101
|
Abdollahi M, Fahnestock M. Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons. Int J Mol Sci 2022; 23:6853. [PMID: 35743300 PMCID: PMC9224520 DOI: 10.3390/ijms23126853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
Nurr1 and brain-derived neurotrophic factor (BDNF) play major roles in cognition. Nurr1 regulates BDNF in midbrain dopaminergic neurons and cerebellar granule cells. Nurr1 and BDNF are also highly expressed in the cerebral cortex, a brain area important in cognition. Due to Nurr1 and BDNF tissue specificity, the regulatory effect of Nurr1 on BDNF in different brain areas cannot be generalized. The relationship between Nurr1 and BDNF in the cortex has not been investigated previously. Therefore, we examined Nurr1-mediated BDNF regulation in cortical neurons in activity-dependent and activity-independent states. Mouse primary cortical neurons were treated with the Nurr1 agonist, amodiaquine (AQ). Membrane depolarization was induced by KCl or veratridine and reversed by nimodipine. AQ and membrane depolarization significantly increased Nurr1 (p < 0.001) and BDNF (pAQ < 0.001, pKCl < 0.01) as assessed by real-time qRT-PCR. However, Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized neurons. Accordingly, the positive correlation between Nurr1 and BDNF expression in AQ and membrane depolarization experiments does not imply co-regulation because Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized cortical neurons. Therefore, in contrast to midbrain dopaminergic neurons and cerebellar granule cells, Nurr1 does not regulate BDNF in cortical neurons.
Collapse
Affiliation(s)
- Mona Abdollahi
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
102
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
103
|
Huang C, Chu JMT, Liu Y, Kwong VSW, Chang RCC, Wong GTC. Sevoflurane Induces Neurotoxicity in the Animal Model with Alzheimer's Disease Neuropathology via Modulating Glutamate Transporter and Neuronal Apoptosis. Int J Mol Sci 2022; 23:ijms23116250. [PMID: 35682930 PMCID: PMC9181124 DOI: 10.3390/ijms23116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Perioperative neurocognitive disorders are frequently observed in postoperative patients and previous reports have shown that pre-existing mild cognitive impairment with accumulated neuropathology may be a risk factor. Sevoflurane is a general anesthetic agent which is commonly used in clinical practice. However, the effects of sevoflurane in postoperative subjects are still controversial, as both neurotoxic or neuroprotective effects were reported. The purpose of this study is to investigate the effects of sevoflurane in 3 × Tg mice, a specific animal model with pre-existing Alzheimer’s disease neuropathology. 3 × Tg mice and wild-type mice were exposed to 2 h of sevoflurane respectively. Cognitive function, glutamate transporter expression, MAPK kinase pathways, and neuronal apoptosis were accessed on day 7 post-exposure. Our findings indicate that sevoflurane-induced cognitive deterioration in 3 × Tg mice, which was accompanied with the modulation of glutamate transporter, MAPK signaling, and neuronal apoptosis in the cortical and hippocampal regions. Meanwhile, no significant impact was observed in wild-type mice. Our results demonstrated that prolonged inhaled sevoflurane results in the exacerbation of neuronal and cognitive dysfunction which depends on the neuropathology background.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Yan Liu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Vivian Suk Wai Kwong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (R.C.C.C.); (G.T.C.W.)
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
- Correspondence: (R.C.C.C.); (G.T.C.W.)
| |
Collapse
|
104
|
Claes M, Geeraerts E, Plaisance S, Mentens S, Van den Haute C, De Groef L, Arckens L, Moons L. Chronic Chemogenetic Activation of the Superior Colliculus in Glaucomatous Mice: Local and Retrograde Molecular Signature. Cells 2022; 11:1784. [PMID: 35681479 PMCID: PMC9179903 DOI: 10.3390/cells11111784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022] Open
Abstract
One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area-i.e., the superior colliculus-promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model-i.e., the microbead occlusion model-and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling.
Collapse
Affiliation(s)
- Marie Claes
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | | | - Stephanie Mentens
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Chris Van den Haute
- Neurobiology and Gene Therapy Research Group, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- KU Leuven Viral Vector Core, 3000 Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| |
Collapse
|
105
|
Shrestha J, Santerre M, Allen CNS, Arjona SP, Merali C, Mukerjee R, Chitrala KN, Park J, Bagashev A, Bui V, Eugenin EA, Merali S, Kaul M, Chin J, Sawaya BE. HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein. Front Aging Neurosci 2022; 14:811481. [PMID: 35615594 PMCID: PMC9124804 DOI: 10.3389/fnagi.2022.811481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Carmen Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | | | - Jin Park
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
| | - Viet Bui
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Salim Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jeannie Chin
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|
106
|
Azam S, Haque ME, Cho DY, Kim JS, Jakaria M, Kim IS, Choi DK. Dioscin-Mediated Autophagy Alleviates MPP +-Induced Neuronal Degeneration: An In Vitro Parkinson's Disease Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092827. [PMID: 35566180 PMCID: PMC9104838 DOI: 10.3390/molecules27092827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022]
Abstract
Autophagy is a cellular homeostatic process by which cells degrade and recycle their malfunctioned contents, and impairment in this process could lead to Parkinson’s disease (PD) pathogenesis. Dioscin, a steroidal saponin, has induced autophagy in several cell lines and animal models. The role of dioscin-mediated autophagy in PD remains to be investigated. Therefore, this study aims to investigate the hypothesis that dioscin-regulated autophagy and autophagy-related (ATG) proteins could protect neuronal cells in PD via reducing apoptosis and enhancing neurogenesis. In this study, the 1-methyl-4-phenylpyridinium ion (MPP+) was used to induce neurotoxicity and impair autophagic flux in a human neuroblastoma cell line (SH-SY5Y). The result showed that dioscin pre-treatment counters MPP+-mediated autophagic flux impairment and alleviates MPP+-induced apoptosis by downregulating activated caspase-3 and BCL2 associated X, apoptosis regulator (Bax) expression while increasing B-cell lymphoma 2 (Bcl-2) expression. In addition, dioscin pre-treatment was found to increase neurotrophic factors and tyrosine hydroxylase expression, suggesting that dioscin could ameliorate MPP+-induced degeneration in dopaminergic neurons and benefit the PD model. To conclude, we showed dioscin’s neuroprotective activity in neuronal SH-SY5Y cells might be partly related to its autophagy induction and suppression of the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Shofiul Azam
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
| | - Md. Ezazul Haque
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
| | - Duk-Yeon Cho
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
| | - Joon-Soo Kim
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
| | - Md. Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea;
| | - Dong-Kug Choi
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea;
- Correspondence: ; Tel.: +82-43-840-3610; Fax: +82-43-840-3872
| |
Collapse
|
107
|
Liu K, Li L, Liu Z, Li G, Wu Y, Jiang X, Wang M, Chang Y, Jiang T, Luo J, Zhu J, Li H, Wang Y. Acute Administration of Metformin Protects Against Neuronal Apoptosis Induced by Cerebral Ischemia-Reperfusion Injury via Regulation of the AMPK/CREB/BDNF Pathway. Front Pharmacol 2022; 13:832611. [PMID: 35431946 PMCID: PMC9010658 DOI: 10.3389/fphar.2022.832611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Metformin is a first-line anti-diabetic agent with a powerful hypoglycemic effect. Several studies have reported that metformin can improve the prognosis of stroke patients and that this effect is independent of its hypoglycemic effect; however, the specific mechanism remains unclear. In this research, we explored the effect and specific mechanism of metformin in cerebral ischemia-reperfusion (I/R) injury by constructing a transient middle cerebral artery occlusion model in vivo and a glucose and oxygen deprivation/reoxygenation (OGD/R) model in vitro. The results of the in vivo experiments showed that acute treatment with low-dose metformin (10 mg/kg) ameliorated cerebral edema, reduced the cerebral infarction volume, improved the neurological deficit score, and ameliorated neuronal apoptosis in the ischemic penumbra. Moreover, metformin up-regulated the brain-derived neurotrophic factor (BDNF) expression and increased phosphorylation levels of AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB) in the ischemia penumbra. Nevertheless, the above-mentioned effects of metformin were reversed by Compound C. The results of the in vitro experiments showed that low metformin concentrations (20 μM) could reduce apoptosis of human umbilical vein endothelial cells (HUVECs) under OGD/R conditions and promote cell proliferation. Moreover, metformin could further promote BDNF expression and release in HUVECs under OGD/R conditions via the AMPK/CREB pathway. The Transwell chamber assay showed that HUVECs treated with metformin could reduce apoptosis of SH-SY5Y cells under OGD/R conditions and this effect could be partially reversed by transfection of BDNF siRNA in HUVECs. In summary, our results suggest that metformin upregulates the level of BDNF in the cerebral ischemic penumbra via the AMPK/CREB pathway, thereby playing a protective effect in cerebral I/R injury.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Li
- Department of Neurology, People’s Hospital of Zhengzhou, People’s Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdie Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianheng Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongge Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongge Li, ; Yong Wang,
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongge Li, ; Yong Wang,
| |
Collapse
|
108
|
Zamarbide M, Martinez-Pinilla E, Gil-Bea F, Yanagisawa M, Franco R, Perez-Mediavilla A. Genetic Inactivation of Free Fatty Acid Receptor 3 Impedes Behavioral Deficits and Pathological Hallmarks in the APP swe Alzheimer's Disease Mouse Model. Int J Mol Sci 2022; 23:ijms23073533. [PMID: 35408893 PMCID: PMC8999053 DOI: 10.3390/ijms23073533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
The free fatty acid FFA3 receptor (FFA3R) belongs to the superfamily of G-protein-coupled receptors (GPCRs). In the intestine and adipose tissue, it is involved in the regulation of energy metabolism, but its function in the brain is unknown. We aimed, first, to investigate the expression of the receptor in the hippocampus of Alzheimer disease (AD) patients at different stages of the disease and, second, to assess whether genetic inactivation of the Ffar3 gene could affect the phenotypic features of the APPswe mouse model. The expression of transcripts for FFA receptors in postmortem human hippocampal samples and in the hippocampus of wild-type and transgenic mice was analyzed by RT-qPCR. We generated a double transgenic mouse, FFA3R−/−/APPswe, to perform cognition studies and to assess, by immunoblotting Aβ and tau pathologies and the differential expression of synaptic plasticity-related proteins. For the first time, the occurrence of the FFA3R in the human hippocampus and its overexpression, even in the first stages of AD, was demonstrated. Remarkably, FFA3R−/−/APPswe mice do not have the characteristic memory impairment of 12-month-old APPswe mice. Additionally, this newly generated transgenic line does not develop the most important Alzheimer’s disease (AD)-related features, such as amyloid beta (Aβ) brain accumulations and tau hyperphosphorylation. These findings are accompanied by increased levels of the insulin-degrading enzyme (IDE) and lower activity of the tau kinases GSK3β and Cdk5. We conclude that the brain FFA3R is involved in cognitive processes and that its inactivation prevents AD-like cognitive decline and pathological hallmarks.
Collapse
Affiliation(s)
- Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Eva Martinez-Pinilla
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Gil-Bea
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Rafael Franco
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Network Center, Neurodegenerative Diseases, CiberNed, Spanish National Health Institute “Carlos III”, 28031 Madrid, Spain
- Correspondence: (R.F.); (A.P.-M.); Tel.: +34-934021208 (R.F.); +34-948194700 (ext. 2033) (A.P.-M.)
| | - Alberto Perez-Mediavilla
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (R.F.); (A.P.-M.); Tel.: +34-934021208 (R.F.); +34-948194700 (ext. 2033) (A.P.-M.)
| |
Collapse
|
109
|
Abe H, Abe K. PCR-based profiling of transcription factor activity in vivo by a virus-based reporter battery. iScience 2022; 25:103927. [PMID: 35281741 PMCID: PMC8904617 DOI: 10.1016/j.isci.2022.103927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 01/22/2023] Open
Abstract
Understanding the molecular mechanisms of gene regulation is pivotal for understanding how cells establish and modify their identities and functions. Multiple transcription factors (TFs) coordinate to alter gene expression in cells; however, a method to quantitatively analyze the activity of each TF is lacking, particularly in vivo. Here, we introduce a viral-vector-based TF reporter battery that can be used to simultaneously analyze the activity of multiple TFs, visualized as the TF activity profile (TFAP) obtained by qPCR. We show that the cells possess distinct TFAPs that dynamically change according to experimental manipulation or physiological activity. We report a practical method to obtain the TFAP of a defined cell population and their experience-dependent changes in the mouse brain in vivo. The TFAP obtained by our method will help bridge the information gap between the genome and transcriptome and aid the multi-omics view of understanding the gene regulation system. A virus-based reporter battery for obtaining the TF activity profile of cells TFAP analysis reveals the dynamic change of TF activity upon stimulation Experience-dependent change of TFAP of the mouse brain in vivo Neural and glial change of TF activity revealed by the cell-type-specific TFAP
Collapse
Affiliation(s)
- Hitomi Abe
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kentaro Abe
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Division for the Establishment of Frontier Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
110
|
Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior. Nat Commun 2022; 13:1394. [PMID: 35296664 PMCID: PMC8927409 DOI: 10.1038/s41467-022-29020-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cortical neural circuits are complex but very precise networks of balanced excitation and inhibition. Yet, the molecular and cellular mechanisms that form the balance are just beginning to emerge. Here, using conditional γ-aminobutyric acid receptor B1- deficient mice we identify a γ-aminobutyric acid/tumor necrosis factor superfamily member 12-mediated bidirectional communication pathway between parvalbumin-positive fast spiking interneurons and oligodendrocyte precursor cells that determines the density and function of interneurons in the developing medial prefrontal cortex. Interruption of the GABAergic signaling to oligodendrocyte precursor cells results in reduced myelination and hypoactivity of interneurons, strong changes of cortical network activities and impaired social cognitive behavior. In conclusion, glial transmitter receptors are pivotal elements in finetuning distinct brain functions. Early postnatal interruption of the bidirectional GABA/TNFSF12 signaling between parvalbumin-positive interneurons and oligodendrocyte precursor cells impairs correct prefrontal cortical network activity and social cognitive behavior later in life.
Collapse
|
111
|
Tessarollo L, Yanpallewar S. TrkB Truncated Isoform Receptors as Transducers and Determinants of BDNF Functions. Front Neurosci 2022; 16:847572. [PMID: 35321093 PMCID: PMC8934854 DOI: 10.3389/fnins.2022.847572] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of secreted growth factors and binds with high affinity to the TrkB tyrosine kinase receptors. BDNF is a critical player in the development of the central (CNS) and peripheral (PNS) nervous system of vertebrates and its strong pro-survival function on neurons has attracted great interest as a potential therapeutic target for the management of neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS), Huntington, Parkinson's and Alzheimer's disease. The TrkB gene, in addition to the full-length receptor, encodes a number of isoforms, including some lacking the catalytic tyrosine kinase domain. Importantly, one of these truncated isoforms, namely TrkB.T1, is the most widely expressed TrkB receptor in the adult suggesting an important role in the regulation of BDNF signaling. Although some progress has been made, the mechanism of TrkB.T1 function is still largely unknown. Here we critically review the current knowledge on TrkB.T1 distribution and functions that may be helpful to our understanding of how it regulates and participates in BDNF signaling in normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | |
Collapse
|
112
|
Dai W, Feng K, Sun X, Xu L, Wu S, Rahmand K, Jia D, Han T. Natural products for the treatment of stress-induced depression: Pharmacology, mechanism and traditional use. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114692. [PMID: 34742864 DOI: 10.1016/j.jep.2021.114692] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression, one of the most common psychiatric disorders, is the fourth leading cause of long-term disability worldwide. A series of causes triggered depression, including psychological stress and conflict, as well as biological derangement, among which stress has a pivotal role in the development of depression. Traditional herbal medicine has been used for the treatment of various disorders including depression for a long history with multi-targets, multi-levels and multi-ways, attracting great attention from scholars. Recently, natural products have been commercialized as antidepressants which have become increasingly popular in the world health drug markets. Major research contributions in ethnopharmacology have generated and updated vast amount of data associated with natural products in antidepressant-like activity. AIMS OF THE REVIEW This review aims to briefly discuss the pathological mechanism, animal models of stress-induced depression, traditional use of herbal medicines and especially recapitulate the natural products with antidepressant activity and their pharmacological functions and mechanism of action, which may contribute to a better understanding of potential therapeutic effects of natural products and the development of promising drugs with high efficacy and low toxicity for the treatment of stress-induced depression. MATERIALS AND METHODS The contents of this review were sourced from electronic databases including PubMed, Sci Finder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wan Fang, Chinese Scientific and Technological Periodical Database (VIP) and Chinese Biomedical Database (CBM). Additional information was collected from Yao Zhi website (https://db.yaozh.com/). Data were obtained from April 1992 to June 2021. Only English language was applied to the search. The search terms were 'stress-induced depression', 'pathological mechanism' in the title and 'stress', 'depression', 'animal model' and 'natural products' in the whole text. RESULTS Stress-induced depression is related to the monoaminergic system, hypothalamic-pituitary-adrenal (HPA) axis, neuronal plasticity and a series of inflammatory factors. Four main types of animal models of stress-induced depression were represented. Fifty-eight bioactive phytochemical compounds, fifty-six herb medicines and five formulas from traditional Chinese medicine were highlighted, which exert antidepressant effects by inhibiting monoamine oxidase (MAO) reaction, alleviating dysfunction of the HPA axis and nerve injury, and possessing anti-inflammatory activities. CONCLUSIONS Natural products provide a large number of compounds with antidepressant-like effects, and their therapeutic impacts has been highlighted for a long time. This review summarized the pathological mechanism and animal models of stress-induced depression, and the natural products with antidepressant activity in particular, which will shed light on the action mechanism and clinical potential of these compounds. Natural products also have been a vital and promising source for future antidepressant drug discovery.
Collapse
Affiliation(s)
- Wei Dai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Kunmiao Feng
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaolei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lingchuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Sijia Wu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Khalid Rahmand
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Dan Jia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
113
|
Chen J, Li G, Qin P, Chen J, Ye N, Waddington JL, Zhen X. Allosteric Modulation of the Sigma-1 Receptor Elicits Antipsychotic-like Effects. Schizophr Bull 2022; 48:474-484. [PMID: 34865170 PMCID: PMC8886599 DOI: 10.1093/schbul/sbab137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allosteric modulation represents an important approach in drug discovery because of its advantages in safety and selectivity. SOMCL-668 is the first selective and potent sigma-1 receptor allosteric modulator, discovered in our laboratory. The present work investigates the potential therapeutic effects of SOMCL-668 on phencyclidine (PCP)-induced schizophrenia-related behavior in mice and further elucidates underlying mechanisms for its antipsychotic-like effects. SOMCL-668 not only attenuated acute PCP-induced hyperactivity and PPI disruption, but also ameliorated social deficits and cognitive impairment induced by chronic PCP treatment. Pretreatment with the selective sigma-1 receptor antagonist BD1047 blocked the effects of SOMCL-668, indicating sigma-1 receptor-mediated responses. This was confirmed using sigma-1 receptor knockout mice, in which SOMCL-668 failed to ameliorate PPI disruption and hyperactivity induced by acute PCP and social deficits and cognitive impairment induced by chronic PCP treatment. Additionally, in vitro SOMCL-668 exerted positive modulation of sigma-1 receptor agonist-induced intrinsic plasticity in brain slices recorded by patch-clamp. Furthermore, in vivo lower dose of SOMCL-668 exerted positive modulation of improvement in social deficits and cognitive impairment induced by the selective sigma-1 agonist PRE084. Also, SOMCL-668 reversed chronic PCP-induced down-regulation in expression of frontal cortical p-AKT/AKT, p-CREB/CREB and BDNF in wide-type but not sigma-1 knockout mice. Moreover, administration of the PI3K/AKT inhibitor LY294002 abolished amelioration by SOMCL-668 of chronic PCP-induced schizophrenia-related behaviors by inhibition of BDNF expression. The present data provide initial, proof-of-concept evidence that allosteric modulation of the sigma-1 receptor may be a novel approach for the treatment of psychotic illness.
Collapse
Affiliation(s)
- Jiali Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guangying Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Pingping Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jiaojiao Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
114
|
Niu J, Wang Z, Liu L, Zhang X, Niu D, Liu T, Qiao H, Lu R, Nan F, Tian Z, Wang B. Human cytomegalovirus IE2 may impair the cognitive ability of the hippocampus through the GluNRs/CaMKIIα/CREB signaling pathway in the Rosa26-LSL-IE2/Cre mouse. Behav Brain Res 2022; 419:113683. [PMID: 34838933 DOI: 10.1016/j.bbr.2021.113683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/20/2021] [Indexed: 11/02/2022]
Abstract
Nowadays, there are few studies in vivo to explore the effects of Human Cytomegalovirus (HCMV) single gene such as immediate early protein 2 (IE2) on the nervous system, let alone the mechanism that IE2 causes cognitive impairment. In this study, the Rosa26-LSL-IE2/Cre mouse was used to show the effects of IE2 on the cognitive ability and the GluNRs/CaMKIIα/CREB signaling pathway in the hippocampus. We divided the mice into experimental and control groups based on the results of PCR firstly. After that, the cognitive abilities of the two groups were compared through new object recognition (NOR) and Morris water maze (MWM) tests. The results of the behavioral tests showed that the cognitive ability of the experimental mice was lower than that of the control group. It is known that changes in the expression levels of N-methyl D-aspartate receptor 1, 2A, and 2B (GluN1, GluN2A, GluN2B) affect synaptic plasticity and cause cognitive changes. Finally, we analyzed the expression levels of GluN1, GluN2A, GluN2B, and related signaling pathway molecules by qPCR and western blot. We found that the expression levels of the GluNRs/CaMKIIα/CREB signaling pathway were decreased in the experimental group. These results indicated that IE2 could affect the expression levels of GluNRs/CaMKIIα/CREB signaling pathway, which was closely related to the cognitive impairment of the experimental group. In summary, we used this novel mouse model to show that IE2 could cause cognitive impairment in the hippocampus, which might be related to the GluNRs/CaMKIIα/CREB signaling pathway. It is helpful to further understand the mechanism of the cognitive impairment induced by HCMV IE2.
Collapse
Affiliation(s)
- Junyun Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Zhifei Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Lili Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Delei Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Ting Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Hongye Qiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Ran Lu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Fulong Nan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China.
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China.
| |
Collapse
|
115
|
Solés-Tarrés I, Cabezas-Llobet N, Lefranc B, Leprince J, Alberch J, Vaudry D, Xifró X. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Protects Striatal Cells and Improves Motor Function in Huntington’s Disease Models: Role of PAC1 Receptor. Front Pharmacol 2022; 12:797541. [PMID: 35153755 PMCID: PMC8832515 DOI: 10.3389/fphar.2021.797541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by the expression of mutant huntingtin (mHtt). One of the main features of HD is the degeneration of the striatum that leads to motor discoordination. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that acts through three receptors named PAC1R, VPAC1R, and VPAC2R. In the present study, we first investigated the effect of PACAP on STHdhQ7/Q7 and STHdhQ111/Q111 cells that express wild-type Htt with 7 and mHtt with 111 glutamines, respectively. Then we explored the capacity of PACAP to rescue motor symptoms in the R6/1, a murine model of HD. We found that PACAP treatment (10–7 M) for 24 h protects STHdhQ111/Q111 cells from mHtt-induced apoptosis. This effect is associated with an increase in PAC1R transcription, phosphorylation of ERK and Akt, and an increase of intracellular c-fos, egr1, CBP, and BDNF protein content. Moreover, the use of pharmacological inhibitors revealed that activation of ERK and Akt mediates these antiapoptotic and neurotrophic effects of PACAP. To find out PAC1R implication, we treated STHdh cells with vasoactive intestinal peptide (VIP), which exhibits equal affinity for VPAC1R and VPAC2R, but lower affinity for PAC1R, in contrast to PACAP which has same affinity for the three receptors. VIP reduced cleaved caspase-3 protein level, without promoting the expression of c-fos, egr1, CBP, and the neurotrophin BDNF. We next measured the protein level of PACAP receptors in the striatum and cortex of R6/1 mice. We observed a specific reduction of PAC1R at the onset of motor symptoms. Importantly, the intranasal administration of PACAP to R6/1 animals restored the motor function and increased the striatal levels of PAC1R, CBP, and BDNF. In conclusion, PACAP exerts antiapoptotic and neurotrophic effects in striatal neurons mainly through PAC1R. This effect in HD striatum allows the recovery of motor function and point out PAC1R as a therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
- *Correspondence: Xavier Xifró,
| |
Collapse
|
116
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
117
|
Querfurth H, Marshall J, Parang K, Rioult-Pedotti MS, Tiwari R, Kwon B, Reisinger S, Lee HK. A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro. PLoS One 2022; 17:e0261696. [PMID: 35061720 PMCID: PMC8782417 DOI: 10.1371/journal.pone.0261696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
The Alzheimer's brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer's Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of β-amyloid (Aβi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 μM in restoring normal insulin-dependent Akt activation and in mitigating Aβi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aβ oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of β-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, MA, United States of America
| | - John Marshall
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States of America
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Chapman University, School of Pharmacology, Irvine, CA United States of America
| | - Mengia S. Rioult-Pedotti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States of America
- Department of Neurology, Clinical Neurorehabilitation, University of Zurich, Zurich, Switzerland
| | - Rakesh Tiwari
- Center for Targeted Drug Delivery, Chapman University, School of Pharmacology, Irvine, CA United States of America
| | - Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Providence, RI, United States of America
| | | | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, MA, United States of America
| |
Collapse
|
118
|
Desouza LA, Benekareddy M, Fanibunda SE, Mohammad F, Janakiraman B, Ghai U, Gur T, Blendy JA, Vaidya VA. The Hallucinogenic Serotonin 2A Receptor Agonist, 2,5-Dimethoxy-4-Iodoamphetamine, Promotes cAMP Response Element Binding Protein-Dependent Gene Expression of Specific Plasticity-Associated Genes in the Rodent Neocortex. Front Mol Neurosci 2022; 14:790213. [PMID: 35002622 PMCID: PMC8739224 DOI: 10.3389/fnmol.2021.790213] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Psychedelic compounds that target the 5-HT2A receptor are reported to evoke psychoplastogenic effects, including enhanced dendritic arborization and synaptogenesis. Transcriptional regulation of neuronal plasticity-associated genes is implicated in the cytoarchitectural effects of serotonergic psychedelics, however, the transcription factors that drive this regulation are poorly elucidated. Here, we addressed the contribution of the transcription factor cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in the regulation of neuronal plasticity-associated genes by the hallucinogenic 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). In vitro studies with rat cortical neurons indicated that DOI enhances the phosphorylation of CREB (pCREB) through mitogen-activated protein (MAP) kinase and calcium/calmodulin dependent kinase II (CaMKII) pathways, with both cascades contributing to the DOI-evoked upregulation of Arc, Bdnf1, Cebpb, and Egr2 expression, whilst the upregulation of Egr1 and cFos mRNA involved the MAP kinase and CaMKII pathway respectively. We observed a robust DOI-evoked increase in the expression of several neuronal plasticity-associated genes in the rat neocortex in vivo. This DOI-evoked upregulation of neuronal plasticity-associated genes was completely blocked by the 5-HT2A receptor antagonist MDL100,907 in vitro and was also abrogated in the neocortex of 5-HT2A receptor deficient mice. Further, 5-HT2A receptor stimulation enhanced pCREB enrichment at putative cAMP response element (CRE) binding sites in the Arc, Bdnf1, Cebpb, cFos, but not Egr1 and Egr2, promoters in the rodent neocortex. The DOI-mediated transcriptional induction of Arc, cFos and Cebpb was significantly attenuated in the neocortex of CREB deficient/knockout (CREBαδ KO) mice. Collectively, these results indicate that the hallucinogenic 5-HT2A receptor agonist DOI leads to a rapid transcriptional upregulation of several neuronal plasticity-associated genes, with a subset of them exhibiting a CREB-dependent regulation. Our findings raise the intriguing possibility that similar to slow-acting classical antidepressants, rapid-action serotonergic psychedelics that target the 5-HT2A receptor may also recruit the transcription factor CREB to enhance the expression of neuronal plasticity-associated genes in the neocortex, which could in turn contribute to the rapid psychoplastogenic changes evoked by these compounds.
Collapse
Affiliation(s)
- Lynette A Desouza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Madhurima Benekareddy
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Medical Research Centre, Kasturba Health Society, Mumbai, India
| | - Farhan Mohammad
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Utkarsha Ghai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Tamar Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
119
|
Suzuki T, Tanaka KF. Downregulation of Bdnf Expression in Adult Mice Causes Body Weight Gain. Neurochem Res 2022; 47:2645-2655. [PMID: 34982395 DOI: 10.1007/s11064-021-03523-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Gain or loss of appetite and resulting body weight changes are commonly observed in major depressive disorders (MDDs). Brain-derived neurotrophic factor (BDNF) is broadly expressed in the brain and is thought to play a role in the pathophysiology of MDDs and obesity. Congenital loss of function of BDNF causes weight gain in both humans and rodents; however, it is not clear whether acquired loss of function of BDNF also affects body weight. Thus, we exploited mutant mice in which the Bdnf expression level is regulated by the tetracycline-dependent transcriptional silencer (tTS)-tetracycline operator sequence (tetO) system. Time-controlled Bdnf expression using this system allowed us to establish congenital and acquired loss of function of Bdnf in mice. We demonstrated that changes in Bdnf expression influenced body weight during not only the developmental stage but also the adult stage of mice. Although it is still unclear whether acquired Bdnf loss of function in rodents mimics the pathology of MDD, our findings may bridge the mechanistic gap between MDDs and body weight gain in line with BDNF dysfunction.
Collapse
Affiliation(s)
- Toru Suzuki
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
120
|
Miyasaka Y, Yamamoto N. Neuronal Activity Patterns Regulate Brain-Derived Neurotrophic Factor Expression in Cortical Cells via Neuronal Circuits. Front Neurosci 2021; 15:699583. [PMID: 34955705 PMCID: PMC8702648 DOI: 10.3389/fnins.2021.699583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
During development, cortical circuits are remodeled by spontaneous and sensory-evoked activity via alteration of the expression of wiring molecules. An intriguing question is how physiological neuronal activity modifies the expression of these molecules in developing cortical networks. Here, we addressed this issue, focusing on brain-derived neurotrophic factor (BDNF), one of the factors underlying cortical wiring. Real-time imaging of BDNF promoter activity in organotypic slice cultures revealed that patterned stimuli differentially regulated the increase and the time course of the promoter activity in upper layer neurons. Calcium imaging further demonstrated that stimulus-dependent increases in the promoter activity were roughly proportional to the increase in intracellular Ca2+ concentration per unit time. Finally, optogenetic stimulation showed that the promoter activity was increased efficiently by patterned stimulation in defined cortical circuits. These results suggest that physiological stimulation patterns differentially tune activity-dependent gene expression in developing cortical neurons via cortical circuits, synaptic responses, and alteration of intracellular calcium signaling.
Collapse
Affiliation(s)
- Yumi Miyasaka
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
121
|
Fukuchi M, Watanabe K, Mitazaki S, Fukuda M, Matsumoto S. Aminothioneine, a product derived from golden oyster mushrooms (Pleurotus cornucopiae var. citrinopileatus), activates Ca2+ signal-mediated brain-derived neurotrophic factor expression in cultured cortical neurons. Biochem Biophys Rep 2021; 28:101185. [PMID: 34977362 PMCID: PMC8683675 DOI: 10.1016/j.bbrep.2021.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Ameliorating reduced brain-derived neurotrophic factor (BDNF) expression or maintaining high BDNF levels in the brain has been suggested to improve brain function in neurological diseases and prevent aging-related brain dysfunction. In this study, we found that a food-derived product, Aminothioneine® (AT), which is prepared from the extract of golden oyster mushrooms (Pleurotus cornucopiae var. citrinopileatus), increased Bdnf mRNA expression levels in primary rat cortical neuron cultures. Ergothioneine (ET) comprises more than 1% in AT and is an active constituent of AT, and ET has been reported to increase neurotrophin-4/5, but not BDNF, expression levels in neural stem cells. ET also did not affect Bdnf mRNA expression in cultured cortical neurons, suggesting that AT contains other active constituents that induce Bdnf mRNA expression in neurons. AT-induced Bdnf mRNA expression was completely blocked by d-(−)-2-Amino-5-phosphonopentanoic acid but partially blocked by nicardipine, U0126, and FK506. This result suggested that N-methyl-d-aspartate receptor-derived Ca2+ signals, including those mediated by extracellular signal-regulated kinase/mitogen-activated protein kinase and calcineurin, are the main contributors to Bdnf mRNA induction. In addition, AT increased cAMP-response element-binding protein (CREB) phosphorylation and the nuclear localization of CREB-regulated transcriptional coactivator 1 in neurons. Thus, AT can increase Bdnf mRNA expression via Ca2+ signal-induced CREB-dependent transcription in neurons. Because AT is a food-derived product, increasing and/or maintaining BDNF levels in the brain by daily intake of the product could be possible, which may be beneficial for neurological and aging-related disorders. Aminothioneine® (AT) induced Bdnf mRNA expression in cultured rat cortical neurons. Ergothioneine tended to induce Nt-4/5 but did not affect Bdnf mRNA expression. AT activated MAPK and calcineurin-regulated CREB-dependent transcription.
Collapse
Affiliation(s)
- Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
- Corresponding author.
| | - Kazuki Watanabe
- Laboratory of Natural Medicines, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Satoru Mitazaki
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Momoko Fukuda
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Satoshi Matsumoto
- LS Corporation Co., Ltd, 13-4 Nihonbashi Kodenma-cho, Chuo-ku, Tokyo, 103-0001, Japan
| |
Collapse
|
122
|
Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2 H-Chromen-2-One Activates CREB-Mediated Neuroprotection in A β and Tau Cell Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3058861. [PMID: 34812274 PMCID: PMC8605905 DOI: 10.1155/2021/3058861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Abnormal accumulations of misfolded Aβ and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aβ and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.
Collapse
|
123
|
PSD-95: An Effective Target for Stroke Therapy Using Neuroprotective Peptides. Int J Mol Sci 2021; 22:ijms222212585. [PMID: 34830481 PMCID: PMC8618101 DOI: 10.3390/ijms222212585] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Therapies for stroke have remained elusive in the past despite the great relevance of this pathology. However, recent results have provided strong evidence that postsynaptic density protein-95 (PSD-95) can be exploited as an efficient target for stroke neuroprotection by strategies able to counteract excitotoxicity, a major mechanism of neuronal death after ischemic stroke. This scaffold protein is key to the maintenance of a complex framework of protein interactions established at the postsynaptic density (PSD) of excitatory neurons, relevant to neuronal function and survival. Using cell penetrating peptides (CPPs) as therapeutic tools, two different approaches have been devised and advanced to different levels of clinical development. First, nerinetide (Phase 3) and AVLX-144 (Phase 1) were designed to interfere with the coupling of the ternary complex formed by PSD-95 with GluN2B subunits of the N-methyl-D-aspartate type of glutamate receptors (NMDARs) and neuronal nitric oxide synthase (nNOS). These peptides reduced neurotoxicity derived from NMDAR overactivation, decreased infarct volume and improved neurobehavioral results in different models of ischemic stroke. However, an important caveat to this approach was PSD-95 processing by calpain, a pathological mechanism specifically induced by excitotoxicity that results in a profound alteration of survival signaling. Thus, a third peptide (TP95414) has been recently developed to interfere with PSD-95 cleavage and reduce neuronal death, which also improves neurological outcome in a preclinical mouse model of permanent ischemia. Here, we review recent advancements in the development and characterization of PSD-95-targeted CPPs and propose the combination of these two approaches to improve treatment of stroke and other excitotoxicity-associated disorders.
Collapse
|
124
|
Zhao J, Ren J, Liu S, Gong Y, Meng P, Tan H, Chen Y. Repeated exposure to sevoflurane in neonatal rats impairs cognition in adulthood via the PKA-CREB-BDNF signaling pathway. Exp Ther Med 2021; 22:1442. [PMID: 34721684 PMCID: PMC8549089 DOI: 10.3892/etm.2021.10877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Sevoflurane (Sev) anesthesia is widely used in pediatrics due to its low blood-gas partition coefficient and lack of pungency. However, Sev treatment may lead to cognitive dysfunction in later life. The current study administered Sev to neonatal rats to investigate the effects of Sev treatment on cognitive performance in adulthood. In total, 6-day-old rats received 3% Sev for 2 h daily for 3 consecutive days. The cognitive function of rats in adulthood was evaluated in 56-day-old rats by Morris water maze test. The hippocampal neuron morphology was observed by Nissl staining. Hippocampal brain-derived neurotrophic factor (BDNF) levels were measured by ELISA. The protein expression of protein kinase A (PKA), cAMP response element binding protein (CREB), phosphorylated-CREB (p-CREB) and BDNF in hippocampus were assessed by western blotting. The water maze results demonstrated that neonatal treatment with Sev resulted in a significant impairment of cognition in 56-day-old adult rats. Behavioral analysis revealed that Sev treatment increased latency to first pass the platform and decreased residence in target quadrants and across platform frequency compared with the control group in Morris water maze tests. Furthermore, compared with the control group, neonatal exposure to Sev reduced the number of neurons and the concentration of BDNF in the hippocampus, a brain region important for learning and memory. Additionally, Sev significantly decreased the expression of PKA, p-CREB, BDNF and the p-CREB/CREB ratio. Treatment with bucladesine, a selective PKA agonist, partially reversed the deleterious effects of Sev. In summary, the results indicated that PKA-CREB-BDNF signaling served an important role in the cognitive decline caused by neonatal exposure to Sev.
Collapse
Affiliation(s)
- Jili Zhao
- Department of Anesthesiology, Zhangqiu District Maternal and Child Health Care Hospital, Jinan, Shandong 250200, P.R. China
| | - Jinyu Ren
- Department of Anesthesiology, The Third Hospital of Jinan, Jinan, Shandong 250032, P.R. China
| | - Shuang Liu
- Department of Operating Room, Zhangqiu District Maternal and Child Health Care Hospital, Jinan, Shandong 250200, P.R. China
| | - Yanan Gong
- Department of Cardiovascular Medicine, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Ping Meng
- Department of Burn and Plastic Surgery, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Haitao Tan
- Department of Anesthesiology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yonggang Chen
- Department of Anesthesiology, People's Hospital of Gaomi, Gaomi, Shandong 261500, P.R. China
| |
Collapse
|
125
|
Ruan W, Shen S, Xu Y, Ran N, Zhang H. Mechanistic insights into procyanidins as therapies for Alzheimer's disease: A review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
126
|
Alì S, Davinelli S, Accardi G, Aiello A, Caruso C, Duro G, Ligotti ME, Pojero F, Scapagnini G, Candore G. Healthy ageing and Mediterranean diet: A focus on hormetic phytochemicals. Mech Ageing Dev 2021; 200:111592. [PMID: 34710375 DOI: 10.1016/j.mad.2021.111592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Mediterranean diet (MedDiet) is rich in fruits and vegetables associated with longevity and a reduced risk of several age-related diseases. It is demonstrated that phytochemicals in these plant products enhance the positive effects of MedDiet by acting on the inflammatory state and reducing oxidative stress. Evidence support that these natural compounds act as hormetins, triggering one or more adaptive stress-response pathways at low doses. Activated stress-response pathways increase the expression of cytoprotective proteins and multiple genes that act as lifespan regulators, essential for the ageing process. In these ways, the hormetic response by phytochemicals such as resveratrol, ferulic acid, and several others in MedDiet might enhance cells' ability to cope with more severe challenges, resist diseases, and promote longevity. This review discusses the role of MedDiet phytochemicals in healthy ageing and the prevention of age-related diseases.
Collapse
Affiliation(s)
- Sawan Alì
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy.
| | - Giovanni Duro
- Institute for Research and Biomedical Innovation, National Research Council, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy; Institute for Research and Biomedical Innovation, National Research Council, Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| |
Collapse
|
127
|
Singh V. Intracellular metabolic reprogramming mediated by micro-RNAs in differentiating and proliferating cells under non-diseased conditions. Mol Biol Rep 2021; 48:8123-8140. [PMID: 34643930 DOI: 10.1007/s11033-021-06769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Intracellular metabolic reprogramming is a critical process the cells carry out to increase biomass, energy fulfillment and genome replication. Cells reprogram their demands from internal catabolic or anabolic activities in coordination with multiple genes and microRNAs which further control the critical processes of differentiation and proliferation. The microRNAs reprogram the metabolism involving mitochondria, the nucleus and the biochemical processes utilizing glucose, amino acids, lipids, and nucleic acids resulting in ATP production. The processes of glycolysis, tricarboxylic acid cycle, or oxidative phosphorylation are also mediated by micro-RNAs maintaining cells and organs in a non-diseased state. Several reports have shown practical applications of metabolic reprogramming for clinical utility to assess various diseases, mostly studying cancer and immune-related disorders. Cells under diseased conditions utilize glycolysis for abnormal growth or proliferation, respectively, affecting mitochondrial paucity and biogenesis. Similar metabolic processes also affect gene expressions and transcriptional regulation for carrying out biochemical reactions. Metabolic reprogramming is equally vital for regulating cell environment to maintain organs and tissues in non-diseased states. This review offers in depth insights and analysis of how miRNAs regulate metabolic reprogramming in four major types of cells undergoing differentiation and proliferation, i.e., immune cells, neuronal cells, skeletal satellite cells, and cardiomyocytes under a non-diseased state. Further, the work systematically summarizes and elaborates regulation of genetic switches by microRNAs through predominantly through cellular reprogramming and metabolic processes for the first time. The observations will lead to a better understanding of disease initiation during the differentiation and proliferation stages of cells, as well as fresh approaches to studying clinical onset of linked metabolic diseases targeting metabolic processes.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
128
|
Phosphorylation of CREB at Serine 142 and 143 Is Essential for Visual Cortex Plasticity. eNeuro 2021; 8:ENEURO.0217-21.2021. [PMID: 34607805 PMCID: PMC8555886 DOI: 10.1523/eneuro.0217-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
The transcription factor cAMP response element-binding protein (CREB) is involved in a myriad of cellular functions in the central nervous system. For instance, the role of CREB via phosphorylation at the amino-acid residue Serine (Ser)133 in expressing plasticity-related genes and activity-dependent neuronal plasticity processes has been extensively demonstrated. However, much less is known about the role of CREB phosphorylation at Ser142 and Ser143. Here, we employed a viral vector containing a dominant negative form of CREB, with serine-to-alanine mutations at residue 142 and 143 to specifically block phosphorylation at both sites. We then transfected this vector into primary neurons in vitro or intracortically injected it into mice in vivo, to test whether these phosphorylation events were important for activity-dependent plasticity. We demonstrated by immunohistochemistry of cortical neuronal cultures that the expression of Arc, a known plasticity-related gene, requires triple phosphorylation of CREB at Ser133, Ser142, and Ser143. Moreover, we recorded visually-evoked field potentials in awake mice before and after a 7-d period of monocular deprivation (MD) to show that, in addition to CREB phosphorylation at Ser133, ocular dominance plasticity (ODP) in the visual cortex also requires CREB phosphorylation at Ser142/143. Our findings suggest that Ser142/143 phosphorylation is an additional post-translational modification of CREB that triggers the expression of specific target genes and activity-dependent neuronal plasticity processes.
Collapse
|
129
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
130
|
Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. CHRONIC STRESS 2021; 5:24705470211029254. [PMID: 34485797 PMCID: PMC8408896 DOI: 10.1177/24705470211029254] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention.
Collapse
Affiliation(s)
- Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA.,Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| |
Collapse
|
131
|
Mahdinia R, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M. Maternal ethanol exposure induces behavioral deficits through oxidative stress and brain-derived neurotrophic factor interrelation in rat offspring. Int J Dev Neurosci 2021; 81:717-730. [PMID: 34427953 DOI: 10.1002/jdn.10148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022] Open
Abstract
Alcohol consumption during pregnancy damages the central nervous system of developing fetus and results in persistent physical and neurobehavioral abnormalities, including learning and memory disorders. The hippocampus which is involved in learning and memory is highly susceptible to the ethanol neurotoxic effects. Oxidative stress is one of the mechanisms in alcohol-induced disorders. Ethanol also interferes with the brain-derived neurotrophic factors (BDNF) expression. Using vitamin E as a potent antioxidant, we studied the possible interrelation between oxidative stress and BDNF on cognition. Ethanol (4 g/kg) and vitamin E (100, 200, and 400 mg/kg) were given to pregnant Wistar rats on first day of gestation (GD) until weaning (28 days). Oxidative stress marker, BDNF expression, and cyclic AMP-response binding-protein (CREB) expression levels were measured on postnatal days (PND) 28. Object location memory (OLM) was evaluated on PND 34. Our results demonstrated that ethanol exposure significantly reduced glutathione peroxidase (GPx) activity, reduced glutathione (GSH), reduced/oxidized glutathione (GSH/GSSG) ratio, and increased superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, and carbonyl protein content in the hippocampus. Total BDNF, BDNF mRNA, and CREB expression significantly reduced in the hippocampus by ethanol exposure. Also, ethanol significantly reduced the discrimination index (DI) in the OLM test. In addition, vitamin E administration could reduce oxidative stress, increase significantly BDNF and CREB levels, and improve cognitive dysfunction induced by ethanol exposure. Collectively, results suggest that probably oxidative stress can interrelate with the BDNF system for modulating cognitive function in the ethanol-exposed rat.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran
| | | | | |
Collapse
|
132
|
A novel knockout mouse model of the noncoding antisense Brain-Derived Neurotrophic Factor ( Bdnf) gene displays increased endogenous Bdnf protein and improved memory function following exercise. Heliyon 2021; 7:e07570. [PMID: 34377851 PMCID: PMC8327352 DOI: 10.1016/j.heliyon.2021.e07570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022] Open
Abstract
Brain-derived neurotrophic factor (Bdnf) expression is tightly controlled at the transcriptional and post-transcriptional levels. Previously, we showed that inhibition of noncoding Bdnf antisense (Bdnf-AS) RNA upregulates Bdnf protein. Here, we generated a Bdnf-antisense knockout (Bdnf-AS KO) mouse model by deleting 6 kilobases upstream of Bdnf-AS. After verifying suppression of Bdnf-AS, baseline behavioral tests indicated no significant difference in knockout and wild type mice, except for enhanced cognitive function in the knockout mice in the Y-maze. Following acute involuntary exercise, Bdnf-AS KO mice were re-assessed and a significant increase in Bdnf mRNA and protein were observed. Following long-term involuntary exercise, we observed a significant increase in nonspatial and spatial memory in novel object recognition and Barnes maze tests in young and aged Bdnf-AS KO mice. Our data provides evidence for the beneficial effects of endogenous Bdnf upregulation and the synergistic effect of Bdnf-AS knockout on exercise and memory retention.
Collapse
|
133
|
Horvath PM, Chanaday NL, Alten B, Kavalali ET, Monteggia LM. A subthreshold synaptic mechanism regulating BDNF expression and resting synaptic strength. Cell Rep 2021; 36:109467. [PMID: 34348149 PMCID: PMC8371576 DOI: 10.1016/j.celrep.2021.109467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated that protein translation can be regulated by spontaneous excitatory neurotransmission. However, the impact of spontaneous neurotransmitter release on gene transcription remains unclear. Here, we study the effects of the balance between inhibitory and excitatory spontaneous neurotransmission on brain-derived neurotrophic factor (BDNF) regulation and synaptic plasticity. Blockade of spontaneous inhibitory events leads to an increase in the transcription of Bdnf and Npas4 through altered synaptic calcium signaling, which can be blocked by antagonism of NMDA receptors (NMDARs) or L-type voltage-gated calcium channels (VGCCs). Transcription is bidirectionally altered by manipulating spontaneous inhibitory, but not excitatory, currents. Moreover, blocking spontaneous inhibitory events leads to multiplicative downscaling of excitatory synaptic strength in a manner that is dependent on both transcription and BDNF signaling. These results reveal a role for spontaneous inhibitory neurotransmission in BDNF signaling that sets excitatory synaptic strength at rest.
Collapse
Affiliation(s)
- Patricia M Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Natali L Chanaday
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
134
|
Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci 2021; 24:1100-1109. [PMID: 34183865 PMCID: PMC8338784 DOI: 10.1038/s41593-021-00868-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
The rapidly acting antidepressants ketamine and scopolamine exert behavioral effects that can last from several days to more than a week in some patients. The molecular mechanisms underlying the maintenance of these antidepressant effects are unknown. Here we show that methyl-CpG-binding protein 2 (MeCP2) phosphorylation at Ser421 (pMeCP2) is essential for the sustained, but not the rapid, antidepressant effects of ketamine and scopolamine in mice. Our results reveal that pMeCP2 is downstream of BDNF, a critical factor in ketamine and scopolamine antidepressant action. In addition, we show that pMeCP2 is required for the long-term regulation of synaptic strength after ketamine or scopolamine administration. These results demonstrate that pMeCP2 and associated synaptic plasticity are essential determinants of sustained antidepressant effects.
Collapse
|
135
|
Liu MY, Liu F, Gao YL, Yin JN, Yan WQ, Liu JG, Li HJ. Pharmacological activities of ginsenoside Rg5 (Review). Exp Ther Med 2021; 22:840. [PMID: 34149886 PMCID: PMC8210315 DOI: 10.3892/etm.2021.10272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Ginseng, a perennial plant belonging to genus Panax, has been widely used in traditional herbal medicine in East Asia and North America. Ginsenosides are the most important pharmacological component of ginseng. Variabilities in attached positions, inner and outer residues and types of sugar moieties may be associated with the specific pharmacological activities of each ginsenoside. Ginsenoside Rg5 (Rg5) is a minor ginsenoside synthesized during ginseng steaming treatment that exhibits superior pharmaceutical activity compared with major ginsenosides. With high safety and various biological functions, Rg5 may act as a potential therapeutic candidate for diverse diseases. To date, there have been no systematic studies on the activity of Rg5. Therefore, in this review, all available literature was reviewed and discussed to facilitate further research on Rg5.
Collapse
Affiliation(s)
- Ming-Yang Liu
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fei Liu
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan-Li Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia-Ning Yin
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei-Qun Yan
- Department of Tissue Engineering, School of Pharmaceutical Sciences in Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian-Guo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
136
|
Cheng C, Wang X, Jiang Y, Li Y, Liao Z, Li W, Yu Z, Whalen MJ, Lok J, Dumont AS, Liu N, Wang X. Recombinant Annexin A2 Administration Improves Neurological Outcomes After Traumatic Brain Injury in Mice. Front Pharmacol 2021; 12:708469. [PMID: 34400908 PMCID: PMC8363504 DOI: 10.3389/fphar.2021.708469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Microvascular failure is one of the key pathogenic factors in the dynamic pathological evolution after traumatic brain injury (TBI). Our laboratory and others previously reported that Annexin A2 functions in blood-brain barrier (BBB) development and cerebral angiogenesis, and recombinant human Annexin A2 (rA2) protected against hypoxia plus IL-1β-induced cerebral trans-endothelial permeability in vitro, and cerebral angiogenesis impairment of AXNA2 knock-out mice in vivo. We thereby hypothesized that ANXA2 might be a cerebrovascular therapy candidate that targets early BBB integrity disruption, and subacute/delayed cerebrovascular remodeling after TBI, ultimately improve neurological outcomes. In a controlled cortex impact (CCI) mice model, we found rA2 treatment (1 mg/kg) significantly reduced early BBB disruption at 24 h after TBI; and rA2 daily treatment for 7 days augmented TBI-induced mRNA levels of pro-angiogenic and endothelial-derived trophic factors in cerebral microvessels. In cultured human brain microvascular endothelial cells (HBMEC), through MAPKs array, we identified that rA2 significantly activated Akt, ERK, and CREB, and the activated CREB might be responsible for the rA2-induced VEGF and BDNF expression. Moreover, rA2 administration significantly increased cerebral angiogenesis examined at 14 days and vessel density at 28 days after TBI in mice. Consistently, our results validated that rA2 significantly induced angiogenesis in vitro, evidenced by tube formation and scratched migration assays in HBMEC. Lastly, we demonstrated that rA2 improved long-term sensorimotor and cognitive function, and reduced brain tissue loss at 28 days after TBI. Our findings suggest that rA2 might be a novel vascular targeting approach for treating TBI.
Collapse
Affiliation(s)
- Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Xiaoshu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yadan Li
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Zhengbu Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Wenlu Li
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Michael J Whalen
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Josephine Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
137
|
Park J, Farris S. Spatiotemporal Regulation of Transcript Isoform Expression in the Hippocampus. Front Mol Neurosci 2021; 14:694234. [PMID: 34305526 PMCID: PMC8295539 DOI: 10.3389/fnmol.2021.694234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development and plasticity of hippocampal neurons require specific RNA isoforms to be expressed in the right place at the right time. Precise spatiotemporal transcript regulation requires the incorporation of essential regulatory RNA sequences into expressed isoforms. In this review, we describe several RNA processing strategies utilized by hippocampal neurons to regulate the spatiotemporal expression of genes critical to development and plasticity. The works described here demonstrate how the hippocampus is an ideal investigative model for uncovering alternate isoform-specific mechanisms that restrict the expression of transcripts in space and time.
Collapse
Affiliation(s)
- Joun Park
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States
| | - Shannon Farris
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
138
|
Cho YJ, Choi SH, Lee RM, Cho HS, Rhim H, Kim HC, Kim BJ, Kim JH, Nah SY. Protective Effects of Gintonin on Reactive Oxygen Species-Induced HT22 Cell Damages: Involvement of LPA1 Receptor-BDNF-AKT Signaling Pathway. Molecules 2021; 26:4138. [PMID: 34299412 PMCID: PMC8303475 DOI: 10.3390/molecules26144138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed to clarify how gintonin attenuates iodoacetic acid (IAA)-induced oxidative stress. The mouse hippocampal cell line HT22 was used. Gintonin treatment significantly attenuated IAA-induced reactive oxygen species (ROS) overproduction, ATP depletion, and cell death. However, treatment with Ki16425, an LPA1/3 receptor antagonist, suppressed the neuroprotective effects of gintonin. Gintonin elicited [Ca2⁺]i transients in HT22 cells. Gintonin-mediated [Ca2⁺]i transients through the LPA1 receptor-PLC-IP3 signaling pathway were coupled to increase both the expression and release of BDNF. The released BDNF activated the TrkB receptor. Induction of TrkB phosphorylation was further linked to Akt activation. Phosphorylated Akt reduced IAA-induced oxidative stress and increased cell survival. Our results indicate that gintonin attenuated IAA-induced oxidative stress in neuronal cells by activating the LPA1 receptor-BDNF-TrkB-Akt signaling pathway. One of the gintonin-mediated neuroprotective effects may be achieved via anti-oxidative stress in nervous systems.
Collapse
Affiliation(s)
- Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.-M.L.); (H.-S.C.)
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.-M.L.); (H.-S.C.)
| | - Ra-Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.-M.L.); (H.-S.C.)
| | - Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.-M.L.); (H.-S.C.)
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea;
| | - Byung-Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Korea;
| | - Jong-Hoon Kim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Baekje-daero 567, Jeonju 28644, Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.-M.L.); (H.-S.C.)
| |
Collapse
|
139
|
Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y, Chang W. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers. Front Aging Neurosci 2021; 13:654978. [PMID: 34276336 PMCID: PMC8283767 DOI: 10.3389/fnagi.2021.654978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. AD is characterized by the production and aggregation of beta-amyloid (Aβ) peptides, hyperphosphorylated tau proteins that form neurofibrillary tangles (NFTs), and subsequent neuroinflammation, synaptic dysfunction, autophagy and oxidative stress. Non-coding RNAs (ncRNAs) can be used as potential therapeutic targets and biomarkers due to their vital regulatory roles in multiple biological processes involved in disease development. The involvement of ncRNAs in the pathogenesis of AD has been increasingly recognized. Here, we review the ncRNAs implicated in AD and elaborate on their main regulatory pathways, which might have contributions for discovering novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Zhao
- Institute of Biomedical Research, School for Life Science, Shandong University of Technology, Zibo, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
140
|
Bright light exposure induces dynamic changes of spatial memory in nocturnal rodents. Brain Res Bull 2021; 174:389-399. [PMID: 34197939 DOI: 10.1016/j.brainresbull.2021.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
Bright light has been reported to improve spatial memory of diurnal rodents, yet how it will influence the spatial memory of nocturnal rodents is unknown. Here, we found that dynamic changes in spatial memory and anxiety were induced at different time point after bright light treatment. Mice maintained in brighter light exhibited impaired memory in Y maze at one day after bright light exposure, but showed significantly improved spatial memory in the Y maze and Morris water maze at four weeks after bright light exposure. We also found increased anxiety one day after bright light exposure, which could be the reason of impaired memory. However, no change of anxiety was detected after four weeks. Thus, we further explore the underlying mechanism of the beneficial effects of long term bright light on spatial memory. Golgi staining indicated that the structure of dendritic spines changed, accompanied by increased expression of synaptophysin and postsynaptic density 95 in the hippocampus. Further research has found that bright light treatment leads to elevated CaMKII/CREB phosphorylation levels in the hippocampus, which are associated with synaptic function. Moreover, higher expression of brain-derived neurotrophic factor (BDNF) was followed by increased phosphorylated TrkB levels in the hippocampus, indicating that BDNF/TrkB signaling is also activated during this process. Taken together, these findings revealed that bright light exposure with different duration exert different effects on spatial memory in nocturnal rodents, and the potential molecular mechanism by which long term bright light regulates spatial memory was also demonstrated.
Collapse
|
141
|
Skupien-Jaroszek A, Walczak A, Czaban I, Pels KK, Szczepankiewicz AA, Krawczyk K, Ruszczycki B, Wilczynski GM, Dzwonek J, Magalska A. The interplay of seizures-induced axonal sprouting and transcription-dependent Bdnf repositioning in the model of temporal lobe epilepsy. PLoS One 2021; 16:e0239111. [PMID: 34086671 PMCID: PMC8177504 DOI: 10.1371/journal.pone.0239111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.
Collapse
Affiliation(s)
- Anna Skupien-Jaroszek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Karolina Pels
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
142
|
Iamjan SA, Thanoi S, Watiktinkorn P, Fachim H, Dalton CF, Nudmamud-Thanoi S, Reynolds GP. Changes of BDNF exon IV DNA methylation are associated with methamphetamine dependence. Epigenomics 2021; 13:953-965. [PMID: 34008409 DOI: 10.2217/epi-2020-0463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: We investigated DNA methylation of BDNF in methamphetamine (METH) dependence in humans and an animal model. Materials & methods: BDNF methylation at exon IV was determined by pyrosequencing of blood DNA from METH-dependent and control subjects, and from rat brain following an escalating dose of METH or vehicle. Bdnf expression was determined in rat brain. Results: BDNF methylation was increased in human METH dependence, greatest in subjects with psychosis and in prefrontal cortex of METH-administered rats; rat hippocampus showed reduced Bdnf methylation and increased gene expression. Conclusion: BDNF methylation is abnormal in human METH dependence, especially METH-dependent psychosis, and in METH-administered rats. This may influence BDNF expression and contribute to the neurotoxic effects of METH exposure.
Collapse
Affiliation(s)
- Sri-Arun Iamjan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.,Department of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Helene Fachim
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.,Department of Endocrinology and Metabolism, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Gavin P Reynolds
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
143
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
144
|
Bilchak JN, Caron G, Côté MP. Exercise-Induced Plasticity in Signaling Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22094858. [PMID: 34064332 PMCID: PMC8124911 DOI: 10.3390/ijms22094858] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads to numerous chronic and debilitating functional deficits that greatly affect quality of life. While many pharmacological interventions have been explored, the current unsurpassed therapy for most SCI sequalae is exercise. Exercise has an expansive influence on peripheral health and function, and by activating the relevant neural pathways, exercise also ameliorates numerous disorders of the central nervous system (CNS). While the exact mechanisms by which this occurs are still being delineated, major strides have been made in the past decade to understand the molecular underpinnings of this essential treatment. Exercise rapidly and prominently affects dendritic sprouting, synaptic connections, neurotransmitter production and regulation, and ionic homeostasis, with recent literature implicating an exercise-induced increase in neurotrophins as the cornerstone that binds many of these effects together. The field encompasses vast complexity, and as the data accumulate, disentangling these molecular pathways and how they interact will facilitate the optimization of intervention strategies and improve quality of life for individuals affected by SCI. This review describes the known molecular effects of exercise and how they alter the CNS to pacify the injury environment, increase neuronal survival and regeneration, restore normal neural excitability, create new functional circuits, and ultimately improve motor function following SCI.
Collapse
|
145
|
Vasconcelos AR, da Paixão AG, Kinoshita PF, Orellana AM, Scavone C, Kawamoto EM. Toll-like Receptor 4 Signaling is Critical for the Adaptive Cellular Stress Response Effects Induced by Intermittent Fasting in the Mouse Brain. Neuroscience 2021; 465:142-153. [PMID: 33957205 DOI: 10.1016/j.neuroscience.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Among different kinds of dietary energy restriction, intermittent fasting (IF) has been considered a dietary regimen which causes a mild stress to the organism. IF can stimulate proteins and signaling pathways related to cell stress that can culminate in the increase of the body resistance to severe stress conditions. Energy intake reduction induced by IF can induce modulation of receptors, kinases, and phosphatases, which in turn can modulate the activation of transcription factors such as NF-E2-related factor 2 (NRF2) and cAMP response element-binding (CREB) which regulate the transcription of genes related to the translation of proteins such as growth factors: brain-derived neurotrophic factor (BDNF), chaperone proteins: heat shock proteins (HSP), and so on. It has been shown that toll-like receptors (TLRs) are important molecules in innate immune response which are present not only in the periphery but also in neurons and glial cells. In central nervous system, TLRs can exert functions related to set up responses to infection, as well as influence neural progenitor cell proliferation and differentiation, being involved in cognitive parameters such as learning and memory. Little is known about the involvement of TLR4 on the beneficial effects induced by IF protocol. The present work investigated the effects of IF on memory and on the signaling mechanisms associated with NRF2 and CREB in Tlr4 knockout mice. The results suggest that TLR4 participates in the modulatory effects of IF on oxidative stress levels, on the transcription factors CREB and NRF2, and on BDNF and HSP90 expressions in hippocampus.
Collapse
Affiliation(s)
- Andrea R Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Amanda G da Paixão
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Paula F Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana M Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa M Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
146
|
Bai X, Kirchhoff F, Scheller A. Oligodendroglial GABAergic Signaling: More Than Inhibition! Neurosci Bull 2021; 37:1039-1050. [PMID: 33928492 PMCID: PMC8275815 DOI: 10.1007/s12264-021-00693-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
GABA is the main inhibitory neurotransmitter in the CNS acting at two distinct types of receptor: ligand-gated ionotropic GABAA receptors and G protein-coupled metabotropic GABAB receptors, thus mediating fast and slow inhibition of excitability at central synapses. GABAergic signal transmission has been intensively studied in neurons in contrast to oligodendrocytes and their precursors (OPCs), although the latter express both types of GABA receptor. Recent studies focusing on interneuron myelination and interneuron-OPC synapses have shed light on the importance of GABA signaling in the oligodendrocyte lineage. In this review, we start with a short summary on GABA itself and neuronal GABAergic signaling. Then, we elaborate on the physiological role of GABA receptors within the oligodendrocyte lineage and conclude with a description of these receptors as putative targets in treatments of CNS diseases.
Collapse
Affiliation(s)
- Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| |
Collapse
|
147
|
Lin S, Li Q, Jiang S, Xu Z, Jiang Y, Liu L, Jiang J, Tong Y, Wang P. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113608. [PMID: 33242618 DOI: 10.1016/j.jep.2020.113608] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study aimed at determining the effects of saffron on depression as well as its neuroprotective and pharmacological effects on the intestinal function of crocetin in mice exposed to chronic restraint stress. MATERIALS AND METHODS Chronic stress was induced in two-week-old ICR mice by immobilizing them for 6 h per day for 28 days. The mice were orally administered with crocetin (20, 40, 80 mg/kg), fluoxetine (20 mg/kg) or distilled water. The treatments were administered daily and open field and tail suspension tests were performed. Immunofluorescent and Western-bolt (WB) assays were conducted to determine the expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), the precursor of brain-derived neurotrophic factor (proBDNF), extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated cAMP response element-binding (CREB) protein in the hippocampus. Serum levels of dopamine (DA), proBDNF, MKP-1 and CREB were measured by Elisa kits. High-throughput sequencing was carried out to analyze the composition of intestinal microbiota. RESULTS Crocetin ameliorated depressive-like behaviors caused by chronic restraint stress-induced depressive mice. It significantly attenuated the elevated levels of MKP-1, proBDNF, alanine transaminase, aspartate transaminase and increased the serum levels of DA as well as CREB. Histopathological analysis showed that crocetin suppressed hippocampus injury in restraint stress mice by protecting neuronal cells. Immunofluorescent and WB analysis showed elevated expression levels of ERK1/2, CREB and inhibited expression levels of MKP-1, proBDNF in the hippocampus. The intestinal ecosystem of the crocetin group partially recovered and was close to the control group. CONCLUSIONS Crocetin has neuroprotective properties and ameliorates the effects of stress-associated brain damage by regulating the MKP-1-ERK1/2-CREB signaling and intestinal ecosystem.
Collapse
Affiliation(s)
- Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shanshan Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ling Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jinyan Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Products, School of Advanced Study, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
148
|
Yamagami H, Fuji T, Wako M, Hasegawa Y. Sulfated Polysaccharide Isolated from the Nacre of Pearl Oyster Improves Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2021; 10:505. [PMID: 33804892 PMCID: PMC8063846 DOI: 10.3390/antiox10040505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Pearl and nacre have been used in traditional medicines for treating brain dysfunctions, such as epilepsy, myopia, palpitations and convulsions. We previously showed that a pearl oyster nacre extract improves scopolamine-induced memory impairments using the Y-maze, Banes maze and object recognition tests. In this study, we aimed to isolate the memory-improving substance using ion-exchange column chromatography and reverse-phase column chromatography and elucidate the molecular mechanism underlying its memory-improving activity. The isolated substance was found to be a sulfated polysaccharide with a molecular weight of approximately 750 kDa. Monosaccharide composition analysis showed that it was rich in galactose, glucose, mannose and uronic acid. Furthermore, the mRNA expression levels of oxidative stress, inflammatory response and neuroprotective factors in the cerebral cortex were investigated. Treatment with the polysaccharide increased the expression levels of the antioxidant enzymes Cu, Zn -superoxide dismutase (SOD) and catalase and attenuated the scopolamine-mediated upregulation of the inflammatory cytokines interleukin-1 and interleukin-6. In addition, the polysaccharide suppressed the decrease in the expression levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). These findings strongly suggest that the polysaccharide in the nacre extract mediated its antiamnesic effects by preventing oxidative stress and inflammation and increasing the expression levels of BDNF and NGF.
Collapse
Affiliation(s)
| | | | | | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan; (H.Y.); (T.F.); (M.W.)
| |
Collapse
|
149
|
Abbaszadeh M, Sahin M, Ozgun A, Oncu G, Garipcan B, Saybasili H. A Transient Survival Model of Alteration of Electrophysiological Properties Due to Amyloid Beta Toxicity Based on SH-SY5Y Cell Line. Curr Alzheimer Res 2021; 17:1208-1213. [PMID: 33583383 DOI: 10.2174/1567205018666210212155750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Accumulation of toxic strands of amyloid beta (AB), which cause neurofibrillary tangles and, ultimately, cell death, is suspected to be the main culprit behind clinical symptoms of Alzheimer's disease. Although the mechanism of cell death due to AB accumulation is well known, the intermediate phase between the start of accumulation and cell death is less known and investigated, partially due to technical challenges in identifying partially affected cells. OBJECTIVE First, we aimed to establish an in vitro model that would show resilience against AB toxicity. Then we used morphological, molecular and electrophysiological assays to investigate how the characteristics of the surviving cells changed after AB toxicity. METHODS To investigate this phase, we used differentiation of SH-SY5Y neuroblastoma stem cells by Retinoic Acid (RA) and Brain Derived Neurotrophic Factor (BDNF) to establish an in vitro model which would be able to demonstrate various levels of resistance to AB toxicity. We utilized fluorescent microscopy and whole cell patch clamp recordings to investigate behavior of the model. RESULTS We observed significantly higher morphological resilience against AB toxicity in cells which were differentiated by both Retinoic Acid and Brain Derived Neurotrophic Factor compared to Retinoic Acid only. However, the electrophysiological properties of the Retinoic Acid + Brain-Derived Neurotrophic Factor differentiated cells were significantly altered after AB treatment. CONCLUSION We established a transient survival model for AB toxicity and observed the effects of AB on transmembrane currents of differentiated neurons.
Collapse
Affiliation(s)
- Morteza Abbaszadeh
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Meryem Sahin
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Alp Ozgun
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Gul Oncu
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Hale Saybasili
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
150
|
Robinson B, Gu Q, Kanungo J. Antidepressant Actions of Ketamine: Potential Role of L-Type Calcium Channels. Chem Res Toxicol 2021; 34:1198-1207. [PMID: 33566591 DOI: 10.1021/acs.chemrestox.0c00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, the United States Food and Drug Administration approved esketamine, the S-enantiomer of ketamine, as a fast-acting therapeutic drug for treatment-resistant depression. Although ketamine is known as an N-methyl-d-aspartate (NMDA) receptor antagonist, the underlying mechanisms of how it elicits an antidepressant effect, specifically at subanesthetic doses, are not clear and remain an advancing field of research interest. On the other hand, high-dose (more than the anesthetic dose) ketamine-induced neurotoxicity in animal models has been reported. There has been progress in understanding the potential pathways involved in ketamine-induced antidepressant effects, some of which include NMDA-receptor antagonism, modulation of voltage-gated calcium channels, and brain-derived neurotrophic factor (BDNF) signaling. Often these pathways have been shown to be linked. Voltage-gated L-type calcium channels have been shown to mediate the rapid-acting antidepressant effects of ketamine, especially involving induction of BDNF synthesis downstream, while BDNF deficiency decreases the expression of L-type calcium channels. This review focuses on the reported studies linking ketamine's rapid-acting antidepressant actions to L-type calcium channels with an objective to present a perspective on the importance of the modulation of intracellular calcium in mediating the effects of subanesthetic (antidepressant) versus high-dose ketamine (anesthetic and potential neurotoxicant), the latter having the ability to reduce intracellular calcium by blocking the calcium-permeable NMDA receptors, which is implicated in potential neurotoxicity.
Collapse
Affiliation(s)
- Bonnie Robinson
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Qiang Gu
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Jyotshna Kanungo
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| |
Collapse
|