101
|
Di-Nizo CB, Ferguson-Smith MA, Silva MJDJ. Extensive genomic reshuffling involved in the karyotype evolution of genus Cerradomys (Rodentia: Sigmodontinae: Oryzomyini). Genet Mol Biol 2020; 43:e20200149. [PMID: 33306775 PMCID: PMC7783725 DOI: 10.1590/1678-4685-gmb-2020-0149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022] Open
Abstract
Rodents of the genus Cerradomys belong to the tribe Oryzomyini
and present high chromosome variability with diploid numbers ranging from 2n=46
to 60. Classical cytogenetics and fluorescence in situ
hybridization (FISH) with telomeric and whole chromosome-specific probes of
another Oryzomyini, Oligoryzomys moojeni (OMO), were used to
assess the karyotype evolution of the genus. Results were integrated into a
molecular phylogeny to infer the hypothetical direction of chromosome changes.
The telomeric FISH showed signals in telomeres in species that diverged early in
the phylogeny, plus interstitial telomeric signals (ITS) in some species from
the most derived clades (C. langguthi,C. vivoi, C. goytaca, and C.
subflavus). Chromosome painting revealed homology from 23 segments
of C. maracajuensis and C. marinhus to 32 of
C. vivoi. Extensive chromosome reorganization was
responsible for karyotypic differences in closely related species. Major drivers
for genomic reshuffling were in tandem and centric fusion,
fission, paracentric and pericentric inversions or centromere repositioning.
Chromosome evolution was associated with an increase and decrease in diploid
number in different lineages and ITS indicate remnants of ancient telomeres.
Cytogenetics results corroborates that C. goytaca is not a
junior synonym of C. subflavus since the karyotypic differences
found may lead to reproductive isolation.
Collapse
Affiliation(s)
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
102
|
Mendoza MN, Schalnus SA, Thomson B, Bellone RR, Juras R, Raudsepp T. Novel Complex Unbalanced Dicentric X-Autosome Rearrangement in a Thoroughbred Mare with a Mild Effect on the Phenotype. Cytogenet Genome Res 2020; 160:597-609. [PMID: 33152736 DOI: 10.1159/000511236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Complex structural X chromosome abnormalities are rare in humans and animals, and not recurrent. Yet, each case provides a fascinating opportunity to evaluate X chromosome content and functional status in relation to the effect on the phenotype. Here, we report the first equine case of a complex unbalanced X-autosome rearrangement in a healthy but short in stature Thoroughbred mare. Studies of about 200 cells by chromosome banding and FISH revealed an abnormal 2n = 63,X,der(X;16) karyotype with a large dicentric derivative chromosome (der). The der was comprised of normal Xp material, a palindromic duplication of Xq12q21, and a translocation of chromosome 16 to the inverted Xq12q21 segment by the centromere, whereas the distal Xq22q29 was deleted from the der. Microsatellite genotyping determined a paternal origin of the der. While there was no option to experimentally investigate the status of X chromosome inactivation (XCI), the observed mild phenotype of this case suggested the following scenario to retain an almost normal genetic balance: active normal X, inactivated X-portion of the der, but without XCI spreading into the translocated chromosome 16. Cases like this present unique resources to acquire information about species-specific features of X regulation and the role of X-linked genes in development, health, and disease.
Collapse
Affiliation(s)
- Mayra N Mendoza
- Estación Experimental Agraria Chincha, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Ica, Peru
| | - Sam A Schalnus
- Hagyard Equine Medical Institute, Lexington, Kentucky, USA
| | - Bitsy Thomson
- Hagyard Equine Medical Institute, Lexington, Kentucky, USA
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Rytis Juras
- Molecular Cytogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences,Texas A&M University, College Station, Texas, USA
| | - Terje Raudsepp
- Molecular Cytogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences,Texas A&M University, College Station, Texas, USA,
| |
Collapse
|
103
|
Sena RS, Heringer P, Valeri MP, Pereira VS, Kuhn GCS, Svartman M. Identification and characterization of satellite DNAs in two-toed sloths of the genus Choloepus (Megalonychidae, Xenarthra). Sci Rep 2020; 10:19202. [PMID: 33154538 PMCID: PMC7644632 DOI: 10.1038/s41598-020-76199-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Choloepus, the only extant genus of the Megalonychidae family, is composed of two living species of two-toed sloths: Choloepus didactylus and C. hoffmanni. In this work, we identified and characterized the main satellite DNAs (satDNAs) in the sequenced genomes of these two species. SATCHO1, the most abundant satDNA in both species, is composed of 117 bp tandem repeat sequences. The second most abundant satDNA, SATCHO2, is composed of ~ 2292 bp tandem repeats. Fluorescence in situ hybridization in C. hoffmanni revealed that both satDNAs are located in the centromeric regions of all chromosomes, except the X. In fact, these satDNAs present some centromeric characteristics in their sequences, such as dyad symmetries predicted to form secondary structures. PCR experiments indicated the presence of SATCHO1 sequences in two other Xenarthra species: the tree-toed sloth Bradypus variegatus and the anteater Myrmecophaga tridactyla. Nevertheless, SATCHO1 is present as large tandem arrays only in Choloepus species, thus likely representing a satDNA exclusively in this genus. Our results reveal interesting features of the satDNA landscape in Choloepus species with the potential to aid future phylogenetic studies in Xenarthra and mammalian genomes in general.
Collapse
Affiliation(s)
- Radarane Santos Sena
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Heringer
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mirela Pelizaro Valeri
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Gustavo C S Kuhn
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta Svartman
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
104
|
de Souza Araújo Adão B, Travenzoli NM, Côrtes FM, Svartman M, Dergam JA, Lessa G. Intrapopulation karyotypic and cranial characterization of Blarinomys breviceps (Rodentia: Sigmodontinae) from Minas Gerais, Brazil. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
105
|
Guilardi MD, Jayat P, Weksler M, Patton JL, Ortiz PE, Almeida K, Silva MJDJ. A review of Euryoryzomys legatus (Rodentia, Sigmodontinae): morphological redescription, cytogenetics, and molecular phylogeny. PeerJ 2020; 8:e9884. [PMID: 33194362 PMCID: PMC7603791 DOI: 10.7717/peerj.9884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/16/2020] [Indexed: 11/20/2022] Open
Abstract
The taxonomic history of Euryoryzomys legatus has been complex and controversial, being either included in the synonymy of other oryzomyine species or considered as a valid species, as in the most recent review of the genus. Previous phylogenetic analyses segregated E. legatus from E. russatus, its putative senior synonym, but recovered it nested within E. nitidus. A general lack of authoritative evaluation of morphological attributes, details of the chromosome complement, or other data types has hampered the ability to choose among alternative taxonomic hypotheses, and thus reach a general consensus for the status of the taxon. Herein we revisit the status of E. legatus using an integrated approach that includes: (1) a morphological review, especially centered on specimens from northwestern Argentina not examined previously, (2) comparative cytogenetics, and (3) phylogenetic reconstruction, using mitochondrial genes. Euryoryzomys legatus is morphologically and phylogenetically distinct from all other species-level taxa in the genus, but its 2n=80, FN=86 karyotype is shared with E. emmonsae, E. nitidus, and E. russatus. Several morphological and morphometric characters distinguish E. legatus from other species of Euryoryzomys, and we provide an amended diagnosis for the species. Morphological characters useful in distinguishing E. legatus from E. nitidus, its sister taxon following molecular analyses, include: larger overall size, dorsal fur with a strong yellowish brown to orange brown tinge, flanks and cheeks with an orange lateral line, ventral color grayish-white with pure white hairs present only on the chin, presence of a thin blackish eye-ring, tail bicolored, presence of an alisphenoid strut and a well-developed temporal and lambdoid crests in the skull, and a labial cingulum on M3. Molecular phylogenetic analyses recovered E. legatus as a monophyletic group with high support nested within a paraphyletic E. nitidus; genetic distances segregated members of both species, except for an exemplar of E. nitidus. Our integrated analyses reinforce E. legatus as a full species, but highlight that E. macconnelli, E. emmonsae, and E. nitidus each may be a species complex and worthy of systematic attention. Finally, we also evaluated the chromosome evolution of the genus within a phylogenetic context.
Collapse
Affiliation(s)
- Mariana D. Guilardi
- Laboratório de Ecologia e Evolução, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Pablo Jayat
- Unidad Ejecutora Lillo, CONICET- Fundación Miguel Lillo, San Miguel de Tucumán, Tucumán, Argentina
| | - Marcelo Weksler
- Setor de Mastozoologia, Departamento de Vertebrados, Museu Nacional / Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - James L. Patton
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, United States of America
| | - Pablo Edmundo Ortiz
- Cátedra de Paleontología, Facultad de Ciencias Naturales and Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Keila Almeida
- Superintendência da Polícia Técnico-Cientifica, Núcleo de Perícias em Crimes Contra Pessoa, Instituto de Criminalística, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
106
|
Nikulin SV, Alekseev BY, Sergeeva NS, Karalkin PA, Nezhurina EK, Kirsanova VA, Sviridova IK, Akhmedova SA, Volchenko NN, Bolotina LV, Osipyants AI, Hushpulian DM, Topchiy MA, Asachenko AF, Koval AP, Shcherbo DS, Kiselev VI, Mikhaylenko DS, Schumacher U, Poloznikov AA. Breast cancer organoid model allowed to reveal potentially beneficial combinations of 3,3'-diindolylmethane and chemotherapy drugs. Biochimie 2020; 179:217-227. [PMID: 33098909 DOI: 10.1016/j.biochi.2020.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic alterations represent promising therapeutic targets in cancer treatment. Recently it was revealed that small molecules have the potential to act as microRNA silencers. Capacity to bind the discrete stem-looped structure of pre-miR-21 and prevent its maturation opens opportunities to utilize such compounds for the prevention of initiation, progression, and chemoresistance of cancer. Molecular simulations performed earlier identified 3,3'-diindolylmethane (DIM) as a potent microRNA-21 antagonist. However, data on DIM and microRNA-21 interplay is controversial, which may be caused by the limitations of the cell lines.
Collapse
Affiliation(s)
- Sergey V Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, 101000, Russia; P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Boris Ya Alekseev
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Nataliya S Sergeeva
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Pavel A Karalkin
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Elizaveta K Nezhurina
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Valentina A Kirsanova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Irina K Sviridova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Suraja A Akhmedova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Nadezhda N Volchenko
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Larisa V Bolotina
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Andrey I Osipyants
- School of Biomedicine, Far Eastern Federal University, Vladivostok, 690091, Russia
| | - Dmitry M Hushpulian
- School of Biomedicine, Far Eastern Federal University, Vladivostok, 690091, Russia; Institute of Nanotechnology of Microelectronics, 32A Leninsky Prospekt, Moscow, 119991, Russia
| | - Maxim A Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrey F Asachenko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, 119991, Russia
| | - Anastasia P Koval
- Molecular Oncology Laboratory, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Dmitry S Shcherbo
- Molecular Oncology Laboratory, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Vsevolod I Kiselev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow, 117997, Russia
| | - Dmitry S Mikhaylenko
- Institute of Molecular Medicine, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Andrey A Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, 101000, Russia; P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia.
| |
Collapse
|
107
|
Gorobeyko UV, Kartavtseva IV, Sheremetyeva IN, Kazakov DV, Guskov VY. DNA-barcoding and a new data about the karyotype of Myotis petax (Chiroptera, Vespertilionidae) in the Russian Far East. COMPARATIVE CYTOGENETICS 2020; 14:483-500. [PMID: 33224443 PMCID: PMC7661951 DOI: 10.3897/compcytogen.v14i4.54955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The DNA-barcoding and chromosomal study of the eastern water bat, Myotis petax Hollister, 1912, from the earlier unexplored localities in the Russian Far East are carried out. The COI barcoding obtained for 18 from a total of 19 individuals captured in five localities in the Russian Far East showed the low nucleotide variability with the prevalence of the central, the most abundant haplotype. The chromosomal characteristics of eight M. petax specimens (2n = 44, NFa = 52) in the Russian Far East are clarified. The number and localization of NOR in karyotype of M. petax is described at the first time and differ from distributional patterns of NOR in the sibling species M. daubentonii Kuhl, 1819 that can be used as diagnostic feature. The considerable intraspecific variability in the distribution of heterochromatin material revealed is not typical of the genus Myotis, but it has been found in other species of the family Vespertilionidae.
Collapse
Affiliation(s)
- Uliana V. Gorobeyko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, RussiaEast Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of SciencesVladivostokRussia
| | - Irina V. Kartavtseva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, RussiaEast Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of SciencesVladivostokRussia
| | - Irina N. Sheremetyeva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, RussiaEast Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of SciencesVladivostokRussia
| | - Denis V. Kazakov
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, RussiaTyumen State UniversityTyumenRussia
| | - Valentin Yu. Guskov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, RussiaEast Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of SciencesVladivostokRussia
| |
Collapse
|
108
|
Larentis GR, Bastos HBDA, Centeno LAM, Bueno VLC, Bringel BA, Mattos RC. Hormonal Stimulation in a Gonadal Dysgenesis Mare. J Equine Vet Sci 2020; 92:103154. [PMID: 32797782 DOI: 10.1016/j.jevs.2020.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Abstract
The present case report aimed to determine the responsiveness of the endometrium and the ovaries of an X0 mare after hormonal treatment. On transrectal palpation, the uterus was flaccid and smaller than normal, and the ovaries were small and smooth. The endometrium had normal histological architecture, with an atrophic glandular epithelium. A karyotype evaluation was performed, and 70 cells presented 63 chromosomes, lacking one sex chromosome. Circulating hormonal levels of total estrogens were 43.93 pg/mL; progesterone 0.01 ng/mL; testosterone 48 pg/mL; FSH 30.3 ng/mL; and LH 1.71 ng/mL. Immunohistochemistry tests showed the presence of estrogens and progesterone receptors in the endometrial samples of the X0 mare. 17β estradiol was administrated on three consecutive days and long-action progesterone on the fourth day. After hormonal stimulation, the mare showed changes in endometrial ultrasonography and histology. After treatment with estradiol, uterine edema was noted, and after progesterone, a reduction in edema was observed. At the request of the owner, no further treatment or follow-up occurred. This report showed that the endometrium is functional, but the ovaries did not change macroscopically under hormonal therapy.
Collapse
Affiliation(s)
- Gustavo Rupp Larentis
- REPROLAB - Faculdade de Veterinária, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | - Rodrigo Costa Mattos
- REPROLAB - Faculdade de Veterinária, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
109
|
Cifuentes-Rincón A, Morales-Donoso JA, Sandoval EDP, Tomazella IM, Mantellatto AMB, de Thoisy B, Duarte JMB. Designation of a neotype for Mazama americana (Artiodactyla, Cervidae) reveals a cryptic new complex of brocket deer species. Zookeys 2020; 958:143-164. [PMID: 32863720 PMCID: PMC7434805 DOI: 10.3897/zookeys.958.50300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022] Open
Abstract
Mazamaamericana (red brocket deer) is the genus-type species (first species described for this genus) and the basis for the identity of other Mazama species. Mazamaamericana is one of the most abundant and widely distributed deer species in the neotropical forest. However, recent studies suggest that this taxon belongs to a species complex. Our goal was to collect an animal at the type locality (topotype) in French Guiana with the aim of characterizing the morphological (biometric, craniometric), cytogenetic (Giemsa, C-banding, G-banding and NOR) and molecular (mitochondrial DNA) features. The comparisons showed that the collected specimen was very similar morphologically to specimens from other South American populations, but it was cytogenetically and molecularly very different from any of the cytotypes already described for this species, corroborating the existence of a complex of cryptic species. The data suggest that the M.americana topotype is a different species from all the cytotypes already described in the literature and which occupy the southern region of the Amazon River. The characterization and designation of the M.americana neotype is the first step toward a taxonomic reorganization of the genus Mazama, with the potential identification of new species.
Collapse
Affiliation(s)
- Analorena Cifuentes-Rincón
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP), Via de Acesso Paulo Donato Castellane, s/n CEP: 14884-900, Jaboticabal-SP, Brazil Universidade Estadual Paulista Jaboticabal Brazil
| | - Jorge Alfonso Morales-Donoso
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP), Via de Acesso Paulo Donato Castellane, s/n CEP: 14884-900, Jaboticabal-SP, Brazil Universidade Estadual Paulista Jaboticabal Brazil
| | - Eluzai Dinai Pinto Sandoval
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP), Via de Acesso Paulo Donato Castellane, s/n CEP: 14884-900, Jaboticabal-SP, Brazil Universidade Estadual Paulista Jaboticabal Brazil
| | - Iara Maluf Tomazella
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP), Via de Acesso Paulo Donato Castellane, s/n CEP: 14884-900, Jaboticabal-SP, Brazil Universidade Estadual Paulista Jaboticabal Brazil
| | - Aline Meira Bonfim Mantellatto
- Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Porto Seguro, BA, CEP: 45810-000, Brazil Universidade Federal do Sul da Bahia Porto Seguro Brazil
| | - Benoit de Thoisy
- Kwata NGO, 16 Avenue Pasteur, 97300 Cayenne, French Guiana Kwata NGO Cayenne French Guyana
| | - José Maurício Barbanti Duarte
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP), Via de Acesso Paulo Donato Castellane, s/n CEP: 14884-900, Jaboticabal-SP, Brazil Universidade Estadual Paulista Jaboticabal Brazil
| |
Collapse
|
110
|
Romanenko SA, Fedorova YE, Serdyukova NA, Zaccaroni M, Stanyon R, Graphodatsky AS. Evolutionary rearrangements of X chromosomes in voles (Arvicolinae, Rodentia). Sci Rep 2020; 10:13235. [PMID: 32764633 PMCID: PMC7413345 DOI: 10.1038/s41598-020-70226-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
Euchromatic segments of the X chromosomes of placental mammals are the most conservative elements of the karyotype, only rarely subjected to either inter- or intrachromosomal rearrangements. Here, using microdissection-derived set of region-specific probes of Terricola savii we detailed the evolutionary rearrangements found in X chromosomes in 20 vole species (Arvicolinae, Rodentia). We show that the evolution of X chromosomes in this taxon was accompanied by multiple para- and pericentric inversions and centromere shifts. The contribution of intrachromosomal rearrangements to the karyotype evolution of Arvicolinae species was approximately equivalent in both the separate autosomal conserved segments and the X chromosomes. Intrachromosmal rearrangements and structural reorganization of the X chromosomes was likely accompanied by an accumulation, distribution, and evolution of repeated sequences.
Collapse
Affiliation(s)
| | - Yulia E Fedorova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - Marco Zaccaroni
- Department of Biology, University of Florence, Florence, Italy
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
111
|
Pereira AL, Malcher SM, Nagamachi CY, de Souza ACP, Pieczarka JC. Karyotypic diversity within the genus Makalata (Echimyidae: Echimyinae) of Brazilian Amazon: Chromosomal evidence for multiple species. PLoS One 2020; 15:e0235788. [PMID: 32634157 PMCID: PMC7340305 DOI: 10.1371/journal.pone.0235788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Makalata is a taxonomically complex group of rodents on which few cytogenetic studies have been performed. Most of the published karyotypes were described based only on conventional chromosome staining. Here, we studied the karyotypes of Makalata from two Brazilian Amazonian states, Amapá and Pará, by Giemsa-staining, G- and C-banding, AgNO3-staining and FISH with 18S rDNA and telomeric sequences probes. We observed 2n = 66/FN = 124 in the Pará state population in Makalata sp; and 2n = 72/FN = 128 in the Amapá state population in M. didelphoides. Multiple chromosome rearrangements may have given rise to these karyotypes, which differ significantly from each other and from those reported in the literature. The chromosomal differences among the described Makalata karyotypes can act as a barrier to gene flow; since they are also associated with geographic barriers (e.g., rivers) and numerous molecular differences, they could be seen as evidence for reproductive isolation of populations from genus Makalata. Our data suggest that the genus is chromosomally diverse and the karyotypes may belong to different species. These karyotypes may prove useful as taxonomic markers for these rodents.
Collapse
Affiliation(s)
- Adenilson Leão Pereira
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Stella Miranda Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail:
| |
Collapse
|
112
|
Spatial and Temporal Dynamics of Contact Zones Between Chromosomal Races of House Mice, Mus musculus domesticus, on Madeira Island. Genes (Basel) 2020; 11:genes11070748. [PMID: 32640559 PMCID: PMC7397221 DOI: 10.3390/genes11070748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/29/2023] Open
Abstract
Analysis of contact zones between parapatric chromosomal races can help our understanding of chromosomal divergence and its influence on the speciation process. Monitoring the position and any movement of contact zones can allow particular insights. This study investigates the present (2012-2014) and past (1998-2002) distribution of two parapatric house mouse chromosomal races-PEDC (Estreito da Calheta) and PADC (Achadas da Cruz)-on Madeira Island, aiming to identify changes in the location and width of their contact. We also extended the 1998-2002 sampling area into the range of another chromosomal race-PLDB (Lugar de Baixo). Clinal analysis indicates no major geographic alterations in the distribution and chromosomal characteristics of the PEDC and PADC races but exhibited a significant shift in position of the Rb (7.15) fusion, resulting in the narrowing of the contact zone over a 10+ year period. We discuss how this long-lasting contact zone highlights the role of landscape on mouse movements, in turn influencing the chromosomal characteristics of populations. The expansion of the sampling area revealed new chromosomal features in the north and a new contact zone in the southern range involving the PEDC and PLDB races. We discuss how different interacting mechanisms (landscape resistance, behaviour, chromosomal incompatibilities, meiotic drive) may help to explain the pattern of chromosomal variation at these contacts between chromosomal races.
Collapse
|
113
|
Hussein TM, Abd Elmoaty Elneily D, Mohamed Abdelfattah Elsayed F, El-Attar LM. Genetic risk factors for venous thromboembolism among infertile men with Klinefelter syndrome. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2020; 20:100228. [PMID: 32577403 PMCID: PMC7303976 DOI: 10.1016/j.jcte.2020.100228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022]
Abstract
Infertile males with KS have sex-chromosome abnormalities, endocrinal disturbances and other health problems. Hereditary thrombophilia may exacerbate tendency to thrombosis in KS patients. Genotype and allele frequency of thrombophilic gene variants were remarkably high in men with KS. The coexistence of different mutant alleles was evident in infertile KS males.
Background Klinefelter syndrome (KS) is one of the commonest sex chromosome disorders. Affected males become infertile and highly susceptible to several health problems, including vascular thromboembolism (VTE). The risk of VTE may be exacerbated by an underlying genetically inherited thrombophilia. In this study, we aimed to investigate the genotype and allele frequencies of common gene polymorphisms related to hereditary thrombophilia in infertile males with KS compared to normal, fertile men. Methods Eighty-five infertile males with KS and 75 healthy control males were included in this case-control study. Genetic testing was done using an extended thrombophilia gene panel by Multiplex PCR reverse hybridization method. Results There was an increased frequency of mutant alleles and heterozygous genotypes of FV Leiden, FV H 1299R, Pro G20210A, MTHFR C677T and PAI-1 4G/5G thrombophilic gene polymorphisms in KS patients compared to the control group. It was shown that 10.7% of KS patients had the A3 haplotype of the EPCR gene in comparison to 5.3% of control patients. The A3/A3 genotype was found only in KS patients (7.1%). Carriers of more than one mutant allele in KS patients exceeded the control (p < 0.001). Conclusion A high prevalence of thrombophilic gene polymorphisms and the coexistence of different mutant alleles were evident in infertile KS males. These data highlight the importance of conducting further studies to understand the role of hereditary thrombophilia in predicting venous thrombosis in patients with Klinefelter syndrome.
Collapse
Key Words
- APC, activated protein C
- Allele frequency
- BMI, Body mass index
- EPCR, Endothelial protein C receptor
- FSH, Follicle stimulating hormone
- FV Leiden, Factor V leiden
- Genotype
- HDL, High density lipoprotein
- Hereditary thrombophilia
- Klinefelter syndrome
- LDL, Low density lipoprotein
- LH, Luteinizing hormone
- MAF, Minor Allele Frequency
- MTHFR, 5, 10-methylene tetrahydrofolate reductase
- PAI-1, plasminogen activator inhibitor 1
- PROCR, Protein C receptor gene
- PTH, Prothrombin
- Polymorphism
- SNP, Single Nucleotide Polymorphism
- VTE, Venous thromboembolism
- VTE, thrombosis
Collapse
Affiliation(s)
- Tarek M Hussein
- Dermatology and Andrology Department, Alexandria University, Alexandria, Egypt
| | - Dalia Abd Elmoaty Elneily
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Lama M El-Attar
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
114
|
FitzPatrick DR, Firth HV. Genomically Aided Diagnosis of Severe Developmental Disorders. Annu Rev Genomics Hum Genet 2020; 21:327-349. [PMID: 32421356 DOI: 10.1146/annurev-genom-120919-082329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our ability to make accurate and specific genetic diagnoses in individuals with severe developmental disorders has been transformed by data derived from genomic sequencing technologies. These data reveal both the patterns and rates of different mutational mechanisms and identify regions of the human genome with fewer mutations than would be expected. In outbred populations, the most common identifiable cause of severe developmental disorders is de novo mutation affecting the coding region in one of approximately 500 different genes, almost universally showing constraint. Simply combining the location of a de novo genomic event with its predicted consequence on the gene product gives significant diagnostic power. Our knowledge of the diversity of phenotypic consequences associated with comparable diagnostic genotypes at each locus is improving. Computationally useful phenotype data will improve diagnostic interpretation of ultrarare genetic variants and, in the long run, indicate which specific embryonic processes have been perturbed.
Collapse
Affiliation(s)
- David R FitzPatrick
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom; .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Royal Hospital for Children and Young People, Edinburgh EH16 4SF, United Kingdom
| | - Helen V Firth
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; .,Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| |
Collapse
|
115
|
Domínguez MG, Rivera H, Dávalos-Pulido RM, Dávalos-Rodríguez IP. A paternal t(6;22)(q25.3;p12) leading to a deleted and satellited der(6) in a short-lived infant. J Clin Lab Anal 2020; 34:e23355. [PMID: 32399990 PMCID: PMC7439351 DOI: 10.1002/jcla.23355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background Non‐acrocentric satellited chromosomes mostly result from familial balanced insertions or translocations with p12 or p13 of any acrocentric. Although all non‐acrocentrics have been involved, only 12 instances of chromosome 6 involvement are known. Case presentation A female infant exhibited clinical features typical of 6qter deletions and also generalized hypertrichosis and synophrys, traits seldom reported in patients with similar imbalances or haploinsufficiency of ARID1B located in 6q25.3. She had a paternal derivative satellited 6q of a t(6;22)(q25.3;p12)pat entailing a 6q terminal deletion, karyotype 46,XX,der(6)t(6;22)(q25.3;p12)pat [16].ish del 6q subtel–. Conclusion Male and female carriers of reciprocal translocations or insertions between chromosome 6 and the short arm of any acrocentric have few unbalanced offspring mostly by adjacent‐1 segregation. In addition, spontaneous abortions or male infertility was present in 7/13 instances of satellited chromosome 6.
Collapse
Affiliation(s)
| | - Horacio Rivera
- División de Genética, CIBO, Instituto Mexicano del Seguro Social, Guadalajara, México.,Doctorado en Genética Humana, CUCS, Universidad de Guadalajara, Guadalajara, México
| | | | - Ingrid Patricia Dávalos-Rodríguez
- División de Genética, CIBO, Instituto Mexicano del Seguro Social, Guadalajara, México.,Doctorado en Genética Humana, CUCS, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
116
|
Valeri MP, Dias GB, Moreira CN, Yonenaga-Yassuda Y, Stanyon R, Kuhn GCES, Svartman M. Characterization of Satellite DNAs in Squirrel Monkeys genus Saimiri (Cebidae, Platyrrhini). Sci Rep 2020; 10:7783. [PMID: 32385398 PMCID: PMC7210261 DOI: 10.1038/s41598-020-64620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/15/2020] [Indexed: 02/01/2023] Open
Abstract
The genus Saimiri is a decades-long taxonomic and phylogenetic puzzle to which cytogenetics has contributed crucial data. All Saimiri species apparently have a diploid number of 2n = 44 but vary in the number of chromosome arms. Repetitive sequences such as satellite DNAs are potentially informative cytogenetic markers because they display high evolutionary rates. Our goal is to increase the pertinent karyological data by more fully characterizing satellite DNA sequences in the Saimiri genus. We were able to identify two abundant satellite DNAs, alpha (~340 bp) and CapA (~1,500 bp), from short-read clustering of sequencing datasets from S. boliviensis. The alpha sequences comprise about 1% and the CapA 2.2% of the S. boliviensis genome. We also mapped both satellite DNAs in S. boliviensis, S. sciureus, S. vanzolinii, and S. ustus. The alpha has high interspecific repeat homogeneity and was mapped to the centromeres of all analyzed species. CapA is associated with non-pericentromeric heterochromatin and its distribution varies among Saimiri species. We conclude that CapA genomic distribution and its pervasiveness across Platyrrhini makes it an attractive cytogenetic marker for Saimiri and other New World monkeys.
Collapse
Affiliation(s)
- Mirela Pelizaro Valeri
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Borges Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Camila Nascimento Moreira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Yatiyo Yonenaga-Yassuda
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Florence, Italy
| | - Gustavo Campos E Silva Kuhn
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta Svartman
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
117
|
Pinzon-Arteaga C, Snyder MD, Lazzarotto CR, Moreno NF, Juras R, Raudsepp T, Golding MC, Varner DD, Long CR. Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9. Sci Rep 2020; 10:7411. [PMID: 32366884 PMCID: PMC7198616 DOI: 10.1038/s41598-020-62723-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Phenotypic selection during animal domestication has resulted in unwanted incorporation of deleterious mutations. In horses, the autosomal recessive condition known as Glycogen Branching Enzyme Deficiency (GBED) is the result of one of these deleterious mutations (102C > A), in the first exon of the GBE1 gene (GBE1102C>A). With recent advances in genome editing, this type of genetic mutation can be precisely repaired. In this study, we used the RNA-guided nuclease CRISPR-Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR-associated protein 9) to correct the GBE1102C>A mutation in a primary fibroblast cell line derived from a high genetic merit heterozygous stallion. To correct this mutation by homologous recombination (HR), we designed a series of single guide RNAs (sgRNAs) flanking the mutation and provided different single-stranded donor DNA templates. The distance between the Cas9-mediated double-stranded break (DSB) to the mutation site, rather than DSB efficiency, was the primary determinant for successful HR. This framework can be used for targeting other harmful diseases in animal populations.
Collapse
Affiliation(s)
- Carlos Pinzon-Arteaga
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew D Snyder
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | | | - Nicolas F Moreno
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
118
|
Tallat S, Hussien R, Mohamed RH, Abd El Wahab MB, Mahmoud M. Caspases as prognostic markers and mortality predictors in acute organophosphorus poisoning. J Genet Eng Biotechnol 2020; 18:10. [PMID: 32281011 PMCID: PMC7152583 DOI: 10.1186/s43141-020-00024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/11/2020] [Indexed: 01/19/2023]
Abstract
Background Organophosphorus (OP) compounds have been widely available for decades in agriculture for crop protection and as cheap pest controllers, which increases the rate of exposure and poisoning cases. Using serum cholinesterase as prognostic markers for the acute OP toxicity is controversial; therefore, we aim to find out prognostic biomarkers that best correlate with mortality and outcomes of patients with acute OP toxicity. Levels of serum oxidative stress biomarkers (malondialdehyde (MDA) and total antioxidant capacity (TAC)) and activity of the apoptotic biomarkers (caspase 3 and caspase 9) and pseudo-cholinesterase (p.ChE) were performed. Also, we evaluated the apoptotic capacity through determining the genotoxic effects and chromosomal abnormalities among OP intoxicated patients. Results We found the activity of caspases and serum MDA and TAC were significantly increased after OP poisoning and decreased after the appropriate atropine and oxime treatment course. The ROC curve suggested caspases as mortality and outcome predictive markers for acute OP poisoning patients. However, OP poisoning cases before treatment showed significant DNA damage, and they did not show any chromosomal aberration. Conclusion The mentioned results strongly suggest apoptotic-related markers (caspase 3, caspase 9) as prognostic markers for evaluation of the treatment, outcomes, and mortality rate in the acute OP toxicity patients.
Collapse
Affiliation(s)
- Shimaa Tallat
- Poison Control Center-Ain Shams University Hospitals (PCC-ASU), Cairo, Egypt
| | - Rania Hussien
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | | | - Magdy Mahmoud
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
119
|
Bugarski-Stanojević V, Stamenković G, Ćirović D, Ćirić D, Stojković O, Veličković J, Kataranovski D, Savić I. 16S rRNA gene polymorphism supports cryptic speciation within the lesser blind mole rat Nannospalax leucodon superspecies (Rodentia: Spalacidae). Mamm Biol 2020. [DOI: 10.1007/s42991-020-00019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
120
|
Malygin VM, Baskevich MI, Khlyap LA. Invasions of the Common Vole Sibling Species. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2020. [DOI: 10.1134/s2075111720010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
121
|
Hosono K, Kawase K, Kurata K, Niimi Y, Saitsu H, Minoshima S, Ohnishi H, Yamamoto T, Hikoya A, Tachibana N, Fukao T, Yamamoto T, Hotta Y. A case of childhood glaucoma with a combined partial monosomy 6p25 and partial trisomy 18p11 due to an unbalanced translocation. Ophthalmic Genet 2020; 41:175-182. [PMID: 32223580 DOI: 10.1080/13816810.2020.1744019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: Chromosomal deletion involving the 6p25 region results in a clinically recognizable syndrome characterized by anterior eye chamber anomalies with risk of glaucoma and non-ocular malformations (6p25 deletion syndrome). We report a newborn infant case of childhood glaucoma with a combination of partial monosomy 6p25 and partial trisomy 18p11 due to an unbalanced translocation.Materials and methods: The patient was a 0-year-old girl. Both eyes showed aniridia and left eye Peters anomaly with multiple malformations. To identify the chromosomal aberrations in the patient with clinically suspected 6p25 deletion syndrome, we performed cytogenetic analysis (G-banding and multicolor fluorescent in-situ hybridization) and array-based comparative genomic hybridization (array-CGH) analysis.Results: Cytogenetic analyses revealed a derivative chromosome 6 with its distal short arm replaced by an extra copy of the short arm of chromosome 18. Array-CGH analysis detected a 4.6-Mb deletion at 6pter to 6p25.1 and 8.9-Mb duplication at 18pter to 18p11.22. To determine the breakpoint of the unbalanced rearrangement at the single-base level, we performed a long-range PCR for amplifying the junctional fragment of the translocation breakpoint. By sequencing the junctional fragment, we defined the unbalanced translocation as g.chr6:pter_4594783delinschr18:pter_8911541.Conclusions: A phenotype corresponding to combined monosomy 6p25 and trisomy 18p11 presented as childhood glaucoma associated with non-acquired (congenital) ocular anomalies consist of aniridia and Peters anomaly and other systemic malformations. To the best of our knowledge, this is the first report which demonstrated the breakpoint sequence of an unbalanced translocation in a Japanese infant with childhood glaucoma.
Collapse
Affiliation(s)
- Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhide Kawase
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Niimi
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinsei Minoshima
- Department of Photomedical Genomics, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takahiro Yamamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Akiko Hikoya
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nobutaka Tachibana
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tetsuya Yamamoto
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
122
|
Complex Structure of Lasiopodomys mandarinus vinogradovi Sex Chromosomes, Sex Determination, and Intraspecific Autosomal Polymorphism. Genes (Basel) 2020; 11:genes11040374. [PMID: 32235544 PMCID: PMC7230192 DOI: 10.3390/genes11040374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022] Open
Abstract
The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed.
Collapse
|
123
|
Hu Q, Maurais EG, Ly P. Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Res 2020; 28:19-30. [PMID: 31933061 PMCID: PMC7131874 DOI: 10.1007/s10577-020-09626-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022]
Abstract
Human chromosomes are arranged in a linear and conserved sequence order that undergoes further spatial folding within the three-dimensional space of the nucleus. Although structural variations in this organization are an important source of natural genetic diversity, cytogenetic aberrations can also underlie a number of human diseases and disorders. Approaches for studying chromosome structure began half a century ago with karyotyping of Giemsa-banded chromosomes and has now evolved to encompass high-resolution fluorescence microscopy, reporter-based assays, and next-generation DNA sequencing technologies. Here, we provide a general overview of experimental methods at different resolution and sensitivity scales and discuss how they can be complemented to provide synergistic insight into the study of human chromosome structural rearrangements. These approaches range from kilobase-level resolution DNA fluorescence in situ hybridization (FISH)-based imaging approaches of individual cells to genome-wide sequencing strategies that can capture nucleotide-level information from diverse sample types. Technological advances coupled to the combinatorial use of multiple methods have resulted in the discovery of new rearrangement classes along with mechanistic insights into the processes that drive structural alterations in the human genome.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Maurais
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
124
|
Volleth M, Zenker M, Joksic I, Liehr T. Long-term Culture of EBV-induced Human Lymphoblastoid Cell Lines Reveals Chromosomal Instability. J Histochem Cytochem 2020; 68:239-251. [PMID: 32108534 DOI: 10.1369/0022155420910113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To preserve material for future genetic studies, human B-lymphocytes from whole blood samples are routinely transformed into lymphoblastoid cell lines (LCLs) by in vitro infection with Epstein-Barr virus. To determine the rate and frequency of chromosomal changes during long-term culture, we established 10 LCLs (from eight individuals). Before transformation, these cases showed a normal karyotype (three cases), a small supernumerary marker chromosome (three cases), or an aberrant karyotype (four cases). Chromosome analyses were performed at 8-week intervals over a period of at least 1 year, up to 3 years. Surprisingly, we demonstrate that chromosomal instability is the rule, rather than the exception, during long-term culture of LCLs. The most commonly observed acquired clonal aberration was trisomy 12, which emerged in all cell lines within 21 to 49 weeks after infection. Telomeric fusions indicating telomere shortening were found after ~21 weeks. After 1 year of cultivation, the proportion of cells with the original karyotype decreased to ≤10% in 7 of the 10 cell lines. To preserve cells with aberrant genomes, we conclude the cultivation time of LCLs must be restricted to the absolute minimum time required.
Collapse
Affiliation(s)
- Marianne Volleth
- Institute of Human Genetics, University Hospital, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ivana Joksic
- Gynecology and Obstetrics Clinic, GAK Narodni front, Belgrade, Serbia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany
| |
Collapse
|
125
|
Madian A, Eid MM, Shahin AAB, Mazen I, El-Bassyouni HT, Eid OM. Detection of low-grade mosaicism and its correlation with hormonal profile, testicular volume, and semen quality in a cohort of Egyptian Klinefelter and Klinefelter-like patients. Reprod Biol 2020; 20:259-263. [PMID: 32115387 DOI: 10.1016/j.repbio.2020.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 11/18/2022]
Abstract
Klinefelter syndrome (KS) is the most common chromosomal syndrome, causing infertility in men and leading to non-obstructive azoospermia. Previous studies on mosaicism have shown contradictory results on its correlation with both serum hormone levels and the presence of spermatozoa in the ejaculate of KS, KS-like, and non-KS-like infertile patients. So, the present study was designed to detect low-grade mosaicism in the peripheral blood lymphocytes and buccal mucosa cells of 14 KS and 8 KS-like patients by using fluorescence in situ hybridization (FISH) and to investigate its correlation with luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T) levels, testicular volume, and semen analysis compared with 10 normal healthy fertile men. Our results indicated that mosaicism was only found in 42.9 % of the KS patients and completely absent in all KS-like patients. Moreover, mosaicism has led to complete azoospermia and non-significant differences in both hormone levels and testicular volume between mosaic and non-mosaic KS patients. All KS patients demonstrated significant differences in both hormone levels and testicular volume compared with normal men. Conversely, they revealed non-significant differences in hormone levels and significant differences in testicular volume compared with KS-like patients. Additionally, the KS-like patients exhibited non-significant variations in both LH and FSH levels and significant variations in T level and testicular volume compared with normal men. Moreover, all KS-like patients had azoospermia, except for one patient who showed oligozoospermia. Therefore, no correlations were found either between mosaicism and serum hormone levels or with testicular volume and semen analysis.
Collapse
Affiliation(s)
| | - Maha M Eid
- Human Cytogenetics, National Research Center, 12622, Cairo, Egypt
| | - Adel A B Shahin
- Department of Zoology, Faculty of Science, Minia University, 61519, El Minia, Egypt.
| | - Inas Mazen
- Department of Clinical Genetics, National Research Center, 12622, Cairo, Egypt
| | - Hala T El-Bassyouni
- Department of Clinical Genetics, National Research Center, 12622, Cairo, Egypt
| | - Ola M Eid
- Human Cytogenetics, National Research Center, 12622, Cairo, Egypt
| |
Collapse
|
126
|
Sreelakshmi KN. Medical Genetics for Practicing Obstetrician. J Obstet Gynaecol India 2020; 70:6-11. [PMID: 32029999 DOI: 10.1007/s13224-019-01257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/27/2019] [Indexed: 11/29/2022] Open
Abstract
Medical genetics has evolved over a decade, and hence, all investigations are available for clinical practice. Many diseases are diagnosed accurately today because of new investigations. These advanced investigations are affordable, accessible and available in day-to-day practice. Hence, there is a need and it is a time for us to understand these advanced technologies. Karyotyping and rapid aneuploidy tests are basic tests, while chromosomal microarray and next-generation sequencing are advanced technologies. It is time to update the knowledge and utilize them in day-to-day practice. These tests are utilized both in prenatal diagnosis and in some clinical scenarios, which are elaborated in detail. Karyotyping is the basic tool to detect both numerical and structural abnormalities. It is advantageous in that it is accurate with error of 0.001% but has a resolution of up to 5 MB. Rapid aneuploidy detection tests are equally accurate and detect as good as 99%. They are FISH, QF-PCR and MLPA. They have high sensitivity and specificity, and results are available within 3 days of time. Hence, these tests are apt for Indian scenarios, where late detection of anomalies (18-20 weeks) is common. Chromosomal microarray is the hybridization technique which detects aneuploidy of all chromosomes. This is useful for detection of deletion and duplication in chromosomes. This is not available for prenatal diagnosis in India now, whereas this is available for prenatal diagnosis in developed countries. Whole-exome sequencing and whole-genome sequencing are advanced techniques which have been described and discussed at length.
Collapse
Affiliation(s)
- K N Sreelakshmi
- Malnad Hitech Diagnostic Center, Shivamogga, Karnataka India
| |
Collapse
|
127
|
Orzechowska BU, Wróbel G, Turlej E, Jatczak B, Sochocka M, Chaber R. Antitumor effect of baicalin from the Scutellaria baicalensis radix extract in B-acute lymphoblastic leukemia with different chromosomal rearrangements. Int Immunopharmacol 2020; 79:106114. [PMID: 31881375 DOI: 10.1016/j.intimp.2019.106114] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Acute B-lymphoblastic leukemia (B-ALL) is the most common hematologic malignancy in children. Many cases of B-ALL harbor chromosomal translocations which are often critical determinants of prognosis. Most of them represent altered transcription factors that impact gene transcription or enhance signaling. B-ALLs harboring the mixed-lineage leukemia 1 (MLL1) gene rearrangements represent aggressive, high-risk type of early childhood leukemias that are usually associated with a very poor prognosis. Therefore, there is an urgent need for novel therapeutic agents as well as new treatment strategies. The objective was to examine the vitro inhibitory effects of Scutellaria baicalensis root extract (SBE) in B-ALL cell lines with different chromosomal rearrangements and in leukemic blasts derived from patients' bone marrow (BMCs). In this study we showed that baicalin which is the main component of the SBE possess antitumor activity against all leukemic cell lines especially those with MLL and PBX1 gene rearrangements. Baicalin inhibited cell proliferation, arrested the cell cycle at the G0/G1 phase, and induced cell death through caspase 3/7 activation. Moreover, baicalin treatment inhibited the glycogen synthase kinase-3β (GSK-3β) by suppressing its phosphorylation at Y216, and upregulated the downstream mediator of the cell cycle arrest - cyclin dependent kinase inhibitor p27Kip1. Bone marrow derived blasts from B-ALL patients also exhibited varied sensitivity towards baicalin with 72% patients sensitive to the SBE and baicalin treatment. Taken together, our findings provide new insights into the anti-cancer properties of baicalin by showing its diverse mode of action which might be related to the different genetic background.
Collapse
Affiliation(s)
- Beata U Orzechowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.
| | - Grażyna Wróbel
- Dept. of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wroclaw, Poland
| | - Eliza Turlej
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Bogna Jatczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Radosław Chaber
- Clinic of Paediatric Oncology and Haematology, Faculty of Medicine, University of Rzeszow, ul. Kopisto 2a, 35-310 Rzeszow, Poland
| |
Collapse
|
128
|
Metallothionein Expression and its Influence on the In Vitro Biological Behavior of Mucoepidermoid Carcinoma. Cells 2020; 9:cells9010157. [PMID: 31936364 PMCID: PMC7016984 DOI: 10.3390/cells9010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/09/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most common tumor in the salivary glands, often presenting with recurrence and metastasis due to its high invasive capacity. Metallothionein (MT), a zinc storage protein that supplies this element for protease activity, is probably related to mucoepidermoid carcinoma behavior. This prompted us to characterize a cell line derived from mucoepidermoid carcinoma and to correlate metallothionein expression with transforming growth factor-α (TGF-α), tumor necrosis factor-α (TNF-α) and matrix metalloproteinases (MMPs). Transcriptomic analysis and cytogenetic assays were performed to detect the expression of genes of interest and cellular chromosomal alterations, respectively. MEC cells with a depleted metallothionein 2A (MT2A) gene were subjected to Western blot to correlate metallothionein expression with growth factors and MMPs. Additionally, cells with depleted MT were subjected to migration and invasion assays. The transcriptomic study revealed reads mapped to cytokeratins 19 and AE1/AE3, α-smooth muscle actin, vimentin, and fibronectin. Cytogenetic evaluation demonstrated structural and numerical alterations, including the translocation t(11;19)(q21;p13), characteristic of MEC. Metallothionein depletion was correlated with the decreased expression of TGF-α and MMP-9, while TNF-α protein levels were augmented. Migration and invasion activity were diminished after metallothionein silencing. Our findings suggest an important role of MT in MEC invasion, through the regulation of proteins involved in this process.
Collapse
|
129
|
Machado CR, Glugoski L, Domit C, Pucci MB, Goldberg DW, Marinho LA, da Costa GW, Nogaroto V, Vicari MR. Comparative Cytogenetics of Four Sea Turtle Species (Cheloniidae): G-Banding Pattern and in situ Localization of Repetitive DNA Units. Cytogenet Genome Res 2020; 160:531-538. [DOI: 10.1159/000511118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/19/2020] [Indexed: 02/04/2023] Open
Abstract
Sea turtles are considered flagship species for marine biodiversity conservation and are considered to be at varying risk of extinction globally. Cases of hybridism have been reported in sea turtles, but chromosomal analyses are limited to classical karyotype descriptions and a few molecular cytogenetic studies. In order to compare karyotypes and understand evolutive mechanisms related to chromosome differentiation in this group, <i>Chelonia mydas</i>, <i>Caretta caretta</i>, <i>Eretmochelys imbricata</i>, and <i>Lepidochelys olivacea</i> were cytogenetically characterized in the present study. When the obtained cytogenetic data were compared with the putative ancestral Cryptodira karyotype, the studied species showed the same diploid number (2n) of 56 chromosomes, with some variations in chromosomal morphology (karyotypic formula) and minor changes in longitudinal band locations. In situ localization using a 18S ribosomal DNA probe indicated a homeologous microchromosome pair bearing a 45S ribosomal DNA locus and size heteromorphism in all 4 species. Interstitial telomeric sites were identified in a microchromosome pair in <i>C. mydas</i> and <i>C. caretta</i>. The data showed that interspecific variations occurred in chromosomal sets among the Cheloniidae species, in addition to other Cryptodira karyotypes. These variations generated lineage-specific karyotypic diversification in sea turtles, which will have considerable implications for hybrid recognition and for the study, the biology, ecology, and evolutionary history of regional and global populations. Furthermore, we demonstrated that some chromosome rearrangements occurred in sea turtle species, which is in conflict with the hypothesis of conserved karyotypes in this group.
Collapse
|
130
|
Balasubramanian B, Meyyazhagan A, Chinnappan AJ, Alagamuthu KK, Shanmugam S, Al-Dhabi NA, Mohammed Ghilan AK, Duraipandiyan V, Valan Arasu M. Occupational health hazards on workers exposure to lead (Pb): A genotoxicity analysis. J Infect Public Health 2019; 13:527-531. [PMID: 31786007 DOI: 10.1016/j.jiph.2019.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The present investigation of genotoxicity of lead (Pb) among workers exposed to inorganic Pb environment, which appears to be first of its kind in South India, was undertaken to assess the seriousness, the ill effects of health contributed by this serious environmental pollutant. METHODS A total of 144 samples comprising of exposed (n=72), and control (n=72) subjects were screened. Demographic data and their associated health levels were undertaken by means of a questionnaire. The blood samples collected were subjected to chromosomal analysis, micronuclei assessment and comet assay. RESULTS A higher level of Pb was quantified in the blood samples of all exposed subjects. An overview of the genotoxic assessment helped us understand parameters such as age do not affect or bring about any difference in the genotoxic potential of the exposed and control subjects. The only signification feature that resulted in an enhanced genotoxic potential was the years of exposure to the Pb environment that accumulated the dosage of Pb over the years. CONCLUSION The high positivity of genotoxic potential of Pb in a country like India highlights the need for labelling hazardous metals in paint containers as a means to assure strict regulations.
Collapse
Affiliation(s)
- Balamuralikrishnan Balasubramanian
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore-46, Tamil Nadu, India; Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea.
| | - Arun Meyyazhagan
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore-46, Tamil Nadu, India; EuroEspes Biomedical Research Centre, Institute of Medical Science and Genomic Medicine, Coruna, Spain.
| | - Ashok Jeyaram Chinnappan
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore-46, Tamil Nadu, India
| | - Karthick Kumar Alagamuthu
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore-46, Tamil Nadu, India; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Sureshkumar Shanmugam
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore-46, Tamil Nadu, India; Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun 55365, Republic of Korea
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdul Kareem Mohammed Ghilan
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Veeramuthu Duraipandiyan
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Xavier Research Foundation, St. Xavier's College, Palayamkottai, Thirunelveli, 627002, Tamil Nadu, India
| |
Collapse
|
131
|
Comparative Chromosome Mapping of Musk Ox and the X Chromosome among Some Bovidae Species. Genes (Basel) 2019; 10:genes10110857. [PMID: 31671864 PMCID: PMC6896007 DOI: 10.3390/genes10110857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
: Bovidae, the largest family in Pecora infraorder, are characterized by a striking variability in diploid number of chromosomes between species and among individuals within a species. The bovid X chromosome is also remarkably variable, with several morphological types in the family. Here we built a detailed chromosome map of musk ox (Ovibos moschatus), a relic species originating from Pleistocene megafauna, with dromedary and human probes using chromosome painting. We trace chromosomal rearrangements during Bovidae evolution by comparing species already studied by chromosome painting. The musk ox karyotype differs from the ancestral pecoran karyotype by six fusions, one fission, and three inversions. We discuss changes in pecoran ancestral karyotype in the light of new painting data. Variations in the X chromosome structure of four bovid species nilgai bull (Boselaphus tragocamelus), saola (Pseudoryx nghetinhensis), gaur (Bos gaurus), and Kirk's Dikdik (Madoqua kirkii) were further analyzed using 26 cattle BAC-clones. We found the duplication on the X in saola. We show main rearrangements leading to the formation of four types of bovid X: Bovinae type with derived cattle subtype formed by centromere reposition and Antilopinae type with Caprini subtype formed by inversion in XSB3.
Collapse
|
132
|
Lipiec E, Ruggeri FS, Benadiba C, Borkowska AM, Kobierski JD, Miszczyk J, Wood BR, Deacon GB, Kulik A, Dietler G, Kwiatek WM. Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucleic Acids Res 2019; 47:e108. [PMID: 31562528 PMCID: PMC6765102 DOI: 10.1093/nar/gkz630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 01/27/2023] Open
Abstract
The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Francesco S Ruggeri
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry, University of Cambridge, CB21EW, UK
| | - Carine Benadiba
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anna M Borkowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Jan D Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy Jagiellonian University Medical College, PL-31007 Cracow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Glen B Deacon
- School of Chemistry, Faculty of Science, Monash University, 3800 Victoria, Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
133
|
Romanenko SA, Lyapunova EA, Saidov AS, O'Brien PCM, Serdyukova NA, Ferguson-Smith MA, Graphodatsky AS, Bakloushinskaya I. Chromosome Translocations as a Driver of Diversification in Mole Voles Ellobius (Rodentia, Mammalia). Int J Mol Sci 2019; 20:E4466. [PMID: 31510061 PMCID: PMC6769443 DOI: 10.3390/ijms20184466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022] Open
Abstract
The involvement of chromosome changes in the initial steps of speciation is controversial. Here we examine diversification trends within the mole voles Ellobius, a group of subterranean rodents. The first description of their chromosome variability was published almost 40 years ago. Studying the G-band structure of chromosomes in numerous individuals revealed subsequent homologous, step-by-step, Robertsonian translocations, which changed diploid numbers from 54 to 30. Here we used a molecular cytogenetic strategy which demonstrates that chromosomal translocations are not always homologous; consequently, karyotypes with the same diploid number can carry different combinations of metacentrics. We further showed that at least three chromosomal forms with 2n = 34 and distinct metacentrics inhabit the Pamir-Alay mountains. Each of these forms independently hybridized with E. tancrei, 2n = 54, forming separate hybrid zones. The chromosomal variations correlate slightly with geographic barriers. Additionally, we confirmed that the emergence of partial or monobrachial homology appeared to be a strong barrier for hybridization in nature, in contradistinction to experiments which we reported earlier. We discuss the possibility of whole arm reciprocal translocations for mole voles. Our findings suggest that chromosomal translocations lead to diversification and speciation.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Elena A Lyapunova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Abdusattor S Saidov
- Institute of Zoology and Parasitology, Academy of Sciences of Tajikistan, Dushanbe 734025, Tajikistan.
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Natalia A Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
134
|
Zhu H, Wu C, Wu T, Xia W, Ci S, He W, Zhang Y, Li L, Zhou S, Zhang J, Edick AM, Zhang A, Pan FY, Hu Z, He L, Guo Z. Inhibition of AKT Sensitizes Cancer Cells to Antineoplastic Drugs by Downregulating Flap Endonuclease 1. Mol Cancer Ther 2019; 18:2407-2420. [DOI: 10.1158/1535-7163.mct-18-1215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/10/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
|
135
|
Kartavtseva IV, Vasilieva TV, Sheremetyeva IN, Lemskaya NA, Moroldoev IV, Golenishchev FN. Genetic Variability of Three Isolated Populations of the Muya Valley Vole Alexandromys mujanensis Orlov et Kovalskaja, 1978 (Rodentia, Arvicolinae). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419080076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
136
|
Oliveira JS, Joaquim TM, Silva RABD, Souza DHD, Martelli LR, Moretti-Ferreira D. Non-mosaic partial duplication 12p in a patient with dysmorphic characteristics and developmental delay. Genet Mol Biol 2019; 43:e20180285. [PMID: 31429857 PMCID: PMC7198023 DOI: 10.1590/1678-4685-gmb-2018-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/05/2019] [Indexed: 11/22/2022] Open
Abstract
Duplication of the short arm of chromosome 12 is a rare chromosomal abnormality
that may arise de novo or result from malsegregation of a
balanced parental translocation. This study comprises the clinical description,
cytogenetic and cytogenomic analyses and genotype-phenotype correlation in a
patient with facial dysmorphism, developmental delay and intellectual impairment
caused by non-mosaic partial duplication and a paracentric inversion 12p. The
patient’s GTG-banded karyotype was 46,XX,invdup(12)(pter → p13.32::p11.1 →
p13.31::p13.31 → qter). A genetic gain of approximately 28 Mb was detected in
the chromosomal region arr[GRCh37]12p13.31-p11.1(6914072_34756209)x3. The
chromosomal alteration seen in our patient is described as “pure” partial
duplication 12p. In most cases, duplication 12p phenotype is characterized by
dysmorphic features, multiple congenital anomalies and intellectual disability.
A small number of cases in literature have described genes associated with
neurodevelopmental disease, such as ING4,
CHD4, MFAP5, GRIN2B, SOX5,
SCN8A and PIANP. In our patient the
duplication 12p was de novo. This study should contribute to
the genotype-phenotype correlation in partial duplication 12p cases.
Collapse
Affiliation(s)
- Jakeline Santos Oliveira
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Departamento de Ciências Químicas e Biológicas, Botucatu, SP, Brazil
| | - Tatiana Mozer Joaquim
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Rosana Aparecida Bicudo da Silva
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Departamento de Ciências Químicas e Biológicas, Botucatu, SP, Brazil
| | - Deise Helena de Souza
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Departamento de Ciências Químicas e Biológicas, Botucatu, SP, Brazil
| | - Lúcia Regina Martelli
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Danilo Moretti-Ferreira
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Departamento de Ciências Químicas e Biológicas, Botucatu, SP, Brazil
| |
Collapse
|
137
|
Zhou F, Zhang Y, Sun J, Yang X. Characteristics of a novel cell line ZJU-0430 established from human gallbladder carcinoma. Cancer Cell Int 2019; 19:190. [PMID: 31367188 PMCID: PMC6647153 DOI: 10.1186/s12935-019-0911-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background Gallbladder cancer is the most common malignant neoplasm of the biliary tract, responsible for 80–95% of cases. Appropriate models are required for investigating the molecular pathogenesis of gallbladder cancer. Methods In this study, we aimed to establish a gallbladder cancer cell line from primary tumour. Single cell RNA sequencing, Light and electron microscopy, DNA content analysis, cytogenetic analysis, short tandem repeat (STR) DNA fingerprint analysis, immunophenotypic characterization, and xeno-transplantation were utilized to characterize the novel ZJU-0430 cell line in vitro and in vivo. Results The cell line showed multiple cell shapes and characteristic epithelial morphologies under the microscope, but no too much heterogeneity by scRNA-Seq, with a population doubling time (PDT) of 19.81 h, which was shorter than that for GBC-SD cells. An immunophenotypic analysis revealed that ZJU-0430 cells were positive for CD24, CD44, CD29 and CD133 expression, and partially positive for CD184, and CD326 expression, and negative for CD34, CD90, CD117, and CD338 expression, similar to the primary cancer cells. A pathological analysis confirmed the origination of cell line from gallbladder tumour. ZJU-0430 cells had higher migration, invasion and proliferation properties than GBC-SD cells in vitro, and showed in vivo tumorigenicity in nude mouse xenograft settings. Conclusions The results confirm the potential utility of ZJU-0430 cell line as a representative model of gallbladder cancer and suggest that it could be used in the in vitro and in vivo studies of gallbladder cancer pathogenesis and to develop new therapeutics. Electronic supplementary material The online version of this article (10.1186/s12935-019-0911-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Zhou
- 1Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Yanhua Zhang
- 2Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Jihong Sun
- 1Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Xiaoming Yang
- 1Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China.,3Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA USA
| |
Collapse
|
138
|
Azoospermia and Y Chromosome-Autosome Translocation in a Friesian Stallion. J Equine Vet Sci 2019; 82:102781. [PMID: 31732110 DOI: 10.1016/j.jevs.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
Abstract
This case report describes spermatogenic arrest and azoospermia in a stallion with a unique Y chromosome-autosome translocation. Clinical diagnosis of azoospermia was based on history of infertility and evaluation of ejaculates collected for artificial insemination. Clinical and ultrasonographic evaluation of the external and internal genitalia did not reveal any abnormalities except for smaller than normal testicular size. Azoospermia of testicular origin was confirmed by determining alkaline phosphatase concentration in semen. Histological evaluation of testicular tissue after castration confirmed early spermatogenic arrest. Cytogenetic evaluation showed the presence of translocation between the Y chromosome and chromosome 13. To the authors' knowledge, this is the first case of azoospermia with a cytogenetically detected Y chromosome abnormality, suggesting that the horse Y chromosome may carry sequences critical for normal spermatogenesis.
Collapse
|
139
|
Bakloushinskaya I, Lyapunova EA, Saidov AS, Romanenko SA, O’Brien PC, Serdyukova NA, Ferguson-Smith MA, Matveevsky S, Bogdanov AS. Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 (Mammalia, Rodentia). COMPARATIVE CYTOGENETICS 2019; 13:147-177. [PMID: 31275526 PMCID: PMC6597615 DOI: 10.3897/compcytogen.v13i2.34224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 06/01/2023]
Abstract
Evolutionary history and taxonomic position for cryptic species may be clarified by using molecular and cytogenetic methods. The subterranean rodent, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 is one of three sibling species constituting the subgenus Ellobius Fischer, 1814, all of which lost the Y chromosome and obtained isomorphic XX sex chromosomes in both males and females. E.alaicus is evaluated by IUCN as a data deficient species because their distribution, biology, and genetics are almost unknown. We revealed specific karyotypic variability (2n = 52-48) in E.alaicus due to different Robertsonian translocations (Rbs). Two variants of hybrids (2n = 53, different Rbs) with E.tancrei Blasius, 1884 were found at the Northern slopes of the Alay Ridge and in the Naryn district, Kyrgyzstan. We described the sudden change in chromosome numbers from 2n = 50 to 48 and specific karyotype structure for mole voles, which inhabit the entrance to the Alay Valley (Tajikistan), and revealed their affiliation as E.alaicus by cytochrome b and fragments of nuclear XIST and Rspo1 genes sequencing. To date, it is possible to expand the range of E.alaicus from the Alay Valley (South Kyrgyzstan) up to the Ferghana Ridge and the Naryn Basin, Tien Shan at the north-east and to the Pamir-Alay Mountains (Tajikistan) at the west. The closeness of E.tancrei and E.alaicus is supported, whereas specific chromosome and molecular changes, as well as geographic distribution, verified the species status for E.alaicus. The case of Ellobius species accented an unevenness in rates of chromosome and nucleotide changes along with morphological similarity, which is emblematic for cryptic species.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Elena A. Lyapunova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Abdusattor S. Saidov
- Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe, TajikistanPavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of TajikistanDushanbeTajikistan
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
- Novosibirsk State University, Novosibirsk, RussiaNovosibirsk State UniversityNovosibirskRussia
| | - Patricia C.M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Natalia A. Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, RussiaVavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexey S. Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
140
|
Bradley RD, Dowler RC. A century of mammal research: changes in research paradigms and emphases. J Mammal 2019. [DOI: 10.1093/jmammal/gyy147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Robert D Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, USA
- Museum of Texas Tech University, Lubbock, TX, USA
| | - Robert C Dowler
- Department of Biology, Angelo State University, San Angelo, TX, USA
- Angelo State Natural History Collections, Angelo State University, San Angelo, TX, USA
| |
Collapse
|
141
|
Baily MP, Avila F, Das PJ, Kutzler MA, Raudsepp T. An Autosomal Translocation 73,XY,t(12;20)(q11;q11) in an Infertile Male Llama ( Lama glama) With Teratozoospermia. Front Genet 2019; 10:344. [PMID: 31040865 PMCID: PMC6476961 DOI: 10.3389/fgene.2019.00344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/29/2019] [Indexed: 12/19/2022] Open
Abstract
Structural chromosome abnormalities, such as translocations and inversions occasionally occur in all livestock species and are typically associated with reproductive and developmental disorders. Curiously, only a few structural chromosome aberrations have been reported in camelids, and most involved sex chromosomes. This can be attributed to a high diploid number (2n = 74) and complex chromosome morphology, which makes unambiguous identification of camelid chromosomes difficult. Additionally, molecular tools for camelid cytogenetics are sparse and have become available only recently. Here we present a case report about an infertile male llama with teratozoospermia and abnormal chromosome number 2n = 73,XY. This llama carries an autosomal translocation of chromosomes 12 and 20, which is the likely cause of defective spermatogenesis and infertility in this individual. Our analysis underlines the power of molecular cytogenetics methods over conventional banding-based chromosome analysis for explicit identification of normal and aberrant chromosomes in camelid karyotypes. This is the first case of a translocation and the first autosomal aberration reported in any camelid species. It is proof of principle that, like in other mammalian species, structural chromosome abnormalities contribute to reproductive disorders in camelids.
Collapse
Affiliation(s)
- Malorie P Baily
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Felipe Avila
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pranab J Das
- ICAR-National Research Centre on Pig, Assam, India
| | - Michelle A Kutzler
- Department of Animal and Rangeland Sciences, College of Agricultural Science, Oregon State University, Corvallis, OR, United States
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
142
|
Nangalia J, Mitchell E, Green AR. Clonal approaches to understanding the impact of mutations on hematologic disease development. Blood 2019; 133:1436-1445. [PMID: 30728143 DOI: 10.1182/blood-2018-11-835405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing-based assays have shown great promise in allowing multi-"omic" characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; and
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; and
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|
143
|
Muthusamy B, Nguyen TT, Bandari AK, Basheer S, Selvan LDN, Chandel D, Manoj J, Gayen S, Seshagiri S, Chandra Girimaji S, Pandey A. Exome sequencing reveals a novel splice site variant in HUWE1 gene in patients with suspected Say-Meyer syndrome. Eur J Med Genet 2019; 63:103635. [PMID: 30797980 DOI: 10.1016/j.ejmg.2019.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 12/30/2022]
Abstract
Say-Meyer syndrome is a rare and clinically heterogeneous syndrome characterized by trigonocephaly, short stature, developmental delay and hypotelorism. Nine patients with this syndrome have been reported thus far although no causative gene has yet been identified. Here, we report two siblings with clinical phenotypes of Say-Meyer syndrome with moderate to severe intellectual disability and autism spectrum disorder. Cytogenetics and array-based comparative genomic hybridization did not reveal any chromosome abnormalities or copy number alterations. Exome sequencing of the patients revealed a novel X-linked recessive splice acceptor site variant c.145-2A > G in intron 5 of HUWE1 gene in both affected siblings. RT-PCR and sequencing revealed the use of an alternate cryptic splice acceptor site downstream, which led to deletion of six nucleotides resulting loss of two amino acids p.(Cys49-Glu50del) in HUWE1 protein. Deletion of these two amino acids, which are located in a highly conserved region, is predicted to be deleterious and quite likely to affect the function of HUWE1 protein. This is the first report of a potential candidate gene mutation for Say-Meyer syndrome, which was initially described four decades ago.
Collapse
Affiliation(s)
- Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Thong T Nguyen
- Department of Molecular Biology and Metabolic Disease, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Aravind K Bandari
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Salah Basheer
- Department of Child and Adolescent Psychiatry, NIMHANS, Hosur Road, Bangalore, 560029, India
| | | | - Deepshikha Chandel
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Jesna Manoj
- Department of Child and Adolescent Psychiatry, NIMHANS, Hosur Road, Bangalore, 560029, India
| | - Srimonta Gayen
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Somasekar Seshagiri
- Department of Molecular Biology and Metabolic Disease, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Satish Chandra Girimaji
- Department of Child and Adolescent Psychiatry, NIMHANS, Hosur Road, Bangalore, 560029, India.
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India; Department of Laboratory Medicine and Pathology, Rochester, MN, 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
144
|
Farré M, Kim J, Proskuryakova AA, Zhang Y, Kulemzina AI, Li Q, Zhou Y, Xiong Y, Johnson JL, Perelman PL, Johnson WE, Warren WC, Kukekova AV, Zhang G, O'Brien SJ, Ryder OA, Graphodatsky AS, Ma J, Lewin HA, Larkin DM. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Res 2019; 29:576-589. [PMID: 30760546 PMCID: PMC6442394 DOI: 10.1101/gr.239863.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/08/2019] [Indexed: 02/02/2023]
Abstract
The role of chromosome rearrangements in driving evolution has been a long-standing question of evolutionary biology. Here we focused on ruminants as a model to assess how rearrangements may have contributed to the evolution of gene regulation. Using reconstructed ancestral karyotypes of Cetartiodactyls, Ruminants, Pecorans, and Bovids, we traced patterns of gross chromosome changes. We found that the lineage leading to the ruminant ancestor after the split from other cetartiodactyls was characterized by mostly intrachromosomal changes, whereas the lineage leading to the pecoran ancestor (including all livestock ruminants) included multiple interchromosomal changes. We observed that the liver cell putative enhancers in the ruminant evolutionary breakpoint regions are highly enriched for DNA sequences under selective constraint acting on lineage-specific transposable elements (TEs) and a set of 25 specific transcription factor (TF) binding motifs associated with recently active TEs. Coupled with gene expression data, we found that genes near ruminant breakpoint regions exhibit more divergent expression profiles among species, particularly in cattle, which is consistent with the phylogenetic origin of these breakpoint regions. This divergence was significantly greater in genes with enhancers that contain at least one of the 25 specific TF binding motifs and located near bovidae-to-cattle lineage breakpoint regions. Taken together, by combining ancestral karyotype reconstructions with analysis of cis regulatory element and gene expression evolution, our work demonstrated that lineage-specific regulatory elements colocalized with gross chromosome rearrangements may have provided valuable functional modifications that helped to shape ruminant evolution.
Collapse
Affiliation(s)
- Marta Farré
- Royal Veterinary College, University of London, London NW1 0TU, United Kingdom
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia.,Synthetic Biology Unit, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | - Qiye Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yang Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yingqi Xiong
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Jennifer L Johnson
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia.,Synthetic Biology Unit, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia 22630, USA.,Walter Reed Biosystematics Unit, Museum Support Center, Smithsonian Institution, Suitland, Maryland 20746, USA
| | - Wesley C Warren
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 63201, USA
| | - Anna V Kukekova
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199004, Russia.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33004, USA
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo, Escondido, California 92027, USA
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia.,Synthetic Biology Unit, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Harris A Lewin
- Department of Evolution and Ecology and the UC Davis Genome Center, University of California, Davis, California 95616, USA
| | - Denis M Larkin
- Royal Veterinary College, University of London, London NW1 0TU, United Kingdom.,The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
145
|
Dhangar S, Korgaonkar S, Vundinti BR. Partial trisomy 9 (9pter->9q22.1) and partial monosomy 14 (14pter- >14q11.2) due to paternal translocation t(9;14)(q22.1;q11.2) in a case of Dysmorphic features. Intractable Rare Dis Res 2019; 8:72-77. [PMID: 30881863 PMCID: PMC6409116 DOI: 10.5582/irdr.2019.01000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trisomy 9 including mosaic and partial trisomy is less frequently seen chromosomal abnormality in live born children. The pure or partial trisomy 9 frequently been reported in prenatal diagnosis and product of conception. However few studies reported partial trisomy 9 in live born children. In addition data on genotype and phenotype correlation of partial trisomy is not well understood except few case reports. Here we report a case of partial trisomy 9 and monosomy 14 with a 46,XY,der(9)t(9;14)(q22.1;q11.2)pat,-14 karyotype in a 5-year old dysmorphic child. The proband was confirmed as trisomic for 9pter->9q22.1 and monosomic for 14pter->q11.2 due to paternal t(9;14)(q22.1;q11.2) balanced translocation using a combination of conventional and molecular cytogenetic (fluorescence in situ hybridization, array-comparative genomic hybridization) techniques. The clinical features similar to pure trisomy 9 is due to duplication of the large region of chromosome 9. However, the present report of partial trisomy 9 and monosomy 14 is a novel case report and showing comparatively longer survival which have not been previously reported in the literature. The parent of the proband was counseled for the future pregnancies.
Collapse
Affiliation(s)
| | | | - Babu Rao Vundinti
- National Institute of Immunohaematology (ICMR), K.E.M Hospital campus, Parel, Mumbai, India
- Address correspondence to:Dr. Babu Rao Vundinti, National Institute of Immuno-haematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai 400012, India. E-mail:
| |
Collapse
|
146
|
Azad NA, Shah ZA, Khan MS, Rasool R. No role of 3435C>T and 2677G>T ABCB1 (MDR1) gene single nucleotide polymorphisms in imatinib treatment response: A case control study on CML patients of Kashmir. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
147
|
Okuno T, Yashiro M, Masuda G, Togano S, Kuroda K, Miki Y, Hirakawa K, Ohsawa M, Wanibuchi H, Ohira M. Establishment of a New Scirrhous Gastric Cancer Cell Line with FGFR2 Overexpression, OCUM-14. Ann Surg Oncol 2019; 26:1093-1102. [PMID: 30652228 DOI: 10.1245/s10434-018-07145-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The prognosis of scirrhous gastric carcinoma (SGC), which is characterized by rapid infiltration and proliferation of cancer cells accompanied by extensive stromal fibrosis, is extremely poor. In this study, we report the establishment of a unique SGC cell line from a gastric cancer patient in whom an autopsy was performed. METHODS A new SGC cell line, OCUM-14, was established from malignant ascites of a male patient with SGC. A postmortem autopsy was performed on the patient. Characterization of OCUM-14 cells was analyzed by microscopic examination, reverse transcription polymerase chain reaction, fluorescence in situ hybridization analysis, immunohistochemical examination, CCK-8 assay, and in vivo assay. RESULTS OCUM-14 cells grew singly or in clusters, and were floating and round-shaped. Most OCUM-14 cells had many microvilli on their surfaces. The doubling time was 43.1 h, and the subcutaneous inoculation of 1.0 × 107 OCUM-14 cells into mice resulted in 50% tumor formation. mRNA expressions of fibroblast growth factor receptor 2 (FGFR2) and human epidermal growth factor receptor 2 (HER2) were observed in OCUM-14 cells. FGFR2, but not HER2, overexpression was found in OCUM-14 cells. The heterogeneous overexpression of FGFR2 was also found in both the primary tumor and metastatic lesions of the peritoneum, lymph node, bone marrow, and lung of the patient. The FGFR2 inhibitors AZD4547 and BGJ398 significantly decreased the growth of OCUM-14 cells, while paclitaxel and 5-fluorouracil significantly decreased the proliferation of OCUM-14 cells, but cisplatin did not. CONCLUSION A new gastric cancer cell line, OCUM-14, was established from SGC and showed FGFR2 overexpression. OCUM-14 might be useful for elucidating the characteristic mechanisms of SGC and clarifying the effect of FGFR2 inhibitors on SGC.
Collapse
Affiliation(s)
- Tomohisa Okuno
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan. .,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan. .,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan.
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Shingo Togano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Kenji Kuroda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Yuichiro Miki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Masahiko Ohsawa
- Department of Diagnostic Pathology, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Hideki Wanibuchi
- Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| |
Collapse
|
148
|
Mahiddine-Aoudjit L, Boucekkine O, Ladjali-Mohammedi K. Banding cytogenetics of the vulnerable species Houbara bustard (Otidiformes) and comparative analysis with the Domestic fowl. COMPARATIVE CYTOGENETICS 2019; 13:1-17. [PMID: 30701036 PMCID: PMC6351704 DOI: 10.3897/compcytogen.v13i1.30660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The Houbara bustard Chlamydotisundulata (Jacquin, 1784) is an emblematic and endangered bird of steppes and desert spaces of North Africa. This species belonging to Otidiformes is recognized as vulnerable by the International Union for Nature Conservation. The critical situation of this species and the revision of its classification on the tree of birds encouraged the authors to start accumulating chromosome data. For that, we propose the GTG- and RBG-banded karyotypes of the Houbara bustard prepared from primary fibroblast cell cultures. The first eight autosomal pairs and sex chromosomes have been described and compared to those of the domestic fowl Gallusdomesticus (Linnaeus, 1758). The diploid number has been estimated as 78 chromosomes with 8 macrochromosomes pairs and 30 microchromosomes pairs, attesting of the stability of chromosome number in avian karyotypes. The description of the karyotype of the Houbara is of crucial importance for the management of the reproduction of this species in captivity. It can be used as a reference in the detection of chromosomal abnormalities, which would be responsible of the early embryonic mortalities.
Collapse
Affiliation(s)
- Leila Mahiddine-Aoudjit
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneAlgiersAlgeria
- University of M’hamed Bougara of Boumerdes, Faculty of Sciences, Department of Biology, Avenue de l’Indépendance, 35 000 Boumerdès, AlgeriaUniversity of M’hamed Bougara of BoumerdesBoumerdèsAlgeria
| | - Ouahida Boucekkine
- The General Direction of Forests, Ben Aknoun, Algiers, AlgeriaThe General Direction of ForestsAlgiersAlgeria
| | - Kafia Ladjali-Mohammedi
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneAlgiersAlgeria
| |
Collapse
|
149
|
Iannucci A, Svartman M, Bellavita M, Chelazzi G, Stanyon R, Ciofi C. Insights into Emydid Turtle Cytogenetics: The European Pond Turtle as a Model Species. Cytogenet Genome Res 2019; 157:166-171. [PMID: 30630162 DOI: 10.1159/000495833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Our knowledge of Testudines evolution is limited by the lack of modern cytogenetic data. Compared to other reptiles, there is little information even on chromosome banding, let alone molecular cytogenetic data. Here, we provide detailed information on the karyotype of the European pond turtle Emys orbicularis, a model Emydidae, employing both chromosome banding and molecular cytogenetics. We provide a high-resolution G-banded karyotype and a map of rDNA genes and telomeric sequences using fluorescence in situ hybridization. We test hypotheses of sex-determining mechanisms in Emys by comparative genomic hybridization to determine if Emys has a cryptic sex-specific region. Our results provide valuable data to guide future efforts on genome sequencing and anchoring in Emydidae and for understanding karyotype evolution in Testudines.
Collapse
|
150
|
Abstract
In the nearly 60 years since prenatal diagnosis for genetic disease was first offered, the field of prenatal diagnosis has progressed far past rudimentary uterine puncture to provide fetal material to assess gender and interpret risk. Concurrent with the improvements in invasive fetal sampling came technological advances in cytogenetics and molecular biology that widened both the scope of genetic disorders that could be diagnosed and also the resolution at which the human genome could be interrogated. Nowadays, routine blood work available to all pregnant women can determine the risk for common chromosome abnormalities; chorionic villus sampling (CVS) and amniocentesis can be used to diagnose nearly all conditions with a known genetic cause; and the genome and/or exome of a fetus with multiple anomalies can be sequenced in an attempt to determine the underlying etiology. This chapter will discuss some of the major advances in prenatal sampling and prenatal diagnostic laboratory techniques that have occurred over the past six decades.
Collapse
Affiliation(s)
- Brynn Levy
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Melissa Stosic
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|