Canarias-San Cristóbal de la Laguna, 38320 Tenerife, Spain
| | - Alejandra Magdaleno
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital Universitario de Elche y Vega Baja, 03203 Alicante, Spain
| | - Joaquín Fra
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital Universitario Río Hortega, 47012 Valladolid, Spain
| | - Alfonso Martín-Carnicero
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital San Pedro, 27347 Logroño, Spain
| | - Mónica Corral
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital Clínico Lozano Blesa, 50009 Zaragoza, Spain
| | - Teresa Puértolas
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | | | - Antje Dittmann
- Functional Genomics Center Zurich, University/ETH Zurich, 8092 Zurich, Switzerland; (A.D.); (P.N.)
| | - Paolo Nanni
- Functional Genomics Center Zurich, University/ETH Zurich, 8092 Zurich, Switzerland; (A.D.); (P.N.)
| | - Juan Ángel Fresno Vara
- Molecular Oncology Laboratory, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain; (L.T.-F.); (A.G.-P.); (G.P.-V.); (R.L.-V.); (J.Á.F.V.)
- Biomedica Molecular Medicine SL, 28049 Madrid, Spain
- CIBERONC, ISCIII, 28222 Madrid, Spain
| | - Enrique Espinosa
- Spanish Melanoma Group (GEM), 08024 Barcelona, Spain; (F.G.); (M.J.L.); (M.R.d.l.B.); (M.M.); (E.P.-R.); (M.G.-C.); (J.O.); (A.M.); (J.F.); (M.C.); (T.P.)
- CIBERONC, ISCIII, 28222 Madrid, Spain
- Medical Oncology Service, Hospital Universitario La Paz, 28046 Madrid, Spain
| |
Collapse
|
145
|
Fay CJ, Jakuboski S, Mclellan B, Allais BS, Semenov Y, Larocca CA, LeBoeuf NR. Diagnosis and Management of Dermatologic Adverse Events from Systemic Melanoma Therapies. Am J Clin Dermatol 2023; 24:765-785. [PMID: 37395930 PMCID: PMC10796164 DOI: 10.1007/s40257-023-00790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 07/04/2023]
Abstract
The advent of protein kinase inhibitors and immunotherapy has profoundly improved the management of advanced melanoma. However, with these therapeutic advancements also come drug-related toxicities that have the potential to affect various organ systems. We review dermatologic adverse events from targeted (including BRAF and MEK inhibitor-related) and less commonly used melanoma treatments, with a focus on diagnosis and management. As immunotherapy-related toxicities have been extensively reviewed, herein, we discuss injectable talimogene laherparepvec and touch on recent breakthroughs in the immunotherapy space. Dermatologic adverse events may severely impact quality of life and are associated with response and survival. It is therefore essential that clinicians are aware of their diverse presentations and management strategies.
Collapse
Affiliation(s)
- Christopher J Fay
- Department of Dermatology, Brigham and Women's Hospital, and the Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Beth Mclellan
- Department of Dermatology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Blair S Allais
- Department of Dermatology, Brigham and Women's Hospital, and the Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Yevgeniy Semenov
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cecilia A Larocca
- Department of Dermatology, Brigham and Women's Hospital, and the Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Nicole R LeBoeuf
- Department of Dermatology, Brigham and Women's Hospital, and the Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
146
|
Craig O, Nigam A, Dall GV, Gorringe K. Rare Epithelial Ovarian Cancers: Low Grade Serous and Mucinous Carcinomas. Cold Spring Harb Perspect Med 2023; 13:a038190. [PMID: 37277207 PMCID: PMC10513165 DOI: 10.1101/cshperspect.a038190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ovarian epithelial cancer histotypes can be divided into common and rare types. Common types include high-grade serous ovarian carcinomas and the endometriosis-associated cancers, endometrioid and clear-cell carcinomas. The less common histotypes are mucinous and low-grade serous, each comprising less than 10% of all epithelial carcinomas. Although histologically and epidemiologically distinct from each other, these histotypes share some genetic and natural history features that distinguish them from the more common types. In this review, we will consider the similarities and differences of these rare histological types, and the clinical challenges they pose.
Collapse
Affiliation(s)
- Olivia Craig
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Abhimanyu Nigam
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Kylie Gorringe
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
147
|
Dang H, Sui M, He Q, Xie J, Liu Y, Hou P, Ji M. Pin1 inhibitor API-1 sensitizes BRAF-mutant thyroid cancers to BRAF inhibitors by attenuating HER3-mediated feedback activation of MAPK/ERK and PI3K/AKT pathways. Int J Biol Macromol 2023; 248:125867. [PMID: 37473892 DOI: 10.1016/j.ijbiomac.2023.125867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
BRAFV600E mutation is one of the most therapeutic targets in thyroid cancers. However, its specific inhibitors have shown little clinical benefit because they can reactivate the MAPK/ERK and PI3K/AKT pathways by feedback upregulating the transcription of HER3. Peptidyl-prolyl cis/trans isomerase Pin1 has been proven to be closely associated with tumor progression. Here, we aimed to determine antitumor activity of Pin1 inhibitor API-1 in thyroid cancer and its effect on cellular response to BRAF inhibitors. The results showed that API-1 exhibited strong antitumor activity against thyroid cancer. Meanwhile, it improved the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4032 and there was a synergistic effect between them. Specially, a combination therapy of API-1 and PLX4032 significantly inhibited cell proliferation, colony formation, and the growth of xenograft tumors as well as induced cell apoptosis in BRAF-mutant thyroid cancer cells compared with API-1 or PLX4032 monotherapy. Similar results were also observed in transgenic mice with BrafV600E-driven thyroid cancer. Mechanistically, API-1 enhanced XPO5 ability to export pre-microRNA 20a (pre-miR-20a) from the nucleus to cytoplasm, thereby promoting the maturation of miR-20a-5p. Further studies showed that miR-20a-5p specifically targeted and down-regulated HER3, thereby blocking the reactivation of MAPK/ERK and PI3K/AKT signaling pathways caused by PLX4032. These results, taken together, demonstrate that Pin1 inhibitor API-1 significantly improves the sensitivity of BRAF-mutant thyroid cancer cells to PLX4032. Thus, this study not only determines the potential antitumor activity of Pin1 inhibitor API-1 in thyroid cancer but also offers an alternative therapeutic strategy for BRAF-mutant thyroid cancers by a combination of Pin1 inhibitor and BRAF kinase inhibitor.
Collapse
Affiliation(s)
- Hui Dang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Mengjun Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qingyuan He
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jingyi Xie
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yan Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
148
|
Yuan YC, Li Y, Pan Y, Gao B. Gastric metastasis from nodular malignant melanoma of the auricle with multigene aberrations: A rare case report and literature review. Oncol Lett 2023; 26:368. [PMID: 37559590 PMCID: PMC10407719 DOI: 10.3892/ol.2023.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Primary malignant melanoma (MM) of the external ear accounts for a low proportion of cases of cutaneous MM, and its incidence in non-white women is very low. The stomach is a rare metastatic site for MM. Gastric metastasis of MM of the external ear is extremely rare, and the associated gene alterations and mechanisms are poorly understood. The present report describes the case of a 58-year-old Asian woman who had a mass on the left auricle for 5 years and was diagnosed with nodular MM with the BRAF V600E mutation after surgical resection. Postoperative metastases to the stomach and descending duodenum appeared 1 year after resection. After 11 months of BRAF-targeted therapy and immunotherapy, the patient developed drug resistance and died from systemic metastases to the brain, lungs, liver, left adrenal gland and peritoneum. Genetic testing revealed additional aberrations in MYB, p16, MYC and PTEN. The clinical characteristics of MM of the external ear and gastric metastatic MM were also summarized through a retrospective literature review. Immunohistochemical staining is critical in the diagnosis of gastric metastasis from MM of the external ear. This disease often requires a multidisciplinary treatment approach, including surgery, targeted therapy and immunotherapy. The present study provides some genetic information about this rare disease and discusses appropriate treatment strategies. The findings of the present study suggests that the surgical margin size, tumor histological type and number of genetic aberrations may be closely associated with metastasis potential, therapeutic efficacy and patient outcome.
Collapse
Affiliation(s)
- Ya-Chen Yuan
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Ying Li
- Department of Pathology, People's Hospital of Xiangyun County, Xiangyun, Yunnan 672100, P.R. China
| | - Yun Pan
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Bo Gao
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
149
|
Lin AL, Tabar V, Young RJ, Geer EB. Dabrafenib as a diagnostic and therapeutic strategy for the non-surgical management of papillary craniopharyngioma. Pituitary 2023; 26:482-487. [PMID: 37428397 PMCID: PMC10766168 DOI: 10.1007/s11102-023-01339-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Papillary craniopharyngiomas can cause considerable morbidity due to mass effect and potential surgical complications. These tumors are known to harbor BRAF V600 mutations, which make them exquisitely sensitive to BRAF inhibitors. METHODS The patient is a 59 year old man with a progressive suprasellar lesion that was radiographically consistent with a papillary craniopharyngioma. He was consented to an Institution Review Board-approved protocol, which permits sequencing of cell free DNA in plasma and the collection and reporting of clinical data. RESULTS The patient declined surgical resection and was empirically treated with dabrafenib at 150 mg twice daily. Treatment response was demonstrated after 19 days, confirming the diagnosis. After achieving a near complete response after 6.5 months on drug, a decision was made to deescalate treatment to dabrafenib 75 mg twice daily with subsequent tumor stability for 2.5 months. CONCLUSION Patients with a suspected papillary craniopharyngioma can be challenged with dabrafenib as a potentially effective diagnostic and therapeutic strategy, given that rapid regression with dabrafenib is only observed in tumors harboring a BRAF V600 mutation. Further work is needed to explore the optimal regimen and dose of the targeted therapy.
Collapse
Affiliation(s)
- Andrew L Lin
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA.
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eliza B Geer
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
150
|
Han JW, Chang HS, Yang JY, Choi HS, Park HS, Jun HO, Choi JH, Paik SS, Chung KH, Shin HJ, Nam S, Son JH, Lee SH, Lee EJ, Seo KY, Lyu J, Kim JW, Kim IB, Park TK. Intravitreal Administration of Retinal Organoids-Derived Exosomes Alleviates Photoreceptor Degeneration in Royal College of Surgeons Rats by Targeting the Mitogen-Activated Protein Kinase Pathway. Int J Mol Sci 2023; 24:12068. [PMID: 37569444 PMCID: PMC10419150 DOI: 10.3390/ijms241512068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Increasing evidence suggests that exosomes are involved in retinal cell degeneration, including their insufficient release; hence, they have become important indicators of retinopathies. The exosomal microRNA (miRNA), in particular, play important roles in regulating ocular and retinal cell functions, including photoreceptor maturation, maintenance, and visual function. Here, we generated retinal organoids (ROs) from human induced pluripotent stem cells that differentiated in a conditioned medium for 60 days, after which exosomes were extracted from ROs (Exo-ROs). Subsequently, we intravitreally injected the Exo-RO solution into the eyes of the Royal College of Surgeons (RCS) rats. Intravitreal Exo-RO administration reduced photoreceptor apoptosis, prevented outer nuclear layer thinning, and preserved visual function in RCS rats. RNA sequencing and miRNA profiling showed that exosomal miRNAs are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, the expression of MAPK-related genes and proteins was significantly decreased in the Exo-RO-treated group. These results suggest that Exo-ROs may be a potentially novel strategy for delaying retinal degeneration by targeting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jung Woo Han
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hun Soo Chang
- Department of Microbiolo and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan 31538, Republic of Korea; (H.S.C.); (J.-H.S.)
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Han Sol Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hyo Song Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hyoung Oh Jun
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Ji Hye Choi
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea; (S.-S.P.); (I.-B.K.)
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Kyung Hwun Chung
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Hee Jeong Shin
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea;
| | - Seungyeon Nam
- Department of Neuroscience and Behavior, University of Notre Dame College of Science, Notre Dame, IN 46556, USA;
| | - Ji-Hye Son
- Department of Microbiolo and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan 31538, Republic of Korea; (H.S.C.); (J.-H.S.)
| | - Si Hyung Lee
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Eun Jung Lee
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (E.J.L.); (J.W.K.)
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejun 32992, Republic of Korea;
| | - Jin Woo Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (E.J.L.); (J.W.K.)
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea; (S.-S.P.); (I.-B.K.)
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea;
- oligoNgene Pharmaceutical Co., Ltd., Bucheon 31538, Republic of Korea
| |
Collapse
|