101
|
Phillips-Mason PJ, Gates TJ, Major DL, Sacks DB, Brady-Kalnay SM. The Receptor Protein-tyrosine Phosphatase PTPμ Interacts with IQGAP1. J Biol Chem 2006; 281:4903-10. [PMID: 16380380 DOI: 10.1074/jbc.m506414200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor protein-tyrosine phosphatase PTPmu is a member of the Ig superfamily of cell adhesion molecules. The extracellular domain of PTPmu contains motifs commonly found in cell adhesion molecules. The intracellular domain of PTPmu contains two conserved catalytic domains, only the membrane-proximal domain has catalytic activity. The unique features of PTPmu make it an attractive molecule to transduce signals upon cell-cell contact. PTPmu has been shown to regulate cadherin-mediated cell adhesion, neurite outgrowth, and axon guidance. Protein kinase C is a component of the PTPmu signaling pathway utilized to regulate these events. To aid in the further characterization of PTPmu signaling pathways, we used a series of GST-PTPmu fusion proteins, including catalytically inactive and substrate trapping mutants, to identify PTPmu-interacting proteins. We identified IQGAP1, a known regulator of the Rho GTPases, Cdc42 and Rac1, as a novel PTPmu-interacting protein. We show that this interaction is due to direct binding. In addition, we demonstrate that amino acid residues 765-958 of PTPmu, which include the juxtamembrane domain and 35 residues of the first phosphatase domain, mediate the binding to IQGAP1. Furthermore, we demonstrate that constitutively active Cdc42, and to a lesser extent Rac1, enhances the interaction of PTPmu and IQGAP1. These data indicate PTPmu may regulate Rho-GTPase-dependent functions of IQGAP1 and suggest that IQGAP1 is a component of the PTPmu signaling pathway. In support of this, we show that a peptide that competes IQGAP1 binding to Rho GTPases blocks PTPmu-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Polly J Phillips-Mason
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | | | | | | |
Collapse
|
102
|
Gu Y, Li S, Lord EM, Yang Z. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. THE PLANT CELL 2006; 18:366-81. [PMID: 16415208 PMCID: PMC1356545 DOI: 10.1105/tpc.105.036434] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 11/28/2005] [Accepted: 12/13/2005] [Indexed: 05/06/2023]
Abstract
Rho family small GTPases are signaling switches controlling many eukaryotic cellular processes. Conversion from the GDP- to GTP-bound form is catalyzed by guanine nucleotide exchange factors (GEFs). Rho GEFs in animals fall into two structurally distinct classes containing DH and DOCKER catalytic domains. Using a plant Rho GTPase (ROP1) as bait in yeast two-hybrid screens, we identified a family of Rho GEFs, named RopGEFs. The Arabidopsis thaliana RopGEF family of 14 members contains a conserved central domain, the domain of unknown function 315 (DUF315), and variable N- and C-terminal regions. In vitro GEF assays show that DUF315 but not the full-length version of RopGEF1 has high GEF activity toward ROP1. Our data suggest that the variable regions of RopGEF1 are involved in regulation of RopGEF through an autoinhibitory mechanism. RopGEF1 overexpression in pollen tubes produced growth depolarization, as does a constitutively active ROP1 mutant. The RopGEF1 overexpression phenotype was suppressed by expression of a dominant-negative mutant of ROP1, probably by trapping RopGEF1. Deletion mutant analysis suggested a requirement of RopGEF activity for the function of RopGEF1 in polar growth. Green fluorescent protein-tagged RopGEF1 was localized to the tip of pollen tubes where ROP1 is activated. These results provide strong evidence that RopGEF1 activates ROP1 in control of polar growth in pollen tubes.
Collapse
Affiliation(s)
- Ying Gu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
103
|
Jin L, Burnett AL. RhoA/Rho-kinase in erectile tissue: mechanisms of disease and therapeutic insights. Clin Sci (Lond) 2006; 110:153-65. [PMID: 16411892 DOI: 10.1042/cs20050255] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Penile erection is a complicated event involving the regulation of corpus cavernosal smooth muscle tone. Recently, the small monomeric G-protein RhoA and its downstream effector Rho-kinase have been proposed to be important players for mediating vasoconstriction in the penis. RhoA/Rho-kinase increases MLC (myosin light chain) phosphorylation through inhibition of MLCP (MLC phosphatase) thereby increasing Ca2+ sensitivity. This review will outline the RhoA/Rho-kinase signalling pathway, including the upstream regulators, guanine nucleotide exchange factors, GDP dissociation inhibitors and GTPase-activating proteins. We also summarize the current knowledge about the physiological roles of RhoA/Rho-kinase in both male and female erectile tissues and its aberrations contributing to erectile dysfunction in several disease states. Understanding the RhoA/Rho-kinase signalling pathway in the regulation of erection is important for the development of therapeutic interventions for erectile dysfunction.
Collapse
Affiliation(s)
- Liming Jin
- Department of Urology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | |
Collapse
|
104
|
Hearns-Stokes R, Mayers C, Zahn C, Cruess D, Gustafsson JA, Segars J, Nieman L. Expression of the proto-oncoprotein breast cancer nuclear receptor auxiliary factor (Brx) is altered in eutopic endometrium of women with endometriosis. Fertil Steril 2006; 85:63-70. [PMID: 16412732 DOI: 10.1016/j.fertnstert.2005.06.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/13/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate the expression of estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta), and breast cancer nuclear receptor auxiliary factor (Brx) in eutopic endometrium of normal women and women with endometriosis. DESIGN Prospective observational study. SETTING Tertiary care and research center. PATIENT(S) Twenty-nine women with endometriosis and 35 healthy ovulatory volunteers of similar ages. INTERVENTION(S) Endometrial biopsy. MAIN OUTCOME MEASURE(S) Expression of immunohistochemical staining intensity and localization of ERalpha, ERbeta, and Brx proteins in eutopic endometrium during the menstrual cycle. RESULT(S) Expression of ERalpha and ERbeta was highest in the proliferative phase and was similar in both groups. Brx expression differed between healthy volunteers and those with endometriosis. During the proliferative phase, immunostaining intensity of Brx was greater in both the glandular and the stromal compartments of biopsies from patients with endometriosis compared to healthy volunteers; nuclear stromal Brx staining was more common in patients with endometriosis. CONCLUSION(S) The spatiotemporal expression of Brx was altered in eutopic endometrium of women with endometriosis. These findings suggest a fundamental alteration in the endometrium of women who have endometriosis. The role of Brx in ectopic implantation of endometrium deserves further study.
Collapse
Affiliation(s)
- Rhonda Hearns-Stokes
- Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
The Rho family of small GTPases are important regulators of multiple cellular activities and, most notably, reorganization of the actin cytoskeleton. Dbl-homology (DH)-domain-containing proteins are the classical guanine nucleotide exchange factors (GEFs) responsible for activation of Rho GTPases. However, members of a newly discovered family can also act as Rho-GEFs. These CZH proteins include: CDM (Ced-5, Dock180 and Myoblast city) proteins, which activate Rac; and zizimin proteins, which activate Cdc42. The family contains 11 mammalian proteins and has members in many other eukaryotes. The GEF activity is carried out by a novel, DH-unrelated domain named the DOCKER, CZH2 or DHR2 domain. CZH proteins have been implicated in cell migration, phagocytosis of apoptotic cells, T-cell activation and neurite outgrowth, and probably arose relatively early in eukaryotic evolution.
Collapse
Affiliation(s)
- Nahum Meller
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
106
|
Tse SW, Broderick JA, Wei ML, Luo MH, Smith D, McCaffery P, Stamm S, Andreadis A. Identification, expression analysis, genomic organization and cellular location of a novel protein with a RhoGEF domain. Gene 2005; 359:63-72. [PMID: 16143467 DOI: 10.1016/j.gene.2005.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/17/2005] [Accepted: 06/03/2005] [Indexed: 11/30/2022]
Abstract
In this study we describe the identification and characterization of a novel cytosolic protein of the guanine exchange factor (GEF) family. The human cDNA corresponds to predicted human protein FLJ00128/FLJ10357 located on chromosome 14q11.2. The deduced protein sequence contains in its C-terminus a RhoGEF domain followed by a pleckstrin domain. Its N-terminus, central region and RhoGEF/pleckstrin domain are homologous to the recently identified zebrafish Quattro protein, which is involved in morphogenetic movements mediated by the actin cytoskeleton. Based on the homology of our protein's RhoGEF domain to the RhoGEF domains of Trio, Duo and Duet and its homology with Quattro, we named it Solo. The Solo mRNA is ubiquitously expressed but enriched in brain, its expression peaks perinatally and it undergoes extensive alternative splicing. In both myoblasts and neuroblastoma cells, the Solo protein is concentrated around the nucleus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blood Proteins/genetics
- Blood Proteins/metabolism
- Blotting, Northern
- Blotting, Western
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Cell Line, Tumor
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Gene Expression Profiling
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Immunohistochemistry
- Immunoprecipitation
- Introns
- Male
- Mice
- Molecular Sequence Data
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Rho Guanine Nucleotide Exchange Factors
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Two-Hybrid System Techniques
- tau Proteins/genetics
- tau Proteins/metabolism
Collapse
Affiliation(s)
- Sze-Wah Tse
- Department of Biomedical Sciences, E.K. Shriver Center for Mental Retardation, Waltham, MA 02452, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Cammarano MS, Nekrasova T, Noel B, Minden A. Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol Cell Biol 2005; 25:9532-42. [PMID: 16227603 PMCID: PMC1265798 DOI: 10.1128/mcb.25.21.9532-9542.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/14/2005] [Accepted: 07/29/2005] [Indexed: 12/21/2022] Open
Abstract
Exposure of primary cells to mitogenic stimuli or oncogenes often causes them to undergo premature senescence. This is most likely a protective function that prevents uncontrolled proliferation. Pak4 is a target for the Rho GTPase Cdc42. Pak4 is overexpressed in human tumor cell lines, and it is the only member of the Pak family that is highly transforming in immortalized fibroblasts. Here we show that in primary fibroblasts, activated Pak4 inhibits cell proliferation and promotes premature senescence. Furthermore, Pak4 expression levels are upregulated in response to stimuli that promote senescence. Pak4-induced arrest appears to be mediated by a pathway that requires the ERK mitogen-activated protein kinase, as well as the cell cycle inhibitors p16(INK4) and p19(ARF). These new results describing a role for Pak4 in senescence are important for understanding why this protein is associated with cancer and how it promotes transformation in immortalized cells.
Collapse
Affiliation(s)
- Marta S Cammarano
- Columbia University, Biological Sciences MC 2460, Sherman Fairchild Center, Room 813, 1212 Amsterdam Ave., New York, NY 10027, USA
| | | | | | | |
Collapse
|
108
|
Abstract
Rho, Rac and Cdc42, three members of the Rho family of small GTPases, each control a signal transduction pathway linking membrane receptors to the assembly and disassembly of the actin cytoskeleton and of associated integrin adhesion complexes. Rho regulates stress fibre and focal adhesion assembly, Rac regulates the formation of lamellipodia protrusions and membrane ruffles, and Cdc42 triggers filopodial extensions at the cell periphery. These observations have led to the suggestion that wherever filamentous actin is used to drive a cellular process, Rho GTPases are likely to play an important regulatory role. Rho GTPases have also been reported to control other cellular activities, such as the JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase) cascades, an NADPH oxidase enzyme complex, the transcription factors NF-κB (nuclear factor κB) and SRF (serum-response factor), and progression through G1 of the cell cycle. Thus Rho, Rac and Cdc42 can regulate the actin cytoskeleton and gene transcription to promote co-ordinated changes in cell behaviour. We have been analysing the biochemical contributions of Rho GTPases in cell movement and have found that Rac controls cell protrusion, while Cdc42 controls cell polarity.
Collapse
|
109
|
Hikita T, Qadota H, Tsuboi D, Taya S, Moerman DG, Kaibuchi K. Identification of a novel Cdc42 GEF that is localized to the PAT-3-mediated adhesive structure. Biochem Biophys Res Commun 2005; 335:139-45. [PMID: 16055082 DOI: 10.1016/j.bbrc.2005.07.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
In the model organism Caenorhabditis elegans, UNC-112 is colocalized with PAT-3/beta-integrin and is a critical protein in the formation of PAT-3-mediated adhesive structure in body-wall muscle cells. However, the signaling pathway downstream of PAT-3/UNC-112 is largely unknown. To clarify the signaling pathway from PAT-3/UNC-112 to the actin cytoskeleton, we searched for and identified a novel Dbl homology/pleckstrin homology (DH/PH) domain containing protein, UIG-1 (UNC-112-interacting guanine nucleotide exchange factor-1). UIG-1 was colocalized with UNC-112 at dense bodies in body-wall muscle cells. UIG-1 showed CDC-42-specific GEF activity in vitro and induced filopodia formation in NIH 3T3 cells. Depletion of CDC-42 or PAT-3 in the developmental stage, by RNAi, prevented the formation of continuous actin filament in body-wall muscle cells. Taken together, these results suggest that UIG-1 links a PAT-3/UNC-112 complex to the CDC-42 signaling pathway during muscle formation.
Collapse
Affiliation(s)
- Takao Hikita
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
110
|
Tcherkezian J, Danek EI, Jenna S, Triki I, Lamarche-Vane N. Extracellular signal-regulated kinase 1 interacts with and phosphorylates CdGAP at an important regulatory site. Mol Cell Biol 2005; 25:6314-29. [PMID: 16024771 PMCID: PMC1190322 DOI: 10.1128/mcb.25.15.6314-6329.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho GTPases regulate multiple cellular processes affecting both cell proliferation and cytoskeletal dynamics. Their cycling between inactive GDP- and active GTP-bound states is tightly regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We have previously identified CdGAP (for Cdc42 GTPase-activating protein) as a specific GAP for Rac1 and Cdc42. CdGAP consists of an N-terminal RhoGAP domain and a C-terminal proline-rich region. In addition, CdGAP is a member of the impressively large number of mammalian RhoGAP proteins that is well conserved among both vertebrates and invertebrates. In mice, we find two predominant isoforms of CdGAP differentially expressed in specific tissues. We report here that CdGAP is highly phosphorylated in vivo on serine and threonine residues. We find that CdGAP is phosphorylated downstream of the MEK-extracellular signal-regulated kinase (ERK) pathway in response to serum or platelet-derived growth factor stimulation. Furthermore, CdGAP interacts with and is phosphorylated by ERK-1 and RSK-1 in vitro. A putative DEF (docking for ERK FXFP) domain located in the proline-rich region of CdGAP is required for efficient binding and phosphorylation by ERK1/2. We identify Thr776 as an in vivo target site of ERK1/2 and as an important regulatory site of CdGAP activity. Together, these data suggest that CdGAP is a novel substrate of ERK1/2 and mediates cross talk between the Ras/mitogen-activated protein kinase pathway and regulation of Rac1 activity.
Collapse
Affiliation(s)
- Joseph Tcherkezian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
111
|
Xie X, Chang SW, Tatsumoto T, Chan AML, Miki T. TIM, a Dbl-related protein, regulates cell shape and cytoskeletal organization in a Rho-dependent manner. Cell Signal 2005; 17:461-71. [PMID: 15601624 DOI: 10.1016/j.cellsig.2004.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/08/2004] [Indexed: 11/18/2022]
Abstract
The Dbl-like guanine nucleotide exchange factors (GEFs) have been implicated in direct activation of the Rho family of small GTPases. We previously isolated transforming immortalized mammary (TIM) as a Dbl-like protein. Here, we show that, when expressed in cells, TIM was a potent activator of RhoA. Like activated Rho proteins, expression of TIM potentiated the serum response factor (SRF)- and AP-1-regualted transcriptional activities and activated the SAPK/JNK signaling pathway. In NIH 3T3 cells, TIM induced transforming foci, which was inhibited by the ROCK inhibitor Y-27632 or the dominant negative mutants of Rho proteins. Expression of TIM led to pronounced changes in cell shape and organization of the actin cytoskeleton, including the formation of thick stress fibers at the cell periphery and cell rounding. TIM also promoted redistribution of vinculin-enriched focal adhesions at the cell periphery and increased the phosphorylation of myosin light chain (MLC). These results, taken together, suggest that TIM acts as an upstream regulator for the RhoA/ROCK-mediated cellular functions.
Collapse
Affiliation(s)
- Xiaozhen Xie
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
112
|
Joseph RE, Norris FA. Substrate Specificity and Recognition Is Conferred by the Pleckstrin Homology Domain of the Dbl Family Guanine Nucleotide Exchange Factor P-Rex2. J Biol Chem 2005; 280:27508-12. [PMID: 15897194 DOI: 10.1074/jbc.m412495200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dbl family guanine nucleotide exchange factors (GEFs) are characterized by the presence of a catalytic Dbl homology domain followed invariably by a lipid-binding pleckstrin homology (PH) domain. To date, substrate recognition and specificity of this family of GEFs has been reported to be mediated exclusively via the Dbl homology domain. Here we report the novel and unexpected finding that, in the Dbl family Rac-specific GEF P-Rex2, it is the PH domain that confers substrate specificity and recognition. Moreover, the beta3beta4 loop of the PH domain of P-Rex2 is the determinant for Rac1 recognition, as substitution of the beta3beta4 loop of the PH domain of Dbs (a RhoA- and Cdc42-specific GEF) with that of P-Rex2 confers Rac1-specific binding capability to the PH domain of Dbs. The contact interface between the PH domain of P-Rex2 and Rac1 involves the switch loop and helix 3 of Rac1. Moreover, substitution of helix 3 of Cdc42 with that of Rac1 now enables the PH domain of P-Rex2 to bind this Cdc42 chimera. Despite having the ability to recognize this chimeric Cdc42, P-Rex2 is unable to catalyze nucleotide exchange on Cdc42, suggesting that recognition of substrate and catalysis are two distinct events. Thus substrate recognition can now be added to the growing list of functions that are being attributed to the PH domain of Dbl family GEFs.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
113
|
Rabiner CA, Mains RE, Eipper BA. Kalirin: a dual Rho guanine nucleotide exchange factor that is so much more than the sum of its many parts. Neuroscientist 2005; 11:148-60. [PMID: 15746383 DOI: 10.1177/1073858404271250] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A large number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase activating proteins (GAPs) are used in the CNS to activate specific Rho GTPase family members, thereby inducing various signaling mechanisms that regulate neuronal shape, growth, and plasticity, in part through their effects on the actin cytoskeleton. Kalirin is a large neuronal dual Rho GEF that activates Rac1, RhoA, and RhoG via its two Rho GEF domains. This activation, which is spatially and temporally regulated, allows Kalirin to influence neurite initiation, axonal growth, and dendritic morphogenesis. In addition, this alternatively spliced gene generates developmentally regulated transcripts that yield proteins localized to the postsynaptic density (PSD). Kalirin-7, which interacts with PSD-95, is necessary for dendritic spine formation. In addition, Kalirins have the ability to regulate and influence other aspects of neuronal morphogenesis via protein-protein interactions with their other domains, including many spectrins, other protein and lipid interaction domains, and a potential kinase. These interactions have implications not only for neuronal morphogenesis but also for vesicle trafficking, secretion, neuronal maintenance, and neurodegenerative disease.
Collapse
Affiliation(s)
- Chana A Rabiner
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
114
|
Ma XM, Huang JP, Eipper BA, Mains RE. Expression of Trio, a member of the Dbl family of Rho GEFs in the developing rat brain. J Comp Neurol 2005; 482:333-48. [PMID: 15669055 DOI: 10.1002/cne.20404] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trio, a member of the Dbl family of guanine nucleotide exchange factors (GEFs), has a series of spectrin repeats, two GEF domains, protein interaction domains, and a putative kinase domain, potentially important in neuronal axon guidance and cell migration. Most knowledge about Trio is based on studies of Caenorhabditis elegans and Drosophila, while the function of Trio in vertebrates is unclear. The aim of these experiments was to establish the patterns of Trio expression in the postnatal rat brain. During postnatal (P) development, high levels of Trio mRNA are found in the cerebral cortex, hippocampus, thalamus, caudate/putamen, and olfactory bulb, with lower levels in the septal nucleus, nucleus accumbens, amygdala, and hypothalamus. Except for the cerebellum, Trio mRNA in major brain areas is highest at P1, decreasing gradually during development, with low but detectable levels at P30. In P14 cerebral cortex, pyramidal neurons with strongly staining soma and dendrites are observed primarily in layer 5. In hippocampus, strong staining is observed in pyramidal neurons, granule cells, and isolated interneurons. Cerebellar Purkinje neurons exhibit intense staining in the soma and in extensive dendritic arbors at P7 and P14. Levels of Trio mRNA and the intensity of Trio immunostaining in cerebellar Purkinje cells increase from P1 to P30. Consistent with the in situ hybridization pattern, Western blot analyses show that Trio levels in the hippocampus and cortex are high at P1, decreasing until P30. The data suggest that Trio plays an important role during neuronal development.
Collapse
Affiliation(s)
- Xin-Ming Ma
- University of Connecticut Health Center, Department of Neuroscience, MC-3401, 263 Farmington Ave., Farmington, Connecticut 06030, USA.
| | | | | | | |
Collapse
|
115
|
Wang JB, Wu WJ, Cerione RA. Cdc42 and Ras cooperate to mediate cellular transformation by intersectin-L. J Biol Chem 2005; 280:22883-91. [PMID: 15824104 DOI: 10.1074/jbc.m414375200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc42, a Ras-related GTP-binding protein, has been implicated in the regulation of the actin cytoskeleton, membrane trafficking, cell-cycle progression, and malignant transformation. We have shown previously that a Cdc42 mutant (Cdc42(F28L)), capable of spontaneously exchanging GDP for GTP (referred to as "fast-cycling"), transformed NIH 3T3 cells because of its ability to interfere with epidermal growth factor receptor (EGFR)-Cbl interactions and EGFR down-regulation. To further examine the link between the hyperactivation of Cdc42 and its ability to alter EGFR signaling and thereby cause cellular transformation, we examined the effects of expressing different forms of the Cdc42-specific guanine nucleotide exchange factor, intersectin-L, in fibroblasts. Full-length intersectin-L exhibited little ability to stimulate nucleotide exchange on Cdc42, whereas a truncated version that contained five Src homology 3 (SH3) domains, the Dbl and pleckstrin homology domains (DH and PH domains, respectively), and a C2 domain (designated as SH3A-C2) showed modest guanine nucleotide exchange factor activity, whereas a form containing just the DH, PH, and C2 domains (DH-C2) strongly activated Cdc42. However, DH-C2 showed little ability to stimulate growth in low serum or colony formation in soft agar, whereas SH3A-C2 gave rise to a much stronger stimulation of cell growth in low serum and was highly effective in stimulating colony formation. Moreover, although SH3A-C2 strongly transformed fibroblasts, it differed from the actions of the Cdc42(F28L) mutant, as SH3A-C2 showed little ability to alter EGFR levels or the lifetime of EGF-coupled signaling through ERK. Rather, we found that SH3A-C2 exhibited strong transforming activity through its ability to mediate cooperation between Ras and Cdc42.
Collapse
Affiliation(s)
- Jian-Bin Wang
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
116
|
Kauppinen KP, Duan F, Wels JI, Manor D. Regulation of the Dbl proto-oncogene by heat shock cognate protein 70 (Hsc70). J Biol Chem 2005; 280:21638-44. [PMID: 15802271 DOI: 10.1074/jbc.m413984200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dbl oncogene product is the defining member of a family of onco-proteins known as Dbl guanine nucleotide exchange factors (GEFs) that facilitate the activation of the small GTP-binding proteins Cdc42, Rac, and Rho. Oncogenic activation of proto-Dbl occurs through loss of the amino-terminal 497 residues, rendering the protein constitutively active. Because both onco- and proto-Dbl contain the structural elements required for GEF activity (i.e. the Dbl homology (DH) and pleckstrin homology (PH) domains), it is thought that the amino terminus of proto-Dbl somehow inhibits the biochemical activity of the protein. To better understand the molecular basis of this regulation, we set forth to identify cellular proteins that preferentially bind the proto-oncogenic form of Dbl. We identified the molecular chaperone heat shock cognate protein (Hsc70) as a binding partner that preferentially interacts with the proto-oncogenic form of Dbl. Dbl is complexed with Hsc70 in transfected cells, as well as in native mouse brain extracts. The interaction between Hsc70 and proto-Dbl is mediated by at least two regions in Dbl, the aminoterminal spectrin homology domain (residues 224-417) and the pleckstrin homology domain (residues 711-808). Overexpression of a dominant negative Hsc70 mutant leads to activation of proto-Dbl GEF activity, indicating that the chaperone negatively regulates proto-Dbl function in vivo. We propose that Hsc70 attenuates Dbl activity by maintaining an inactive conformation in which the amino terminus is "folded over" the catalytic DH-PH domain.
Collapse
Affiliation(s)
- Krista P Kauppinen
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
117
|
Fleming I, Batty I, Prescott A, Gray A, Kular G, Stewart H, Downes C. Inositol phospholipids regulate the guanine-nucleotide-exchange factor Tiam1 by facilitating its binding to the plasma membrane and regulating GDP/GTP exchange on Rac1. Biochem J 2005; 382:857-65. [PMID: 15242348 PMCID: PMC1133961 DOI: 10.1042/bj20040916] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/02/2004] [Accepted: 07/09/2004] [Indexed: 11/17/2022]
Abstract
Binding of the Rac1-specific guanine-nucleotide-exchange factor, Tiam1, to the plasma membrane requires the N-terminal pleckstrin homology domain. In the present study, we show that membrane-association is mediated by binding of PtdIns(4,5)P(2) to the pleckstrin homology domain. Moreover, in 1321N1 astrocytoma cells, translocation of Tiam1 to the cytosol, following receptor-mediated stimulation of PtdIns(4,5)P(2) breakdown, correlates with decreased Rac1-GTP levels, indicating that membrane-association is required for GDP/GTP exchange on Rac1. In addition, we show that platelet-derived growth factor activates Rac1 in vivo by increasing PtdIns(3,4,5)P(3) concentrations, rather than the closely related lipid, PtdIns(3,4)P(2). Finally, the data demonstrate that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) bind to the same pleckstrin homology domain in Tiam1 and that soluble inositol phosphates appear to compete with lipids for this binding. Together, these novel observations provide strong evidence that distinct phosphoinositides regulate different functions of this enzyme, indicating that local concentrations of signalling lipids and the levels of cytosolic inositol phosphates will play crucial roles in determining its activity in vivo.
Collapse
Affiliation(s)
- Ian N. Fleming
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
- To whom correspondence should be addressed, at the present address Cyclacel Ltd, James Lindsay Place, Dundee, Scotland DD1 5JJ, U.K. (email )
| | - Ian H. Batty
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Alan R. Prescott
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Alex Gray
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Gursant S. Kular
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Hazel Stewart
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - C. Peter Downes
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| |
Collapse
|
118
|
Aguilar-Rojas A, Almaraz-Barrera MDJ, Krzeminski M, Robles-Flores M, Hernández-Rivas R, Guillén N, Maroun RC, Vargas M. Entamoeba histolytica: inhibition of cellular functions by overexpression of EhGEF1, a novel Rho/Rac guanine nucleotide exchange factor. Exp Parasitol 2005; 109:150-62. [PMID: 15713446 DOI: 10.1016/j.exppara.2004.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 12/08/2004] [Accepted: 12/13/2004] [Indexed: 12/18/2022]
Abstract
The molecular, biochemical, and cellular characterization of EhGEF1 protein is described. Complete cDNA sequence of 1890 bp revealed an open reading frame that encodes a protein of 69 kDa. EhGEF1 is constituted of Dbl homology domain, pleckstrin homology domain, and several putative regulation sites. Studies of guanine nucleotide exchange activity of EhGEF1 on several GTPases from Entamoeba histolytica and Homo sapiens showed preferential activation on EhRacG, suggesting that EhGEF1 protein could be involved in mechanisms related to actin cytoskeleton activation, cytokinesis, capping, and uroid formation in trophozoite. Confocal microscopy studies of pExEhNeo/HSV-tagged-EhGEF1-transfected cells showed that trophozoites stimulated with ConA, EhGEF1, and EhRacG were localized at plasma membrane. Cellular studies showed that F-actin content of pExEhNeo/HSV-tagged-EhGEF1-transfected trophozoites as well as cellular migration and cell damage capacity were significantly altered. The observations suggest that EhRacG was the principal target of EhGEF1 and that EhGEF1 may provide a link between F-actin dynamics and EhRacG signaling.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios, Avanzados del IPN, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 2005; 202:536-53. [PMID: 15316932 DOI: 10.1002/jcp.20151] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Signaling events, including Rho GTPases and protein kinase C (PKC), are involved in cardiac hypertrophy. However, the mechanisms by which these pathways cooperate during the hypertrophic process remain unclear. Using an in vitro cyclic stretch model with neonatal rat cardiomyocytes, we demonstrated that stretch-induced activation of RhoA, Rac1/Cdc42, and phosphorylation of Rho-guanine nucleotide dissociation inhibitor (GDI) were prevented by inhibition or depletion of PKC, using chelerythrine and phorbol 12-myristate 13-acetate, indicating that phorbol ester-sensitive PKC isozymes may be upstream regulators of Rho GTPases. Using adenoviral-mediated gene transfer of wild-type (WT) and dominant-negative (DN) mutants of PKCalpha and delta, we found that stretch-induced activation of Rho GTPases and phosphorylation of Rho-GDI were mainly regulated by PKCalpha. PKCdelta was involved in regulation of the activation of Rac1. Stretch-induced increases in [(3)H]-leucine incorporation, myofibrillar reorganization and cell size, were blocked by inhibition of Rho GTPases, or overexpression of DN PKCalpha and delta, suggesting that PKCalpha and delta are both required in stretch-induced hypertrophy, through Rho GTPases-mediated signaling pathways. The mechanism, whereby PKC and Rho GTPases regulate hypertrophy, was associated with mitogen-activated protein (MAP) kinases. Stretch-stimulated phosphorylation of MEK1/ERK1/2 and MKK4/JNK was inhibited by overexpression of DN PKCalpha and delta, and that of MKK3/p38 inhibited by DN PKCdelta. The phosphorylation of ERK and JNK induced by overexpression of WT PKCalpha, and the phosphorylation of p38 induced by WT PKCdelta, were regulated by Rho GTPases. This study represents the first evidence that PKCalpha and delta are important regulators in mediating activation of Rho GTPases and MAP kinases, in the cyclic stretch-induced hypertrophic process.
Collapse
Affiliation(s)
- Jing Pan
- Division of Molecular Cardiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, College of Medicine, Temple, Texas 76504, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Paruchuri S, Broom O, Dib K, Sjölander A. The pro-inflammatory mediator leukotriene D4 induces phosphatidylinositol 3-kinase and Rac-dependent migration of intestinal epithelial cells. J Biol Chem 2005; 280:13538-44. [PMID: 15657050 DOI: 10.1074/jbc.m409811200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammatory bowel diseases are associated with increased risk of developing colon cancer. A possible role of the pro-inflammatory leukotriene D4 (LTD4) in this process has been implicated by the findings that LTD4 can signal increased proliferation and survival, both hallmarks of a cancer cell, in non-transformed intestinal epithelial cells. Here we make the novel finding that LTD4 can also signal increased motility in these cells. In parallel, we found that LTD4 induced a simultaneous transient 10-fold increase in Rac but not Cdc42 activity. These data were also supported by the ability of LTD4 to activate the Rac GDP/GTP exchange factor Vav2. Further, LTD4 triggered a 3-fold transient increase in phosphatidylinositol 3-kinase (PI3K) phosphorylation, a possible upstream activator of the Vav2/Rac signaling pathway. The activation of Rac was blocked by the PI3K inhibitors LY294002 and wortmannin and by transfection of a kinase-negative mutant of PI3K or a dominant-negative form of Vav2. Furthermore, Rac was found to co-localize with actin in LTD4-generated membrane ruffles that were formed by a PI3K-dependent mechanism. In accordance, the inhibition of the PI3K and Rac signaling pathway also blocked the LTD4-induced migration of the intestinal cells. The present data reveal that an inflammatory mediator such as LTD4 cannot only increase proliferation and survival of non-transformed intestinal epithelial cells but also, via a PI3K/Rac signaling pathway, trigger a motile response in such cells. These data demonstrate the capacity of inflammatory mediators to participate in the process by which inflammatory bowel conditions increase the risk for colon cancer development.
Collapse
Affiliation(s)
- Sailaja Paruchuri
- Experimental Pathology, Department of Laboratory Medicine, Lund University, University Hospital Malmö, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
121
|
Chen Z, Singer WD, Sternweis PC, Sprang SR. Structure of the p115RhoGEF rgRGS domain–Gα13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nat Struct Mol Biol 2005; 12:191-7. [PMID: 15665872 DOI: 10.1038/nsmb888] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 11/23/2004] [Indexed: 11/08/2022]
Abstract
p115RhoGEF, a guanine nucleotide exchange factor (GEF) for Rho GTPase, is also a GTPase-activating protein (GAP) for G12 and G13 heterotrimeric Galpha subunits. The GAP function of p115RhoGEF resides within the N-terminal region of p115RhoGEF (the rgRGS domain), which includes a module that is structurally similar to RGS (regulators of G-protein signaling) domains. We present here the crystal structure of the rgRGS domain of p115RhoGEF in complex with a chimera of Galpha13 and Galphai1. Two distinct surfaces of rgRGS interact with Galpha. The N-terminal betaN-alphaN hairpin of rgRGS, rather than its RGS module, forms intimate contacts with the catalytic site of Galpha. The interface between the RGS module of rgRGS and Galpha is similar to that of a Galpha-effector complex, suggesting a role for the rgRGS domain in the stimulation of the GEF activity of p115RhoGEF by Galpha13.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
122
|
Nishikimi A, Meller N, Uekawa N, Isobe KI, Schwartz MA, Maruyama M. Zizimin2: a novel, DOCK180-related Cdc42 guanine nucleotide exchange factor expressed predominantly in lymphocytes. FEBS Lett 2005; 579:1039-46. [PMID: 15710388 DOI: 10.1016/j.febslet.2005.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/28/2004] [Accepted: 01/04/2005] [Indexed: 01/31/2023]
Abstract
A novel superfamily of guanine nucleotide exchange factors for Rho GTPases includes DOCK180 and zizimin1. The zizimin subfamily includes three genes of which only zizimin1 has been cloned. We report here the cloning of zizimin2, identified in a screen for genes enriched in germinal center B cells. Zizimin2 and zizimin1 have similar primary structures and both proteins bound and activated Cdc42 but not the Cdc42-related proteins TC10 or TCL. Their tissue distributions are distinct, however, with zizimin2 expressed predominantly in lymphocytes and an opposite pattern for zizimin1. Zizimin3 was also analyzed and showed distinct GTPase specificity and tissue distribution.
Collapse
Affiliation(s)
- Akihiko Nishikimi
- Laboratory of Experimental Animal Model Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo, Morioka-Cho, Obu-city, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
123
|
Kostenko EV, Mahon GM, Cheng L, Whitehead IP. The Sec14 Homology Domain Regulates the Cellular Distribution and Transforming Activity of the Rho-specific Guanine Nucleotide Exchange Factor Dbs. J Biol Chem 2005; 280:2807-17. [PMID: 15531584 DOI: 10.1074/jbc.m411139200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose overexpression cause deregulated growth in murine fibroblasts. Dbs contains multiple recognizable motifs including a centrally located Rho-specific guanine nucleotide exchange factor domain, a COOH-terminal Src homology 3 domain, two spectrin-like repeats, and a recently identified NH(2)-terminal Sec14 homology domain. The transforming potential of Dbs is substantially activated by the removal of inhibitory sequences that lie outside of the core catalytic sequences, and in this current study we mapped this inhibition to the Sec14 domain. Surprisingly removal of the NH(2) terminus did not alter the catalytic activity of Dbs in vivo but rather altered its subcellular distribution. Whereas full-length Dbs was distributed primarily in a perinuclear structure that coincides with a marker for the Golgi apparatus, removal of the Sec14 domain was associated with translocation of Dbs to the cell periphery where it accumulated within membrane ruffles and lamellipodia. However, translocation of Dbs and the concomitant changes in the actin cytoskeleton were not sufficient to fully activate Dbs transformation. The Sec14 domain also forms intramolecular contacts with the pleckstrin homology domain, and these contacts must also be relieved to achieve full transforming activity. Collectively these observations suggest that the Sec14 domain regulates Dbs transformation through at least two distinct mechanisms, neither of which appears to directly influence the in vivo exchange activity of the protein.
Collapse
Affiliation(s)
- Elena V Kostenko
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
124
|
van Galen EJM, Ramakers GJA. Rho proteins, mental retardation and the neurobiological basis of intelligence. PROGRESS IN BRAIN RESEARCH 2005; 147:295-317. [PMID: 15581714 DOI: 10.1016/s0079-6123(04)47022-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For several decades it has been known that mental retardation is associated with abnormalities in dendrites and dendritic spines. The recent cloning of eight genes which cause nonspecific mental retardation when mutated, provides an important insight into the cellular mechanisms that result in the dendritic abnormalities underlying mental retardation. Three of the encoded proteins, oligophrenin1, PAK3 and alphaPix, interact directly with Rho GTPases. Rho GTPases are key signaling proteins which integrate extracellular and intracellular signals to orchestrate coordinated changes in the actin cytoskeleton, essential for directed neurite outgrowth and the generation/rearrangement of synaptic connectivity. Although many details of the cell biology of Rho signaling in the CNS are as yet unclear, a picture is unfolding showing how mutations that cause abnormal Rho signaling result in abnormal neuronal connectivity which gives rise to deficient cognitive functioning in humans.
Collapse
Affiliation(s)
- Elly J M van Galen
- Neurons and Networks Research Group, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| | | |
Collapse
|
125
|
Zinovyeva M, Sveshnikova E, Visser J, Belyavsky A. Molecular cloning, sequence and expression pattern analysis of the mouse orthologue of the leukemia-associated guanine nucleotide exchange factor. Gene 2004; 337:181-8. [PMID: 15276214 DOI: 10.1016/j.gene.2004.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/02/2004] [Accepted: 05/06/2004] [Indexed: 11/20/2022]
Abstract
Guanine nucleotide exchange factors (GEFs) of the Dbl family activate Rho proteins and thereby participate in diverse signaling pathways involving this family of small GTPases. However, specific role of Dbl-GEFs in developmental processes, particularly cell differentiation, remains largely unexplored. Recently, a novel member of the Dbl family, leukemia-associated Rho GEF factor (LARG), has been reported to be a fusion partner with mixed-lineage leukemia (MLL) protein in the acute myeloid leukemia, suggesting potential involvement of LARG in regulation of hematopoiesis. In this study, we describe the isolation of the cDNA copy and analysis of genomic structure and expression profile of the mouse orthologue of the human LARG gene. The mouse LARG (mLARG) gene contains 42 exons. The mLARG cDNA is 10,040 bp long and contains a 4631-bp open reading frame (ORF). The predicted mLARG protein shares an overall 89% identity with its human counterpart and contains the same functional domains, namely, Dbl homology (DH), pleckstrin homology (PH), PSD-95, Dlg and ZO-1/2 (PDZ) and regulator of G protein signaling (RGS) domains, as well as two putative signals of nuclear localization. The mLARG message is expressed in all tissues studied, with comparably higher expression levels observed in brain, lung, testis, liver and heart. Using amplified cDNA samples from sorted hematopoietic cells, we showed that mLARG is highly expressed in hematopoietic stem cell fractions, as well as in immature erythroid cells. These results demonstrate high similarity between mouse and human LARG proteins and genes and provide further support to the hypothesis of the potential involvement of LARG in regulation of early stages of hematopoiesis.
Collapse
Affiliation(s)
- Marina Zinovyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
126
|
Yin J, Haney L, Walk S, Zhou S, Ravichandran KS, Wang W. Nuclear localization of the DOCK180/ELMO complex. Arch Biochem Biophys 2004; 429:23-9. [PMID: 15288806 DOI: 10.1016/j.abb.2004.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 05/18/2004] [Indexed: 10/26/2022]
Abstract
DOCK180 protein plays a key role during development, cell motility, and phagocytosis. It forms a complex with another protein ELMO, and this complex acts as a guanine nucleotide exchange factor (GEF) for Rac. However, DOCK180-containing complexes have not been purified by unbiased biochemical approaches, and the nature and subcellular localization of these complexes remain unclear. Here, we show that a large fraction of endogenous DOCK180 is present as a 700kDa nuclear complex with ELMO proteins. In addition, this nuclear DOCK180/ELMO complex has functional Rac-GEF activity. Furthermore, endogenous DOCK180 could be found in complexes with different ELMO isoforms (ELMO1, 2 or 3) in different cell lines, depending on the ELMO isoforms expressed. These studies suggest that DOCK180 may associate with different ELMO proteins to form cell-type specific complexes and may have functions in both the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Jinhu Yin
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MA 21224, USA
| | | | | | | | | | | |
Collapse
|
127
|
Delprato A, Merithew E, Lambright DG. Structure, Exchange Determinants, and Family-Wide Rab Specificity of the Tandem Helical Bundle and Vps9 Domains of Rabex-5. Cell 2004; 118:607-17. [PMID: 15339665 DOI: 10.1016/j.cell.2004.08.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 07/07/2004] [Accepted: 07/13/2004] [Indexed: 12/11/2022]
Abstract
The Rab5 GTPase, an essential regulator of endocytosis and endosome biogenesis, is activated by guanine-nucleotide exchange factors (GEFs) that contain a Vps9 domain. Here, we show that the catalytic core of the Rab GEF Rabex-5 has a tandem architecture consisting of a Vps9 domain stabilized by an indispensable helical bundle. A family-wide analysis of Rab specificity demonstrates high selectivity for Rab5 subfamily GTPases. Conserved exchange determinants map to a common surface of the Vps9 domain, which recognizes invariant aromatic residues in the switch regions of Rab GTPases and selects for the Rab5 subfamily by requiring a small nonacidic residue preceding a critical phenylalanine in the switch I region. These and other observations reveal unexpected similarity with the Arf exchange site in the Sec7 domain.
Collapse
Affiliation(s)
- Anna Delprato
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
128
|
Weiss-Haljiti C, Pasquali C, Ji H, Gillieron C, Chabert C, Curchod ML, Hirsch E, Ridley AJ, Hooft van Huijsduijnen R, Camps M, Rommel C. Involvement of phosphoinositide 3-kinase gamma, Rac, and PAK signaling in chemokine-induced macrophage migration. J Biol Chem 2004; 279:43273-84. [PMID: 15292195 DOI: 10.1074/jbc.m402924200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In macrophages, chemotactic stimuli cause the activation of Rac and PAK, but little is known about the signaling pathways involved and their role in chemotactic gradient sensing. Herein, we report that in macrophages, the chemokine RANTES (regulated on activation normal T cell expressed and secreted)/CCL5 activates the small GTPase Rac and its downstream target PAK2 within seconds. This response depends on Gi activation and largely on the subsequent triggering of phosphoinositide 3-kinase gamma (PI3Kgamma) and Rac. Retroviral transduction of tagged Rac1 and -2 indicates that RANTES/CCL5-mediated activation of PI3Kgamma triggers Rac1 but not Rac2. In agreement, silencing of Rac1 by shRNA blocks PAK2 activity and inhibits RANTES/CCL5-induced macrophage polarization and directional migration. On the other hand, the tyrosine kinase receptor agonist CSF-1 activates PAK2 independently of PI3Kgamma and Rac. Our results thus demonstrate a chemokine-specific signaling pathway in which Gi and PI3Kgamma coordinate to drive Rac1 and PAK2 activation that eventually controls the chemotactic response.
Collapse
Affiliation(s)
- Cornelia Weiss-Haljiti
- Serono Pharmaceutical Research Institute, Serono International S.A., 14 Chemin des Aulx, CH 1228 Plan-les-Ouates, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Meller N, Irani-Tehrani M, Ratnikov BI, Paschal BM, Schwartz MA. The novel Cdc42 guanine nucleotide exchange factor, zizimin1, dimerizes via the Cdc42-binding CZH2 domain. J Biol Chem 2004; 279:37470-6. [PMID: 15247287 DOI: 10.1074/jbc.m404535200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rho family small GTPases are critical regulators of multiple cellular processes and activities. Dbl homology domain-containing proteins are the classical guanine nucleotide exchange factors (GEFs) responsible for activation of Rho proteins. Recently another group of mammalian Rho-GEFs was discovered that includes CDM (Ced-5, DOCK180, Myoblast city) proteins that activate Rac and zizimin1 that activates Cdc42 via a nonconventional GEF module that we named the CZH2 domain. We report here that zizimin1 dimerizes via the CZH2 domain and that dimers are the only form detected. Dimerization was mapped to a approximately 200-amino acid region that overlaps but is distinct from the Cdc42-binding sequences. Rotary shadowing electron microscopy revealed zizimin1 to be a symmetric, V-shaped molecule. Experiments with DOCK180 and homology analysis suggest that dimerization may be a general feature of CZH proteins. Deletion and mutation analysis indicated existence of individual Cdc42-binding sites in the zizimin1 monomers. Kinetic measurements demonstrated increased binding affinity of Cdc42 to zizimin1 at higher Cdc42 concentration, suggesting positive cooperativity. These features are likely to be critical for Cdc42 activation.
Collapse
Affiliation(s)
- Nahum Meller
- Cardiovascular Research Center and Department of Microbiology, Mellon Prostate Cancer Institute, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
130
|
Skowronek KR, Guo F, Zheng Y, Nassar N. The C-terminal basic tail of RhoG assists the guanine nucleotide exchange factor trio in binding to phospholipids. J Biol Chem 2004; 279:37895-907. [PMID: 15199069 DOI: 10.1074/jbc.m312677200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidomain protein Trio regulates among others neuronal outgrowth and axonal guidance in vertebrates and invertebrates. Trio contains two Dbl-homology/pleckstrin homology (DH/PH) tandem domains that activate several RhoGTPases. Here, we present the x-ray structure of the N-terminal DH/PH, hereafter TrioN, refined to 1.7-A resolution. We show that the relative orientations of the DH and PH domains of TrioN and free Dbs are similar. However, this relative orientation is dissimilar to Dbs in the Dbs/Cdc42 structure. In vitro nucleotide exchange experiments catalyzed by TrioN show that RhoG is approximately 3x more efficiently exchanged than Rac and support the conclusion that RhoG is likely the downstream target of TrioN. Residues 54 and 69, which are not conserved between the two GTPases, are responsible for this specificity. Dot-blot assay reveals that the TrioN-PH domain does not detectably bind phosphatidylinositol 3,4-bisphosphate, PtdIns(3,4)P(2), or other phospholipids. This finding is supported by our three-dimensional structure and affinity binding experiments. Interestingly, the presence of RhoG but not Rac or a C-terminal-truncated RhoG mutant allows TrioN to bind PtdIns(3,4)P(2) with a micromolar affinity constant. We conclude the variable C-terminal basic tail of RhoG specifically assists the recruitment of the TrioN-PH domain to specific membrane-bound phospholipids. Our data suggest a role for the phosphoinositide 3-kinase, PI 3-kinase, in modulating the Trio/RhoG signaling pathway.
Collapse
Affiliation(s)
- Karlheinz R Skowronek
- Department of Physiology and Biophysics, Stony Brook University, Health Sciences Center, Stony Brook, New York 11794-8661, USA
| | | | | | | |
Collapse
|
131
|
Seye CI, Yu N, González FA, Erb L, Weisman GA. The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 2004; 279:35679-86. [PMID: 15175347 DOI: 10.1074/jbc.m401799200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UTP stimulates the expression of pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells through activation of the P2Y(2) nucleotide receptor P2Y(2)R. Here, we demonstrated that activation of the P2Y(2)R induced rapid tyrosine phosphorylation of vascular endothelial growth factor receptor (VEGFR)-2 in human coronary artery endothelial cells (HCAEC). RNA interference targeting VEGFR-2 or inhibition of VEGFR-2 tyrosine kinase activity abolishes P2Y(2)R-mediated VCAM-1 expression. Furthermore, VEGFR-2 and the P2Y(2)R co-localize upon UTP stimulation. Deletion or mutation of two Src homology-3-binding sites in the C-terminal tail of the P2Y(2)R or inhibition of Src kinase activity abolished the P2Y(2)R-mediated transactivation of VEGFR-2 and subsequently inhibited UTP-induced VCAM-1 expression. Moreover, activation of VEGFR-2 by UTP leads to the phosphorylation of Vav2, a guanine nucleotide exchange factor for Rho family GTPases. Using a binding assay to measure the activity of the small GTPases Rho, we found that stimulation of HCAEC by UTP increased the activity of RhoA and Rac1 (but not Cdc42). Significantly, a dominant negative form of RhoA inhibited P2Y(2)R-mediated VCAM-1 expression, whereas expression of dominant negative forms of Cdc42 and Rac1 had no effect. These data indicate a novel mechanism whereby a nucleotide receptor transactivates a receptor tyrosine kinase to generate an inflammatory response associated with atherosclerosis.
Collapse
Affiliation(s)
- Cheikh I Seye
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
| | | | | | | | | |
Collapse
|
132
|
Curtis C, Hemmeryckx B, Haataja L, Senadheera D, Groffen J, Heisterkamp N. Scambio, a novel guanine nucleotide exchange factor for Rho. Mol Cancer 2004; 3:10. [PMID: 15107133 PMCID: PMC420252 DOI: 10.1186/1476-4598-3-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 04/23/2004] [Indexed: 12/17/2022] Open
Abstract
Background Small GTPases of the Rho family are critical regulators of various cellular functions including actin cytoskeleton organization, activation of kinase cascades and mitogenesis. For this reason, a major objective has been to understand the mechanisms of Rho GTPase regulation. Here, we examine the function of a novel protein, Scambio, which shares homology with the DH-PH domains of several known guanine nucleotide exchange factors for Rho family members. Results Scambio is located on human chromosome 14q11.1, encodes a protein of around 181 kDa, and is highly expressed in both heart and skeletal muscle. In contrast to most DH-PH-domain containing proteins, it binds the activated, GTP-bound forms of Rac and Cdc42. However, it fails to associate with V14RhoA. Immunofluorescence studies indicate that Scambio and activated Rac3 colocalize in membrane ruffles at the cell periphery. In accordance with these findings, Scambio does not activate either Rac or Cdc42 but rather, stimulates guanine nucleotide exchange on RhoA and its close relative, RhoC. Conclusion Scambio associates with Rac in its activated conformation and functions as a guanine nucleotide exchange factor for Rho.
Collapse
Affiliation(s)
- Christina Curtis
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
- Current address: Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA 90089, USA
| | - Bianca Hemmeryckx
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
| | - Leena Haataja
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
- Current address: Larry Hillblom Islet Research Center, UCLA Division of Endocrinology, Los Angeles, CA 90095-7073, USA
| | - Dinithi Senadheera
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
| | - John Groffen
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
| | - Nora Heisterkamp
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute and the Keck School of Medicine of the University of Southern California, Los Angeles, California 90027, USA
| |
Collapse
|
133
|
Mavrakis KJ, McKinlay KJ, Jones P, Sablitzky F. DEF6, a novel PH-DH-like domain protein, is an upstream activator of the Rho GTPases Rac1, Cdc42, and RhoA. Exp Cell Res 2004; 294:335-44. [PMID: 15023524 DOI: 10.1016/j.yexcr.2003.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 12/11/2003] [Accepted: 12/12/2003] [Indexed: 11/19/2022]
Abstract
In this paper, we describe the characterization of DEF6, a novel PH-DH-like protein related to SWAP-70 that functions as an upstream activator of Rho GTPases. In NIH 3T3 cells, stimulation of the PI 3-kinase signaling pathway with either H2O2 or platelet-derived growth factor (PDGF) resulted in the translocation of an overexpressed DEF6-GFP fusion protein to the cell membrane and induced the formation of filopodia and lamellipodia. In contrast to full-length DEF6, expression of the DH-like (DHL) domain as a GFP fusion protein potently induced actin polymerization, including stress fiber formation in COS-7 cells, in the absence of PI 3-kinase signaling, indicating that it was constitutively active. The GTP-loading of Cdc42 was strongly enhanced in NIH 3T3 cells expressing the DH domain while filopodia formation, membrane ruffling, and stress fiber formation could be inhibited by the co-expression of the DH domain with dominant negative mutants of either N17Rac1, N17Cdc42, or N19RhoA, respectively. This indicated that DEF6 acts upstream of the Rho GTPases resulting in the activation of the Cdc42, Rac1, and RhoA signaling pathways. In vitro, DEF6 specifically interacted with Rac1, Rac2, Cdc42, and RhoA, suggesting a direct role for DEF6 in the activation of Rho GTPases. The ability of DEF6 to both stimulate actin polymerization and bind to filamentous actin suggests a role for DEF6 in regulating cell shape, polarity, and movement.
Collapse
Affiliation(s)
- Konstantinos J Mavrakis
- Institute of Genetics, Queen's Medical Centre, School of Biology, The University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
134
|
Cheng L, Mahon GM, Kostenko EV, Whitehead IP. Pleckstrin Homology Domain-mediated Activation of the Rho-specific Guanine Nucleotide Exchange Factor Dbs by Rac1. J Biol Chem 2004; 279:12786-93. [PMID: 14701795 DOI: 10.1074/jbc.m313099200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose expression causes deregulated growth in NIH 3T3 mouse fibroblasts. Although Rac1 has not been shown to be a substrate for Dbs in either in vitro or in vivo assays, the Rat ortholog of Dbs (Ost) has been shown to bind specifically to GTP.Rac1 in vitro. The dependence of the Rac1/Dbs interaction on GTP suggests that Dbs may in fact be an effector for Rac1. Here we show that the interaction between activated Rac1 and Dbs can be recapitulated in mammalian cells and that the Rac1 docking site resides within the pleckstrin homology domain of Dbs. This interaction is specific for Rac1 and is not observed between Rac1 and several other members of the Rho-specific guanine nucleotide exchange factor family. Co-expression of Dbs with activated Rac1 causes enhanced focus forming activity and elevated levels of GTP.RhoA in NIH 3T3 cells, indicating that Dbs is activated by the interaction. Consistent with this, activated Rac1 co-localizes with Dbs in NIH 3T3 cells, and natively expressed Rac1 relocalizes in response to Dbs expression. To summarize, we have characterized a surprisingly direct pleckstrin homology domain-mediated mechanism through which Rho GTPases can become functionally linked.
Collapse
Affiliation(s)
- Li Cheng
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
135
|
Chikumi H, Barac A, Behbahani B, Gao Y, Teramoto H, Zheng Y, Gutkind JS. Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 2004; 23:233-40. [PMID: 14712228 DOI: 10.1038/sj.onc.1207012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PDZ-RhoGEF, LARG, and p115RhoGEF are members of a newly identified family of Rho-guanine nucleotide exchange factors (GEFs) exhibiting a unique structural feature consisting of the presence of an area of similarity to regulators of G protein signaling (RGS). This RGS-like (RGL) domain provides a functional motif by which Galpha(12) and Galpha(13) can bind and regulate the activity of these RhoGEFs, thus providing a direct link from these heterotrimeric G proteins to Rho. PDZ-RhoGEF and LARG can also be phosphorylated by tyrosine kinases, including FAK, and associate with Plexin B, a semaphorin receptor, which controls axon guidance during development, through their PDZ domain, thereby stimulating Rho. Interestingly, while characterizing a PDZ-RhoGEF antiserum, we found that a transfected PDZ-RhoGEF construct associated with the endogenous PDZ-RhoGEF. Indeed, we observed that PDZ-RhoGEF and LARG can form homo- and hetero-oligomers, whereas p115RhoGEF can only homo-oligomerize, and that this intermolecular interaction was mediated by their unique C-terminal regions. Deletion of the C-terminal tail of PDZ-RhoGEF had no significant effect on the GEF catalytic activity towards Rho in vitro, but resulted in a drastic increase in the ability to stimulate a serum response element reporter and the accumulation of the GTP-bound Rho in vivo. Furthermore, removal of the C-termini of each of the three RGL-containing GEFs unleashed their full transforming potential. Together, these findings suggest the existence of a novel mechanism controlling the activity of PDZ-RhoGEF, LARG, and p115RhoGEF, which involves homo- and hetero-oligomerization through their inhibitory C-terminal region.
Collapse
Affiliation(s)
- Hiroki Chikumi
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Debreceni B, Gao Y, Guo F, Zhu K, Jia B, Zheng Y. Mechanisms of Guanine Nucleotide Exchange and Rac-mediated Signaling Revealed by a Dominant Negative Trio Mutant. J Biol Chem 2004; 279:3777-86. [PMID: 14597635 DOI: 10.1074/jbc.m308282200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rho family GTPases play important roles in a variety of cellular processes, including actin cytoskeleton reorganization, transcription activation, and DNA synthesis. Dominant negative mutants of Rho GTPases, such as T17NRac1, that block the endogenous Rho protein activation by sequestering upstream guanine nucleotide exchange factors (GEFs) have been widely used to implicate specific members of the Rho family in various signaling pathways. We show here that such an approach could produce potentially misleading results since many Rho GEFs can interact with multiple Rho proteins promiscuously, and overexpression of one dominant negative Rho protein mutant may affect the activity of other members of the Rho family. Based on the available structural information, we have identified the highly conserved amino acid pairing of Asn(1406)Trio-Asp(65)Rac1 of the GEF-Rho GTPase interaction as the critical catalytic machinery required for the Rac1 GDP/GTP exchange reaction. The N1406A/D1407A mutant of Trio acted dominant negatively in vitro by retaining Rac1 binding activity but losing GEF catalytic activity and competitively inhibited Rac1 activation by wild type Trio. It readily blocked the platelet-derived growth factor (PDGF)-induced lamellipodia formation and inhibited the wild type Trio-induced serum response factor activation. Moreover the mutant was able to selectively inhibit Dbl-induced Rac1 activation without affecting RhoA activity in cells. In contrast to the non-discriminative inhibitory effect displayed by T17NRac1, the Trio mutant was ineffective in inhibiting PDGF-stimulated DNA synthesis and Dbl-induced transformation, revealing the Rac-independent functions of PDGF and Dbl. These studies identify a conserved pair of amino acid residues of the Trio-Rac interaction that is likely to be essential to the GEF catalysis of Rho family GTPases and demonstrate that a dominant negative mutant derived from a Rho GTPase regulator constitutes a new generation of specific inhibitors of Rho GTPase signaling pathways.
Collapse
Affiliation(s)
- Balazs Debreceni
- Division of Experimental Hematology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
137
|
Saito S, Liu XF, Kamijo K, Raziuddin R, Tatsumoto T, Okamoto I, Chen X, Lee CC, Lorenzi MV, Ohara N, Miki T. Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. J Biol Chem 2003; 279:7169-79. [PMID: 14645260 DOI: 10.1074/jbc.m306725200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human ECT2 protooncogene encodes a guanine nucleotide exchange factor for the Rho GTPases and regulates cytokinesis. Although the oncogenic form of ECT2 contains an N-terminal truncation, it is not clear how the structural abnormality of ECT2 causes malignant transformation. Here we show that both the removal of the negative regulatory domain and alteration of subcellular localization are required to induce the oncogenic activity of ECT2. The transforming activity of oncogenic ECT2 was strongly inhibited by dominant negative Rho GTPases, suggesting the involvement of Rho GTPases in ECT2 transformation. Although deletion of the N-terminal cell cycle regulator-related domain (N) of ECT2 did not activate its transforming activity, removal of the small central domain (S), which contains two nuclear localization signals (NLSs), significantly induced the activity. The ECT2 N domain interacted with the catalytic domain and significantly inhibited the focus formation by oncogenic ECT2. Interestingly, the introduction of the NLS mutations in the S domain of N-terminally truncated ECT2 dramatically induced the transforming activity of this otherwise non-oncogenic derivative. Among the known Rho GTPases expressed in NIH 3T3 cells, RhoA was predominantly activated by oncogenic ECT2 in vivo. Therefore, the mislocalization of structurally altered ECT2 might cause the untimely activation of cytoplasmic Rho GTPases leading to the malignant transformation.
Collapse
Affiliation(s)
- Shin'ichi Saito
- Molecular Tumor Biology Section, Basic Research Laboratory, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Tatsumoto T, Sakata H, Dasso M, Miki T. Potential roles of the nucleotide exchange factor ECT2 and Cdc42 GTPase in spindle assembly inXenopus egg cell-free extracts. J Cell Biochem 2003; 90:892-900. [PMID: 14624449 DOI: 10.1002/jcb.10750] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ECT2 protooncogene encodes a guanine nucleotide exchange factor for the Rho family of small GTPases. ECT2 contains motifs of cell cycle regulators at its N-terminal domain. We previously showed that ECT2 plays a critical role in cytokinesis. Here, we report a potential role of XECT2, the Xenopus homologue of the human ECT2, in spindle assembly in cell-free Xenopus egg extracts. Cloned XECT2 cDNA encodes a 100 kDa protein closely related to human ECT2. XECT2 is specifically phosphorylated in M phase extracts. Affinity-purified anti-XECT2 antibody strongly inhibited mitosis in Xenopus cell-free extracts. Instead of bipolar spindles, where chromosomes are aligned at the metaphase plane in control extracts, the addition of anti-XECT2 resulted in the appearance of abnormal spindles including monopolar and multipolar spindles as well as bipolar spindles with misaligned chromosomes. In these in vitro synthesized spindle structures, XECT2 was found to tightly associate with mitotic spindles. The N-terminal half of XECT2 lacking the catalytic domain also strongly inhibited spindle assembly in vitro, resulting in the formation of mitotic spindles with a low density. Among the representative Rho GTPases, a dominant-negative form of Cdc42 strongly inhibited spindle assembly in vitro. These results suggest that the Rho family GTPase Cdc42 and its exchange factor XECT2 are critical regulators of spindle assembly in Xenopus egg extracts.
Collapse
Affiliation(s)
- Takashi Tatsumoto
- Molecular Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
139
|
Niu J, Profirovic J, Pan H, Vaiskunaite R, Voyno-Yasenetskaya T. G Protein βγ Subunits Stimulate p114RhoGEF, a Guanine Nucleotide Exchange Factor for RhoA and Rac1. Circ Res 2003; 93:848-56. [PMID: 14512443 DOI: 10.1161/01.res.0000097607.14733.0c] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho GTPases integrate the intracellular signaling in a wide range of cellular processes. Activation of these G proteins is tightly controlled by a number of guanine nucleotide exchange factors (GEFs). In this study, we addressed the functional role of the recently identified p114RhoGEF in in vivo experiments. Activation of endogenous G protein-coupled receptors with lysophosphatidic acid resulted in activation of a transcription factor, serum response element (SRE), that was enhanced by p114RhoGEF. This stimulation was inhibited by the functional scavenger of Gβγ subunits, transducin. We have determined that Gβγ subunits but not Gα subunits of heterotrimeric G proteins stimulated p114RhoGEF-dependent SRE activity. Using coimmunoprecipitation assay, we have determined that Gβγ subunits interacted with full-length and DH/PH domain of p114RhoGEF. Similarly, Gβγ subunits stimulated SRE activity induced by full-length and DH/PH domain of p114RhoGEF. Using in vivo pull-down assays and dominant-negative mutants of Rho GTPases, we have determined that p114RhoGEF activated RhoA and Rac1 but not Cdc42 proteins. Functional significance of RhoA activation was established by the ability of p114RhoGEF to induce actin stress fibers and cell rounding. Functional significance of Rac1 activation was established by the ability of p114RhoGEF to induce production of reactive oxygen species (ROS) followed by activation of NADPH oxidase enzyme complex. In summary, our data showed that the novel guanine nucleotide exchange factor p114RhoGEF regulates the activity of RhoA and Rac1, and that Gβγ subunits of heterotrimeric G proteins are activators of p114RhoGEF under physiological conditions. The findings help to explain the integrated effects of LPA and other G-protein receptor-coupled agonists on actin stress fiber formation, cell shape change, and ROS production.
Collapse
Affiliation(s)
- Jiaxin Niu
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Ill 60612, USA
| | | | | | | | | |
Collapse
|
140
|
Xu D, Kyriakis JM. Phosphatidylinositol 3'-kinase-dependent activation of renal mesangial cell Ki-Ras and ERK by advanced glycation end products. J Biol Chem 2003; 278:39349-55. [PMID: 12871951 DOI: 10.1074/jbc.m302771200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Advanced glycation end products (AGEs) are produced by the non-enzymatic glycation of proteins and lipids. AGE levels are pathologically elevated in a number of inflammatory diseases and in diabetes mellitus. There is evidence that AGEs, acting through the receptor for AGEs, contribute to diabetic complications. Nephropathy is a major complication of diabetes mellitus. However, the initiating molecular events that trigger diabetic renal disease are unknown. Renal mesangial cells produce excess extracellular matrix in response to treatment with transforming growth factor-beta, and excess mesangial cell matrix production, by impairing glomerular filtration, contributes to diabetic nephropathy. AGEs are known to trigger the autocrine production and release of transforming growth factor-beta. However, it is unclear how AGEs signal in mesangial cells. Here we show that treatment of mesangial cells with AGEs and with the receptor for AGEs agonist S100 triggers activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) pathways. AGEs trigger the GTP loading of mesangial cell Ras, and AGE activation of ERK requires Ras. We observe that Ki-Ras, but not Ha-Ras, is the target of AGE action. Surprisingly, inhibition of PI3K blocks both ERK and Ki-Ras activation. We also observe that activation of ERK and the PI3K target kinase protein kinase-B is blocked with free radical scavengers, indicating a role for reactive oxygen species in AGE recruitment of PI3K. Thus, AGEs signal to Ki-Ras and ERK through reactive oxygen species-dependent activation of PI3K.
Collapse
Affiliation(s)
- Dazhong Xu
- Molecular Cardiology Research Institute, New England Medical Center and the Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
141
|
Gregg D, Rauscher FM, Goldschmidt-Clermont PJ. Rac regulates cardiovascular superoxide through diverse molecular interactions: more than a binary GTP switch. Am J Physiol Cell Physiol 2003; 285:C723-34. [PMID: 12958025 DOI: 10.1152/ajpcell.00230.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The small G protein Rac has been implicated in multiple cardiovascular processes. Rac has two major functions: 1) it regulates the organization of the actin cytoskeleton, and 2) it controls the activity of the key enzyme complex NADPH oxidase to control superoxide production in both phagocytes and nonphagocytic cells. In phagocytes, superoxide derived from NADPH has a bactericidal function, whereas Rac-derived superoxide in the cardiovascular system has a diverse array of functions that have recently been a subject of intense interest. Rac is differentially activated by cellular receptors coupled to distinct Rac-activating adapter molecules, with each leading to pathway-specific arrays of downstream effects. Thus it may be important to investigate not just whether Rac is activated but also where, how, and for what effector. An understanding of the biochemical functions of Rac and its effectors lays the groundwork for a dissection of the exact array of effects produced by Rac in common cardiovascular processes, including cardiac and vascular hypertrophy, hypertension, leukocyte migration, platelet biology, and atherosclerosis. In addition, investigation of the spatiotemporal regulation of both Rac activation and consequent superoxide generation may produce new insights into the development of targeted antioxidant therapies for cardiovascular disease and enhance our understanding of important cardiovascular drugs, including angiotensin II antagonists and statins, that may depend on Rac modulation for their effect.
Collapse
Affiliation(s)
- David Gregg
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
142
|
Tu S, Wu WJ, Wang J, Cerione RA. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J Biol Chem 2003; 278:49293-300. [PMID: 14506284 DOI: 10.1074/jbc.m307021200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treatment of cells with epidermal growth factor (EGF) promotes the activation of the small GTP-binding protein Cdc42, as well as its phosphorylation in cells. The EGF-dependent phosphorylation of Cdc42 occurs at tyrosine 64 in the Switch II domain and appears to be mediated through the Src tyrosine kinase, because both the expression of a dominant-negative Src mutant (mouse Src(K297R)) and treatment of cells with the Src kinase inhibitor PP2 blocks the EGF-stimulated phosphorylation of Cdc42, whereas expression of an activated Src mutant (Src(Y529F)) promotes phosphorylation in the absence of EGF treatment. The EGF-stimulated phosphorylation of Cdc42 is not required for its activation, nor does it directly affect the interactions of activated Cdc42 with target/effector proteins including PAK, ACK, WASP, or IQGAP. However, the EGF-stimulated phosphorylation of Cdc42 is accompanied by an enhancement in the interaction of Cdc42 with the Rho-GDP dissociation inhibitor (RhoGDI). The EGF-stimulated activation of Cdc42 does require activated Src, as well as the Vav2 protein, a member of the Dbl family of guanine nucleotide exchange factors. Src catalyzes the tyrosine phosphorylation of Vav2, and overexpression of Vav2 together with activated Src (Src(Y529F)) can completely bypass the need for EGF to promote the activation of Cdc42. Thus, EGF signaling through Src appears to have dual regulatory effects on Cdc42: 1). it leads to the activation of Cdc42 as mediated by the Vav2 guanine nucleotide exchange factor, and 2). it results in the phosphorylation of Cdc42, which stimulates the binding of RhoGDI, perhaps to direct the movement of Cdc42 to a specific cellular site to trigger a signaling response, because Cdc42-RhoGDI interactions are essential for Cdc42-induced cellular transformation.
Collapse
Affiliation(s)
- Shine Tu
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
143
|
Abstract
Cdc42 is a Ras-related protein that has been implicated in the control of normal cell growth, and when improperly regulated, in cellular transformation and invasiveness. A variety of extracellular stimuli, including epidermal growth factor (EGF), activate Cdc42. Here, we show that activation of Cdc42 protects the EGF receptor from the negative regulatory activity of the c-Cbl ubiquitin ligase. Activated Cdc42 binds to p85Cool-1 (for cloned-out-of-library)/beta-Pix (for Pak-interactive exchange factor), a protein that directly associates with c-Cbl. This inhibits the binding of Cbl by the EGF receptor and thus prevents Cbl from catalyzing receptor ubiquitination. The role played by Cdc42 in regulating the timing of EGF receptor-Cbl interactions is underscored by the fact that constitutively active Cdc42(F28L), by persistently blocking the binding of Cbl to these receptors, leads to their aberrant accumulation and sustained EGF-stimulated ERK activation, thus resulting in cellular transformation.
Collapse
Affiliation(s)
- Wen Jin Wu
- Department of Molecular Medicine, Veterinary Medical Center, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
144
|
Bourguignon LYW, Singleton PA, Zhu H, Diedrich F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem 2003; 278:29420-34. [PMID: 12748184 DOI: 10.1074/jbc.m301885200] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we have examined CD44 (a hyaluronan (HA) receptor) interaction with a RhoA-specific guanine nucleotide exchange factor (p115RhoGEF) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunoprecipitation and immunoblot analyses indicate that both CD44 and p115RhoGEF are expressed in MDA-MB-231 cells and that these two proteins are physically associated as a complex in vivo. The binding of HA to MDA-MB-231 cells stimulates p115RhoGEF-mediated RhoA signaling and Rho kinase (ROK) activity, which, in turn, increases serine/threonine phosphorylation of the adaptor protein, Gab-1 (Grb2-associated binder-1). Phosphorylated Gab-1 promotes PI 3-kinase recruitment to CD44v3. Subsequently, PI 3-kinase is activated (in particular, alpha, beta, gamma forms but not the delta form of the p110 catalytic subunit), AKT signaling occurs, the cytokine (macrophage-colony stimulating factor (M-CSF)) is produced, and tumor cell-specific phenotypes (e.g. tumor cell growth, survival and invasion) are up-regulated. Our results also demonstrate that HA/CD44-mediated oncogenic events (e.g. AKT activation, M-CSF production and breast tumor cell-specific phenotypes) can be effectively blocked by a PI 3-kinase inhibitor (LY294002). Finally, we have found that overexpression of a dominant-negative form of ROK (by transfection of MBA-MD-231 cells with the Rho-binding domain cDNA of ROK) not only inhibits HA/CD44-mediated RhoA-ROK activation and Gab-1 phosphorylation but also down-regulates oncogenic signaling events (e.g. Gab-1.PI 3-kinase-CD44v3 association, PI 3-kinase-mediated AKT activation, and M-CSF production) and tumor cell behaviors (e.g. cell growth, survival, and invasion). Taken together, these findings strongly suggest that CD44 interaction with p115RhoGEF and ROK plays a pivotal role in promoting Gab-1 phosphorylation leading to Gab-1.PI 3-kinase membrane localization, AKT signaling, and cytokine (M-CSF) production during HA-mediated breast cancer progression.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California at San Francisco and the Endocrine Unit (111N), Veterans Affairs Medical Center, San Francisco, Calfornia 94121, USA.
| | | | | | | |
Collapse
|
145
|
Buchsbaum RJ, Connolly BA, Feig LA. Regulation of p70 S6 kinase by complex formation between the Rac guanine nucleotide exchange factor (Rac-GEF) Tiam1 and the scaffold spinophilin. J Biol Chem 2003; 278:18833-41. [PMID: 12531897 DOI: 10.1074/jbc.m207876200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tiam1 is a ubiquitous guanine nucleotide exchange factor (GEF) that activates the Rac GTPase. We have shown previously that the N terminus of Tiam1 contributes to the signaling specificity of its downstream target Rac via association with IB2, a scaffold that promotes Rac activation of a p38 kinase cascade. Here we show that the N terminus of Tiam1 can influence Rac signaling specificity in a different way by interaction with spinophilin, a scaffold that binds to p70 S6 kinase, another protein regulated by Rac. In particular, spinophilin binding promotes the plasma membrane localization of Tiam1 and enhances the ability of Tiam1 to activate p70 S6 kinase. In contrast, spinophilin binding suppresses the ability of Tiam to activate Pak1, a different Rac effector. Finally, a mutant spinophilin that cannot bind to Tiam1 suppresses serum-induced p70 S6 kinase activation in cells, suggesting that a Tiam1/spinophilin complex contributes to p70 S6 kinase regulation by extracellular signals. These findings add to a growing body of evidence supporting the concept that some Rac-GEFs not only activate Rac GTPases but also participate in the selection of Rac effector by binding to particular scaffolds that complex with components of specific Rac effector pathways.
Collapse
Affiliation(s)
- Rachel J Buchsbaum
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachussetts 02111, USA
| | | | | |
Collapse
|
146
|
Guo X, Stafford LJ, Bryan B, Xia C, Ma W, Wu X, Liu D, Songyang Z, Liu M. A Rac/Cdc42-specific exchange factor, GEFT, induces cell proliferation, transformation, and migration. J Biol Chem 2003; 278:13207-15. [PMID: 12547822 DOI: 10.1074/jbc.m208896200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho family of small GTPases, including Rho, Rac, and Cdc42, play essential roles in diverse cellular functions. The ability of Rho family GTPases to participate in signaling events is determined by the ratio of inactive (GDP-bound) and active (GTP-bound) forms in the cell. The activation of Rho family proteins requires the exchange of bound GDP for GTP, a process catalyzed by the Dbl family of guanine nucleotide exchange factors (GEFs). The GEFs have high affinity for the guanine nucleotide-free state of the GTPases and are thought to promote GDP release by stabilizing an intermediate transition state. In this study, we have identified and characterized a new Rac/Cdc42-specific Dbl family guanine nucleotide exchange factor, named GEFT. GEFT is highly expressed in the excitable tissues, including brain, heart, and muscle. Low or very little expression was detected in other nonexcitable tissues. GEFT has specific exchange activity for Rac and Cdc42 in our in vitro GTPase exchange assays and glutathione S-transferase-PAK pull-down assays with GTP-bound Rac1 and Cdc42. Overexpression of GEFT leads to changes in cell morphology and actin cytoskeleton re-organization, including the formation of membrane microspikes, filopodia, and lamilliopodia. Furthermore, expression of GEFT in NIH3T3 cells promotes foci formation, cell proliferation, and cell migration, possibly through the activation of transcriptional factors involved in cell growth and proliferation. Together, our data suggest that GEFT is a Rac/Cdc42-specific GEF protein that regulates cell morphology, cell proliferation, and transformation.
Collapse
Affiliation(s)
- Xiangrong Guo
- Center for Cancer Biology and Nutrition, Alkek Institute of Biosciences and Technology, and Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Pruitt WM, Karnoub AE, Rakauskas AC, Guipponi M, Antonarakis SE, Kurakin A, Kay BK, Sondek J, Siderovski DP, Der CJ. Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:61-8. [PMID: 12676355 DOI: 10.1016/s0167-4889(03)00002-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.
Collapse
Affiliation(s)
- Wendy M Pruitt
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Guanine nucleotide binding proteins rapidly cycle between a guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound state, and they operate as binary switches that control cell activation in response to environmental cues. GTPases adopt different conformations when binding GTP vs. GDP. The GTP-bound state is generally considered to be the active conformation that allows GTPases to interact with downstream effectors and thereby initiate downstream signaling pathways, which regulate many important biological processes. Many members of the Ras family of GTPases, notably Ras and Rap1A, and the Rho family GTPases, Cdc42Hs, Rac1, Rac2 and RhoA, are important components of signal transduction pathways used by antigen receptors, costimulatory, cytokine and chemokine receptors to regulate the immune response. This review discusses current knowledge and ideas about the regulation and function of these GTPases in lymphocytes.
Collapse
Affiliation(s)
- Doreen Ann Cantrell
- Division of Cell Biology and Immunology, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, UK.
| |
Collapse
|
149
|
Baumeister MA, Martinu L, Rossman KL, Sondek J, Lemmon MA, Chou MM. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology domain prevents in vivo Rac1 activation without affecting membrane targeting. J Biol Chem 2003; 278:11457-64. [PMID: 12525493 DOI: 10.1074/jbc.m211901200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dbl family guanine nucleotide exchange factors (GEFs) for Rho family small GTPases invariably contain a pleckstrin homology (PH) domain that immediately follows their Dbl homology (DH) domain. Although the DH domain is responsible for GEF activity, the role of the PH domain is less clear. We previously reported that PH domains from several Dbl family members bind phosphoinositides with very low affinity (K(d) values in the 10 microM range). This suggests that, unlike several other PH domains, those from Dbl proteins will not function as independent membrane-targeting modules. To determine the functional relevance of low affinity phosphoinositide binding, we mutated the corresponding PH domain from Tiam-1 to abolish its weak, specific binding to phosphatidylinositol 3-phosphate. We first confirmed in vitro that phosphoinositide binding by the isolated DH/PH domain was impaired by the mutations but that intrinsic GEF activity was unaffected. We then introduced the PH domain mutations into full-length Tiam-1 and found that its ability to activate Rac1 or serum response factor in vivo was abolished. Immunofluorescence studies showed that membrane targeting of Tiam-1 was essentially unaffected by mutations in the C-terminal PH domain. Our studies therefore indicate that low affinity phosphatidylinositol 3-phosphate binding by the C-terminal PH domain may be critical for in vivo regulation and activity of Tiam-1 but that the PH domain exerts its regulatory effects without altering membrane targeting. We suggest instead that ligand binding to the PH domain induces conformational and/or orientational changes at the membrane surface that are required for maximum exchange activity of its adjacent DH domain.
Collapse
Affiliation(s)
- Mark A Baumeister
- Department of Biochemistry & Biophysics and the Graduate Group in Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
150
|
Vernoud V, Horton AC, Yang Z, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. PLANT PHYSIOLOGY 2003; 131:1191-208. [PMID: 12644670 PMCID: PMC166880 DOI: 10.1104/pp.013052] [Citation(s) in RCA: 448] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Small GTP-binding proteins regulate diverse processes in eukaryotic cells such as signal transduction, cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. These proteins function as molecular switches that cycle between "active" and "inactive" states, and this cycle is linked to the binding and hydrolysis of GTP. The Arabidopsis genome contains 93 genes that encode small GTP-binding protein homologs. Phylogenetic analysis of these genes shows that plants contain Rab, Rho, Arf, and Ran GTPases, but no Ras GTPases. We have assembled complete lists of these small GTPases families, as well as accessory proteins that control their activity, and review what is known of the functions of individual members of these families in Arabidopsis. We also discuss the possible roles of these GTPases in relation to their similarity to orthologs with known functions and localizations in yeast and/or animal systems.
Collapse
Affiliation(s)
- Vanessa Vernoud
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|