101
|
Ayan M, Essiz S. The neural γ 2α 1β 2α 1β 2 gamma amino butyric acid ion channel receptor: structural analysis of the effects of the ivermectin molecule and disulfide bridges. J Mol Model 2018; 24:206. [PMID: 30008086 DOI: 10.1007/s00894-018-3739-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Abstract
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models-one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2-M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.
Collapse
Affiliation(s)
- Meral Ayan
- Bioinformatics and Genetics Department, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Fatih, Istanbul, Turkey
| | - Sebnem Essiz
- Bioinformatics and Genetics Department, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Fatih, Istanbul, Turkey.
| |
Collapse
|
102
|
Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation. Cell Rep 2018; 20:1123-1135. [PMID: 28768197 PMCID: PMC5554777 DOI: 10.1016/j.celrep.2017.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/12/2017] [Accepted: 07/09/2017] [Indexed: 11/10/2022] Open
Abstract
Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs) associated with transmembrane AMPAR regulatory proteins (TARPs). At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood. We report here that TARP γ-2 reduces the ability of low glutamate concentrations to cause AMPAR desensitization and enhances channel gating at low glutamate occupancy. Simulations show that, by shifting the balance between AMPAR activation and desensitization, TARPs can markedly facilitate the transduction of spillover-mediated synaptic signaling. Furthermore, the dual effects of TARPs can account for biphasic steady-state glutamate concentration-response curves—a phenomenon termed “autoinactivation,” previously thought to reflect desensitization-mediated AMPAR/TARP dissociation. TARP γ-2 reduces desensitization and enhances the gating of singly liganded AMPARs This accounts for biphasic steady-state dose-response curves (autoinactivation) The effects of γ-2 are predicted to enhance synaptic spillover currents Desensitization does not lead to functional dissociation of the AMPAR/TARP complex
Collapse
|
103
|
Krieger J, Lee JY, Greger IH, Bahar I. Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions. Neurosci Lett 2018; 700:22-29. [PMID: 29481851 PMCID: PMC6107436 DOI: 10.1016/j.neulet.2018.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 01/03/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are key players in synaptic transmission and plasticity. They are composed of four subunits, each containing four functional domains, the quaternary packing and collective structural dynamics of which are important determinants of their molecular mechanism of function. With the explosion of structural studies on different members of the family, including the structures of activated open channels, the mechanisms of action of these central signaling machines are now being elucidated. We review the current state of computational studies on two major members of the family, AMPA and NMDA receptors, with focus on molecular simulations and elastic network model analyses that have provided insights into the coupled movements of extracellular and transmembrane domains. We describe the newly emerging mechanisms of activation, allosteric signaling and desensitization, as mainly a selective triggering of pre-existing soft motions, as deduced from computational models and analyses that leverage structural data on intact AMPA and NMDA receptors in different states.
Collapse
Affiliation(s)
- James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States
| | - Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
104
|
Wang TT, Si FL, He ZB, Chen B. Genome-wide identification, characterization and classification of ionotropic glutamate receptor genes (iGluRs) in the malaria vector Anopheles sinensis (Diptera: Culicidae). Parasit Vectors 2018; 11:34. [PMID: 29334982 PMCID: PMC5769321 DOI: 10.1186/s13071-017-2610-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ionotropic glutamate receptors (iGluRs) are conserved ligand-gated ion channel receptors, and ionotropic receptors (IRs) were revealed as a new family of iGluRs. Their subdivision was unsettled, and their characteristics are little known. Anopheles sinensis is a major malaria vector in eastern Asia, and its genome was recently well sequenced and annotated. METHODS We identified iGluR genes in the An. sinensis genome, analyzed their characteristics including gene structure, genome distribution, domains and specific sites by bioinformatic methods, and deduced phylogenetic relationships of all iGluRs in An. sinensis, Anopheles gambiae and Drosophila melanogaster. Based on the characteristics and phylogenetics, we generated the classification of iGluRs, and comparatively analyzed the intron number and selective pressure of three iGluRs subdivisions, iGluR group, Antenna IR and Divergent IR subfamily. RESULTS A total of 56 iGluR genes were identified and named in the whole-genome of An. sinensis. These genes were located on 18 scaffolds, and 31 of them (29 being IRs) are distributed into 10 clusters that are suggested to form mainly from recent gene duplication. These iGluRs can be divided into four groups: NMDA, non-NMDA, Antenna IR and Divergent IR based on feature comparison and phylogenetic analysis. IR8a and IR25a were suggested to be monophyletic, named as Putative in the study, and moved from the Antenna subfamily in the IR family to the non-NMDA group as a sister of traditional non-NMDA. The generated iGluRs of genes (including NMDA and regenerated non-NMDA) are relatively conserved, and have a more complicated gene structure, smaller ω values and some specific functional sites. The iGluR genes in An. sinensis, An. gambiae and D. melanogaster have amino-terminal domain (ATD), ligand binding domain (LBD) and Lig_Chan domains, except for IR8a that only has the LBD and Lig_Chan domains. However, the new concept IR family of genes (including regenerated Antenna IR, and Divergent IR), especially for Divergent IR are more variable, have a simpler gene structure (intron loss phenomenon) and larger ω values, and lack specific functional sites. These IR genes have no other domains except for Antenna IRs that only have the Lig_Chan domain. CONCLUSIONS This study provides a comprehensive information framework for iGluR genes in An. sinensis, and generated the classification of iGluRs by feature and bioinformatics analyses. The work lays the foundation for further functional study of these genes.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Zheng-Bo He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| |
Collapse
|
105
|
Kunugi A, Tajima Y, Kuno H, Sogabe S, Kimura H. HBT1, a Novel AMPA Receptor Potentiator with Lower Agonistic Effect, Avoided Bell-Shaped Response in In Vitro BDNF Production. J Pharmacol Exp Ther 2018; 364:377-389. [PMID: 29298820 DOI: 10.1124/jpet.117.245050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/28/2017] [Indexed: 11/22/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor (AMPA-R) potentiators with brain-derived neurotrophic factor (BDNF)-induction potential could be promising as therapeutic drugs for neuropsychiatric and neurologic disorders. However, AMPA-R potentiators such as LY451646 have risks of narrow bell-shaped responses in pharmacological effects, including in vivo BDNF induction. Interestingly, LY451646 and LY451395, other AMPA-R potentiators, showed agonistic effects and exhibited bell-shaped responses in the BDNF production in primary neurons. We hypothesized that the agonistic property is related to the bell-shaped response and endeavored to discover novel AMPA-R potentiators with lower agonistic effects. LY451395 showed an agonistic effect in primary neurons, but not in a cell line expressing AMPA-Rs, in Ca2+ influx assays; thus, we used a Ca2+ influx assay in primary neurons and, from a chemical library, discovered two AMPA-R potentiators with lower agonistic effects: 2-(((5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)acetyl)amino)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide (HBT1) and (3S)-1-(4-tert-butylphenyl)-N-((1R)-2-(dimethylamino)-1-phenylethyl)-3-isobutyl-2-oxopyrrolidine-3-carboxamide (OXP1). In a patch-clamp study using primary neurons, HBT1 showed little agonistic effect, whereas both LY451395 and OXP1 showed remarkable agonistic effects. HBT1, but not OXP1, did not show remarkable bell-shaped response in BDNF production in primary neurons. HBT1 bound to the ligand-binding domain (LBD) of AMPA-R in a glutamate-dependent manner. The mode of HBT1 and LY451395 binding to a pocket in the LBD of AMPA-R differed: HBT1, but not LY451395, formed hydrogen bonds with S518 in the LBD. OXP1 may bind to a cryptic binding pocket on AMPA-R. Lower agonistic profile of HBT1 may associate with its lower risks of bell-shaped responses in BDNF production in primary neurons.
Collapse
Affiliation(s)
- Akiyoshi Kunugi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yasukazu Tajima
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhiko Kuno
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoshi Sogabe
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
106
|
Yu A, Salazar H, Plested AJR, Lau AY. Neurotransmitter Funneling Optimizes Glutamate Receptor Kinetics. Neuron 2017; 97:139-149.e4. [PMID: 29249286 PMCID: PMC5766834 DOI: 10.1016/j.neuron.2017.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/26/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate neurotransmission at the majority of excitatory synapses in the brain. Little is known, however, about how glutamate reaches the recessed binding pocket in iGluR ligand-binding domains (LBDs). Here we report the process of glutamate binding to a prototypical iGluR, GluA2, in atomistic detail using unbiased molecular simulations. Charged residues on the LBD surface form pathways that facilitate glutamate binding by effectively reducing a three-dimensional diffusion process to a spatially constrained, two-dimensional one. Free energy calculations identify residues that metastably bind glutamate and help guide it into the binding pocket. These simulations also reveal that glutamate can bind in an inverted conformation and also reorient while in its pocket. Electrophysiological recordings demonstrate that eliminating these transient binding sites slows activation and deactivation, consistent with slower glutamate binding and unbinding. These results suggest that binding pathways have evolved to optimize rapid responses of AMPA-type iGluRs at synapses.
Collapse
Affiliation(s)
- Alvin Yu
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Héctor Salazar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Andrew J R Plested
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany.
| | - Albert Y Lau
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
107
|
Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR. Deconstructing behavioral neuropharmacology with cellular specificity. Science 2017; 356:356/6333/eaaj2161. [PMID: 28385956 DOI: 10.1126/science.aaj2161] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.
Collapse
Affiliation(s)
- Brenda C Shields
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Elizabeth Kahuno
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Charles Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Pierre F Apostolides
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jennifer Brown
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sarah Lindo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Michael R Tadross
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. .,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
108
|
Neuronal death/apoptosis induced by intracellular zinc deficiency associated with changes in amino-acid neurotransmitters and glutamate receptor subtypes. J Inorg Biochem 2017; 179:54-59. [PMID: 29175628 DOI: 10.1016/j.jinorgbio.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
In the present study, a model of zinc deficiency was developed by exposing primary neurons to an N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN)-containing medium. The cell survival rate, apoptosis rate, intracellular and extracellular concentrations of 4 amino acids, and the expression of 2 glutamate receptor subtypes α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (GluR2)and N-methyl-d-aspartate receptor subtype 2B (NR2B) were evaluated in zinc-deficient cells. The results revealed that zinc deficiency led to a decrease in cell viability and an increase in the apoptosis rate. Additionally, in cultured neurons, zinc deficiency led to an increase in the concentration of aspartic acid (Asp) and a decrease in the concentrations of glutamate (Glu), glycine (Gly), and gamma-aminobutyric acid (GABA). These changes were reversed by concurrent zinc supplementation. Furthermore, zinc deficiency led to an increase in the secreted amounts of Glu, Gly, and Asp but a decrease in secreted amounts of GABA, as measured using the concentrations of these amino acids in the cell-culture medium. These changes were partially reversed by zinc supplementation. Finally, zinc deficiency led to a significant decrease in GluR2 expression and an increase in NR2B expression in cultured neurons, whereas simultaneous treatment with zinc sulfate (ZnSO4) prevented these changes. These results suggest that zinc deficiency-induced neuronal death/apoptosis involves changes in the concentrations of 4 amino acid neurotransmitters and the expression of 2 glutamate receptor subtypes.
Collapse
|
109
|
Paramo T, Brown PMGE, Musgaard M, Bowie D, Biggin PC. Functional Validation of Heteromeric Kainate Receptor Models. Biophys J 2017; 113:2173-2177. [PMID: 28935133 PMCID: PMC5700254 DOI: 10.1016/j.bpj.2017.08.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/31/2023] Open
Abstract
Kainate receptors require the presence of external ions for gating. Most work thus far has been performed on homomeric GluK2 but, in vivo, kainate receptors are likely heterotetramers. Agonists bind to the ligand-binding domain (LBD) which is arranged as a dimer of dimers as exemplified in homomeric structures, but no high-resolution structure currently exists of heteromeric kainate receptors. In a full-length heterotetramer, the LBDs could potentially be arranged either as a GluK2 homomer alongside a GluK5 homomer or as two GluK2/K5 heterodimers. We have constructed models of the LBD dimers based on the GluK2 LBD crystal structures and investigated their stability with molecular dynamics simulations. We have then used the models to make predictions about the functional behavior of the full-length GluK2/K5 receptor, which we confirmed via electrophysiological recordings. A key prediction and observation is that lithium ions bind to the dimer interface of GluK2/K5 heteromers and slow their desensitization.
Collapse
Affiliation(s)
- Teresa Paramo
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Patricia M G E Brown
- Integrated Program in Neurosciences, McGill University, Montréal, Québec, Canada
| | - Maria Musgaard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
110
|
Yu A, Lau AY. Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor. J Phys Chem B 2017; 121:10436-10442. [PMID: 29065265 DOI: 10.1021/acs.jpcb.7b06862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.
Collapse
Affiliation(s)
- Alvin Yu
- Program in Molecular Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Albert Y Lau
- Program in Molecular Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| |
Collapse
|
111
|
Abstract
![]()
Ionotropic
glutamate receptors (iGluRs) are ligand-gated ion channels
that mediate the majority of excitatory neurotransmission in the central
nervous system. iGluRs open their ion channels in response to binding
of the neurotransmitter glutamate, rapidly depolarize the postsynaptic
neuronal membrane, and initiate signal transduction. Recent studies
using X-ray crystallography and cryo-electron microscopy have determined
full-length iGluR structures that (1) uncover the receptor architecture
in an unliganded, resting state, (2) reveal conformational changes
produced by ligands in order to activate iGluRs, open their ion channels,
and conduct ions, and (3) show how activated, glutamate-bound iGluRs
can adopt a nonconducting desensitized state. These new findings,
combined with the results of previous structural and functional experiments,
kinetic and molecular modeling, mutagenesis, and biochemical analyses,
provide new views on the structural mechanisms of iGluR gating.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Biochemistry and Molecular Biophysics and ‡Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University , 650 West 168th Street, New York, New York 10032, United States
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics and ‡Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University , 650 West 168th Street, New York, New York 10032, United States
| |
Collapse
|
112
|
Tavakoli M, Taylor JN, Li CB, Komatsuzaki T, Pressé S. Single Molecule Data Analysis: An Introduction. ADVANCES IN CHEMICAL PHYSICS 2017. [DOI: 10.1002/9781119324560.ch4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meysam Tavakoli
- Physics Department; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
| | - J. Nicholas Taylor
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
| | - Chun-Biu Li
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
- Department of Mathematics; Stockholm University; 106 91 Stockholm Sweden
| | - Tamiki Komatsuzaki
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
| | - Steve Pressé
- Physics Department; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
- Department of Cell and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- Department of Physics and School of Molecular Sciences; Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
113
|
Wen W, Lin CY, Niu L. R/G editing in GluA2R flop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. Sci Rep 2017; 7:13654. [PMID: 29057893 PMCID: PMC5651858 DOI: 10.1038/s41598-017-13233-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
In α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors, RNA editing and alternative splicing generate sequence variants, and those variants, as in GluA2-4 AMPA receptor subunits, generally show different properties. Yet, earlier studies have shown that the alternatively spliced, flip and flop variants of GluA1 AMPA receptor subunit exhibit no functional difference in homomeric channel form. Using a laser-pulse photolysis technique, combined with whole-cell recording, we measured the rate of channel opening, among other kinetic properties, for a series of AMPA channels with different arginine/glycine (R/G) editing and flip/flop status. We find that R/G editing in the GluA2 subunit modulates the channel properties in both homomeric (GluA2Q) and complex (GluA2Q/2R and GluA1/2R) channel forms. However, R/G editing is only effective in flop channels. Specifically, editing at the R/G site on the GluA2R flop isoform accelerates the rate of channel opening and desensitization for GluA1/2R channels more pronouncedly with the GluA1 being in the flop form than in the flip form; yet R/G editing has no effect on either channel-closing rate or EC50. Our results suggest R/G editing via GluA2R serve as a regulatory mechanism to modulate the function of GluA2R-containing, native receptors involved in fast excitatory synaptic transmission.
Collapse
Affiliation(s)
- Wei Wen
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States
| | - Chi-Yen Lin
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States.
| |
Collapse
|
114
|
de Freitas GRS, Coelho SE, Monteiro NKV, Neri JM, Cavalcanti LN, Domingos JB, Vieira DS, de Souza MAF, Menezes FG. Theoretical and Experimental Investigation of Acidity of the Glutamate Receptor Antagonist 6,7-Dinitro-1,4-dihydroquinoxaline-2,3-dione and Its Possible Implication in GluA2 Binding. J Phys Chem A 2017; 121:7414-7423. [DOI: 10.1021/acs.jpca.7b07775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gutto R. S. de Freitas
- Química Biológica
e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil
| | - Sara E. Coelho
- Laboratório de Catálise Biomimética,
Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Norberto K. V. Monteiro
- Química Biológica
e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil
| | - Jannyely Moreira Neri
- Química Biológica
e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil
| | - Lívia Nunes Cavalcanti
- Química Biológica
e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil
| | - Josiel B. Domingos
- Laboratório de Catálise Biomimética,
Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Davi S. Vieira
- Química Biológica
e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil
| | - Miguel A. F. de Souza
- Química Biológica
e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil
| | - Fabrício G. Menezes
- Química Biológica
e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil
| |
Collapse
|
115
|
Pharmacological characterisation of S 47445, a novel positive allosteric modulator of AMPA receptors. PLoS One 2017; 12:e0184429. [PMID: 28886144 PMCID: PMC5590943 DOI: 10.1371/journal.pone.0184429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
S 47445 is a novel positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPA-PAM). S 47445 enhanced glutamate’s action at AMPA receptors on human and rat receptors and was inactive at NMDA and kainate receptors. Potentiation did not differ among the different AMPA receptors subtypes (GluA1/2/4 flip and flop variants) (EC50 between 2.5–5.4 μM), except a higher EC50 value for GluA4 flop (0.7 μM) and a greater amount of potentiation on GluA1 flop. A low concentration of S 47445 (0.1 μM) decreased receptor response decay time of GluA1flop/GluA2flip AMPA receptors and increased the sensitivity to glutamate. Furthermore, S 47445 (0.1 and 0.3 μM) in presence of repetitive glutamate pulses induced a progressive potentiation of the glutamate-evoked currents from the second pulse of glutamate confirming a rapid-enhancing effect of S 47445 at low concentrations. The potentiating effect of S 47445 (1 μM) was concentration-dependently reversed by the selective AMPA receptor antagonist GYKI52466 demonstrating the selective modulatory effect of S 47445 on AMPA receptors. Using an AMPA-kainate chimera approach, it was confirmed that S 47445 binds to the common binding pocket of AMPA-PAMs. S 47445 did not demonstrate neurotoxic effect against glutamate-mediated excitotoxicity in vitro, in contrast significantly protected rat cortical neurons at 10 μM. S 47445 was shown to improve both episodic and spatial working memory in adult rodents at 0.3 mg/kg, as measured in the natural forgetting condition of object recognition and T-maze tasks. Finally, no deleterious effect on spontaneous locomotion and general behavior was observed up to 1000 mg/kg of S 47445 given acutely in rodents, neither occurrence of convulsion or tremors. Collectively, these results indicate that S 47445 is a potent and selective AMPA-PAM presenting procognitive and potential neuroprotective properties. This drug is currently evaluated in clinical phase 2 studies in Alzheimer’s disease and in Major Depressive Disorder.
Collapse
|
116
|
Zhang W, Eibl C, Weeks AM, Riva I, Li YJ, Plested AJR, Howe JR. Unitary Properties of AMPA Receptors with Reduced Desensitization. Biophys J 2017; 113:2218-2235. [PMID: 28863863 DOI: 10.1016/j.bpj.2017.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/24/2023] Open
Abstract
Wild-type AMPA receptors display a characteristic rapidly desensitizing phenotype. Many studies point to the dimer interface between pairs of extracellular ligand binding domains as the key region controlling the rate at which the receptors desensitize. However, mutations at the extracellular end of the pore-forming regions (near the putative ion channel gate) have also been shown to alter desensitization. Here we report the behavior of single GluA4 receptors carrying one of two mutations that greatly reduce desensitization at the level of ensemble currents: the dimer interface mutation L484Y and the Lurcher mutation (A623T, GluA4-Lc) in the extracellular end of M3 (the second true transmembrane helix). Analysis of unitary currents in patches with just one active receptor showed that each mutation greatly prolongs bursts of openings without prolonging the apparent duration of individual openings. Each mutation decreases the frequency with which individual receptors visit desensitized states, but both mutant receptors still desensitize multiple times per second. Cyclothiazide (CTZ) reduced desensitization of wild-type receptors and both types of mutant receptor. Analysis of shut-time distributions revealed a form of short-lived desensitization that was resistant to CTZ and was especially prominent for GluA4-Lc receptors. Despite reducing desensitization of GluA4 L484Y receptors, CTZ decreased the amplitude of ensemble currents through GluA2 and GluA4 LY receptor mutants. Single-channel analysis and comparison of the GluA2 L483Y ligand binding domain dimer in complex with glutamate with and without CTZ is consistent with the conclusion that CTZ binding to the dimer interface prevents effects of the LY mutation to modulate receptor activation, resulting in a reduction in the prevalence of large-conductance substates that accounts for the decrease in ensemble current amplitudes. Together, the results show that similar nondesensitizing AMPA-receptor phenotypes of population currents can arise from distinct underlying molecular mechanisms that produce different types of unitary activity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| | - Clarissa Eibl
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Autumn M Weeks
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Irene Riva
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Yan-Jun Li
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - James R Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
117
|
The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures. Biophys J 2017; 113:2143-2151. [PMID: 28844473 DOI: 10.1016/j.bpj.2017.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 11/24/2022] Open
Abstract
Ion channels activated by glutamate mediate excitatory synaptic transmission in the central nervous system. Similar to other ligand-gated ion channels, their gating cycle begins with transitions from a ligand-free closed state to glutamate-bound active and desensitized states. In an attempt to reveal the molecular mechanisms underlying gating, numerous structures for glutamate receptors have been solved in complexes with agonists, antagonists, allosteric modulators, and auxiliary proteins. The embarrassingly rich library of structures emerging from this work reveals very dynamic molecules with a more complex conformational spectrum than anticipated from functional studies. Unanticipated conformations solved for complexes with competitive antagonists and a lack of understanding of the structural basis for ion channel subconductance states further highlight challenges that have yet to be addressed.
Collapse
|
118
|
Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM. Cell 2017; 170:1234-1246.e14. [PMID: 28823560 DOI: 10.1016/j.cell.2017.07.045] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/08/2017] [Accepted: 07/25/2017] [Indexed: 11/21/2022]
Abstract
AMPA receptors mediate fast excitatory neurotransmission in the mammalian brain and transduce the binding of presynaptically released glutamate to the opening of a transmembrane cation channel. Within the postsynaptic density, however, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs), yielding a receptor complex with altered gating kinetics, pharmacology, and pore properties. Here, we elucidate structures of the GluA2-TARP γ2 complex in the presence of the partial agonist kainate or the full agonist quisqualate together with a positive allosteric modulator or with quisqualate alone. We show how TARPs sculpt the ligand-binding domain gating ring, enhancing kainate potency and diminishing the ensemble of desensitized states. TARPs encircle the receptor ion channel, stabilizing M2 helices and pore loops, illustrating how TARPs alter receptor pore properties. Structural and computational analysis suggests the full agonist and modulator complex harbors an ion-permeable channel gate, providing the first view of an activated AMPA receptor.
Collapse
|
119
|
Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 2017; 549:60-65. [PMID: 28737760 PMCID: PMC5743206 DOI: 10.1038/nature23479] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/14/2017] [Indexed: 01/03/2023]
Abstract
AMPA-subtype ionotropic glutamate receptors mediate fast excitatory neurotransmission throughout the central nervous system. Gated by the neurotransmitter glutamate, AMPA receptors are critical for synaptic strength and dysregulation of AMPA receptor-mediated signaling is linked to numerous neurological diseases. Here, we use cryo-electron microscopy to solve the structures of AMPA receptor-auxiliary subunit complexes in the apo, antagonist and agonist-bound states and elucidate the iris-like mechanism of ion channel opening. The ion channel selectivity filter is formed by the extended portions of the re-entrant M2 loops, while the helical portions of M2 contribute to extensive hydrophobic interfaces between AMPA receptor subunits in the ion channel. We show how the permeation pathway changes upon channel opening and identify conformational changes throughout the entire AMPA receptor that accompany activation and desensitization. Our findings provide a framework for understanding gating across the family of ionotropic glutamate receptors and the role of AMPA receptors in excitatory neurotransmission.
Collapse
|
120
|
Pang X, Zhou HX. Structural modeling for the open state of an NMDA receptor. J Struct Biol 2017; 200:369-375. [PMID: 28739483 DOI: 10.1016/j.jsb.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022]
Abstract
NMDA receptors are tetrameric ligand-gated ion channels that are crucial for neurodevelopment and higher order processes such as learning and memory, and have been implicated in numerous neurological disorders. The lack of a structure for the channel open state has greatly hampered the understanding of the normal gating process and mechanisms of disease-associated mutations. Here we report the structural modeling for the open state of an NMDA receptor. Staring from the crystal structure of the closed state, we repacked the pore-lining helices to generate an initial open model. This model was modified to ensure tight packing between subunits and then refined by a molecular dynamics simulation in explicit membrane. We identify Cα-H…O hydrogen bonds, between the Cα of a conserved glycine in one transmembrane helix and a carbonyl oxygen of a membrane-parallel helix, at the extracellular side of the transmembrane domain as important for stabilizing the open state. This observation explains why mutations of the glycine are associated with neurological diseases and lead to significant decrease in channel open probability.
Collapse
Affiliation(s)
- Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
121
|
Trent S, Barnes P, Hall J, Thomas KL. AMPA receptors control fear extinction through an Arc-dependent mechanism. ACTA ACUST UNITED AC 2017; 24:375-380. [PMID: 28716957 PMCID: PMC5516687 DOI: 10.1101/lm.045013.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) supports fear memory through synaptic plasticity events requiring actin cytoskeleton rearrangements. We have previously shown that reducing hippocampal Arc levels through antisense knockdown leads to the premature extinction of contextual fear. Here we show that the AMPA receptor antagonist CNQX elevates hippocampal Arc levels during extinction and blocks extinction that can be rescued by reducing Arc. Increasing Arc levels with CNQX also overcomes the actin-destabilizing properties of cytochalasin D and promotes extinction. Therefore, extinction is dependent on AMPA-mediated reductions of Arc via a mechanism consistent with a role for Arc in stabilizing the actin cytoskeleton to constrain extinction.
Collapse
Affiliation(s)
- Simon Trent
- Neuroscience and Mental Health Research Institute, Cardiff University, Haydn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - Philip Barnes
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Haydn Ellis Building, Cardiff CF24 4HQ, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Haydn Ellis Building, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Haydn Ellis Building, Cardiff CF24 4HQ, United Kingdom.,Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
122
|
Andrei SA, Sijbesma E, Hann M, Davis J, O’Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Stabilization of protein-protein interactions in drug discovery. Expert Opin Drug Discov 2017; 12:925-940. [DOI: 10.1080/17460441.2017.1346608] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sebastian A. Andrei
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michael Hann
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, UK
| | - Jeremy Davis
- Department of Chemistry, UCB Celltech, Slough, UK
| | - Gavin O’Mahony
- CVMD Medicinal Chemistry, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Pepparedsleden, Mölndal, Sweden
| | - Matthew W. D. Perry
- RIA Medicinal Chemistry, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Pepparedsleden, Mölndal, Sweden
| | - Anna Karawajczyk
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Dortmund, Germany
| | - Jan Eickhoff
- Assay development & screening, Lead Discovery Center GmbH, Dortmund, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G. Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
123
|
Tseng YH, Chuang PH, Huang YR, Chen CL. Computational Investigation into the Interactions of Traditional Chinese Medicine Molecules of WenQingYin with GluR2. Int J Mol Sci 2017; 18:ijms18071443. [PMID: 28678159 PMCID: PMC5535934 DOI: 10.3390/ijms18071443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/21/2017] [Accepted: 07/01/2017] [Indexed: 01/27/2023] Open
Abstract
Docking and molecular dynamics simulations have been carried out to investigate the interaction of a traditional Chinese medicine, WenQingYin, with the glutamate receptor 2 (GluR2) subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Four representative drug components of WenQingYin, namely 2-(3,4-dihydroxyphenyl)-5,6,7-trihydroxy-4H-chromen-4-one (PHF), 4-hydroxy-3-methoxybenzoic acid (HMB), 4-(2,3-dihydroxy-3-methylbutoxy)-7H-furo[3,2-g]chromen-7-one (DHMBP) and methyl 7-formylcyclopenta[c]pyran-4-carboxylate (cerbinal), and their complexes with GluR2 were simulated. Our results show that PHF, HMB, and DHMBP formed a partial hydrogen bond with GluR2 in its ligand-binding domain. However, cerbinal was not stable in the ligand-binding domain of GluR2 and induced a significant change in the structure of GluR2. Three-dimensional plots represent the contact and movement situation of the traditional Chinese medicine molecules in the ligand-binding domain. The combined results of the docking and molecular dynamics simulations provide insight into the interaction between these traditional Chinese medicine molecules and proteins.
Collapse
Affiliation(s)
- Yu-Hui Tseng
- Department of Chemistry, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan.
| | - Po-Hsiang Chuang
- Department of Chemistry, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan.
| | - Yu-Ren Huang
- Department of Chemistry, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan.
- Department of Applied Science, R.O.C. Naval Academy, 81345 Kaohsiung, Taiwan.
| | - Cheng-Lung Chen
- Department of Chemistry, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan.
| |
Collapse
|
124
|
Krintel C, Francotte P, Pickering DS, Juknaitė L, Pøhlsgaard J, Olsen L, Frydenvang K, Goffin E, Pirotte B, Kastrup JS. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2. Biophys J 2017; 110:2397-2406. [PMID: 27276258 DOI: 10.1016/j.bpj.2016.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer's disease. The modulators bind in a cleft formed by the interface of two neighboring ligand binding domains and act by stabilizing the agonist-bound open-channel conformation. The driving forces behind the binding of these modulators can be significantly altered with only minor substitutions to the parent molecules. In this study, we show that changing the 7-fluorine substituent of modulators BPAM97 (2) and BPAM344 (3) into a hydroxyl group (BPAM557 (4) and BPAM521 (5), respectively), leads to a more favorable binding enthalpy (ΔH, kcal/mol) from -4.9 (2) and -7.5 (3) to -6.2 (4) and -14.5 (5), but also a less favorable binding entropy (-TΔS, kcal/mol) from -2.3 (2) and -1.3 (3) to -0.5 (4) and 4.8 (5). Thus, the dissociation constants (Kd, μM) of 4 (11.2) and 5 (0.16) are similar to those of 2 (5.6) and 3 (0.35). Functionally, 4 and 5 potentiated responses of 10 μM L-glutamate at homomeric rat GluA2(Q)i receptors with EC50 values of 67.3 and 2.45 μM, respectively. The binding mode of 5 was examined with x-ray crystallography, showing that the only change compared to that of earlier compounds was the orientation of Ser-497 pointing toward the hydroxyl group of 5. The favorable enthalpy can be explained by the formation of a hydrogen bond from the side-chain hydroxyl group of Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely explanation of the underlying structural mechanism.
Collapse
Affiliation(s)
- Christian Krintel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pierre Francotte
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lina Juknaitė
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Pøhlsgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric Goffin
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Bernard Pirotte
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
125
|
Dai J, Zhou HX. Semiclosed Conformations of the Ligand-Binding Domains of NMDA Receptors during Stationary Gating. Biophys J 2017; 111:1418-1428. [PMID: 27705765 DOI: 10.1016/j.bpj.2016.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/02/2016] [Accepted: 08/12/2016] [Indexed: 12/26/2022] Open
Abstract
NMDA receptors are tetrameric ligand-gated ion channels. In the continuous presence of saturating agonists, NMDA receptors undergo stationary gating, in which the channel stochastically switches between an open state that permits ion conductance and a closed state that prevents permeation. The ligand-binding domains (LBDs) of the four subunits are expected to have closed clefts in the channel-open state. On the other hand, there is little knowledge about the conformational status of the LBDs in the channel-closed state during stationary gating. To probe the latter conformational status, Kussius and Popescu engineered interlobe disulfide cross-links in NMDA receptors and found that the cross-linking produced stationary gating kinetics that differed only subtly from that produced by agonist binding. These authors assumed that the cross-linking immobilized the LBDs in cleft-closed conformations, and consequently concluded that throughout stationary gating, agonist-bound LBDs also stayed predominantly in cleft-closed conformations and made only infrequent excursions to cleft-open conformations. Here, by calculating the conformational free energies of cross-linked and agonist-bound LBDs, we assess whether cross-linking actually traps the LBDs in cleft-closed conformations and delineate semiclosed conformations of agonist-bound LBDs that may potentially be thermodynamically and kinetically important during stationary gating. Our free-energy results show that the cross-linked LBDs are not locked in the fully closed form; rather, they sample semiclosed conformations almost as readily as the agonist-bound LBDs. Several lines of reasoning suggest that LBDs are semiclosed in the channel-closed state during stationary gating. Our free-energy simulations suggest possible structural details of such semiclosed LBD conformations, including intra- and intermolecular interactions that serve as alternatives to those in the cleft-closed conformations.
Collapse
Affiliation(s)
- Jian Dai
- Department of Physics, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Huan-Xiang Zhou
- Department of Physics, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida.
| |
Collapse
|
126
|
Tobi D. Dynamical differences of hemoglobin and the ionotropic glutamate receptor in different states revealed by a new dynamics alignment method. Proteins 2017; 85:1507-1517. [PMID: 28459140 DOI: 10.1002/prot.25311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 12/26/2022]
Abstract
A new algorithm for comparison of protein dynamics is presented. Compared protein structures are superposed and their modes of motions are calculated using the anisotropic network model. The obtained modes are aligned using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. Dynamical comparison of hemoglobin in the T and R2 states reveals that the dynamics of the allosteric effector 2,3-bisphosphoglycerate binding site is different in the two states. These differences can contribute to the selectivity of the effector to the T state. Similar comparison of the ionotropic glutamate receptor in the kainate+(R,R)-2b and ZK bound states reveals that the kainate+(R,R)-2b bound states slow modes describe upward motions of ligand binding domain and the transmembrane domain regions. Such motions may lead to the opening of the receptor. The upper lobes of the LBDs of the ZK bound state have a smaller interface with the amino terminal domains above them and have a better ability to move together. The present study exemplifies the use of dynamics comparison as a tool to study protein function. Proteins 2017; 85:1507-1517. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dror Tobi
- Department of Computer Sciences, Ariel University, Ariel, 40700, Israel.,Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
127
|
Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI. Structural Bases of Desensitization in AMPA Receptor-Auxiliary Subunit Complexes. Neuron 2017; 94:569-580.e5. [PMID: 28472657 PMCID: PMC5492975 DOI: 10.1016/j.neuron.2017.04.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 02/09/2023]
Abstract
Fast excitatory neurotransmission is mediated by AMPA-subtype ionotropic glutamate receptors (AMPARs). AMPARs, localized at post-synaptic densities, are regulated by transmembrane auxiliary subunits that modulate AMPAR assembly, trafficking, gating, and pharmacology. Aberrancies in AMPAR-mediated signaling are associated with numerous neurological disorders. Here, we report cryo-EM structures of an AMPAR in complex with the auxiliary subunit GSG1L in the closed and desensitized states. GSG1L favors the AMPAR desensitized state, where channel closure is facilitated by profound structural rearrangements in the AMPAR extracellular domain, with ligand-binding domain dimers losing their local 2-fold rotational symmetry. Our structural and functional experiments suggest that AMPAR auxiliary subunits share a modular architecture and use a common transmembrane scaffold for distinct extracellular modules to differentially regulate AMPAR gating. By comparing the AMPAR-GSG1L complex structures, we map conformational changes accompanying AMPAR recovery from desensitization and reveal structural bases for regulation of synaptic transmission by auxiliary subunits.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Robert A Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Howard Hughes Medical Institute, 650 West 168(th) Street, New York, NY 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Howard Hughes Medical Institute, 650 West 168(th) Street, New York, NY 10032, USA.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
128
|
Greger IH, Watson JF, Cull-Candy SG. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 2017; 94:713-730. [DOI: 10.1016/j.neuron.2017.04.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
129
|
Yelshanskaya MV, Mesbahi-Vasey S, Kurnikova MG, Sobolevsky AI. Role of the Ion Channel Extracellular Collar in AMPA Receptor Gating. Sci Rep 2017; 7:1050. [PMID: 28432359 PMCID: PMC5430913 DOI: 10.1038/s41598-017-01146-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/21/2017] [Indexed: 11/09/2022] Open
Abstract
AMPA subtype ionotropic glutamate receptors mediate fast excitatory neurotransmission and are implicated in numerous neurological diseases. Ionic currents through AMPA receptor channels can be allosterically regulated via different sites on the receptor protein. We used site-directed mutagenesis and patch-clamp recordings to probe the ion channel extracellular collar, the binding region for noncompetitive allosteric inhibitors. We found position and substitution-dependent effects for introduced mutations at this region on AMPA receptor gating. The results of mutagenesis suggested that the transmembrane domains M1, M3 and M4, which contribute to the ion channel extracellular collar, undergo significant relative displacement during gating. We used molecular dynamics simulations to predict an AMPA receptor open state structure and rationalize the results of mutagenesis. We conclude that the ion channel extracellular collar plays a distinct role in gating and represents a hub for powerful allosteric modulation of AMPA receptor function that can be used for developing novel therapeutics.
Collapse
Affiliation(s)
- Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Samaneh Mesbahi-Vasey
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
130
|
Zhou HX. Gating Motions and Stationary Gating Properties of Ionotropic Glutamate Receptors: Computation Meets Electrophysiology. Acc Chem Res 2017; 50:814-822. [PMID: 28186717 PMCID: PMC5398286 DOI: 10.1021/acs.accounts.6b00598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels essential to all aspects of brain function, including higher order processes such as learning and memory. For decades, electrophysiology was the primary means for characterizing the function of iGluRs and gaining mechanistic insight. Since the turn of the century, structures of isolated water-soluble domains and transmembrane-domain-containing constructs have provided the basis for formulating mechanistic hypotheses. Because these structures only represent sparse, often incomplete snapshots during iGluR activation, significant gaps in knowledge remain regarding structures, energetics, and dynamics of key substates along the functional processes. Some of these gaps have recently been filled by molecular dynamics simulations and theoretical modeling. In this Account, I describe our work in the latter arena toward characterizing iGluR gating motions and developing a formalism for calculating thermodynamic and kinetic properties of stationary gating. The structures of iGluR subunits have a highly modular architecture, in which the ligand-binding domain and the transmembrane domain are well separated and connected by flexible linkers. The ligand-binding domain in turn is composed of two subdomains. During activation, agonist binding induces the closure of the intersubdomain cleft. The cleft closure leads to the outward pulling of a linker tethered to the extracellular terminus of the major pore-lining helix of the transmembrane domain, thereby opening the channel. This activation model based on molecular dynamics simulations was validated by residue-specific information from electrophysiological data on cysteine mutants. A further critical test was made through introducing glycine insertions in the linker. Molecular dynamics simulations showed that, with lengthening by glycine insertions, the linker became less effective in pulling the pore-lining helix, leading to weaker stabilization of the channel-open state. In full agreement, single-channel recordings showed that the channel open probability decreased progressively as the linker was lengthened by glycine insertions. Crystal structures of ligand-binding domains showing different degrees of cleft closure between full and partial agonists suggested a simple mechanism for one subtype of iGluRs, but mysteries surrounded a second subtype, where the ligand-binding domains open to similar degrees when bound with either full or partial agonists. Our free energy simulations now suggest that broadening of the free energy basin for cleft closure is a plausible solution. A theoretical basis for these mechanistic hypotheses on partial agonisms was provided by a model for the free energy surface of a full receptor, where the stabilization by cleft closure is transmitted via the linker to the channel-open state. This model can be implemented by molecular dynamics simulations to predict thermodynamic and kinetics properties of stationary gating that are amenable to direct test by single-channel recordings. Close integration between computation and electrophysiology holds great promises in revealing the conformations of key substates in functional processes and the mechanisms of disease-associated mutations.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and
Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
131
|
Berlin S, Isacoff EY. Synapses in the spotlight with synthetic optogenetics. EMBO Rep 2017; 18:677-692. [PMID: 28396573 DOI: 10.15252/embr.201744010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Membrane receptors and ion channels respond to various stimuli and relay that information across the plasma membrane by triggering specific and timed processes. These include activation of second messengers, allowing ion permeation, and changing cellular excitability, to name a few. Gaining control over equivalent processes is essential to understand neuronal physiology and pathophysiology. Recently, new optical techniques have emerged proffering new remote means to control various functions of defined neuronal populations by light, dubbed optogenetics. Still, optogenetic tools do not typically address the activity of receptors and channels native to neurons (or of neuronal origin), nor gain access to their signaling mechanisms. A related method-synthetic optogenetics-bridges this gap by endowing light sensitivity to endogenous neuronal receptors and channels by the appending of synthetic, light-receptive molecules, or photoswitches. This provides the means to photoregulate neuronal receptors and channels and tap into their native signaling mechanisms in select regions of the neurons, such as the synapse. This review discusses the development of synthetic optogenetics as a means to study neuronal receptors and channels remotely, in their natural environment, with unprecedented spatial and temporal precision, and provides an overview of tool design, mode of action, potential clinical applications and insights and achievements gained.
Collapse
Affiliation(s)
- Shai Berlin
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
132
|
The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region. Sci Rep 2017; 7:46145. [PMID: 28387240 PMCID: PMC5384001 DOI: 10.1038/srep46145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/13/2017] [Indexed: 01/24/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.
Collapse
|
133
|
Wakayama S, Kiyonaka S, Arai I, Kakegawa W, Matsuda S, Ibata K, Nemoto YL, Kusumi A, Yuzaki M, Hamachi I. Chemical labelling for visualizing native AMPA receptors in live neurons. Nat Commun 2017; 8:14850. [PMID: 28387242 PMCID: PMC5385570 DOI: 10.1038/ncomms14850] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/08/2017] [Indexed: 11/09/2022] Open
Abstract
The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sho Wakayama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan
| | - Itaru Arai
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Wataru Kakegawa
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shinji Matsuda
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan.,Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communication, Tokyo 182-8585, Japan.,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Keiji Ibata
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuri L Nemoto
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan.,CREST(Core Research for Evolutional Science and Technology, JST), Chiyodaku, Tokyo 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan.,CREST(Core Research for Evolutional Science and Technology, JST), Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
134
|
Larsen AP, Fièvre S, Frydenvang K, Francotte P, Pirotte B, Kastrup JS, Mulle C. Identification and Structure-Function Study of Positive Allosteric Modulators of Kainate Receptors. Mol Pharmacol 2017; 91:576-585. [DOI: 10.1124/mol.116.107599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/28/2017] [Indexed: 11/22/2022] Open
|
135
|
Cicconardi F, Di Marino D, Olimpieri PP, Arthofer W, Schlick-Steiner BC, Steiner FM. Chemosensory adaptations of the mountain fly Drosophila nigrosparsa (Insecta: Diptera) through genomics' and structural biology's lenses. Sci Rep 2017; 7:43770. [PMID: 28256589 PMCID: PMC5335605 DOI: 10.1038/srep43770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023] Open
Abstract
Chemoreception is essential for survival. Some chemicals signal the presence of nutrients or toxins, others the proximity of mating partners, competitors, or predators. Chemical signal transduction has therefore been studied in multiple organisms. In Drosophila species, a number of odorant receptor genes and various other types of chemoreceptors were found. Three main gene families encode for membrane receptors and one for globular proteins that shuttle compounds with different degrees of affinity and specificity towards receptors. By sequencing the genome of Drosophila nigrosparsa, a habitat specialist restricted to montane/alpine environment, and combining genomics and structural biology techniques, we characterised odorant, gustatory, ionotropic receptors and odorant binding proteins, annotating 189 loci and modelling the protein structure of two ionotropic receptors and one odorant binding protein. We hypothesise that the D. nigrosparsa genome experienced gene loss and various evolutionary pressures (diversifying positive selection, relaxation, and pseudogenisation), as well as structural modification in the geometry and electrostatic potential of the two ionotropic receptor binding sites. We discuss possible trajectories in chemosensory adaptation processes, possibly enhancing compound affinity and mediating the evolution of more specialized food, and a fine-tuned mechanism of adaptation.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Animals
- Drosophila/genetics
- Drosophila Proteins/classification
- Drosophila Proteins/genetics
- Genomic Library
- Genomics/methods
- Models, Molecular
- Multigene Family/genetics
- Phylogeny
- Protein Conformation
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/genetics
- Receptors, Ionotropic Glutamate/chemistry
- Receptors, Ionotropic Glutamate/classification
- Receptors, Ionotropic Glutamate/genetics
- Receptors, Odorant/chemistry
- Receptors, Odorant/classification
- Receptors, Odorant/genetics
- Sequence Analysis, DNA/methods
Collapse
Affiliation(s)
- Francesco Cicconardi
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Daniele Di Marino
- Department of Informatics, Institute of Computational Science, University of Italian Switzerland, Lugano, Switzerland
| | | | - Wolfgang Arthofer
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | | | - Florian M. Steiner
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
136
|
Lynagh T, Komnatnyy VV, Pless SA. Unique Contributions of an Arginine Side Chain to Ligand Recognition in a Glutamate-gated Chloride Channel. J Biol Chem 2017; 292:3940-3946. [PMID: 28096462 PMCID: PMC5339774 DOI: 10.1074/jbc.m116.772939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/11/2017] [Indexed: 11/06/2022] Open
Abstract
Glutamate recognition by neurotransmitter receptors often relies on Arg residues in the binding site, leading to the assumption that charge-charge interactions underlie ligand recognition. However, assessing the precise chemical contribution of Arg side chains to protein function and pharmacology has proven to be exceedingly difficult in such large and complex proteins. Using the in vivo nonsense suppression approach, we report the first successful incorporation of the isosteric, titratable Arg analog, canavanine, into a neurotransmitter receptor in a living cell, utilizing a glutamate-gated chloride channel from the nematode Haemonchus contortus Our data unveil a surprisingly small contribution of charge at a conserved arginine side chain previously suggested to form a salt bridge with the ligand, glutamate. Instead, our data show that Arg contributes crucially to ligand sensitivity via a hydrogen bond network, where Arg interacts both with agonist and with a conserved Thr side chain within the receptor. Together, the data provide a new explanation for the reliance of neurotransmitter receptors on Arg side chains and highlight the exceptional capacity of unnatural amino acid incorporation for increasing our understanding of ligand recognition.
Collapse
Affiliation(s)
- Timothy Lynagh
- From the Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 H Copenhagen, Denmark
| | - Vitaly V Komnatnyy
- From the Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 H Copenhagen, Denmark
| | - Stephan A Pless
- From the Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 H Copenhagen, Denmark
| |
Collapse
|
137
|
Zhang F, Ma XL, Wang YX, He CC, Tian K, Wang HG, An D, Heng B, Xie LH, Liu YQ. TPEN, a Specific Zn 2+ Chelator, Inhibits Sodium Dithionite and Glucose Deprivation (SDGD)-Induced Neuronal Death by Modulating Apoptosis, Glutamate Signaling, and Voltage-Gated K + and Na + Channels. Cell Mol Neurobiol 2017; 37:235-250. [PMID: 26983717 DOI: 10.1007/s10571-016-0364-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 02/06/2023]
Abstract
Hypoxia-ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia-ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic-ischemic conditions. The effects of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn2+-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-D-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K+ and Na+ channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na+ channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K+ and Na+ channels in neurons. Hence, Zn2+ chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xue-Ling Ma
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yu-Xiang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Cong-Cong He
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Bin Heng
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
138
|
Salazar H, Eibl C, Chebli M, Plested A. Mechanism of partial agonism in AMPA-type glutamate receptors. Nat Commun 2017; 8:14327. [PMID: 28211453 PMCID: PMC5321683 DOI: 10.1038/ncomms14327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/19/2016] [Indexed: 02/04/2023] Open
Abstract
Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly-partial agonists-also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains.
Collapse
Affiliation(s)
- Hector Salazar
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Clarissa Eibl
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Miriam Chebli
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew Plested
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
139
|
Zhou HX, Wollmuth LP. Advancing NMDA Receptor Physiology by Integrating Multiple Approaches. Trends Neurosci 2017; 40:129-137. [PMID: 28187950 DOI: 10.1016/j.tins.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/29/2023]
Abstract
NMDA receptors (NMDARs) are ion channels activated by the excitatory neurotransmitter glutamate and are essential to all aspects of brain function, including learning and memory formation. Missense mutations distributed throughout NMDAR subunits have been associated with an array of neurological disorders. Recent structural, functional, and computational studies have generated many insights into the activation process connecting glutamate binding to ion-channel opening, which is central to NMDAR physiology and pathophysiology. The field appears poised for breakthroughs, including the exciting prospect of resolving the conformations and energetics of elementary steps in the activation process, and atomic-level modeling of the effects of missense mutations on receptor function. The most promising strategy going forward is through strong integration of multiple approaches.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Lonnie P Wollmuth
- Department of Neurobiology and Behavior, and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
140
|
Prieto-Godino LL, Rytz R, Cruchet S, Bargeton B, Abuin L, Silbering AF, Ruta V, Dal Peraro M, Benton R. Evolution of Acid-Sensing Olfactory Circuits in Drosophilids. Neuron 2017; 93:661-676.e6. [DOI: 10.1016/j.neuron.2016.12.024] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 10/18/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022]
|
141
|
Kim JS, Afsari B, Chirikjian GS. Cross-Validation of Data Compatibility Between Small Angle X-ray Scattering and Cryo-Electron Microscopy. J Comput Biol 2017; 24:13-30. [PMID: 27710115 PMCID: PMC5220572 DOI: 10.1089/cmb.2016.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cryo-electron microscopy (EM) and small angle X-ray scattering (SAXS) are two different data acquisition modalities often used to glean information about the structure of large biomolecular complexes in their native states. A SAXS experiment is generally considered fast and easy but unveils the structure at very low resolution, whereas a cryo-EM experiment needs more extensive preparation and postacquisition computation to yield a three-dimensional (3D) density map at higher resolution. In certain applications, we may need to verify whether the data acquired in the SAXS and cryo-EM experiments correspond to the same structure (e.g., before reconstructing the 3D density map in EM). In this article, a simple and fast method is proposed to verify the compatibility of the SAXS and EM experimental data. The method is based on averaging the two-dimensional correlation of EM images and the Abel transform of the SAXS data. Orientational preferences are known to exist in cryo-EM experiments, and we also consider these effects on our method. The results are verified on simulations of conformational states of large biomolecular complexes.
Collapse
Affiliation(s)
- Jin Seob Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Bijan Afsari
- Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
142
|
Martins ACV, de-Lima-Neto P, Caetano EWS, Freire VN. An improved quantum biochemistry description of the glutamate–GluA2 receptor binding within an inhomogeneous dielectric function framework. NEW J CHEM 2017. [DOI: 10.1039/c6nj03939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new methodology to define the inhomogeneous dielectric constant of protein residues, to apply to the calculation of protein–ligand properties such as the electrostatic interaction.
Collapse
Affiliation(s)
- A. C. V. Martins
- Department of Analytical Chemistry and Physical-Chemistry
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| | - P. de-Lima-Neto
- Department of Analytical Chemistry and Physical-Chemistry
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| | - E. W. S. Caetano
- Federal Institute of Education
- Science and Technology of Ceara
- 60040-531 Fortaleza
- Brazil
| | - V. N. Freire
- Department of Physics
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| |
Collapse
|
143
|
Cai S, Ling C, Lu J, Duan S, Wang Y, Zhu H, Lin R, Chen L, Pan X, Cai M, Gu H. EGAR, A Food Protein-Derived Tetrapeptide, Reduces Seizure Activity in Pentylenetetrazole-Induced Epilepsy Models Through α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionate Receptors. Neurotherapeutics 2017; 14:212-226. [PMID: 27783277 PMCID: PMC5233631 DOI: 10.1007/s13311-016-0489-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A primary pathogeny of epilepsy is excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs). To find potential molecules to inhibit AMPARs, high-throughput screening was performed in a library of tetrapeptides in silico. Computational results suggest that some tetrapeptides bind stably to the AMPAR. We aligned these sequences of tetrapeptide candidates with those from in vitro digestion of the trout skin protein. Among salmon-derived products, Glu-Gly-Ala-Arg (EGAR) showed a high biological affinity toward AMPAR when tested in silico. Accordingly, natural EGAR was hypothesized to have anticonvulsant activity, and in vitro experiments showed that EGAR selectively inhibited AMPAR-mediated synaptic transmission without affecting the electrophysiological properties of hippocampal pyramidal neurons. In addition, EGAR reduced neuronal spiking in an in vitro seizure model. Moreover, the ability of EGAR to reduce seizures was evaluated in a rodent epilepsy model. Briefer and less severe seizures versus controls were shown after mice were treated with EGAR. In conclusion, the promising experimental results suggest that EGAR inhibitor against AMPARs may be a target for antiepilepsy pharmaceuticals. Epilepsy is a common brain disorder characterized by the occurrence of recurring, unprovoked seizures. Twenty to 30 % of persons with epilepsy do not achieve adequate seizure control with any drug. Here we provide a possibility in which a natural and edible tetrapeptide, EGAR, can act as an antiepileptic agent. We have combined computation with in vitro experiments to show how EGAR modulates epilepsy. We also used an animal model of epilepsy to prove that EGAR can inhibit seizures in vivo. This study suggests EGAR as a potential pharmaceutical for the treatment of epilepsy.
Collapse
Affiliation(s)
- Song Cai
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chuwen Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jun Lu
- Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Songwei Duan
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yingzhao Wang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huining Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ruibang Lin
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Liang Chen
- Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Xingchang Pan
- Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Muyi Cai
- Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China.
| | - Huaiyu Gu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
144
|
Krogsgaard-Larsen N, Delgar CG, Koch K, Brown PMGE, Møller C, Han L, Huynh THV, Hansen SW, Nielsen B, Bowie D, Pickering DS, Kastrup JS, Frydenvang K, Bunch L. Design and Synthesis of a Series of l-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid. J Med Chem 2016; 60:441-457. [PMID: 28005385 DOI: 10.1021/acs.jmedchem.6b01516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid (1b), for cloned homomeric kainic acid receptors subtype 1 (GluK1) was attained (Ki = 4 μM). In a functional assay, 1b displayed full antagonist activity with IC50 = 6 ± 2 μM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C, O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents on the phenyl ring are well accommodated by the GluK1 receptor.
Collapse
Affiliation(s)
| | | | | | - Patricia M G E Brown
- Bowie Lab, Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University , Montreal, Quebec H3G 0B1, Canada
| | | | | | | | | | | | - Derek Bowie
- Bowie Lab, Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University , Montreal, Quebec H3G 0B1, Canada
| | | | | | | | | |
Collapse
|
145
|
Baranovic J, Chebli M, Salazar H, Carbone AL, Faelber K, Lau AY, Daumke O, Plested AJR. Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation. Biophys J 2016; 110:896-911. [PMID: 26910426 DOI: 10.1016/j.bpj.2015.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022] Open
Abstract
Ionotropic glutamate receptors are postsynaptic tetrameric ligand-gated channels whose activity mediates fast excitatory transmission. Glutamate binding to clamshell-shaped ligand binding domains (LBDs) triggers opening of the integral ion channel, but how the four LBDs orchestrate receptor activation is unknown. Here, we present a high-resolution x-ray crystal structure displaying two tetrameric LBD arrangements fully bound to glutamate. Using a series of engineered metal ion trapping mutants, we showed that the more compact of the two assemblies corresponds to an arrangement populated during activation of full-length receptors. State-dependent cross-linking of the mutants identified zinc bridges between the canonical active LBD dimers that formed when the tetramer was either fully or partially bound by glutamate. These bridges also stabilized the resting state, consistent with the recently published full-length apo structure. Our results provide insight into the activation mechanism of glutamate receptors and the complex conformational space that the LBD layer can sample.
Collapse
Affiliation(s)
- Jelena Baranovic
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam Chebli
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hector Salazar
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna L Carbone
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katja Faelber
- Department of Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Oliver Daumke
- Department of Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
146
|
Cheng S, Seven AB, Wang J, Skiniotis G, Özkan E. Conformational Plasticity in the Transsynaptic Neurexin-Cerebellin-Glutamate Receptor Adhesion Complex. Structure 2016; 24:2163-2173. [PMID: 27926833 PMCID: PMC5149402 DOI: 10.1016/j.str.2016.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023]
Abstract
Synaptic specificity is a defining property of neural networks. In the cerebellum, synapses between parallel fiber neurons and Purkinje cells are specified by the simultaneous interactions of secreted protein cerebellin with pre-synaptic neurexin and post-synaptic delta-type glutamate receptors (GluD). Here, we determined the crystal structures of the trimeric C1q-like domain of rat cerebellin-1, and the first complete ectodomain of a GluD, rat GluD2. Cerebellin binds to the LNS6 domain of α- and β-neurexin-1 through a high-affinity interaction that involves its highly flexible N-terminal domain. In contrast, we show that the interaction of cerebellin with isolated GluD2 ectodomain is low affinity, which is not simply an outcome of lost avidity when compared with binding with a tetrameric full-length receptor. Rather, high-affinity capture of cerebellin by post-synaptic terminals is likely controlled by long-distance regulation within this transsynaptic complex. Altogether, our results suggest unusual conformational flexibility within all components of the complex.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alpay B Seven
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Georgios Skiniotis
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
147
|
Ni J, Yu Z, Du G, Zhang Y, Taylor JL, Shen C, Xu J, Liu X, Wang Y, Wu Y. Heterologous Expression and Functional Analysis of Rice GLUTAMATE RECEPTOR-LIKE Family Indicates its Role in Glutamate Triggered Calcium Flux in Rice Roots. RICE (NEW YORK, N.Y.) 2016; 9:9. [PMID: 26956369 PMCID: PMC4783324 DOI: 10.1186/s12284-016-0081-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 02/20/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Tremendous progress has been made in understanding the functions of the GLUTAMATE RECEPTOR-LIKE (GLR) family in Arabidopsis. Still, the functions of OsGLRs in rice, especially the ion channel activities, are largely unknown. RESULTS Using the aequorin-based luminescence imaging system, we screened the specificity of amino acids involved in the induction of Ca(2+) flux in rice roots. Of all the amino acids tested, glutamate (Glu) was the only one to trigger Ca(2+) flux significantly in rice roots. Detailed analysis showed a dose response of Ca(2+) increase to different concentrations of Glu. In addition, the Ca(2+) spike response to Glu was rapid, within 20 s after the application. A desensitization assay and pharmacological tests showed that the Glu-triggered Ca(2+) flux is mediated by OsGLRs. Whole genome analysis identified 13 OsGLR genes in rice, and these genes have various expression patterns in different tissues. Subcellular localization studies showed that all the OsGLRs examined are likely localized to the plasma membrane. Bacteria growth assays showed that at least OsGLR2.1 and OsGLR3.2 have the potential to mediate ion uptake in bacteria. Further analysis using Fura-2-based Ca(2+) imaging revealed a Glu-triggered Ca(2+) increase in OsGLR2.1-expressing human embryonic kidney (HEK) cells. CONCLUSIONS Our work provides a molecular basis for investigating mechanisms of Glu-triggered Ca(2+) flux in rice.
Collapse
Affiliation(s)
- Jun Ni
- />College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018 China
| | - Zhiming Yu
- />College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018 China
| | - Guankui Du
- />Department of Biochemistry, Hainan Medical College, Haikou, 571199 China
| | - Yanyan Zhang
- />College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018 China
| | - Jemma L. Taylor
- />School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL UK
| | - Chenjia Shen
- />College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018 China
| | - Jing Xu
- />College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018 China
| | - Xunyan Liu
- />College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018 China
| | - Yifeng Wang
- />State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400 China
| | - Yunrong Wu
- />State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
148
|
Li Y, Dharkar P, Han TH, Serpe M, Lee CH, Mayer ML. Novel Functional Properties of Drosophila CNS Glutamate Receptors. Neuron 2016; 92:1036-1048. [PMID: 27889096 DOI: 10.1016/j.neuron.2016.10.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
Abstract
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yan Li
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, MD 20892, USA
| | - Poorva Dharkar
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, Bethesda, MD 20892, USA
| | - Tae-Hee Han
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, MD 20892, USA
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, MD 20892, USA
| | - Chi-Hon Lee
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, MD 20892, USA.
| | - Mark L Mayer
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
149
|
Prieto-Godino LL, Rytz R, Bargeton B, Abuin L, Arguello JR, Dal Peraro M, Benton R. Olfactory receptor pseudo-pseudogenes. Nature 2016; 539:93-97. [PMID: 27776356 PMCID: PMC5164928 DOI: 10.1038/nature19824] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/06/2016] [Indexed: 02/05/2023]
Abstract
Pseudogenes are generally considered to be non-functional DNA sequences that arise through nonsense or frame-shift mutations of protein-coding genes. Although certain pseudogene-derived RNAs have regulatory roles, and some pseudogene fragments are translated, no clear functions for pseudogene-derived proteins are known. Olfactory receptor families contain many pseudogenes, which reflect low selection pressures on loci no longer relevant to the fitness of a species. Here we report the characterization of a pseudogene in the chemosensory variant ionotropic glutamate receptor repertoire of Drosophila sechellia, an insect endemic to the Seychelles that feeds almost exclusively on the ripe fruit of Morinda citrifolia. This locus, D. sechellia Ir75a, bears a premature termination codon (PTC) that appears to be fixed in the population. However, D. sechellia Ir75a encodes a functional receptor, owing to efficient translational read-through of the PTC. Read-through is detected only in neurons and is independent of the type of termination codon, but depends on the sequence downstream of the PTC. Furthermore, although the intact Drosophila melanogaster Ir75a orthologue detects acetic acid-a chemical cue important for locating fermenting food found only at trace levels in Morinda fruit-D. sechellia Ir75a has evolved distinct odour-tuning properties through amino-acid changes in its ligand-binding domain. We identify functional PTC-containing loci within different olfactory receptor repertoires and species, suggesting that such 'pseudo-pseudogenes' could represent a widespread phenomenon.
Collapse
Affiliation(s)
- Lucia L. Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Raphael Rytz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Benoîte Bargeton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - J. Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
150
|
Molecular lock regulates binding of glycine to a primitive NMDA receptor. Proc Natl Acad Sci U S A 2016; 113:E6786-E6795. [PMID: 27791085 DOI: 10.1073/pnas.1607010113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants.
Collapse
|