101
|
Matsuno T, Hashimoto Y, Adachi S, Omata K, Yoshitaka Y, Ozeki Y, Umezu Y, Tabata Y, Nakamura M, Satoh T. Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J 2009; 27:827-34. [PMID: 19241692 DOI: 10.4012/dmj.27.827] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel, injectable bone tissue engineering material was developed that consisted of beta-tricalcium phosphate (beta-TCP) beads as the solid phase and alginate as the gel phase. To prepare the instantaneously formed composite scaffold, an aqueous calcium chloride solution was dried on the surface of beta-TCP beads and crosslinked with an alginic acid sodium solution, thereby forming stable beta-TCP beads and alginate gel which were injectable via a syringe. This biodegradable composite was a three-dimensional (3D) material that could be used as an injectable scaffold for bone tissue engineering. In particular, the composite with 2.0 wt% alginate concentration exhibited a compressive strength of 69 kPa in dry conditions, which was significantly higher than that exhibited by 1.0 wt%. Furthermore, mesenchymal stem cells (MSC) were 3D-cultured within the composite and then investigated for osteogenic markers. MSC-loaded composite was subjected to scanning electron microscope (SEM) examination and implanted subcutaneously for in vivo experiment. Results showed that the scaffold provided support for osteogenic differentiation. In light of the encouraging results obtained, this novel injectable composite material may be useful for bone tissue engineering.
Collapse
Affiliation(s)
- Tomonori Matsuno
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda, Tokyo 102-8159, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Schmidt JJ, Rowley J, Kong HJ. Hydrogels used for cell-based drug delivery. J Biomed Mater Res A 2009; 87:1113-22. [PMID: 18837425 DOI: 10.1002/jbm.a.32287] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stem cells, progenitor cells, and lineage-committed cells are being considered as a new generation of drug depots for the sustained release of therapeutic biomolecules. Hydrogels are often used in conjunction with the therapeutic secreting cells to provide a physical barrier to protect the cells from hostile extrinsic factors. Although the hydrogels significantly improve the therapeutic efficacy of transplanted cells, there have been no successful products commercialized based on these technologies. Recently, biomaterials are increasingly designed to provide cells with both a physical barrier and an extracellular matrix to further improve the secretion of therapeutic proteins from cells. This review will discuss (1) the cell encapsulation process, (2) the immunogenicity of the encapsulating hydrogel, (3) the transport properties of the hydrogel, (4) the hydrogel mechanical properties, and will propose new strategies to improve the hydrogel and cell interaction for successful cell-based drug delivery strategies.
Collapse
Affiliation(s)
- John J Schmidt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, USA
| | | | | |
Collapse
|
103
|
Abstract
Patients suffering from diseased and injured organs may be treated with transplanted organs; however, there is a severe shortage of donor organs that is worsening yearly, given the ageing population. In the field of regenerative medicine and tissue engineering, scientists apply the principles of cell transplantation, materials science and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy, including the use of amniotic and placental fetal stem cells. This review covers recent advances that have occurred in regenerative medicine and describes applications of these technologies using chemical compounds that may offer novel therapies for patients with end-stage organ failure.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
104
|
Cui YX, Shakesheff KM, Adams G. Encapsulation of RIN-m5F cells within Ba2+ cross-linked alginate beads affects proliferation and insulin secretion. J Microencapsul 2007; 23:663-76. [PMID: 17118882 DOI: 10.1080/02652040600789245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The viability, proliferation and insulin production of RIN-m5F cells when loaded into alginate beads to form a 3D culture system has been investigated. The mechanism of alginate cross-linking (calcium ions vs barium ions), the addition of poly(L-lysine) (PLL) and poly(L-ornithine (PLO) and presence of different extra-cellular matrix proteins (ECM) influence the RIN-m5F cell behaviour. Cells in calcium alginate beads (CAB) proliferated and produced more insulin per cell than monolayer culture, but the physical properties of the beads were poor and they ruptured within a few days of culture. Barium alginate beads (BABs) provided a stable encapsulation method. Addition of PLL and PLO at concentrations above 0.1% w/v with the culture medium increased cell proliferation. With the addition of ECMs after bead formation there was a further increase in cell proliferation for certain combinations of ECM and PLO. It was concluded that RIN-m5F-loaded Ba-alginate beads (BABs), when incorporated with varying concentrations of poly (L) lysine (PLL), poly (L) ornithine (PLO) in the presence of extra-cellular matrix proteins (ECMs) were superior to both tissue culture and RIN-m5F-loaded Ca-alginate beads (CABs) in terms of physical stability, cell proliferation and insulin production.
Collapse
Affiliation(s)
- Yu-Xin Cui
- Insulin and Diabetes Experimental Research Group, Faculty of Medicine and Health Science, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
105
|
Hester-Reilly HJ, Shapley NC. Imaging contrast effects in alginate microbeads containing trapped emulsion droplets. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 188:168-75. [PMID: 17600742 DOI: 10.1016/j.jmr.2007.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/11/2007] [Accepted: 05/18/2007] [Indexed: 05/16/2023]
Abstract
This study focuses on spherical microparticles made of cross-linked alginate gel and microcapsules composed of an oil-in-water emulsion where the continuous aqueous phase is cross-linked into an alginate gel matrix. We have investigated the use of these easily manufactured microbeads as contrast agents for the study of the flow properties of fluids using nuclear magnetic resonance imaging. Results demonstrate that combined spin-spin (T(2)) relaxation and diffusion contrast in proton NMR imaging can be used to distinguish among rigid polymer particles, plain alginate beads, and alginate emulsion beads. Multi-echo CPMG spin-echo imaging indicates that the average spin-lattice (T(1)) and spin-spin (T(2)) relaxation times of the plain alginate and alginate emulsion beads are comparable. Meanwhile, diffusion-weighted imaging produces sharp contrast between the two types of alginate beads, due to restricted diffusion inside the embedded oil droplets of the alginate emulsion beads. While the signal obtained from most materials is severely attenuated under applied diffusion gradients, the alginate emulsion beads maintain signal strength. The alginate emulsion beads were added to a suspension and imaged in an abrupt, annular expansion flow. The emulsion beads could be clearly distinguished from the surrounding suspending fluid and rigid polystyrene particles, through either T(2) relaxation or diffusion contrast. Such a capability allows future use of the alginate emulsion beads as tracer particles and as one particle type among many in a multimodal suspension where detailed concentration profiles or particle size separation must be quantified during flow.
Collapse
Affiliation(s)
- Holly J Hester-Reilly
- Department of Chemical Engineering, Columbia University, 500 W. 120th Street, MC 4721, New York, NY 10027, USA
| | | |
Collapse
|
106
|
Becker TA, Preul MC, Bichard WD, Kipke DR, McDougall CG. Preliminary investigation of calcium alginate gel as a biocompatible material for endovascular aneurysm embolization in vivo. Neurosurgery 2007; 60:1119-27; discussion 1127-8. [PMID: 17538387 DOI: 10.1227/01.neu.0000255447.90106.12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We sought to expand our assessment of calcium alginate as an embolic agent in an aneurysm model in swine that survived from 30 to 90 days. The objective of this study was to assess the biocompatibility and stability of calcium alginate in aneurysms in vivo. METHODS Ten models were created from a venous pouch sutured to the carotid artery, simulating flow to a side-wall aneurysm. Eight swine received complete embolizations, and two were less than 50% embolized to be used as controls. Alginate and calcium chloride were injected from concentric-tube microcatheters to form a mass that filled the aneurysm pouch. RESULTS Angiography and histology verified complete aneurysm occlusion and neck healing up to 90 days in eight swine. Both control animal aneurysms ruptured within 8 days. No animals showed evidence of downstream calcium alginate gel propagation. A minor bioactive response to the alginate gel was noted at 30 days, and fibrous tissue grew over the aneurysm orifice, sealing off the defect. No degenerative or inflammatory response was observed. At 90 days, moderate fibrous tissue surrounded the alginate. Tissue growth across the aneurysm neck remained complete and stable with no signs of neointimal growth into the parent vessel. CONCLUSION Calcium alginate was an effective endovascular occlusion material that filled the aneurysm and provided an effective template for tissue growth across the aneurysm neck after 30 days and up to 90 days. Complete filling of the aneurysm with calcium alginate ensures stability, biocompatibility, and optimal healing for up to 90 days in swine.
Collapse
Affiliation(s)
- Timothy A Becker
- Neural Engineering Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
107
|
Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 2007; 8:2533-41. [PMID: 17591747 DOI: 10.1021/bm070014y] [Citation(s) in RCA: 809] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study investigates alginate-chitosan polyelectrolyte complexes (PECs) in the form of a film, a precipitate, as well as a layer-by-layer (LbL) assembly. The focus of this study is to fully characterize, using the complementary techniques of Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) in combination with solution stability evaluation, the interactions between alginate and chitosan in the PECs. In the FTIR spectra, no significant change in the band position of the two carbonyl vibrations from alginate occurs upon interaction with different ionic species. However, protonation of the carboxylate group causes a new band to appear at 1710 cm(-1), as anticipated. Partial protonation of the amine group of chitosan causes the appearance of one new band ( approximately 1530 cm(-1)) due to one of the -NH3+ vibrational modes (the other mode overlaps the amide I band). Importantly, the position of the two main bands in the spectral region of interest in partly protonated chitosan films is not dependent on the extent of protonation. XPS N 1s narrow scans can, however, be used to assess the degree of amine protonation. In our alginate-chitosan film, precipitate, and LbL assembly, the bands observed in the FTIR correspond to the species -COO- and -NH3+, but their position is not different from each of the single components. Thus, the conclusion of the study is that FTIR cannot be used directly to identify the presence of PECs. However, in combination with XPS (survey and narrow N 1s scans) and solution stability evaluation, a more complete description of the structure can be obtained. This conclusion challenges the assignment of FTIR spectra in the literature.
Collapse
Affiliation(s)
- Gwen Lawrie
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
108
|
Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation: strategies to enhance islet cell functions. ACTA ACUST UNITED AC 2007; 13:589-99. [PMID: 17518605 DOI: 10.1089/ten.2006.0183] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Although traditional insulin therapy has alleviated the short-term effects, long-term complications are ubiquitous and harmful. For these reasons, alternative treatment options are being developed. This review investigates one appealing area: cell replacement using encapsulated islets. Encapsulation materials, encapsulation methods, and cell sources are presented and discussed. In addition, the major factors that currently limit cell viability and functionality are reviewed, and strategies to overcome these limitations are examined. This review is designed to introduce the reader to cell replacement therapy and cell and tissue encapsulation, especially as it applies to diabetes.
Collapse
Affiliation(s)
- Jonathan Beck
- Department of Biological and Irrigation Engineering, Utah State University, Logan, Utah, USA
| | | | | | | | | | | |
Collapse
|
109
|
Thanos CG, Calafiore R, Basta G, Bintz BE, Bell WJ, Hudak J, Vasconcellos A, Schneider P, Skinner SJM, Geaney M, Tan P, Elliot RB, Tatnell M, Escobar L, Qian H, Mathiowitz E, Emerich DF. Formulating the alginate–polyornithine biocapsule for prolonged stability: Evaluation of composition and manufacturing technique. J Biomed Mater Res A 2007; 83:216-24. [PMID: 17607741 DOI: 10.1002/jbm.a.31472] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alginate encapsulation is one of the most widely used techniques for introducing cell-based therapeutics into the body. Numerous encapsulation methodologies exist, utilizing a variety of alginates, purification technologies, and unique polycationic membrane components. The stability of a conventional alginate formulation encapsulated using a commercially available technique and apparatus has been characterized extensively. The current study employs an encapsulation protocol and ultra-pure alginate pioneered at the University of Perugia. The enhanced microcapsules were produced, characterized, and implanted into the brain, peritoneal cavity, and subcutaneous space of Long-Evans rats. After 14, 28, 60, 90, 120, and 180 or 215 days, capsules were explanted and the surface was analyzed using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Image analysis was carried out to measure changes in diameter and wall thickness. FTIR peak analysis and surface morphology from SEM indicated that the enhanced encapsulation technique and formulation produced a stable biocapsule capable of survival in all sites, including the harsh peritoneal environment, for at least 215 days. Preimplant analysis showed a marked increase in the structural integrity of the enhanced formulation with improved elasticity and burst strength compared with the baseline formulation, which remained stable for less than 60 days. The enhanced microcapsule composition showed advantages in physical strength and longevity, indicating that small changes in encapsulation methodologies and materials selection can dramatically impact the stability and longevity of alginate microcapsules and their contents.
Collapse
Affiliation(s)
- C G Thanos
- LCT BioPharma, Incorporated, Providence, Rhode Island 02906, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Tissue engineering in androgen deficiency. CURRENT SEXUAL HEALTH REPORTS 2006. [DOI: 10.1007/s11930-006-0006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
111
|
de Vos P, de Haan BJ, Kamps JAAM, Faas MM, Kitano T. Zeta‐potentials of alginate‐PLL capsules: A predictive measure for biocompatibility? J Biomed Mater Res A 2006; 80:813-9. [PMID: 17058213 DOI: 10.1002/jbm.a.30979] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alginate-poly-L-lysine (PLL) microencapsulation of cells is a promising approach to prevent rejection in the absence of immunosuppression. Clinical application, however, is hampered by insufficient insight in factors influencing biocompatibility of the capsules. By now, it has been accepted that not only the chemical composition of the materials applied but also other factors contribute to bioincompatibility. The zeta-potential serves as a measure for the electrical charge of the surface and has been shown to be a predictive value for the interfacial reactions between the biomaterial and the surrounding tissue in other applications. In the present study, we have assessed the streaming potential of alginate-PLL capsules composed of either low-, intermediate-, or high-guluronic (G) alginate to calculate the zeta-potential. The zeta-potentials of the capsules were compared to the biological response against the capsules at 4 weeks after implantation in the rat. We show that high-G and low-G alginates provoke a more severe response in the rat than capsules prepared of intermediate-G alginate. This correlates with a higher zeta-potential of the high-G and low-G alginates and by a change in zeta-potential at lower pH. These lower pH-levels are common directly after implantation as the consequence of a host-response associated with mandatory surgery. Our results suggest that we should not only consider the capsule properties under physiological circumstances to explain bioincompatibility but also the capsule features during common pathophysiological situations.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology and Laboratory Medicine, Section of Medical Biology, Division of Immunoendocrinology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
112
|
Srivastava R, McShane MJ. Application of self-assembled ultra-thin film coatings to stabilize macromolecule encapsulation in alginate microspheres. J Microencapsul 2006; 22:397-411. [PMID: 16214787 DOI: 10.1080/02652040500099612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Alginate-based hydrogels have several unique properties that have enabled them to be used as a matrix for the entrapment of a variety of enzymes, proteins and cells for applications in bioprocessing, drug delivery and chemical sensing. However, control over release rates or, in some cases, stable encapsulation remains a difficult goal, especially for small particles with high surface-area-to-volume ratios. In this work, the potential to limit diffusion of macromolecules embedded in alginate spheres with nanofilm coatings was assessed. Alginate microspheres were fabricated using an emulsification process with high surfactant concentration to form beads in the size range of 2-10 microm. Using calcium chloride for ionotropic gelation, dextran was encapsulated in the gel phase by mixing with the alginate in solution. The exterior surface was then modified with polyelectrolyte coatings using the layer-by-layer self assembly technique. Leaching studies to assess retention of dextran with varying molecular weights confirmed that the application of multi-layer thin films to the alginate microspheres was effective in reducing leaching rate and total loss of the encapsulated material from the microspheres. For the best case, the rate of release for dextran of 2,000,000 Dalton molecular weight decreased from 1% h(-1) in bare microspheres to 0.1% h(-1) in polyelectrolyte-coated microspheres. The effectiveness of nanofilms reducing loss of the encapsulated macromolecules was found to vary between different polycation materials used. These studies support the feasibility of using these microsystems for development of long-term stable encapsulated systems, such as implantable biosensors.
Collapse
Affiliation(s)
- R Srivastava
- Biomedical engineering and the Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| | | |
Collapse
|
113
|
de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006; 27:5603-17. [PMID: 16879864 DOI: 10.1016/j.biomaterials.2006.07.010] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 07/11/2006] [Indexed: 01/12/2023]
Abstract
Transplantation of microencapsulated cells is proposed as a therapy for the treatment of a wide variety of diseases since it allows for transplantation of endocrine cells in the absence of undesired immunosuppression. The technology is based on the principle that foreign cells are protected from the host immune system by an artificial membrane. In spite of the simplicity of the concept, progress in the field of immunoisolation has been hampered for many years due to biocompatibility issues. During the last years important advances have been made in the knowledge of the characteristics and requirements capsules have to meet in order to provide optimal biocompatibility and survival of the enveloped tissue. Novel insight shows that not only the capsules material but also the enveloped cells should be hold responsible for loss of a significant portion of the immunoisolated cells and, thus, failure of the grafts on the long term. Microcapsules without cells can be produced as such that they remain free of any significant foreign body response for prolonged periods of time in both experimental animals and humans. New approaches in which newly discovered inflammatory responses are silenced bring the technology of transplantation of immunoisolated cells close to clinical application.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology and Laboratory Medicine, Division of Medical Biology, University Hospital of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
114
|
Orive G, Tam SK, Pedraz JL, Hallé JP. Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapy☆. Biomaterials 2006; 27:3691-700. [PMID: 16574222 DOI: 10.1016/j.biomaterials.2006.02.048] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Cell microencapsulation holds promise for the treatment of many diseases by the continuous delivery of therapeutic products. The biocompatibility of the microcapsules and their biomaterials components is a critical issue for the long-term efficacy of this technology. The objective of this paper is to provide detailed information about the principal factors affecting the biocompatibility of alginates and alginate-poly-l-lysine microcapsules, which are the most frequently employed biomaterials and encapsulation devices for cell immobilization, respectively. Some of these factors include the alginate composition and purification, the selection of the polycation, the interactions between the alginates and the polycation, the microcapsule fabrication process, the uniformity of the devices and the implantation procedure. Improved knowledge will lead to the production of standardized transplantation-grade biomaterials and biocompatible microcapsules.
Collapse
Affiliation(s)
- Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz, Spain.
| | | | | | | |
Collapse
|
115
|
Crow BB, Nelson KD. Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber. Biopolymers 2006; 81:419-27. [PMID: 16419061 DOI: 10.1002/bip.20442] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have developed a novel biodegradable, polymeric fiber construct that is coextruded using a wet-spinning process into a core-sheath format with a polysaccharide pre-hydrogel solution as the core fluid and poly(L-lactic acid) (PLLA) as the sheath. The biodegradable, biocompatible fibers were extruded from polymeric emulsions comprised of solutions of various molecular weights of PLLA dissolved in chloroform and containing dispersed, protein-free aqueous phases comprising up to 10% of the emulsion volume. Biologically sensitive agents can be loaded via a dispersed aqueous phase in the polymer, and/or directly into the polysaccharide. We show that this core-sheath fiber format will load a model protein that can be delivered for extended periods in vitro. Bovine serum albumin (BSA) was loaded into the fiber core as a model protein. We have shown that the greater the volume of the protein-free aqueous phase dispersed into the polymeric continuous-phase emulsion, the greater the total release of BSA encapsulated by a core gel comprised of 1% sodium alginate solution. We conclude this fiber format provides a promising vehicle for in vivo delivery of biological molecules. Its biocompatibility and biodegradability also allow for its use as a possible substrate for tissue engineering applications.
Collapse
Affiliation(s)
- B B Crow
- Joint Program in Biomedical Engineering, The University of Texas Southwestern Medical Center at Dallas, TX, USA.
| | | |
Collapse
|
116
|
Roth DJ, Jansen ED, Powers AC, Wang TG. A novel method of monitoring response to islet transplantation: bioluminescent imaging of an NF-kB transgenic mouse model. Transplantation 2006; 81:1185-90. [PMID: 16641606 DOI: 10.1097/01.tp.0000203808.84963.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Transplantation of encapsulated pancreatic islets is a novel therapeutic approach for the treatment of Type 1 diabetes mellitus that has the potential to circumvent both a limited islet supply and immunosuppression. Current methods for scoring the biocompatibility of the alginate-based capsules that sequester Islets of Langerhans include fabrication and implantation into the peritoneal cavity of mice, incubation, retrieval via peritoneal lavage, and observation of the number of cells or cell layers surrounding the capsules. This method allows only one data point to be obtained per animal. We describe a method to measure biocompatibility real time and in situ. This method of monitoring immune response using bioluminescent technology and a nuclear factor-kappa beta (NF-kB) sensitive transgenic mouse model allows many data points to be acquired per animal, reduces the number of animals required to obtain statistically significant immune response data over time, and in turn reduces error associated with animal variability. NF-kB is a transcription factor that coordinates the inflammatory and wound healing cascades by initiating the transcription of cytokines, chemokines, adhesion molecules, and proinflammatory genes. METHODS Inflammation after the transplantation of five types of capsules was monitored for 6 six weeks after transplantation into the dorsal-cervical fat pad. RESULTS Bioluminescence over 6-week time period: Capsule group 1.0+/-.00 normalized units, Bead group 1.3+/-.26 normalized units, No coat group .96+/-.48 normalized units, Sham group .96+/-.00 normalized units, Control group .17+/-.11 normalized units. CONCLUSIONS This imaging modality was able to detect statistically significant differences in NF-kB activity between pre- and postoperative data points per mouse. It was also able to discern an unexpected increase in NF-kB activity due to capsule size instead of capsule wall composition over a 6-week time period.
Collapse
Affiliation(s)
- David J Roth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
117
|
Narang AS, Mahato RI. Biological and Biomaterial Approaches for Improved Islet Transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|
118
|
Sakai S, Hashimoto I, Kawakami K. Development of alginate–agarose subsieve-size capsules for subsequent modification with a polyelectrolyte complex membrane. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
119
|
Li HB, Jiang H, Wang CY, Duan CM, Ye Y, Su XP, Kong QX, Wu JF, Guo XM. Comparison of two types of alginate microcapsules on stability and biocompatibility
in vitro
and
in vivo. Biomed Mater 2006; 1:42-7. [DOI: 10.1088/1748-6041/1/1/007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
120
|
Diekmann S, Bader A, Schmitmeier S. Present and Future Developments in Hepatic Tissue Engineering for Liver Support Systems : State of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnology 2006; 50:163-79. [PMID: 19003077 PMCID: PMC3476010 DOI: 10.1007/s10616-006-6336-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/03/2006] [Indexed: 12/23/2022] Open
Abstract
The liver is the most important organ for the biotransformation of xenobiotics, and the failure to treat acute or acute-on-chronic liver failure causes high mortality rates in affected patients. Due to the lack of donor livers and the limited possibility of the clinical management there has been growing interest in the development of extracorporeal liver support systems as a bridge to liver transplantation or to support recovery during hepatic failure. Earlier attempts to provide liver support comprised non-biological therapies based on the use of conventional detoxification procedures, such as filtration and dialysis. These techniques, however, failed to meet the expected efficacy in terms of the overall survival rate due to the inadequate support of several essential liver-specific functions. For this reason, several bioartificial liver support systems using isolated viable hepatocytes have been constructed to improve the outcome of treatment for patients with fulminant liver failure by delivering essential hepatic functions. However, controlled trials (phase I/II) with these systems have shown no significant survival benefits despite the systems' contribution to improvements in clinical and biochemical parameters. For the development of improved liver support systems, critical issues, such as the cell source and culture conditions for the long-term maintenance of liver-specific functions in vitro, are reviewed in this article. We also discuss aspects concerning the performance, biotolerance and logistics of the selected bioartificial liver support systems that have been or are currently being preclinically and clinically evaluated.
Collapse
Affiliation(s)
- Sonja Diekmann
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Augustinus Bader
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Stephanie Schmitmeier
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
121
|
Figliuzzi M, Plati T, Cornolti R, Adobati F, Fagiani A, Rossi L, Remuzzi G, Remuzzi A. Biocompatibility and function of microencapsulated pancreatic islets. Acta Biomater 2006; 2:221-7. [PMID: 16701881 DOI: 10.1016/j.actbio.2005.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/24/2005] [Accepted: 12/01/2005] [Indexed: 11/21/2022]
Abstract
Encapsulation of pancreatic islets in alginate is used to protect against xenogenic rejection in different animal models. In this study, several factors, including differences in alginate composition, the presence or absence of xenogenic islet tissue and a transient immunosuppression, were investigated in a model of bovine islet transplantation in rats. A pure alginate with predominantly guluronic acid (Manugel) and an ultrapure low viscosity guluronic acid alginate (UP-LVG) were used. When microcapsules of Manugel or UP-LVG containing 16,000 bovine islet equivalents were transplanted in diabetic rats, we observed normoglycemia for 8.3+/-0.7 (range 6-12 days) and 7.5+/-0.2 days (range 7-8 days) on average, respectively. To ameliorate immunoprotection of alginate microcapsules we repeated the same experiments using transient immunosuppressive therapy. Low doses of cyclosporin A (CyA) administered for 18 days after implantation increased the time in normoglycemia, which averaged 27+/-3 days (range 8-55 days) in Manugel capsules while in UP-LVG capsules it averaged 18+/-8 days (range 3-39 days). The surface of recovered capsules showed less capsules free of overgrowth in Manugel with respect to UP-LVG alginate. These data were comparable with those observed in empty microcapsules similarly implanted, indicating that the capsular overgrowth was not promoted by the presence of xenogenic islet tissue. In recovered Manugel capsules the percentage of capsules without fibrotic overgrowth was higher than that observed without CyA. The same observation was made in empty capsules. These observations indicate that a combination of a highly purified alginate and short-term immunosuppression prolong islet function in a model of xenotransplantation.
Collapse
Affiliation(s)
- Marina Figliuzzi
- Department of Biomedical Engineering, Mario Negri Institute for Pharmacological Research, Via Gavazzeni, 11, 24125 Bergamo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Wang W, Liu X, Xie Y, Zhang H, Yu W, Xiong Y, Xie W, Ma X. Microencapsulation using natural polysaccharides for drug delivery and cell implantation. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b603595g] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
123
|
Lu HF, Targonsky ED, Wheeler MB, Cheng YL. Thermally induced gelable polymer networks for living cell encapsulation. Biotechnol Bioeng 2006; 96:146-55. [PMID: 16894633 DOI: 10.1002/bit.21121] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the encapsulation of MIN6 cells, a pancreatic beta-cell line, using thermally induced gelable materials. This strategy uses aqueous solvent and mild temperatures during encapsulation, thereby minimizing adverse effects on cell function and viability. Using a 2:1 mixture of PNIPAAm-PEG-PNIPAAm tri-block copolymer and PNIPAAm homopolymer that exhibit reversible sol-to-gel transition at approximately 30 degrees C, gels were formed that exhibit mechanical integrity, and are stable in H(2)O, PBS and complete DMEM with negligible mass loss at 37 degrees C for 60 days. MTT assays showed undetectable cytotoxicity of the polymers towards MIN6 cells. A simple microencapsulation process was developed using vertical co-extrusion and a 37 degrees C capsule collection bath containing a paraffin layer above DMEM. Spherical capsules with diameters ranging from 500 to 900 microm were formed. SEM images of freeze-dried capsules with PBS as the core solution showed homogenous gel capsule membranes. Confocal microscopy revealed that the encapsulated cells tended to form small aggregates over 5 days, and staining for live and dead cells showed high viability post-encapsulation. A static glucose challenge with day-5 cultured microencapsulated cells exhibited glucose-dependent insulin secretion comparable to controls of free MIN6 cells grown in monolayers. These results demonstrate the potential use of these thermo-responsive polymers as cell encapsulation membranes.
Collapse
Affiliation(s)
- Hong-Fang Lu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | | | | | | |
Collapse
|
124
|
Srivastava R, Brown JQ, Zhu H, McShane MJ. Stable encapsulation of active enzyme by application of multilayer nanofilm coatings to alginate microspheres. Macromol Biosci 2005; 5:717-27. [PMID: 16096991 DOI: 10.1002/mabi.200500061] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an effort to improve the stability for long-term biosensor use, layer-by-layer self-assembly was explored as a potential technique to provide a diffusion barrier to encapsulated glucose oxidase inside alginate microspheres (<5 microm), fabricated using an emulsification technique. The total loss of encapsulated enzyme was reduced to less than 25 and 15% with the application of single PAH/PSS and crosslinked PAH/PAA coatings, respectively, in comparison to at least a 45% loss observed with uncoated and PDDA/PSS-coated microspheres. Furthermore, it was found that enzyme within PAH/PSS- and crosslinked PAH/PAA-coated spheres retained more than 84 and 60% of initial activity, respectively, after three months, whereas uncoated and PDDA/PSS-coated microspheres retained less than 20%.
Collapse
Affiliation(s)
- Rohit Srivastava
- Biomedical Engineering and Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | | | |
Collapse
|
125
|
Tam SK, Dusseault J, Polizu S, Ménard M, Hallé JP, Yahia L. Physicochemical model of alginate–poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials 2005; 26:6950-61. [PMID: 15975648 DOI: 10.1016/j.biomaterials.2005.05.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/06/2005] [Indexed: 01/04/2023]
Abstract
Alginate-poly-L-lysine-alginate (APA) microcapsules are currently being investigated as a means to immuno-isolate transplanted cells, but their biocompatibility is limited. In this study, we verified the hypothesis that poly-L-lysine (PLL), which is immunogenic when unbound, is exposed at the APA microcapsule surface. To do so, we analysed the microcapsule membrane at the micrometric/nanometric scale using attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The results indicate that PLL and alginate molecules interact within the membrane. PLL exists in considerable amounts near the surface, contributing to the majority of the carbon within the outermost 100 Angstroms of the membrane. PLL was also detected at the true surface (the outermost monolayer) of the microcapsules. The exposure of PLL does not appear to result from defects in the outer alginate coating. This physicochemical model of APA microcapsules could explain their immunogenicity and will play an important role in the optimization of the microcapsule design.
Collapse
Affiliation(s)
- Susan K Tam
- Groupe de Recherche en Biomatériaux/Biomécanique, Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Qué., Canada
| | | | | | | | | | | |
Collapse
|
126
|
Darrabie MD, Kendall WF, Opara EC. Characteristics of Poly-l-Ornithine-coated alginate microcapsules. Biomaterials 2005; 26:6846-52. [PMID: 15955558 DOI: 10.1016/j.biomaterials.2005.05.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 05/06/2005] [Indexed: 11/26/2022]
Abstract
Poly-L-Lysine (PLL) is the most widely used biomaterial for providing perm-selectivity in alginate microcapsules for islet transplantation. We had previously reported that Poly-L-Ornithine (PLO) is less immunogenic than PLL, and in the present study, we have compared the physical characteristics of PLO- and PLL-coated hollow alginate microcapsules. Microspheres made with 1.5% alginate were divided into 2 groups that were first coated with either 0.1% PLO or PLL, followed by a second coating with 0.25% alginate. After liquefaction of the inner alginate core with sodium citrate, the microcapsules were washed with saline and used for experiments. Pore size exclusion studies were performed with FITC-labeled lectins incubated with encapsulated pig islets followed by examination for fluorescence activity. Mechanical strength was assessed by an osmotic pressure test and by 36 h of mechanical agitation of microcapsules with inert soda lime beads. The pore size exclusion limit of microcapsules after 20 min of coating was significantly smaller with PLO. While the mean +/- SEM diameter of PLL-coated microcapsules increased from 718+/-17 to 821 +/- 17 microm (p < 0.05) during 14 days incubation at 37 degrees C, the PLO group did not change in size. Also, PLL group had a higher percentage of broken capsules (52.7 +/- 4.9%) compared to 3.1 +/- 2.05% for PLO capsules (p < 0.0001,n = 6). We conclude that PLO-coated alginate microcapsules are mechanically stronger and provide better perm-selectivity than PLL-coated microcapsules.
Collapse
Affiliation(s)
- Marcus D Darrabie
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
127
|
Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther 2005; 5:879-92. [PMID: 16018735 DOI: 10.1517/14712598.5.7.879] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Organ damage or loss can occur from congenital disorders, cancer, trauma, infection, inflammation, iatrogenic injuries or other conditions and often necessitates reconstruction or replacement. Replacement may take the form of organ transplant. At present, there is a severe shortage of donor organs that is worsening with the aging of the population. Tissue engineering follows the principles of cell transplantation, materials science and engineering towards the development of biological substitutes that can restore and maintain normal tissue function. Therapeutic cloning involves the introduction of a nucleus from a donor cell into an enucleated oocyte to generate embryonic stem cell lines whose genetic material is identical to that of its source. These autologous stem cells have the potential to become almost any type of cell in the adult body, and thus would be useful in tissue and organ replacement applications. This paper reviews recent advances in stem cell research and regenerative medicine, and describes the clinical applications of these technologies as novel therapies for tissue or organ loss.
Collapse
Affiliation(s)
- Anthony Atala
- Department of Urology, Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
128
|
Toso C, Mathe Z, Morel P, Oberholzer J, Bosco D, Sainz-Vidal D, Hunkeler D, Buhler LH, Wandrey C, Berney T. Effect of microcapsule composition and short-term immunosuppression on intraportal biocompatibility. Cell Transplant 2005; 14:159-67. [PMID: 15881425 DOI: 10.3727/000000005783983223] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With higher nutrient and oxygen supply and close contact to blood, the portal vein is a possible alternative to the peritoneal cavity for transplantation of encapsulated cells. Data regarding intraportal biocompatibility of microcapsules are lacking. Microcapsules were built from five alginate types differing in their molar mass and mannuronic/guluronic acid ratios by complex formation with divalent cations (barium or calcium) or mixtures of divalent cations and polycations. They were injected in the portal vein of rats, and cellular and fibrotic pericapsular infiltration thickness was measured 3 and 7 days after implantation. Overgrowth was characterized using various stainings or immunohistochemistry (hematoxylin and eosin, Giemsa, ED-1 for monocyte/macrophage, alpha-actin for myofibroblasts, CD31 for endothelial cells). The impact of short-term immunosuppression (gadolinium-chloride IV 20 mg/kg/day on days--1 and 4 as well as 10 days of rapamycin PO 1 mg/kg/day, tacrolimus PO 3 mg/kg/day, or combinations of rapamycin/tacrolimus or gadolinium/tacrolimus) was further assessed 3, 7, and 42 days after implantation. Overall, overgrowth increased from day 3 to day 7 (p < 0.05). Three and 7 days after implantation, polycation-containing microcapsules induced more reaction than microbeads (p < 0.0001 and p < 0.01). Considering polycation-free beads, barium-alginate induced the weakest reaction. Biocompatibility of microbeads was independent of mannuronic/guluronic acid ratio and molar mass of the alginate. Infiltration was mainly a monocyte/macrophage-rich foreign body reaction, but an eosinophil-containing immunoallergic reaction was also observed. Short-term immunosuppression significantly reduced infiltration in all conditions and up to 42 days after implantation. Biocompatibility after intraportal infusion was best for barium-alginate microbeads and poorest for polycation-containing microcapsules. Short- and long-term overgrowth could be significantly reduced by short-term immunosuppression.
Collapse
Affiliation(s)
- Christian Toso
- Centre d'isolement et de transplantation cellulaire, Service de chirurgie viscérale, Hôpital Universitaire, 4, rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Bünger CM, Tiefenbach B, Jahnke A, Gerlach C, Freier T, Schmitz KP, Hopt UT, Schareck W, Klar E, de Vos P. Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steroids. Biomaterials 2005; 26:2353-60. [PMID: 15585238 DOI: 10.1016/j.biomaterials.2004.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/07/2004] [Indexed: 01/01/2023]
Abstract
Transplantation of encapsulated living cells is a promising approach for the treatment of a wide variety of diseases. Large-scale application of the technique, however, is hampered by inflammatory responses against the capsules. In the present study, we investigate whether tissue responses against alginate-PLL-alginate capsules can be modulated by co-encapsulation and temporary release of immunomodulating factors such as dexamethasone. Such an approach may be mandatory in order to increase the function and survival of encapsulated tissue since it has been shown that the tissue response can be caused by many, insurmountable factors. In an in vitro assay, we demonstrated an antiproliferative effect of dexamethasone-containing capsules on L929-mouse-fibroblasts. Subsequently, capsules prepared of purified alginate with or without solved dexamethasone were implanted in the peritoneal cavity of rats and retrieved one month later for histological evaluation. Most of the capsules without dexamethasone proved to be overgrown and adherent to the abdominal organs whereas with co-encapsulated dexamethasone the majority of the capsules were found freely floating in the peritoneal cavity without overgrowth. We conclude that co-encapsulation of dexamethasone has a profound effect on fibroblasts and macrophages adherence to immunoisolating capsules.
Collapse
Affiliation(s)
- C M Bünger
- Department of Surgery, University of Rostock, Schillingallee 35, D-18055 Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Xie D, Smyth CA, Eckstein C, Bilbao G, Mays J, Eckhoff DE, Contreras JL. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation. Biomaterials 2005; 26:403-12. [PMID: 15275814 DOI: 10.1016/j.biomaterials.2004.02.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Functional poly(ethylene glycol) (PEG) derivatives, including monosuccinimidyl PEG (MSPEG) with molecular weight (MW) of 2000 (2 kDa) as well as 5 kDa and disuccinimidyl PEG (DSPEG) with MW of 3 and 6 kDa, were synthesized and characterized. They were used to modify the surface of adult porcine islets for cytoprotection. The islets were isolated, purified and modified with functional PEG. Untreated porcine islets were used as control. An in vitro human antibody/complement-mediated cytotoxicity test based on the release of intracellular lactate dehydrogenase was used to evaluate cytotoxicity of human serum to the modified islets. In vitro cell viability was assessed using membrane-integrity straining and islet metabolism in culture. In vitro islet functionality was evaluated by glucose-stimulated insulin release of islets in static incubation with human serum. In vivo islet functionality was evaluated by monitoring non-fasting blood glucose level in streptozotocin-induced diabetic (SCID) immunocompromized mice after intraportal transplantation of porcine islets. Results show that all the PEG derivatives used in the study showed significant in vitro and in vivo cytoprotections against cytotoxic effects elicited by human serum and diabetic SCID mice, respectively, to porcine islets. DSPEG derivatives combined with human albumin exhibited a better cytoprotection, as compared to MSPEG ones, due to the capacity of the succinimidyl groups to selectively react with amino groups of the albumin under physiological conditions. The effects of both MW and concentration of the PEG derivatives on cytoprotection were significant. It appears that this novel biotechnology will be an attractive approach for improved xenotransplantation of islets.
Collapse
Affiliation(s)
- Dong Xie
- Department of Biomedical Engineering, University of Alabama at Birmingham, 370 Hoehn Building, 1075 13th Street South, Birmingham, AL 35294-4440, USA.
| | | | | | | | | | | | | |
Collapse
|
131
|
Leung A, Ramaswamy Y, Munro P, Lawrie G, Nielsen L, Trau M. Emulsion strategies in the microencapsulation of cells: Pathways to thin coherent membranes. Biotechnol Bioeng 2005; 92:45-53. [PMID: 15986491 DOI: 10.1002/bit.20597] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microencapsulation of cell spheroids in an immunoselective, highly biocompatible, biomembrane offers a way to create viable implantation options in the treatment of insulin-dependent diabetes mellitus (IDDM). Traditionally the encapsulation process has been achieved through the injection/extrusion of alginate/cell mixtures into a calcium chloride solution to produce calcium alginate capsules around the cells. A novel alternative is explored here through a procedure using an emulsion process to produce thin adherent calcium alginate membranes around cell spheroids. In this study, a thorough investigation has been used to establish the emulsion process parameters that are critical to the formation of a coherent alginate coat both on a model spheroid system and subsequently on cell spheroids. Optical and fluorescence microscopy are used to assess the morphology and coherence of the calcium alginate/poly-L-ornithine/alginate (APA) capsules produced.
Collapse
Affiliation(s)
- A Leung
- Department of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
132
|
de Groot M, Schuurs TA, van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 2004; 121:141-50. [PMID: 15313388 DOI: 10.1016/j.jss.2004.02.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Indexed: 01/02/2023]
Abstract
Successful transplantation of pancreatic tissue has been demonstrated to be an efficacious method of restoring glycemic control in type 1 diabetic patients. To establish graft acceptance patients require lifelong immunosuppression, which in turn is associated with severe deleterious side effects. Microencapsulation is a technique that enables the transplantation of pancreatic islets in the absence of immunosuppression by protecting the islet tissue through a mechanical barrier. This protection may even allow for the transplantation of animal tissue, which opens the perspective of using animal donors as a means to solve the problem of organ shortage. Microencapsulation is not yet applied in clinical practice, mainly because encapsulated islet graft survival is limited. In the present review we discuss the principal causes of microencapsulated islet graft failure, which are related to a lack of biocompatibility, limited immunoprotective properties, and hypoxia. Next to the causes of encapsulated islet graft failure we discuss possible improvements in the encapsulation technique and additional methods that could prolong encapsulated islet graft survival. Strategies that may well support encapsulated islet grafts include co-encapsulation of islets with Sertoli cells, the genetic modification of islet cells, the creation of an artificial implantation site, and the use of alternative donor sources. We conclude that encapsulation in combination with one or more of these additional strategies may well lead to a simple and safe transplantation therapy as a cure for diabetes.
Collapse
Affiliation(s)
- Martijn de Groot
- Surgical Research Laboratory, Department of Surgery, University Hospital Groningen, Hanzeplein 1 (CMC V, Y2144), 9713 GZ Groningen, Netherlands.
| | | | | |
Collapse
|
133
|
Abstract
Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly given the aging population. Scientists in the field of regenerative medicine and tissue engineering apply the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. This paper reviews recent advances that have occurred in regenerative medicine and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest University School of Medicine, Winston Salem, NC, USA.
| |
Collapse
|
134
|
Quek CH, Li J, Sun T, Chan MLH, Mao HQ, Gan LM, Leong KW, Yu H. Photo-crosslinkable microcapsules formed by polyelectrolyte copolymer and modified collagen for rat hepatocyte encapsulation. Biomaterials 2004; 25:3531-40. [PMID: 15020127 DOI: 10.1016/j.biomaterials.2003.09.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 09/21/2003] [Indexed: 10/26/2022]
Abstract
New anionic polyelectrolyte tetra-copolymers with photo-crosslinkable 4-(4-methoxycinnamoyl)phenyl methacrylate monomer in addition to a HEMA-MMA-MAA ter-copolymer system were synthesized. The tetra-copolymers were used to form photo-crosslinkable microcapsules with modified collagen by complex coacervation for rat hepatocytes encapsulation. The hepatocytes were encapsulated within a two-layered membrane comprising of modified collagen as the inner core and an outer photo-crosslinkable copolymer shell. Upon photo-crosslinking of the microcapsules with UV-Vis light irradiation, the mechanical strength and chemical stability of the microcapsules, and the cellular functions of the encapsulated hepatocytes were enhanced. Particularly, the mechanical stability of the microcapsules was dramatically strengthened. The new photo-crosslinkable tetra-copolymer formulation described in this article has opened a way to the development of hepatocyte microencapsulation technology for bioartifical liver assist device.
Collapse
Affiliation(s)
- Chai-Hoon Quek
- Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Rokstad AM, Strand B, Rian K, Steinkjer B, Kulseng B, Skjåk-Braek G, Espevik T. Evaluation of different types of alginate microcapsules as bioreactors for producing endostatin. Cell Transplant 2004; 12:351-64. [PMID: 12911123 DOI: 10.3727/000000003108746902] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The use of nonautologous cell lines producing a therapeutic substance encapsulated within alginate microcapsules could be an alternative way of treating different diseases in a cost-effective way. Malignant brain tumors have been proposed to be treated locally using engineered cells secreting proteins with therapeutic potential encapsulated within alginate microcapsules. Optimization of the alginate capsule bioreactors is needed before this treatment can be a reality. Recently, we have demonstrated that alginate-poly-L-lysine microcapsules made with high-G alginate and a gelled core disintegrated as cells proliferated. In this study we examined the growth and endostatin secretion of 293-EBNA (293 endo) cells encapsulated in six different alginate microcapsules made with native high-G alginate or enzymatically tailored alginate. Stability studies using an osmotic pressure test showed that alginate-poly-L-lysine-alginate microcapsules made with enzymatically tailored alginate was mechanically stronger than alginate capsules made with native high-G alginate. Growth studies showed that the proliferation of 293 endo cells was diminished in microcapsules made with enzymatically tailored alginate and gelled in a barium solution. Secretion of endostatin was detected in lower amounts from the enzymatically tailored alginate microcapsules compared with the native alginate microcapsules. The stability of the alginate microcapsules diminished as the 293 endo cells grew inside the capsules, while empty alginate microcapsules remained stable. By using microcapsules made of fluorescenamine-labeled alginate it was clearly visualized that cells perforated the alginate microcapsules as they grew, destroying the alginate network. Soluble fluorescence-labeled alginate was taken up by the 293 endo cells, while alginate was not detected in live spheroids within fluorescence-labeled alginate microcapsules. Despite that increased stability was achieved by using enzymatically tailored alginate, the cell proliferation destroyed the alginate microcapsules with time. It is therefore necessary to use cell lines that have properties more suited for alginate encapsulation before this technology can be used for therapy.
Collapse
Affiliation(s)
- A M Rokstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
136
|
Barsoum SC, Milgram W, Mackay W, Coblentz C, Delaney KH, Kwiecien JM, Kruth SA, Chang PL. Delivery of recombinant gene product to canine brain with the use of microencapsulation. ACTA ACUST UNITED AC 2004; 142:399-413. [PMID: 14713892 DOI: 10.1016/j.lab.2003.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An alternative approach to somatic gene therapy is to deliver a therapeutic protein by implanting "universal" recombinant cells that are immunologically protected from graft rejection with alginate microcapsules. This strategy has proved successful in reversing pathologic conditions in several rodent models of human disease (dwarfism, lysosomal storage disease, hemophilia, cancer). In particular, neurologic disease and behavioral deficit in the mouse model of a neurodegenerative disease (mucopolysaccharidosis [MPS] VII) were significantly improved through the intraventricular implantation of the recombinant encapsulated cells. Here we report the feasibility of delivering recombinant gene products to the central nervous systems (CNSs) of dogs, first using human growth hormone as a marker for delivery in normal dogs and then using alpha-iduronidase as a therapeutic product for delivery in the MPS I dog that is genetically deficient in this lysosomal enzyme. Madin-Darby canine kidney cells were genetically modified to express either human growth hormone or canine alpha-iduronidase, then enclosed in alginate-poly-l-lysine-alginate microcapsules of about 500 microm in diameter. The encapsulated cells were implanted into the brain under steoreotaxic guidance. The brains were monitored with computed tomographic scans before and after surgery and examined biochemically and histologically. Delivery of gene products, as measured in the plasma and cerebrospinal fluid sampled periodically through 21 days or in various regions of the brain after death showed that the delivery of both gene products was extremely low but detectable. However, we noted extensive inflammatory reactions, both at the sites of implantation and in the immediate vicinity of the implanted microcapsules. Hence for this technology to be applicable to the CNSs of larger animals and human beings, a more accurate and less invasive neurosurgical procedure, more biocompatible microcapsule-recombinant cell combinations, and higher output of recombinant products must be developed.
Collapse
Affiliation(s)
- Susan C Barsoum
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
137
|
|
138
|
|
139
|
Bünger CM, Gerlach C, Freier T, Schmitz KP, Pilz M, Werner C, Jonas L, Schareck W, Hopt UT, de Vos P. Biocompatibility and surface structure of chemically modified immunoisolating alginate‐PLL capsules. J Biomed Mater Res A 2003; 67:1219-27. [PMID: 14624508 DOI: 10.1002/jbm.a.10094] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Grafting of encapsulated living cells has the potential to cure a wide variety of diseases. Large-scale application of the technique, however, is hampered by insufficient biocompatibility of the capsules. A major factor in the biocompatibility of capsules is inadequate covering of the inflammatory poly-L-lysine (PLL) on the capsules' surface. In the present study, we investigate whether tissue responses against alginate-PLL capsules can be reduced by crosslinking the surface of the capsules with heparin or polyacrylic acid. Our transplant study in rats shows a tissue response composed of fibroblasts and macrophages on alginate-PLL-alginate and alginate-PLL-heparin capsules that was completely absent on alginate-PLL-polyacrylic acid capsules. Atomic force microscopy analyses of the capsules demonstrates that the improved biocompatibility of alginate-PLL-capsules by polyacrylic acid coating should not only be explained by a more adequate binding of PLL but also by the induction of a smoother surface. This study shows for the first time that biologic responses against capsules can be successfully deleted by chemically crosslinking biocompatible molecules on the surface of alginate-PLL capsules.
Collapse
Affiliation(s)
- C M Bünger
- Department of Surgery, University of Rostock, Schillingallee 35, 18055 Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Machluf M, Orsola A, Boorjian S, Kershen R, Atala A. Microencapsulation of Leydig cells: a system for testosterone supplementation. Endocrinology 2003; 144:4975-9. [PMID: 12960073 DOI: 10.1210/en.2003-0411] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The use of testosterone supplementation for elderly men has increased markedly over the last decade due to a recognized gradual decline in serum testosterone, which may lead to decreased bone mass, muscle strength, and libido. Testosterone supplementation is also used widely to treat some forms of erectile dysfunction, androgen deficiency, and infertility. However, long-term exogenous testosterone therapy has been associated with several complications, such as fluid retention, nitrogen retention, and hypertension. Due to these problems, alternate treatment modalities, involving more physiological and longer-acting systems for androgen delivery, have been pursued. Alginate-poly-L-lysine-encapsulated Leydig cell microspheres were used as a novel method for the delivery of testosterone in vivo. Encapsulated Leydig cells, which were stimulated with human chorionic gonadotropin, secreted high levels of testosterone in culture. Unencapsulated cells injected i.p. or s.c. failed to produce any testosterone levels, even with human chorionic gonadotropin stimulation. Castrated rats that were administered encapsulated Leydig cells i.p. or s.c. maintained a serum testosterone level between 0.23 and 0.51 ng/ml. Similar levels of testosterone were obtained for 43 d when the encapsulated Leydig cells were injected s.c. (0.28-0.48 ng/ml). Approximately 10% of a normal adult rat Leydig cell population was injected into each castrated animal; however, this resulted in serum testosterone levels of up to 40% of normal. Clinically, testosterone is usually delivered for supplementation and not for full replacement therapy. Therefore, the findings of this study suggest that microencapsulated Leydig cells may be a viable option as a therapeutic modality involving testosterone supplementation.
Collapse
Affiliation(s)
- Marcelle Machluf
- Laboratory of Cellular Therapeutics and Tissue Engineering, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
141
|
Abstract
Polymer scaffolds have many different functions in the field of tissue engineering. They are applied as space filling agents, as delivery vehicles for bioactive molecules, and as three-dimensional structures that organize cells and present stimuli to direct the formation of a desired tissue. Much of the success of scaffolds in these roles hinges on finding an appropriate material to address the critical physical, mass transport, and biological design variables inherent to each application. Hydrogels are an appealing scaffold material because they are structurally similar to the extracellular matrix of many tissues, can often be processed under relatively mild conditions, and may be delivered in a minimally invasive manner. Consequently, hydrogels have been utilized as scaffold materials for drug and growth factor delivery, engineering tissue replacements, and a variety of other applications.
Collapse
Affiliation(s)
- Jeanie L Drury
- Department of Biologic and Materials Science, University of Michigan, Room 5210, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
142
|
van Hoogmoed CG, Busscher HJ, de Vos P. Fourier transform infrared spectroscopy studies of alginate-PLL capsules with varying compositions. ACTA ACUST UNITED AC 2003; 67:172-8. [PMID: 14517874 DOI: 10.1002/jbm.a.10086] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microencapsulation of cells is a promising approach to prevention of rejection in the absence of immunosuppression. Clinical application, however, is hampered by insufficient insight into the factors that influence the biocompatibility of the capsules. Capsules prepared of alginates with a high guluronic (G) acid content proved to be more adequate for clinical application since they are more stable, but, unfortunately, they are less biocompatible than capsules prepared of intermediate-G alginate. In order to get some insight into the physicochemical factors that influence the biocompatibility of capsules for the encapsulation of living cells, the chemical compositions of alginate[bond]Ca beads and alginate[bond]PLL capsules were studied by Fourier transform infrared spectroscopy. We found that during the transition of the alginate[bond]Ca beads to alginate[bond]PLL capsules, Ca connecting the alginate molecules, disappeared at the surface of both high-G and intermediate-G alginate[bond]PLL capsules. At the same time, it turned out that high-G alginate[bond]PLL capsules contained more hydrogen bonding than did intermediate[bond]G alginate capsules. Thus the well-known higher stability of high-G alginate[bond]PLL compared to intermediate-G alginate[bond]PLL capsules is not caused by a higher degree of binding to Ca of the alginate molecules but rather by the presence of more hydrogen bonds. Another observation was that after the transition from bead to capsule, high-G alginate[bond]PLL capsules contained 20% more PLL than the intermediate-G alginate[bond]PLL capsules. Finally, we show that in both high-G and intermediate-G alginate[bond]PLL capsules, the PLL exists in the alpha-helix, in the antiparallel beta-sheet, and in the random coil conformation. This study shows that FT-IR allows for successful analyses of the chemical factors essential for understanding differences in the biocompatibility of alginate[bond]PLL capsules.
Collapse
Affiliation(s)
- Chris G van Hoogmoed
- Department of Biomedical Engineering, Section of Bioadhesion, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
143
|
van Raamsdonk JM, Cornelius RM, Brash JL, Chang PL. Deterioration of polyamino acid-coated alginate microcapsules in vivo. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 13:863-84. [PMID: 12463508 DOI: 10.1163/156856202320401933] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The implantation of immuno-isolated recombinant cell lines secreting a therapeutic protein in alginate microcapsules presents an alternative approach to gene therapy. Its clinical efficacy has recently been demonstrated in treating several genetic diseases in murine models. However, its application to humans will depend on the long-term structural stability of the microcapsules. Based on previous implantations in canines, it appears that survival of alginate-poly-L-lysine-alginate microcapsules in such large animals is short-lived. This article reports on the biological factors that may have contributed to the degradation of these microcapsules after implantation in dogs. Alginate microcapsules coated with poly-L-lysine or poly-L-arginine were implanted in subcutaneous or intraperitoneal sites. The retrieved microcapsules showed a loss of mechanical stability, as measured by resistance to osmotic stress. The polyamino acid coats were rendered fragile and easily lost, particularly when poly-L-lysine was used for coating and the intraperitoneal site was used for implantation. Various plasma proteins were associated with the retrieved microcapsules and identified with western blotting to include Factor XI, Factor XII, prekallikrein, HMWK, fibrinogen, plasminogen, ATIII, transferrin, alpha-1-antitrypsin, fibronectin, IgG, alpha-2-macroglobulin, vitronectin, prothrombin, apolipoprotein A1, and particularly albumin, a major Ca-transporting plasma protein. Complement proteins (C3, Factor B, Factor H, Factor I) and C3 activation fragments were detected. Release of the amino acids from the microcapsule polyamino acid coats was observed after incubation with plasma. indicating the occurrence of proteolytic degradation. Hence, the loss of long-term stability of the polyamino acid-coated alginate microcapsules is associated with activation of the complement system, degradation of the polyamino acid coating, and destabilization of the alginate core matrix, probably through loss of calcium-mediated ionic cross-linking of the guluronic acid polymers in the alginate. These destructive forces may be slightly mitigated by using poly-L-arginine instead of poly-L-lysine for coating and by implanting in a subcutaneous instead of an intraperitoneal site. However, the long-term stability of such devices may require significant improvements in the microcapsule polymer chemistry to withstand such biological impediments.
Collapse
Affiliation(s)
- J M van Raamsdonk
- Department of Medical Sciences, Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
144
|
Donati I, Vetere A, Gamini A, Skjåk-Braek G, Coslovi A, Campa C, Paoletti S. Galactose-substituted alginate: preliminary characterization and study of gelling properties. Biomacromolecules 2003; 4:624-31. [PMID: 12741778 DOI: 10.1021/bm020114y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Coupling of alginate with 1-amino-1-deoxygalactose in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide results in a substituted polymer containing galactose side linked via an amide bond. To clarify the degree and pattern of substitution, a (1)H NMR study on the anomeric region of modified alginate, polymannuronate, alginate enriched in guluronic acid (G-enriched alginate), and polyalternating MG, was carried out (G, alpha-l-guluronic acid; M, beta-d-mannuronic acid). From the resonance of the proton at position 1 of galactosylamine, it was possible to determine the amount of galactose linked to mannuronic and to guluronic residues, respectively. Furthermore, (1)H NMR spectroscopy revealed a higher reactivity of guluronic residues for low degrees of conversion. Modified alginates with 7% and 19% of substitution are both able to form stable beads in the presence of calcium ions. The effect of galactose substitution on the dimensions, swelling, and stability of the beads has been studied and the cytotoxicity of the modified polymer evaluated in preliminary biological tests.
Collapse
Affiliation(s)
- Ivan Donati
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
145
|
de Vos P, Smedema I, van Goor H, Moes H, van Zanten J, Netters S, de Leij LFM, de Haan A, de Haan BJ. Association between macrophage activation and function of micro-encapsulated rat islets. Diabetologia 2003; 46:666-73. [PMID: 12750768 DOI: 10.1007/s00125-003-1087-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2002] [Revised: 12/13/2002] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS Survival of microencapsulated islet grafts is limited, even when inflammatory reactions against the capsules are restricted to a small portion of less than 10%. METHODS This study investigates both in vivo in rat recipients and in vitro whether cellular overgrowth on this minority of the capsules contributes to limitations in the functional survival of the 90% of the encapsulated islets which remain free of any cellular overgrowth. RESULTS In successful rat recipients of an allogenic microencapsulated islet graft we found that the vast majority of cells in the capsular overgrowth were activated ED-1 and ED-2 positive macrophages which were found in numbers of approximately 1500 per capsule. Co-culture of encapsulated islets with 1500 (nr8383) rat-macrophages per capsule showed that the activation of macrophages was caused by islet-derived bioactive factors since TNF-alpha and IL-1beta secretion by macrophages was induced by islet-containing capsules and not by empty capsules. This activation of macrophages was associated with a decrease in function of the encapsulated islets as evidenced by a quantitatively reduced (35%) insulin response in static incubation and a slower response in perifusion. CONCLUSION/INTERPRETATION Present research aims to design strategies for the temporary inhibition of macrophage activation since macrophages are predominantly present in the first two months after implantation. These strategies will serve as a pertinent basis for future clinical application of microencapsulated islets.
Collapse
Affiliation(s)
- P de Vos
- Transplantation Biology, Department of Pathology and Laboratory Medicine, Section of Medical Biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
King A, Strand B, Rokstad AM, Kulseng B, Andersson A, Skjåk-Braek G, Sandler S. Improvement of the biocompatibility of alginate/poly-L-lysine/alginate microcapsules by the use of epimerized alginate as a coating. J Biomed Mater Res A 2003; 64:533-9. [PMID: 12579568 DOI: 10.1002/jbm.a.10276] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alginate/poly-L-lysine(PLL)/alginate capsules are used widely for the microencapsulation of cells. Alginate consists of guluronic acid and mannuronic acid, the ratio and sequence of which affect the properties of the alginate. Using C5-epimerases, mannuronic acid can be converted to guluronic acid in the alginate polymer. Such an enzyme, AlgE4, was used to convert blocks of mannuronic acid (M-blocks) to blocks of alternating sequence (MG-blocks). The aims of this study were 1) to investigate whether the use of epimerized alginate as a coating could improve the biocompatibility of alginate/PLL/alginate capsules and 2) to study the biocompatibility of simple alginate beads prepared with epimerized alginate. Four different capsules, two of which contained epimerized alginate, were investigated after implantation in C57BL/6 mice for 1 week. The biocompatibility of alginate/PLL/alginate capsules, as measured by retrieval rates of the capsules and DNA contents and glucose oxidation rates of the cellular overgrowth, was improved when an epimerized coating alginate was used. There were, however, no statistically significant differences in the biocompatibility of simple alginate beads made from epimerized alginate when compared with non-epimerized alginate beads. In general, such beads produced without a PLL coating swelled to a higher extent than the conventional alginate/PLL/alginate capsules. In conclusion, the use of an epimerized coating on alginate-PLL-alginate can improve the biocompatibility of such capsules but still cannot completely eliminate the detrimental effects of PLL on the biocompatibility of the capsules.
Collapse
Affiliation(s)
- Aileen King
- Department of Medical Cell Biology, Uppsala University, Box 571, Biomedical Centre, SE 751 23 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
147
|
de Vos P, van Hoogmoed CG, van Zanten J, Netter S, Strubbe JH, Busscher HJ. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 2003; 24:305-12. [PMID: 12419632 DOI: 10.1016/s0142-9612(02)00319-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transplantation of encapsulated living cells is a promising approach for the treatment of a wide variety of diseases. Large-scale application of the technique, however, is hampered by insufficient biocompatibility of the capsules. In the present study, we have implemented new as well as previously reported technologies to test biocompatibility issues of immunoisolating microcapsules on the long term (i.e. 2 years) instead of usually reported short time periods. When transplanted empty, the capsules proved to be highly biocompatible not only for short periods (i.e. 1 month) but also on the long term as evidenced by the absence of any significant biological response up to 2 years after implantation in rats. The immunoprotective properties of the capsules were confirmed by prolonged survival of encapsulated islet allografts up to 200 days. The surface of the applied capsule was analyzed and provides new insight in the chemical structure of true biocompatible and immunoprotective capsules applicable for transplantation of encapsulated islets in type I diabetes.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology and Laboratory Medicine, Section of Medical Biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands.
| | | | | | | | | | | |
Collapse
|
148
|
King A, Lau J, Nordin A, Sandler S, Andersson A. The effect of capsule composition in the reversal of hyperglycemia in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technol Ther 2003; 5:653-63. [PMID: 14511420 DOI: 10.1089/152091503322250677] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The transplantation of microencapsulated islets may allow reversal of hyperglycemia in the absence of immunosuppression. Poly-L-lysine (PLL) on capsules may potentiate the fibrotic reaction against implanted capsules. The aims of this study were to investigate how the biocompatibility of such capsules affects their function in vivo and to compare their efficacy relative to naked islets after intraperitoneal transplantation to nude or immune competent mice. Alloxan-diabetic C57BL/6 wild-type or nude (nu/nu) mice were transplanted with naked BALB/c islets, empty capsules, or microencapsulated BALB/c islets. Three types of capsules were used, one containing a high guluronic acid (G) alginate and PLL, one with a high mannuronic acid (M) alginate and PLL, and one high M alginate capsule with no PLL. Hyperglycemia in nude mice was reversed after transplantation of naked islets or islets encapsulated in a capsule containing high M alginate. Nude mice transplanted with islets encapsulated in the high G capsules showed only a transient reversal of hyperglycemia. In an allogeneic system, naked BALB/c islets were rejected by day 10 after transplantation, whereas the islets encapsulated in high M capsules continued to function for at least a month. When PLL was excluded from the capsules, the grafts functioned for up to 8 weeks. Islets microencapsulated in high G alginate capsules fail to reverse hyperglycemia for more than a few days in nude mice. However, islets in high M alginate capsules can reverse hyperglycemia in nude and immune competent mice. Islets microencapsulated in PLL-free high M alginate capsules function for 8 weeks in immune competent mice.
Collapse
Affiliation(s)
- Aileen King
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
149
|
de Vos P, van Hoogmoed CG, de Haan BJ, Busscher HJ. Tissue responses against immunoisolating alginate-PLL capsules in the immediate posttransplant period. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 62:430-7. [PMID: 12209929 DOI: 10.1002/jbm.10345] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alginate-polylysine (PLL) capsules are commonly applied for immunoisolation of living cells for the treatment of a wide variety of diseases. Large-scale application of the technique, however, is hampered by insufficient biocompatibility of the capsules with failure of the grafts as a consequence. Most studies addressing biocompatibility issues of alginate-PLL capsules have focused on the degree of overgrowth on the capsules after graft failure and not on the reaction against the capsules in the immediate posttransplant period. Therefore, capsules were implanted in the peritoneal cavity of rats and retrieved 1, 5, and 7 days later for histological examination and X-ray photoelectron spectroscopy analysis for evaluation of chemical changes at the capsule surface. After implantation, the nitrogen signal increased from 5% on day 0, to 8.6% on day 7, illustrating protein adsorption on the capsule's surface. This increase in protein content of the membrane was accompanied by an increase in the percentage of overgrown capsules from 0.5 +/- 0.3% on day 1 to 3.3 +/- 1.6% on day 7. The cellular overgrowth was composed of monocytes/macrophages, granulocytes, fibroblasts, erythrocytes, multinucleated giant cells, and basophils. This overgrowth was not statical as generally assumed but rather dynamic as illustrated by our observation that at day 1 after implantation we mainly found monocytes/macrophages and granulocytes that on later time points were substituted by fibroblasts. As the inflammatory reaction predictably interfere with survival of encapsulated cells, efforts should be made to suppress activities or recruitment of inflammatory cells. These efforts may be temporary rather than permanent because most inflammatory cells have disappeared after 2 weeks of implantation.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology, Section of Medical Biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
150
|
Sakai S, Ono T, Ijima H, Kawakami K. In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancreas. Biomaterials 2002; 23:4177-83. [PMID: 12194520 DOI: 10.1016/s0142-9612(02)00159-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alginate/aminopropyl-silicate/alginate (Alg/AS/Alg) membrane was prepared on Ca-alginate gel beads by a sol-gel process. The membrane has identical to Si-O-Si identical to bonds as well as electrostatic bonds between amino groups of AS and carboxyl groups of alginate. Permeability and stability were investigated for the membrane. Furthermore, rat islets encapsulated in the membrane (499 +/- 32 microns in diameter, 1000 islets/recipient) were transplanted to the peritoneal cavities of the mice with streptozotocin-induced diabetes. Our data show that the membrane had the molecular weight cut-off point of between 70 and 150 kDa, and hardly inhibited the permeation of glucose and insulin. The Alg/AS/Alg microcapsule was more stable than the well-known Alg/poly-L-lysine (PLL)/Alg microcapsule. After 30 days of soaking in stimulated body fluid, the percentages of intact microcapsule were 98.4 +/- 0.5 (mean +/- SEM)% and 88.0 +/- 1.5% (p < 0.001) for the Alg/AS/Alg and Alg/PLL/Alg microcapsules, respectively. The maximum maintenance period of normoglycemia was 105 days without administration of immunosuppressive drugs.
Collapse
Affiliation(s)
- Shinji Sakai
- Department of Materials Process Engineering, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|