101
|
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63:411-36. [PMID: 21415126 DOI: 10.1124/pr.110.003293] [Citation(s) in RCA: 675] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process.
Collapse
Affiliation(s)
- Udai Bhan Pandey
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | |
Collapse
|
102
|
Malik B, Nirmalananthan N, Bilsland LG, La Spada AR, Hanna MG, Schiavo G, Gallo JM, Greensmith L. Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Hum Mol Genet 2011; 20:1776-86. [PMID: 21317158 DOI: 10.1093/hmg/ddr061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), or Kennedy's disease, is a late-onset motor neuron disease (MND) caused by an abnormal expansion of the CAG repeat in the androgen receptor (AR) gene on the X-chromosome, encoding a polyglutamine (poly-Q) sequence in the protein product. Mutant poly-Q-expanded AR protein is widely expressed but leads to selective lower motoneuron death. Although the mechanisms that underlie SBMA remain unclear, defective axonal transport has been implicated in MND and other forms of poly-Q disease. Transcriptional dysregulation may also be involved in poly-Q repeat pathology. We therefore examined axonal transport in a mouse model of SBMA recapitulating many aspects of the human disease. We found no difference in the expression levels of motor and the microtubule-associated protein tau, in the spinal cord and sciatic nerve of wild-type (WT) and SBMA mice at various stages of disease progression. Furthermore, we found no alteration in binding properties of motor proteins and tau to microtubules. Moreover, analysis of axonal transport rates both in cultured primary motoneurons in vitro and in vivo in the sciatic nerve of adult WT and mutant SBMA mice demonstrated no overt axonal transport deficits in these systems. Our results therefore indicate that unlike other motoneuron and poly-Q diseases, axonal transport deficits do not play a significant role in the pathogenesis of SBMA.
Collapse
Affiliation(s)
- Bilal Malik
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Efficacy and safety of dutasteride in patients with spinal and bulbar muscular atrophy: a randomised placebo-controlled trial. Lancet Neurol 2011; 10:140-7. [PMID: 21216197 DOI: 10.1016/s1474-4422(10)70321-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Spinal and bulbar muscular atrophy (SBMA) is caused by polyglutamine expansion in the androgen receptor, which results in ligand-dependent toxicity. Animal models have a neuromuscular deficit that is mitigated by androgen-reducing treatment. We aimed to assess the efficacy and safety of the 5α-reductase inhibitor dutasteride in patients with SBMA, and to identify outcome measures for use in future studies of the disease. METHODS We undertook a randomised, double-blind, placebo-controlled, single-site clinical trial in ambulatory, symptomatic men with genetically confirmed SBMA. Participants were assigned by random number table to receive dutasteride (0·5 mg per day) or placebo orally for 24 months. Patients and investigators were masked to treatment allocation. The primary outcome measure was quantitative muscle assessment (QMA). The final efficacy analysis included all patients who were compliant with study treatment at 24 months. This trial was registered with ClinicalTrials.gov, NCT00303446. FINDINGS 50 men were randomly assigned to treatment groups (25 dutasteride, 25 placebo), and 44 were included in the efficacy analysis (21 dutasteride, 23 placebo). At 24 months, the placebo group showed a decrease of 4·5% (-0·30 kg/kg) from baseline in weight-scaled muscle strength as indicated by QMA, and the dutasteride group had an increase in strength of 1·3% (0·14 kg/kg); the difference between groups (5·8%, 95% CI -5·9 to 17·6; p=0·28) was not significant. Prespecified secondary outcome measures of creatine kinase, muscle strength and function, motor nerve conduction, activities of daily living, and erectile function did not show a significant difference between the study groups in change from baseline. Quality of life, as measured by the physical component summary of the Medical Outcomes Study 36-item Short Form version 2, favoured dutasteride (change in score from baseline: placebo, -3·6%, vs dutasteride, 2·1%; p=0·01), whereas the mental component summary favoured placebo (3·3%vs -3·2%; p=0·03). The dutasteride group had fewer patients reporting falls than did the placebo group (9 vs 16; p=0·048); there were no other significant differences in reported adverse events. INTERPRETATION Our study did not show a significant effect of dutasteride on the progression of muscle weakness in SBMA, although there were secondary indications of both positive and negative effects compared with placebo. A longer trial duration or larger number of patients might be needed to show an effect on disease progression. Performance testing, QMA, and quality of life measures were identified as potentially useful endpoints for future therapeutic trials.
Collapse
|
104
|
Yu Z, Bonini NM. Modeling human trinucleotide repeat diseases in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:191-212. [PMID: 21906541 DOI: 10.1016/b978-0-12-387003-2.00008-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drosophila is a powerful model system to study human trinucleotide repeat diseases. Findings in Drosophila models highlighted importance of host proteins, chaperons, and protein clearance pathways in polyglutamine diseases as well as that of RNA-binding proteins in noncoding repeat RNA toxicity diseases. Recent novel aspects revealed in Drosophila models include pleiotropic Ataxin 2 interactions, antisense transcription in trinucleotide repeat diseases, contribution of CAG RNA in polyglutamine diseases, and the role of RNA foci in CUG expansion diseases. Drosophila models have been also used for repeat stability studies.
Collapse
Affiliation(s)
- Zhenming Yu
- Department of Biology, 415 S University Ave., University of Pennsylvania, PA, USA
| | | |
Collapse
|
105
|
Mallik M, Lakhotia SC. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. J Genet 2010; 89:497-526. [DOI: 10.1007/s12041-010-0072-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
106
|
Orr CR, Montie HL, Liu Y, Bolzoni E, Jenkins SC, Wilson EM, Joseph JD, McDonnell DP, Merry DE. An interdomain interaction of the androgen receptor is required for its aggregation and toxicity in spinal and bulbar muscular atrophy. J Biol Chem 2010; 285:35567-77. [PMID: 20826791 PMCID: PMC2975181 DOI: 10.1074/jbc.m110.146845] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/10/2010] [Indexed: 12/12/2022] Open
Abstract
Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Sequence
- Androgen Antagonists/pharmacology
- Androgens/pharmacology
- Anilides/pharmacology
- Animals
- Binding Sites/genetics
- Blotting, Western
- Bulbo-Spinal Atrophy, X-Linked/genetics
- Bulbo-Spinal Atrophy, X-Linked/metabolism
- Bulbo-Spinal Atrophy, X-Linked/pathology
- Cells, Cultured
- Dihydrotestosterone/pharmacology
- HEK293 Cells
- Humans
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Motor Neurons/cytology
- Motor Neurons/metabolism
- Mutation
- Nitriles/pharmacology
- PC12 Cells
- Protein Binding/drug effects
- Rats
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Testosterone/pharmacology
- Tosyl Compounds/pharmacology
- Trinucleotide Repeat Expansion/genetics
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Christopher R. Orr
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Heather L. Montie
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yuhong Liu
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Elena Bolzoni
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Shannon C. Jenkins
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Elizabeth M. Wilson
- the Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James D. Joseph
- the Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Donald P. McDonnell
- the Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Diane E. Merry
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
107
|
Palazzolo I, Nedelsky NB, Askew CE, Harmison GG, Kasantsev AG, Taylor JP, Fischbeck KH, Pennuto M. B2 attenuates polyglutamine-expanded androgen receptor toxicity in cell and fly models of spinal and bulbar muscular atrophy. J Neurosci Res 2010; 88:2207-16. [PMID: 20336775 DOI: 10.1002/jnr.22389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Expanded polyglutamine tracts cause neurodegeneration through a toxic gain-of-function mechanism. Generation of inclusions is a common feature of polyglutamine diseases and other protein misfolding disorders. Inclusion formation is likely to be a defensive response of the cell to the presence of unfolded protein. Recently, the compound B2 has been shown to increase inclusion formation and decrease toxicity of polyglutamine-expanded huntingtin in cultured cells. We explored the effect of B2 on spinal and bulbar muscular atrophy (SBMA). SBMA is caused by expansion of polyglutamine in the androgen receptor (AR) and is characterized by the loss of motor neurons in the brainstem and spinal cord. We found that B2 increases the deposition of mutant AR into nuclear inclusions, without altering the ligand-induced aggregation, expression, or subcellular distribution of the mutant protein. The effect of B2 on inclusions was associated with a decrease in AR transactivation function. We show that B2 reduces mutant AR toxicity in cell and fly models of SBMA, further supporting the idea that accumulation of polyglutamine-expanded protein into inclusions is protective. Our findings suggest B2 as a novel approach to therapy for SBMA.
Collapse
|
108
|
Abstract
The nature of the gain-of-function toxicity found in polyglutamine (polyQ) diseases has been the subject of considerable debate. In this issue of Neuron, Duvick et al. and Nedelsky et al. show that, in two of these diseases, pathology is mediated by normal protein activity.
Collapse
Affiliation(s)
- Ian H Kratter
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
109
|
Nedelsky NB, Pennuto M, Smith RB, Palazzolo I, Moore J, Nie Z, Neale G, Taylor JP. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 2010; 67:936-52. [PMID: 20869592 DOI: 10.1016/j.neuron.2010.08.034] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2010] [Indexed: 12/25/2022]
Abstract
Spinobulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by expansion of a polyglutamine tract in the androgen receptor (AR). This mutation confers toxic function to AR through unknown mechanisms. Mutant AR toxicity requires binding of its hormone ligand, suggesting that pathogenesis involves ligand-induced changes in AR. However, whether toxicity is mediated by native AR function or a novel AR function is unknown. We systematically investigated events downstream of ligand-dependent AR activation in a Drosophila model of SBMA. We show that nuclear translocation of AR is necessary, but not sufficient, for toxicity and that DNA binding by AR is necessary for toxicity. Mutagenesis studies demonstrated that a functional AF-2 domain is essential for toxicity, a finding corroborated by a genetic screen that identified AF-2 interactors as dominant modifiers of degeneration. These findings indicate that SBMA pathogenesis is mediated by misappropriation of native protein function, a mechanism that may apply broadly to polyglutamine diseases.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Dengler R. Renewed hope for treatment of spinal and bulbar muscular atrophy? Lancet Neurol 2010; 9:845-6. [DOI: 10.1016/s1474-4422(10)70186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
111
|
Katsuno M, Banno H, Suzuki K, Takeuchi Y, Kawashima M, Yabe I, Sasaki H, Aoki M, Morita M, Nakano I, Kanai K, Ito S, Ishikawa K, Mizusawa H, Yamamoto T, Tsuji S, Hasegawa K, Shimohata T, Nishizawa M, Miyajima H, Kanda F, Watanabe Y, Nakashima K, Tsujino A, Yamashita T, Uchino M, Fujimoto Y, Tanaka F, Sobue G. Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010; 9:875-84. [PMID: 20691641 DOI: 10.1016/s1474-4422(10)70182-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Spinal and bulbar muscular atrophy is a hereditary motor neuron disease caused by the expansion of a polyglutamine tract in the androgen receptor. At present there are no treatments for spinal and bulbar muscular atrophy, although leuprorelin suppressed the accumulation of pathogenic androgen receptors in a phase 2 trial. We aimed to assess the efficacy and safety of leuprorelin for spinal and bulbar muscular atrophy. METHODS The Japan SBMA Interventional Trial for TAP-144-SR (JASMITT) was a 48-week, randomised, double-blind, placebo-controlled trial done at 14 hospitals between August, 2006, and March, 2008. Patients with spinal and bulbar muscular atrophy were randomly assigned (1:1) by minimisation to subcutaneous 11.25 mg leuprorelin or identical placebo every 12 weeks. Patients and investigators were masked to treatment allocation. The primary endpoint was pharyngeal barium residue, which indicates incomplete bolus clearance, measured at week 48 by videofluorography. All patients who were randomly assigned and who were assessed with videofluorography at least once were included in the analyses. This study is registered with the JMACCT clinical trials registry, number JMA-IIA00009, and the UMIN clinical trials registry, number UMIN000000465. FINDINGS 204 patients were randomly assigned and 199 started treatment: 100 with leuprorelin and 99 with placebo. At week 48, the pharyngeal barium residue after initial swallowing had changed by -5.1% (SD 21.0) in the leuprorelin group and by 0.2% (18.2) in the placebo group (difference between groups -5.3%; 95% CI -10.8 to 0.3; p=0.063). The mean difference in pharyngeal barium residue after piecemeal deglutition at week 48 was -3.2% (-6.4 to 0.0; p=0.049), but there was no significant difference between the groups after covariate adjustment for the baseline data (-4.1 to 1.6; p=0.392). In a predefined subgroup analysis, leuprorelin treatment was associated with a greater reduction in barium residue after initial swallowing than was placebo in patients with a disease duration less than 10 years (difference between groups -9.8, -17.1 to -2.5; p=0.009). There were no significant differences in the number of drug-related adverse events between groups (57 of 100 in the leuprorelin group and 54 of 99 in the placebo group; p=0.727). INTERPRETATION 48 weeks of treatment with leuprorelin did not show significant effects on swallowing function in patients with spinal and bulbar muscular atrophy, although it was well tolerated. Disease duration might influence the efficacy of leuprorelin and thus further clinical trials with sensitive outcome measures should be done in subpopulations of patients. FUNDING Large Scale Clinical Trial Network Project, Japan and Takeda Pharmaceuticals.
Collapse
Affiliation(s)
- Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Johansen JA, Troxell-Smith SM, Yu Z, Mo K, Monks DA, Lieberman AP, Breedlove SM, Jordan CL. Prenatal flutamide enhances survival in a myogenic mouse model of spinal bulbar muscular atrophy. NEURODEGENER DIS 2010; 8:25-34. [PMID: 20689246 DOI: 10.1159/000313682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/14/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spinal bulbar muscular atrophy (SBMA) is caused by a CAG repeat expansion mutation in the androgen receptor (AR) gene, and mutant AR is presumed to act in motoneurons to cause SBMA. However, we found that mice overexpressing wild-type (wt) AR solely in skeletal muscle fibers display the same androgen-dependent disease phenotype as when mutant AR is broadly expressed, challenging the assumptions that only an expanded AR can induce disease and that SBMA is strictly neurogenic. We have previously reported that AR toxicity was ligand dependent in our model, and that very few transgenic (tg) males survived beyond birth. METHODS We tested whether the AR antagonist flutamide could block perinatal toxicity. tg males were treated prenatally with flutamide and assessed for survival and motor behavior in adulthood. RESULTS Prenatal treatment with flutamide rescued tg male pups from perinatal death, and, as adults, such perinatally rescued tg males showed an SBMA phenotype that was comparable to that of previously described untreated tg males. Moreover, tg males carrying a mutant endogenous allele for AR--the testicular feminization mutation (tfm)--and thus having functional AR only in muscle fibers nevertheless displayed the same androgen-dependent disease phenotype as adults. CONCLUSIONS These mice represent an excellent model to study the myogenic contribution to SBMA as they display many of the core features of disease as other mouse models. These data demonstrate that AR acting exclusively in muscle fibers is sufficient to induce SBMA symptoms and that flutamide is protective perinatally.
Collapse
Affiliation(s)
- Jamie A Johansen
- Neuroscience Program, Michigan State University, East Lansing, MI 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Rusmini P, Bolzoni E, Crippa V, Onesto E, Sau D, Galbiati M, Piccolella M, Poletti A. Proteasomal and autophagic degradative activities in spinal and bulbar muscular atrophy. Neurobiol Dis 2010; 40:361-9. [PMID: 20621188 DOI: 10.1016/j.nbd.2010.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/23/2010] [Accepted: 06/26/2010] [Indexed: 12/28/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons in the bulbar region of the brain and in the anterior horns of the spinal cord. The disease has been associated to an expansion of a CAG triplet repeat present in the first coding exon of the androgen receptor (AR) gene. SBMA was the first identified member of a large class of neurodegenerative diseases now known as CAG-related diseases, which includes Huntington's disease (HD), several types of spinocerebellar ataxia (SCAs), and dentatorubral and pallidoluysian atrophy (DRPLA). The expanded CAG tract is translated to an aberrantly long polyglutamine tract (ARpolyQ) in the N-terminal region of the AR protein. The elongated polyQ tract seems to confer a neurotoxic gain-of-function to the mutant AR, possibly via the generation of aberrant conformations (misfolding). Protein misfolding is thought to be a trigger of neurotoxicity, since it perturbs a wide variety of motor neuronal functions. The first event is the accumulation of the ARpolyQ into ubiquitinated aggregates in a ligand (testosterone) dependent manner. The mutant ARpolyQ also impairs proteasome functions. The autophagic pathway may be activated to compensate these aberrant events by clearing the mutant ARpolyQ from motor neuronal cells. This review illustrates the mechanisms at the basis of ARpolyQ degradation via the proteasomal and autophagic systems.
Collapse
Affiliation(s)
- Paola Rusmini
- Dipartimento di Endocrinologia, Fisiopatologia e Biologia Applicata, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Ambegaokar SS, Roy B, Jackson GR. Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis 2010; 40:29-39. [PMID: 20561920 DOI: 10.1016/j.nbd.2010.05.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology and George P. and Cynthia Woods Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
115
|
Disrupted transforming growth factor-beta signaling in spinal and bulbar muscular atrophy. J Neurosci 2010; 30:5702-12. [PMID: 20410122 DOI: 10.1523/jneurosci.0388-10.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a late-onset lower motor neuron disease caused by the expansion of a trinucleotide CAG repeat, which encodes a polyglutamine tract in androgen receptor (AR). Although it is commonly held that the pathogenic polyglutamine proteins accumulate in neurons and thereby induce transcriptional dysregulation, the downstream molecular events have remained elusive. Here, we examined whether TGF-beta signaling is dysregulated in SBMA. Nuclear translocation of phosphorylated Smad2/3, a key step in TGF-beta signaling, is suppressed in the spinal motor neurons of male transgenic mice carrying the mutant human AR. A similar finding was also observed in the motor neurons, but not in Purkinje cells, of SBMA patients. The pathogenic AR, the causative protein of SBMA, inhibits the transcription of TGF-beta receptor type II (TbetaRII) via abnormal interactions with NF-Y and p300/CBP-associated factor. Furthermore, overexpression of TbetaRII dampens polyglutamine-induced cytotoxicity in a neuroblastoma cell line expressing the pathogenic AR. The present study thus indicates that disruption of TGF-beta due to the transcriptional dysregulation of TbetaRII is associated with polyglutamine-induced motor neuron damage in SBMA.
Collapse
|
116
|
Abstract
The fruit fly, Drosophila melanogaster, has a long and rich history as an important model organism for biologists. In particular, study of the fruit fly has been essential to much of our fundamental understanding of the development and function of the nervous system. In recent years, studies using fruit flies have provided important insights into the pathogenesis of neurodegenerative and neuromuscular diseases. Fly models of spinal muscular atrophy, spinobulbar muscular atrophy,myotonic dystrophy, dystrophinopathies and other inherited neuromuscular diseases recapitulate many of the key pathologic features of the human disease. The ability to perform genetic screens holds promise for uncovering the molecular mechanisms of disease, and indeed, for identifying novel therapeutic targets. This review will summarize recent progress in developing fly models of neuromuscular diseases and will emphasize the contribution that Drosophila has made to our understanding of these diseases.
Collapse
Affiliation(s)
- Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
117
|
Verkleij LM, van de Ven ALM, Wohlgemuth M, Kruyt FA. [Ending up in a wheelchair in a strange way]. Tijdschr Gerontol Geriatr 2010; 41:27-31. [PMID: 20333954 DOI: 10.1007/bf03096177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this case-report we present a patient with a genetic disease which was first diagnosed in his eighties. The genetic disease is a rare neurologic disease, Kennedy's disease or spinobulbar muscular atrophy (SBMA). We also discuss the genetics of the disease and developments of future therapies.
Collapse
|
118
|
Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S, Suzuki E, Tanabe M, Zhao Y, Kimura S, Fujiyama S, Ueda T, Umetsu D, Ito T, Takeyama KI, Kato S. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev 2010; 24:159-70. [PMID: 20040570 PMCID: PMC2807351 DOI: 10.1101/gad.1857410] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/30/2009] [Indexed: 11/25/2022]
Abstract
Chromatin reorganization is essential for transcriptional control by sequence-specific transcription factors. However, the molecular link between transcriptional control and chromatin reconfiguration remains unclear. By colocalization of the nuclear ecdysone receptor (EcR) on the ecdysone-induced puff in the salivary gland, Drosophila DEK (dDEK) was genetically identified as a coactivator of EcR in both insect cells and intact flies. Biochemical purification and characterization of the complexes containing fly and human DEKs revealed that DEKs serve as histone chaperones via phosphorylation by forming complexes with casein kinase 2. Consistent with the preferential association of the DEK complex with histones enriched in active epigenetic marks, dDEK facilitated H3.3 assembly during puff formation. In some human myeloid leukemia patients, DEK was fused to CAN by chromosomal translocation. This mutation significantly reduced formation of the DEK complex, which is required for histone chaperone activity. Thus, the present study suggests that at least one histone chaperone can be categorized as a type of transcriptional coactivator for nuclear receptors.
Collapse
Affiliation(s)
- Shun Sawatsubashi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Takuya Murata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Jinseon Lim
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Ryoji Fujiki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Saya Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Eriko Suzuki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiko Tanabe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yue Zhao
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Shuhei Kimura
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Sally Fujiyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Takashi Ueda
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Daiki Umetsu
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Ken-ichi Takeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
119
|
Katsuno M, Banno H, Suzuki K, Adachi H, Tanaka F, Sobue G. Clinical features and molecular mechanisms of spinal and bulbar muscular atrophy (SBMA). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:64-74. [PMID: 20687495 DOI: 10.1007/978-1-4419-6448-9_6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset neurodegenerative disease characterized by slowly progressive muscle weakness and atrophy. The cause of this disease is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine tract, within the first exon of the androgen receptor (AR) gene. SBMA exclusively occurs in adult males, whereas both heterozygous and homozygous females are usually asymptomatic. Lower motor neurons in the anterior horn of the spinal cord and those in the brainstem motor nuclei are predominantly affected in SBMA, and other neuronal and nonneuronal tissues are also widely involved to some extent. Testosterone-dependent nuclear accumulation of the pathogenic AR protein has been considered to be a fundamental step of neurodegenerative process, which is followed by several molecular events such as transcriptional dysregulation, axonal transport disruption and mitochondrial dysfunction. Results of animal studies suggest that androgen deprivation and activation of protein quality control systems are potential therapies for SBMA.
Collapse
Affiliation(s)
- Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
120
|
Abstract
Modulation of testosterone levels is a therapeutic approach for spinal and bulbar muscular atrophy (SBMA), a polyglutamine disorder that affects the motor neurons. The article by Palazzolo et al. in this issue of Neuron provides compelling evidence that the expression of insulin growth hormone is a potential therapeutic for SBMA.
Collapse
|
121
|
FOXO3a is broadly neuroprotective in vitro and in vivo against insults implicated in motor neuron diseases. J Neurosci 2009; 29:8236-47. [PMID: 19553463 DOI: 10.1523/jneurosci.1805-09.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is a risk factor for the development of adult-onset neurodegenerative diseases. Although some of the molecular pathways regulating longevity and stress resistance in lower organisms are defined (i.e., those activating the transcriptional regulators DAF-16 and HSF-1 in Caenorhabditis elegans), their relevance to mammals and disease susceptibility are unknown. We studied the signaling controlled by the mammalian homolog of DAF-16, FOXO3a, in model systems of motor neuron disease. Neuron death elicited in vitro by excitotoxic insult or the expression of mutant SOD1, mutant p150(glued), or polyQ-expanded androgen receptor was abrogated by expression of nuclear-targeted FOXO3a. We identify a compound [Psammaplysene A (PA)] that increases nuclear localization of FOXO3a in vitro and in vivo and show that PA also protects against these insults in vitro. Administration of PA to invertebrate model systems of neurodegeneration similarly blocked neuron death in a DAF-16/FOXO3a-dependent manner. These results indicate that activation of the DAF-16/FOXO3a pathway, genetically or pharmacologically, confers protection against the known causes of motor neuron diseases.
Collapse
|
122
|
Fujiyama-Nakamura S, Ito S, Sawatsubashi S, Yamauchi Y, Suzuki E, Tanabe M, Kimura S, Murata T, Isobe T, ichi Takeyama K, Kato S. BTB protein, dKLHL18/CG3571, serves as an adaptor subunit for a dCul3 ubiquitin ligase complex. Genes Cells 2009; 14:965-73. [DOI: 10.1111/j.1365-2443.2009.01323.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
123
|
Montie HL, Cho MS, Holder L, Liu Y, Tsvetkov AS, Finkbeiner S, Merry DE. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 2009; 18:1937-50. [PMID: 19279159 PMCID: PMC2678926 DOI: 10.1093/hmg/ddp115] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/19/2009] [Accepted: 03/09/2009] [Indexed: 01/03/2023] Open
Abstract
The nucleus is the primary site of protein aggregation in many polyglutamine diseases, suggesting a central role in pathogenesis. In SBMA, the nucleus is further implicated by the critical role for disease of androgens, which promote the nuclear translocation of the mutant androgen receptor (AR). To clarify the importance of the nucleus in SBMA, we genetically manipulated the nuclear localization signal of the polyglutamine-expanded AR. Transgenic mice expressing this mutant AR displayed inefficient nuclear translocation and substantially improved motor function compared with SBMA mice. While we found that nuclear localization of polyglutamine-expanded AR is required for SBMA, we also discovered, using cell models of SBMA, that it is insufficient for both aggregation and toxicity and requires androgens for these disease features. Through our studies of cultured motor neurons, we further found that the autophagic pathway was able to degrade cytoplasmically retained expanded AR and represents an endogenous neuroprotective mechanism. Moreover, pharmacologic induction of autophagy rescued motor neurons from the toxic effects of even nuclear-residing mutant AR, suggesting a therapeutic role for autophagy in this nucleus-centric disease. Thus, our studies firmly establish that polyglutamine-expanded AR must reside within nuclei in the presence of its ligand to cause SBMA. They also highlight a mechanistic basis for the requirement for nuclear localization in SBMA neurotoxicity, namely the lack of mutant AR removal by the autophagic protein degradation pathway.
Collapse
Affiliation(s)
- Heather L. Montie
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria S. Cho
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Latia Holder
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Taube-Koret Center for Huntington's Disease Research, San Francisco, CA, USA
- Department of Neurology
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
124
|
Lu B, Vogel H. Drosophila models of neurodegenerative diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:315-42. [PMID: 18842101 DOI: 10.1146/annurev.pathol.3.121806.151529] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurodegenerative diseases are progressive disorders of the nervous system that affect specific cellular populations in the central and peripheral nervous systems. Although most cases are sporadic, genes associated with familial cases have been identified, thus enabling the development of animal models. Invertebrates such as Drosophila have recently emerged as model systems for studying mechanisms of neurodegeneration in several major neurodegenerative diseases. These models are also excellent in vivo systems for the testing of therapeutic compounds. Genetic studies using these animal models have provided novel insights into the disease process. We anticipate that further exploration of the animal models will further our understanding of mechanisms of neurodegeneration as well as facilitate the development of rational treatments for debilitating degenerative diseases.
Collapse
Affiliation(s)
- Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
125
|
Suzuki K, Kastuno M, Banno H, Sobue G. Pathogenesis-targeting therapeutics for spinal and bulbar muscular atrophy (SBMA). Neuropathology 2009; 29:509-16. [PMID: 19486304 DOI: 10.1111/j.1440-1789.2009.01013.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an hereditary, adult-onset, lower motor neuron disease caused by an aberrant elongation of a trinucleotide CAG repeat, which encodes the polyglutamine tract, in the first exon of the androgen receptor (AR) gene. The main symptoms are slowly progressive muscle weakness and atrophy of bulbar, facial and limb muscles. The cardinal histopathological findings of SBMA are an extensive loss of lower motor neurons in the anterior horn of the spinal cord as well as in brainstem motor nuclei and intranuclear accumulations of mutant AR protein in the residual motor neurons. Androgen deprivation therapy rescues neuronal dysfunction in animal models of SBMA, suggesting that the molecular basis for motor neuron degeneration in this disorder is testosterone-dependent nuclear accumulation of the mutant AR. Suppression of disease progression by leuprorelin acetate has also been demonstrated in a phase 2 clinical trial. In addition, the clarification of pathophysiology leads to appearance of candidate drugs to treat this devastating disease: heat shock protein (HSP) inducer, Hsp90 inhibitor, and histone deacetylase inhibitor. Advances in basic and clinical research on SBMA are now paving the way for clinical application of pathogenesis-targeting therapeutics.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
126
|
Polyglutamine-expanded androgen receptor truncation fragments activate a Bax-dependent apoptotic cascade mediated by DP5/Hrk. J Neurosci 2009; 29:1987-97. [PMID: 19228953 DOI: 10.1523/jneurosci.4072-08.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by a polyglutamine (polyQ) repeat expansion in the androgen receptor (AR). PolyQ-AR neurotoxicity may involve generation of an N-terminal truncation fragment, as such peptides occur in SBMA patients and mouse models. To elucidate the basis of SBMA, we expressed N-terminal truncated AR in motor neuron-derived cells and primary cortical neurons. Accumulation of polyQ-AR truncation fragments in the cytosol resulted in neurodegeneration and apoptotic, caspase-dependent cell death. Using primary neurons from mice transgenic or deficient for apoptosis-related genes, we determined that polyQ-AR apoptotic activation is fully dependent on Bax. Jun N-terminal kinase (JNK) was required for apoptotic pathway activation through phosphorylation of c-Jun. Expression of polyQ-AR in DP5/Hrk null neurons yielded significant protection against apoptotic activation, but absence of Bim did not provide protection, apparently due to compensatory upregulation of DP5/Hrk or other BH3-only proteins. Misfolded AR protein in the cytosol thus initiates a cascade of events beginning with JNK and culminating in Bax-dependent, intrinsic pathway activation, mediated in part by DP5/Hrk. As apoptotic mediators are candidates for toxic fragment generation and other cellular processes linked to neuron dysfunction, delineation of the apoptotic activation pathway induced by polyQ-expanded AR may shed light on the pathogenic cascade in SBMA and other motor neuron diseases.
Collapse
|
127
|
|
128
|
Banno H, Katsuno M, Suzuki K, Takeuchi Y, Kawashima M, Suga N, Takamori M, Ito M, Nakamura T, Matsuo K, Yamada S, Oki Y, Adachi H, Minamiyama M, Waza M, Atsuta N, Watanabe H, Fujimoto Y, Nakashima T, Tanaka F, Doyu M, Sobue G. Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Ann Neurol 2009; 65:140-50. [PMID: 19259967 DOI: 10.1002/ana.21540] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Spinal and bulbar muscular atrophy (SBMA) is a hereditary motor neuron disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). Animal studies have shown that the pathogenesis of SBMA is dependent on serum testosterone level. This study is aimed at evaluating the efficacy and safety of androgen deprivation by leuprorelin acetate in patients with SBMA. METHODS Fifty SBMA patients underwent subcutaneous injections of leuprorelin acetate or placebo in a randomized, placebo-controlled trial for 48 weeks, followed by an open-label trial for an additional 96 weeks, in which 19 patients of the leuprorelin group and 15 of the placebo group received leuprorelin acetate. The patients who did not participate in the open-label trial were also followed up for the 96-week period (UMIN000000474). RESULTS Leuprorelin acetate significantly extended the duration of cricopharyngeal opening in videofluorography and decreased mutant AR accumulation in scrotal skin biopsy. The patients treated with leuprorelin acetate for 144 weeks exhibited significantly greater functional scores and better swallowing parameters than those who received placebo. Autopsy of one patient who received leuprorelin acetate for 118 weeks suggested that androgen deprivation inhibits the nuclear accumulation or stabilization, or both, of mutant AR in the motor neurons of the spinal cord and brainstem. INTERPRETATION These observations suggest that administration of leuprorelin acetate suppresses the deterioration of neuromuscular impairment in SBMA by inhibiting the toxic accumulation of mutant AR. The results of this phase 2 trial support the start of large-scale clinical trials of androgen deprivation for SBMA.
Collapse
Affiliation(s)
- Haruhiko Banno
- Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Banno H, Katsuno M, Suzuki K, Tanaka F, Sobue G. Neuropathology and therapeutic intervention in spinal and bulbar muscular atrophy. Int J Mol Sci 2009; 10:1000-12. [PMID: 19399234 PMCID: PMC2672015 DOI: 10.3390/ijms10031000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 12/22/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a hereditary motor neuron disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The histopathological finding in SBMA is loss of lower motor neurons in the anterior horn of the spinal cord as well as in the brainstem motor nuclei. Animal studies have revealed that the pathogenesis of SBMA depends on the level of serum testosterone, and that androgen deprivation mitigates neurodegeneration through inhibition of nuclear accumulation of the pathogenic AR. Heat shock proteins, ubiquitin-proteasome system and transcriptional regulation are also potential targets of therapy development for SBMA.
Collapse
Affiliation(s)
- Haruhiko Banno
- Department of Neurology, Nagoya University Graduate School of Medicine / 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails:
(H.B.);
(K.S.);
(F.T.)
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine / 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails:
(H.B.);
(K.S.);
(F.T.)
- Institute for Advanced Research, Nagoya University / Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Author to whom correspondence should be addressed; E-Mails:
(M.K.);
(G.S.); Tel. +81-52-744-2385; Fax: +81-52-744-2384
| | - Keisuke Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine / 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails:
(H.B.);
(K.S.);
(F.T.)
| | - Fumiaki Tanaka
- Department of Neurology, Nagoya University Graduate School of Medicine / 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails:
(H.B.);
(K.S.);
(F.T.)
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine / 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails:
(H.B.);
(K.S.);
(F.T.)
- Author to whom correspondence should be addressed; E-Mails:
(M.K.);
(G.S.); Tel. +81-52-744-2385; Fax: +81-52-744-2384
| |
Collapse
|
130
|
Aberrant E2F activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity. Proc Natl Acad Sci U S A 2009; 106:3818-22. [PMID: 19237573 DOI: 10.1073/pnas.0809819106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by a polyglutamine repeat (polyQ) expansion within the human androgen receptor (AR). Unlike other neurodegenerative diseases caused by abnormal polyQ expansion, the onset of SBMA depends on androgen binding to mutant human polyQ-AR proteins. This is also observed in Drosophila eyes ectopically expressing the polyQ-AR mutants. We have genetically screened mediators of androgen-induced neurodegeneration caused by polyQ-AR mutants in Drosophila eyes. We identified Rbf (Retinoblastoma-family protein), the Drosophila homologue of human Rb (Retinoblastoma protein), as a neuroprotective factor. Androgen-dependent association of Rbf or Rb with AR was remarkably potentiated by aberrant polyQ expansion. Such potentiated Rb association appeared to attenuate recruitment of histone deacetyltransferase 1 (HDAC1), a corepressor of E2F function. Either overexpression of Rbf or E2F deficiency in fly eyes reduced the neurotoxicity of the polyQ-AR mutants. Induction of E2F function by polyQ-AR-bound androgen was suppressed by Rb in human neuroblastoma cells. We conclude that abnormal expansion of polyQ may potentiate innate androgen-dependent association of AR with Rb. This appears to lead to androgen-dependent onset of SBMA through aberrant E2F transactivation caused by suppressed histone deacetylation.
Collapse
|
131
|
Jeibmann A, Paulus W. Drosophila melanogaster as a model organism of brain diseases. Int J Mol Sci 2009; 10:407-440. [PMID: 19333415 PMCID: PMC2660653 DOI: 10.3390/ijms10020407] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 01/29/2023] Open
Abstract
Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.
Collapse
Affiliation(s)
- Astrid Jeibmann
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +49-251 83 57549; Fax: +49-251 83 56971
| | | |
Collapse
|
132
|
Corepressive action of CBP on androgen receptor transactivation in pericentric heterochromatin in a Drosophila experimental model system. Mol Cell Biol 2008; 29:1017-34. [PMID: 19075001 DOI: 10.1128/mcb.02123-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ligand-bound nuclear receptors (NR) activate transcription of the target genes. This activation is coupled with histone modifications and chromatin remodeling through the function of various coregulators. However, the nature of the dependence of a NR coregulator action on the presence of the chromatin environment at the target genes is unclear. To address this issue, we have developed a modified position effect variegation experimental model system that includes an androgen-dependent reporter transgene inserted into either a pericentric heterochromatin region or a euchromatic region of Drosophila chromosome. Human androgen receptor (AR) and its constitutively active truncation mutant (AR AF-1) were transcriptionally functional in both chromosomal regions. Predictably, the level of AR-induced transactivation was lower in the pericentric heterochromatin. In genetic screening for AR AF-1 coregulators, Drosophila CREB binding protein (dCBP) was found to corepress AR transactivation at the pericentric region whereas it led to coactivation in the euchromatic area. Mutations of Sir2 acetylation sites or deletion of the CBP acetyltransferase domain abrogated dCBP corepressive action for AR at heterochromatic areas in vivo. Such a CBP corepressor function for AR was observed in the transcriptionally silent promoter of an AR target gene in cultured mammalian cells. Thus, our findings suggest that the action of NR coregulators may depend on the state of chromatin at the target loci.
Collapse
|
133
|
Young JE, Martinez RA, La Spada AR. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem 2008; 284:2363-73. [PMID: 19017649 DOI: 10.1074/jbc.m806088200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although autophagy maintains normal neural function by degrading misfolded proteins, little is known about how neurons activate this integral response. Furthermore, classical methods of autophagy induction used with nonneural cells, such as starvation, simply result in neuron death. To study neuronal autophagy, we cultured primary cortical neurons from transgenic mice that ubiquitously express green fluorescent protein-tagged LC3 and monitored LC3-I to LC3-II conversion by immunohistochemistry and immunoblotting. Evaluation of different culture media led us to discover that culturing primary neurons in Dulbecco's modified Eagle's medium without B27 supplementation robustly activates autophagy. We validated this nutrient-limited media approach for inducing autophagy by showing that 3-methyl-adenine treatment and Atg5 RNA interference knockdown each inhibits LC3-I to LC3-II conversion. Evaluation of B27 supplement components yielded insulin as the factor whose absence induced autophagy in primary neurons, and this activation was mammalian target of rapamycin-dependent. When we tested if nutrient-limited media could protect neurons expressing polyglutamine-expanded proteins against cell death, we observed a strong protective effect, probably due to autophagy activation. Our results indicate that nutrient deprivation can be used to understand the regulatory basis of neuronal autophagy and implicate diminished insulin signaling in the activation of neuronal autophagy.
Collapse
Affiliation(s)
- Jessica E Young
- Department of Laboratory Medicine, Center for Neurogenentics and Neurotherapeutics, University of Washington Medical Center, Seattle, WA 98195, USA
| | | | | |
Collapse
|
134
|
Abstract
SUMOylation, a reversible process used as a ‘fine-tuning’ mechanism to regulate the role of multiple proteins, is conserved throughout evolution. This post-translational modification affects several cellular processes by the modulation of subcellular localization, activity or stability of a variety of substrates. A growing number of proteins have been identified as targets for SUMOylation, although, for many of them, the role of SUMO conjugation on their function is unknown. The use of model systems might facilitate the study of SUMOylation implications in vivo. In the present paper, we have compiled what is known about SUMOylation in Drosophila melanogaster, where the use of genetics provides new insights on SUMOylation's biological roles.
Collapse
|
135
|
Jordan CL, Lieberman AP. Spinal and bulbar muscular atrophy: a motoneuron or muscle disease? Curr Opin Pharmacol 2008; 8:752-8. [PMID: 18775514 DOI: 10.1016/j.coph.2008.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/12/2008] [Indexed: 01/16/2023]
Abstract
Kennedy disease (KD, or spinal and bulbar muscular atrophy) is caused by a CAG/polyglutamine expansion in the androgen receptor (AR) gene. Both motoneurons and muscles are affected by KD, but where mutant ARs act to initiate this disease is not clear. We discuss recent insights into this disease with two main themes. (1) KD is androgen-dependent, suggesting that blocking androgen action may be an effective treatment. (2) Androgens may trigger KD by acting in muscles, which indirectly affects the motoneurons, suggesting that blocking AR function in muscles may rescue motoneurons from disease and provide an effective treatment. Future research will provide a better understanding of how androgens trigger KD and the relative contributions of motoneurons versus muscles in this disease.
Collapse
Affiliation(s)
- Cynthia L Jordan
- Neuroscience Program and Psychology Department, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
136
|
RNA-binding protein hoip accelerates polyQ-induced neurodegeneration in Drosophila. Biosci Biotechnol Biochem 2008; 72:2255-61. [PMID: 18776683 DOI: 10.1271/bbb.70829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abnormal polyglutamine (polyQ) expansion in the N-terminal domain of the human androgen receptor (hAR) is known to cause spinobulbar muscular atrophy (SBMA), a hereditary human neurodegenerative disorder. To explore the molecular mechanisms of neurodegeneration in SBMA, we genetically screened modulators of neurodegeneration in a Drosophila SBMA experimental model system. We identified hoip as an accelerator of polyQ-induced neurodegeneration. We found that hoip forms a complex with 18s rRNA together nop56 and nop5 proteins, whose human homologs are known to form a snoRNP complex involved in ribosomal RNA processing. Significantly, the levels of mutant polyQ-hAR were up-regulated in a mutant line overexpressing hoip. Consistently, severe neurodegeneration phenotype (rough eye) was also observed in both nop56 and nop5 overexpression mutant lines. These findings suggest that the process of neurodegeneration induced by abnormal polyQ expansion in the hAR may be regulated by the activity of snoRNP complex.
Collapse
|
137
|
Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 2008; 22:1427-38. [PMID: 18519635 DOI: 10.1101/gad.1657108] [Citation(s) in RCA: 666] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The long-term health of the cell is inextricably linked to protein quality control. Under optimal conditions this is accomplished by protein homeostasis, a highly complex network of molecular interactions that balances protein biosynthesis, folding, translocation, assembly/disassembly, and clearance. This review will examine the consequences of an imbalance in homeostasis on the flux of misfolded proteins that, if unattended, can result in severe molecular damage to the cell. Adaptation and survival requires the ability to sense damaged proteins and to coordinate the activities of protective stress response pathways and chaperone networks. Yet, despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress when conformationally challenged aggregation-prone proteins are expressed in cancer, metabolic disease, and neurodegenerative disease. The decline in biosynthetic and repair activities that compromises the integrity of the proteome is influenced strongly by genes that control aging, thus linking stress and protein homeostasis with the health and life span of the organism.
Collapse
Affiliation(s)
- Richard I Morimoto
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
138
|
Kimura S, Sawatsubashi S, Ito S, Kouzmenko A, Suzuki E, Zhao Y, Yamagata K, Tanabe M, Ueda T, Fujiyama S, Murata T, Matsukawa H, Takeyama KI, Yaegashi N, Kato S. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor. Biochem Biophys Res Commun 2008; 371:889-93. [PMID: 18468516 DOI: 10.1016/j.bbrc.2008.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly.
Collapse
Affiliation(s)
- Shuhei Kimura
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Monks DA, Rao P, Mo K, Johansen JA, Lewis G, Kemp MQ. Androgen receptor and Kennedy disease/spinal bulbar muscular atrophy. Horm Behav 2008; 53:729-40. [PMID: 18321505 PMCID: PMC2883265 DOI: 10.1016/j.yhbeh.2007.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 02/06/2023]
Abstract
Kennedy Disease/Spinal Bulbar Muscular Atrophy (KD/SBMA) is a progressive neurodegenerative disease caused by genetic polyglutamine expansion of the androgen receptor. We have recently found that overexpression of wildtype androgen receptor in skeletal muscle of transgenic mice results in a KD/SBMA phenotype. This surprising result challenges the orthodox view that KD/SBMA requires expression of polyglutamine expanded androgen receptor within motoneurons. Theories relating to the etiology of this disease drawn from studies of human patients, cellular and mouse models are considered with a special emphasis on potential myogenic contributions to as well as the molecular etiology of KD/SBMA.
Collapse
Affiliation(s)
- Douglas Ashley Monks
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | | | | | |
Collapse
|
140
|
Matsumoto T, Shiina H, Kawano H, Sato T, Kato S. Androgen receptor functions in male and female physiology. J Steroid Biochem Mol Biol 2008; 109:236-41. [PMID: 18434134 DOI: 10.1016/j.jsbmb.2008.03.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biological actions of androgens are mediated by transcriptional control of target genes through binding to the androgen receptor (AR). The AR belongs to the nuclear receptor superfamily and acts as a ligand-inducible transcriptional factor. Androgens/AR system is thought to be central to male physiology and behaviors to the development of clinical pathology. The physiological importance of AR function currently recognized in female reproduction also has been verified in mouse genetic model. Here we review functions of AR in male and female physiology as revealed by mice lacking AR.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
141
|
Funderburk SF, Shatkina L, Mink S, Weis Q, Weg-Remers S, Cato ACB. Specific N-terminal mutations in the human androgen receptor induce cytotoxicity. Neurobiol Aging 2008; 30:1851-64. [PMID: 18289734 DOI: 10.1016/j.neurobiolaging.2007.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 12/13/2007] [Accepted: 12/28/2007] [Indexed: 01/21/2023]
Abstract
Polyglutamine (polyQ) stretch amplification in different proteins causes neurodegenerative disease. These proteins form intracellular aggregates thought to be cytotoxic but differ in pathology and tissue specificity. Here, we demonstrate that specific sequences outside the polyQ stretch of the human androgen receptor contribute to polyQ pathology. An exchange of two N-terminal serine phosphorylation residues to alanine in the wild type androgen receptor (ARQ22dm) resulted in cytoplasmic accumulation and increased early hormone-dependent aggregation of the receptor. In a Drosophila model, the ARQ22dm was cytotoxic, and developing larvae expressing this receptor showed behavioral abnormalities and severely impaired locomotion. In contrast, the same double mutation in an androgen receptor with an extended polyQ stretch was less toxic. The response of the receptors to inhibitors of polyglutamine toxicity is altered by the amino acid exchanges suggesting that careful consideration is needed in the choice of potential therapies of disorders involving toxic polyQ species.
Collapse
Affiliation(s)
- Sarah F Funderburk
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, PO Box 3640, D-76021 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
The discovery that expansion of unstable repeats can cause a variety of neurological disorders has changed the landscape of disease-oriented research for several forms of mental retardation, Huntington disease, inherited ataxias, and muscular dystrophy. The dynamic nature of these mutations provided an explanation for the variable phenotype expressivity within a family. Beyond diagnosis and genetic counseling, the benefits from studying these disorders have been noted in both neurobiology and cell biology. Examples include insight about the role of translational control in synaptic plasticity, the role of RNA processing in the integrity of muscle and neuronal function, the importance of Fe-S-containing enzymes for cellular energy, and the dramatic effects of altering protein conformations on neuronal function and survival. It is exciting that within a span of 15 years, pathogenesis studies of this class of disorders are beginning to reveal pathways that are potential therapeutic targets.
Collapse
Affiliation(s)
- Harry T Orr
- Institute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
143
|
Kimura S, Matsumoto T, Matsuyama R, Shiina H, Sato T, Takeyama KI, Kato S. Androgen receptor function in folliculogenesis and its clinical implication in premature ovarian failure. Trends Endocrinol Metab 2007; 18:183-9. [PMID: 17442585 DOI: 10.1016/j.tem.2007.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 03/07/2007] [Accepted: 04/05/2007] [Indexed: 01/19/2023]
Abstract
The action of estrogen in the female reproductive organs is well known in terms of the expression pattern and gene regulation of the estrogen receptor (ER). The significance of ERs in female reproduction is undisputed. The role of the androgen receptor (AR) is less clear. Clinical hyperandrogenism, a typical feature of polycystic ovary syndrome (PCOS), highlights pathological androgen production by the ovary. By contrast, the physiological impact of androgen action in female reproductive organs remains elusive. Androgens affect folliculogenesis in a variety of experimental approaches and ARs are expressed in developing follicles. Recent observations have discovered that inactivation of ARs in female mice results in premature ovarian failure (POF), indicating that normal folliculogenesis requires AR-mediated androgen action. Moreover, these results imply that POF might be caused by impairment of AR-mediated androgen action.
Collapse
Affiliation(s)
- Shuhei Kimura
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
144
|
Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007; 447:859-63. [PMID: 17568747 DOI: 10.1038/nature05853] [Citation(s) in RCA: 929] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/16/2007] [Indexed: 12/31/2022]
Abstract
A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.
Collapse
Affiliation(s)
- Udai Bhan Pandey
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Adachi H, Waza M, Katsuno M, Tanaka F, Doyu M, Sobue G. Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy. Neuropathol Appl Neurobiol 2007; 33:135-51. [PMID: 17359355 DOI: 10.1111/j.1365-2990.2007.00830.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is a motor neurone disease characterized by muscle atrophy, weakness, contraction fasciculations and bulbar involvement. SBMA mainly affects males, while females are usually asymptomatic. SBMA is caused by expansion of a polyglutamine (polyQ)-encoding CAG trinucleotide repeat in the androgen receptor (AR) gene. AR belongs to the heat shock protein 90 (Hsp90) client protein family. The histopathologic hallmarks of SBMA are diffuse nuclear accumulation and nuclear inclusions of the mutant AR with expanded polyQ in residual motor neurones in the brainstem and spinal cord as well as in some other visceral organs. There is increasing evidence that the ligand of AR and molecular chaperones play a crucial role in the pathogenesis of SBMA. The success of androgen deprivation therapy in SBMA mouse models has been translated into clinical trials. In addition, elucidation of its pathophysiology using animal models has led to the development of disease-modifying drugs, that is, Hsp90 inhibitor and Hsp inducer, which inhibit the pathogenic process of neuronal degeneration. SBMA is a slowly progressive disease by nature. The degree of nuclear accumulation of mutant AR in scrotal skin epithelial cells was correlated with that in spinal motor neurones in autopsy specimens; therefore, the results of scrotal skin biopsy may be used to assess the efficacy of therapeutic trials. Clinical and pathological parameters that reflect the pathogenic process of SBMA should be extensively investigated.
Collapse
Affiliation(s)
- H Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
146
|
Abstract
The GAL4/UAS system has been extensively employed in Drosophila to control gene expression in defined spatial patterns. More recently this system has been successfully applied to express genes involved in neurodegeneration to model various diseases in the fruit fly. We used transgenic lines expressing different levels of GAL4 in a particular subset of neurons involved in the control of rhythmic behaviour, so that its impact on neuronal physiology would result in altered locomotor activity, which could be readily assessed. We observed a striking correlation between gal4 dosage and behavioural defects associated with apoptotic neuronal loss in the specific GAL4-expressing neurons. Increased gal4 dosage correlated with accumulation of insoluble GAL4, suggesting that the cascade of events leading to apoptosis might be triggered by protein deposits of either GAL4 or protein intermediates. Behavioural defects were rescued by expression of hsp70, a classic chaperone that also interferes with cell death pathways. In agreement with the latter, the viral caspase inhibitor p35 also rescued GAL4-induced behavioural defects. Our observations demonstrate the intrinsic effects of GAL4 deregulation on neuronal viability and suggest that an excess of GAL4 might enhance neuronal deficits observed in models of neurodegeneration.
Collapse
Affiliation(s)
- Carolina Rezával
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | |
Collapse
|
147
|
Palazzolo I, Burnett BG, Young JE, Brenne PL, La Spada AR, Fischbeck KH, Howell BW, Pennuto M. Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Hum Mol Genet 2007; 16:1593-603. [PMID: 17470458 DOI: 10.1093/hmg/ddm109] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a progressive neurodegenerative disease caused by an expansion of the polyglutamine tract in the androgen receptor (AR). Here, we investigated the regulation of AR phosphorylation in order to understand factors that may modify SBMA disease progression. We show that expanded polyglutamine AR is phosphorylated by Akt. Substitution of the AR at two Akt consensus sites, S215 and S792, with aspartate, which mimics phosphorylation, reduces ligand binding, ligand-dependent nuclear translocation, transcriptional activation and toxicity of expanded polyglutamine AR. Co-expression of constitutively active Akt and the AR has similar consequences, which are blocked by alanine substitutions at residues 215 and 792. Furthermore, in motor neuron-derived MN-1 cells toxicity associated with polyglutamine-expanded AR is rescued by co-expression with Akt. Insulin-like growth factor-1 (IGF-1) stimulation, which activates several cell survival promoting pathways, also reduces toxicity of the expanded polyglutamine AR in MN-1 cells, in a manner dependent upon phospho-inositol-3-kinase. IGF-1 rescue of AR toxicity is diminished by alanine substitutions at the Akt consensus sites. These results highlight potential targets for therapeutic intervention in SBMA.
Collapse
Affiliation(s)
- Isabella Palazzolo
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Latouche M, Lasbleiz C, Martin E, Monnier V, Debeir T, Mouatt-Prigent A, Muriel MP, Morel L, Ruberg M, Brice A, Stevanin G, Tricoire H. A conditional pan-neuronal Drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J Neurosci 2007; 27:2483-92. [PMID: 17344386 PMCID: PMC6672519 DOI: 10.1523/jneurosci.5453-06.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spinocerebellar ataxia 7 (SCA7) is a neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the ataxin 7 (ATXN7) protein, a member of a multiprotein complex involved in histone acetylation. We have created a conditional Drosophila model of SCA7 in which expression of truncated ATXN7 (ATXN7T) with a pathogenic polyQ expansion is induced in neurons in adult flies. In this model, mutant ATXN7T accumulated in neuronal intranuclear inclusions containing ubiquitin, the 19S proteasome subunit, and HSP70 (heat shock protein 70), as in patients. Aggregation was accompanied by a decrease in locomotion and lifespan but limited neuronal death. Disaggregation of the inclusions, when expression of expanded ATXN7T was stopped, correlated with improved locomotor function and increased lifespan, suggesting that the pathology may respond to treatment. Lifespan was then used as a quantitative marker in a candidate gene approach to validate the interest of the model and to identify generic modulators of polyQ toxicity and specific modifiers of SCA7. Several molecular pathways identified in this focused screen (proteasome function, unfolded protein stress, caspase-dependent apoptosis, and histone acetylation) were further studied in primary neuronal cultures. Sodium butyrate, a histone deacetylase inhibitor, improved the survival time of the neurons. This model is therefore a powerful tool for studying SCA7 and for the development of potential therapies for polyQ diseases.
Collapse
Affiliation(s)
- Morwena Latouche
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Christelle Lasbleiz
- Centre National de la Rechereche Scientifique, UMR 7592, Insititut Jacques Monod, Campus Universitaire de Jussieu, Paris F-75251, France, and
| | - Elodie Martin
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Véronique Monnier
- Centre National de la Rechereche Scientifique, UMR 7592, Insititut Jacques Monod, Campus Universitaire de Jussieu, Paris F-75251, France, and
| | - Thomas Debeir
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Annick Mouatt-Prigent
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Marie-Paule Muriel
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Lydie Morel
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
| | - Merle Ruberg
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
| | - Alexis Brice
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
- Assistance Publique–Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Départment de Génétique, Cytogénétique, et Embryologie, Paris F-75013, France
| | - Giovanni Stevanin
- Institut National de la Santé et de la Recherche Médicale, Unité 679, Paris F-75013, France
- Université Pierre and Marie Curie–Paris 6, Institut Fédératif de Recherche de Neurosciences (IFR70), Unité Mixte de Recherche (UMR) S679, Group Hospitalier Pitié-Salpêtriére, Paris F-75013, France
- Assistance Publique–Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Départment de Génétique, Cytogénétique, et Embryologie, Paris F-75013, France
| | - Hérvé Tricoire
- Centre National de la Rechereche Scientifique, UMR 7592, Insititut Jacques Monod, Campus Universitaire de Jussieu, Paris F-75251, France, and
| |
Collapse
|
149
|
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disorder caused by abnormal expansions of a trinucleotide CAG repeat in exon 47 of the CACNA1A gene, which encodes the alpha1A subunit of the P/Q-type voltage-gated calcium channel. The CAG repeat expansion is translated into an elongated polyglutamine tract in the carboxyl terminus of the alpha1A subunit. The alpha1A subunit is the main pore-forming subunit of the P/Q-type calcium channel. Patients with SCA6 suffer from a severe form of progressive ataxia and cerebellar dysfunction. Design of treatments for this disorder will depend on better definition of the mechanism of disease. As a disease arising from a mutation in an ion channel gene, SCA6 may behave as an ion channelopathy, and may respond to attempts to modulate or correct ion channel function. Alternatively, as a disease in which the mutant protein contains an expanded polyglutamine tract, SCA6 may respond to the targets of drug therapies developed for Huntington's disease and other polyglutamine disorders. In this review we will compare SCA6 to other polyglutamine diseases and channelopathies, and we will highlight recent advances in our understanding of alpha1A subunits and SCA6 pathology. We also propose a mechanism for how two seemingly divergent hypotheses can be combined into a cohesive model for disease progression.
Collapse
Affiliation(s)
- Holly B Kordasiewicz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
150
|
Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, Campion D, Lecourtois M. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet 2007; 16:555-66. [PMID: 17309878 DOI: 10.1093/hmg/ddm011] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tauopathies, including Alzheimer's disease and fronto-temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), are a group of neurodegenerative disorders characterized by the presence of intraneuronal filamentous inclusions of aberrantly phosphorylated-tau. Tau is a neuronal microtubule-associated protein involved in microtubule assembly and stabilization. Currently, the molecular mechanisms underlying tau-mediated cellular toxicity remain elusive. To address the determinants of tau neurotoxicity, we first characterized the cellular alterations resulting from the over-expression of a mutant form of human tau associated with FTDP-17 (tau V337M) in Drosophila. We found that the over-expression of tau V337M, in Drosophila larval motor neurons, induced disruption of the microtubular network at presynaptic nerve terminals and changes in neuromuscular junctions morphological features. Secondly, we performed a misexpression screen to identify genetic modifiers of the tau V337M-mediated rough eye phenotype. The screening of 1250 mutant Drosophila lines allowed us to identify several components of the cytoskeleton, and particularly from the actin network, as specific modifiers of tau V337M-induced neurodegeneration. Furthermore, we found that numerous tau modulators identified in our screen were involved in the maintenance of synaptic function. Taken together, these findings suggest that disruption of the microtubule network in presynaptic nerve terminals could constitute early events in the pathological process leading to synaptic dysfunction in tau V337M pathology.
Collapse
Affiliation(s)
- Olivier Blard
- Inserm U614 (IFRMP), University of Rouen & Department of Genetics, Rouen University Hospital, Institute for Biomedical Research, Rouen, France
| | | | | | | | | | | | | |
Collapse
|