101
|
Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN. A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci U S A 2009; 106:480-5. [PMID: 19114656 PMCID: PMC2626728 DOI: 10.1073/pnas.0811212106] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Indexed: 12/30/2022] Open
Abstract
The PI 3-phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10), one of the most important tumor suppressors, must associate with the plasma membrane to maintain appropriate steady-state levels of phosphatidylinositol 3,4,5-triphosphate. Yet the mechanism of membrane binding has received little attention and the key determinants that regulate localization, a phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding motif and a cluster of phosphorylated C-terminal residues, were not included in the crystal structure. We report that membrane binding requires PIP(2) and show that phosphorylation regulates an intramolecular interaction. A truncated version of the enzyme, PTEN(1-351), bound strongly to the membrane, an effect that was reversed by co-expression of the remainder of the molecule, PTEN(352-403). The separate fragments associated in vitro, an interaction dependent on phosphorylation of the C-terminal cluster, a portion of the PIP(2) binding motif, integrity of the phosphatase domain, and the CBR3 loop. Our investigation provides direct evidence for a model in which PTEN switches between open and closed states and phosphorylation favors the closed conformation, thereby regulating localization and function. Small molecules targeting these interactions could potentially serve as therapeutic agents in antagonizing Ras or PI3K-driven tumors. The study also stresses the importance of determining the structure of the native enzyme.
Collapse
Affiliation(s)
- Meghdad Rahdar
- Departments of Cell Biology and
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Tobias Meyer
- Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Jin Zhang
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Francisca Vazquez
- Department of Cancer Biology, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
102
|
Leslie NR, Maccario H, Spinelli L, Davidson L. The significance of PTEN's protein phosphatase activity. ACTA ACUST UNITED AC 2009; 49:190-6. [DOI: 10.1016/j.advenzreg.2008.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
103
|
Kang I, Kum YS, Park KK, Kim DY, Park JS. Clinical Significance of PTEN and Ki-67 Expression in Prostate Cancer. Korean J Urol 2009. [DOI: 10.4111/kju.2009.50.6.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Il Kang
- Department of Urology, College of Medicine, Daegu Catholic University, Daegu, Korea
| | - Yoon Seup Kum
- Department of Pathology, College of Medicine, Daegu Catholic University, Daegu, Korea
| | - Kwan Kyu Park
- Department of Pathology, College of Medicine, Daegu Catholic University, Daegu, Korea
| | - Duk Yoon Kim
- Department of Urology, College of Medicine, Daegu Catholic University, Daegu, Korea
| | - Jae Shin Park
- Department of Urology, College of Medicine, Daegu Catholic University, Daegu, Korea
| |
Collapse
|
104
|
Abstract
PI3-kinase and PTEN are major positive and negative regulators, respectively, of the PI3-kinase pathway, which regulates growth, survival, and proliferation. These key signaling components are two of the most frequently mutated proteins in human cancers, resulting in unregulated activation of PI3K signaling and providing irrefutable genetic evidence of the central role of this pathway in tumorigenesis. PTEN regulates PI3K signaling by dephosphorylating the lipid signaling intermediate PIP(3), but PTEN may have additional phosphatase-independent activities, as well as other functions in the nucleus. In this review, we highlight current work showing cancer-relevant complexities in the regulation of PTEN and PI3K activity, potential novel functions for PTEN, and feedback regulation within the pathway. The significance and complexity of PI3K signaling make it an important but challenging therapeutic target for cancer.
Collapse
Affiliation(s)
- Nader Chalhoub
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.
| | | |
Collapse
|
105
|
Sawai H, Yasuda A, Ochi N, Ma J, Matsuo Y, Wakasugi T, Takahashi H, Funahashi H, Sato M, Takeyama H. Loss of PTEN expression is associated with colorectal cancer liver metastasis and poor patient survival. BMC Gastroenterol 2008; 8:56. [PMID: 19036165 PMCID: PMC2611992 DOI: 10.1186/1471-230x-8-56] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 11/26/2008] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The tumour suppressor phosphatase and tensin homolog (PTEN) is an important negative regulator of cell-survival signaling. To evaluate the correlation between PTEN expression and clinicopathological characteristics of colorectal cancer patients with and without liver metastases, we investigated PTEN expression in primary colorectal cancer and colorectal cancer liver metastases. METHODS Sixty-nine pairs of primary colorectal cancer and corresponding liver metastasis specimens were analyzed immunohistochemically, and the correlation between immunohistochemical findings and clinicopathological factors was investigated. Seventy primary colorectal cancer specimens from patients without liver metastases were used as controls. RESULTS PTEN was strongly expressed in 44 (62.9%) colorectal cancer specimens from patients without liver metastases. In contrast, PTEN was weakly expressed in 52 (75.4%) primary colorectal cancer specimens from patients with liver metastases, and was absent in liver metastases. Weak PTEN expression in colorectal cancer tissues was significantly associated with advanced TNM stage (p < 0.01) and lymph node metastasis (p < 0.05). PTEN expression was significantly stronger in primary colorectal cancer specimens from patients without liver metastases. Furthermore, among colorectal cancer patients with liver metastases, the 5-year survival rate was significantly higher in patients with positive PTEN expression compared to those with negative PTEN expression (p = 0.012). CONCLUSION Our results suggest that loss of PTEN expression is involved with colorectal cancer aggressive capacity and that diagnostic evaluation of PTEN expression may provide valuable prognostic information to aid treatment strategies for colorectal cancer patients.
Collapse
Affiliation(s)
- Hirozumi Sawai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Akira Yasuda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Nobuo Ochi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Jiachi Ma
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Takehiro Wakasugi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Hitoshi Funahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Mikinori Sato
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Hiromitsu Takeyama
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| |
Collapse
|
106
|
Wang H, Patel V, Miyazaki H, Gutkind JS, Yeudall WA. Role for EPS8 in squamous carcinogenesis. Carcinogenesis 2008; 30:165-74. [PMID: 19008210 DOI: 10.1093/carcin/bgn252] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have investigated the role of the signaling intermediate, EPS8, in tumor progression using a model system and in vivo. HN4 primary tumor cells express low levels of EPS8, similar to normal keratinocytes, and show minimal invasion in vitro in response to epidermal growth factor, whereas HN12 cells express high levels of EPS8 and are highly motile in vitro and tumorigenic in vivo. Additional independent tumor cell lines also showed elevated EPS8 expression compared with normal keratinocytes. Using retroviral transduction, we generated HN4 cell lines expressing EPS8 (HN4/EPS8) at levels equivalent to those present in HN12 cells. HN4/EPS8 cells showed increased proliferation and migration compared with controls, together with elevated expression and activity of matrix metalloprotease (MMP)-9, which was dependent on protein kinase B (AKT) activity. Introduction of plasmids that direct synthesis of EPS8 short hairpin RNA (shRNA) into HN12 cells resulted in decreased EPS8 expression in these cells, which correlated with a decrease in their capacity to migrate and invade in vitro. In addition, shRNA-mediated knockdown of EPS8 reduced expression and activity of MMP-9 produced by these cells and reduced MMP-9 promoter activity. EPS8 knockdown cells showed decreased tumorigenicity in vivo compared with controls and lower MMP-9 expression. Conversely, overexpression of EPS8 in HN4 cells was sufficient to induce growth of these non-tumorigenic cells in orthotopic transplantation assays. Furthermore, EPS8 expression in clinical samples of squamous cell carcinoma showed variable expression levels and broadly paralleled expression of MMP-9. The data support a role for EPS8 in squamous carcinogenesis.
Collapse
Affiliation(s)
- Huixin Wang
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | | | | | | | | |
Collapse
|
107
|
Deming PB, Campbell SL, Baldor LC, Howe AK. Protein kinase A regulates 3-phosphatidylinositide dynamics during platelet-derived growth factor-induced membrane ruffling and chemotaxis. J Biol Chem 2008; 283:35199-211. [PMID: 18936099 DOI: 10.1074/jbc.m804448200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP(3)-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP(3) following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP(3) dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP(3) marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP(3) and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP(3)/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events.
Collapse
Affiliation(s)
- Paula B Deming
- Department of Medical Laboratory and Radiation Sciences, Vermont Cancer Center, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
108
|
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is a phosphatase that antagonizes the phosphoinositol-3-kinase/AKT signaling pathway and suppresses cell survival as well as cell proliferation. PTEN is the second most frequently mutated gene in human cancer after p53. Germline mutations of PTEN have been found in cancer susceptibility syndromes, such as Cowden syndrome, in which over 80% of patients have mutations of PTEN. Homozygous deletion of Pten causes embryonic lethality, suggesting that PTEN is essential for embryonic development. Mice heterozygous for Pten develop spontaneous tumors in a variety of organs comparable with the spectrum of its mutations in human cancer. The mechanisms of PTEN functions in tumor suppression are currently under intense investigation. Recent studies demonstrate that PTEN plays an essential role in the maintenance of chromosomal stability and that loss of PTEN leads to massive alterations of chromosomes. The tumor suppressor p53 is known as a guardian of the genome that mediates the cellular response to environmental stress, leading to cell cycle arrest or cell death. Through completely different mechanisms, PTEN also protects the genome from instability. Thus, we propose that PTEN is a new guardian of the genome. In this review, we will discuss new discoveries on the role of PTEN in tumor suppression and explore mechanisms by which PTEN maintains genomic stability.
Collapse
|
109
|
Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP. Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 2008; 27:5464-76. [PMID: 18794881 DOI: 10.1038/onc.2008.243] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PTEN tumour suppressor is a lipid and protein phosphatase that inhibits phosphoinositide 3-kinase (PI3K)-dependent signalling by dephosphorylating phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). Here, we discuss the concept of PTEN as an 'interfacial enzyme', which exists in a high activity state when bound transiently at membrane surfaces containing its substrate and other acidic lipids, such as PtdIns(4,5)P(2) and phosphatidylserine (PtdSer). This mechanism ensures that PTEN functions in a spatially restricted manner, and may explain its involvement in forming the gradients of PtdInsP(3), which are necessary for generating and/or sustaining cell polarity during motility, in developing neurons and in epithelial tissues. Coordinating PTEN activity with alternative mechanisms of PtdInsP(3) metabolism, by the tightly regulated SHIP 5-phoshatases, synthesizing the independent second messenger PtdIns(3,4)P(2), may also be important for cellular polarization in some cell types. Superimposed on this interfacial mechanism are additional post-translational regulatory processes, which generally act to reduce PTEN activity. Oxidation of the active site cysteine residue by reactive oxygen species and phosphorylation of serine/threonine residues at sites in the C-terminus of the protein inhibit PTEN. These phosphorylation sites also appear to play a role in regulating both stability and localization of PTEN, as does ubiquitination of PTEN. Because genetic studies in mice show that the level of expression of PTEN in an organism profoundly influences tumour susceptibility, factors that regulate PTEN, localization, activity and turnover should be important in understanding its biological functions as a tumour suppressor.
Collapse
Affiliation(s)
- N R Leslie
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, James Black Centre, Dundee, Scotland, UK.
| | | | | | | | | |
Collapse
|
110
|
|
111
|
Abstract
Gliomas are the most common primary intracranial tumors. Their distinct ability to infiltrate into the extracellular matrix (ECM) of the brain makes it impossible to treat these tumors using surgery and radiation therapy. A number of different studies have suggested that hyaluronan (HA), the principal glycosaminoglycan (GAG) in the ECM of the brain, is the critical factor for glioma invasion. HA-induced glioma invasion was driven by two important molecular events: matrix metalloproteinase (MMP) secretion and up-regulation of cell migration. MMP secretion was triggered by HA-induced focal adhesion kinase (FAK) activation, which transmits its signal through ERK activation and nuclear factor kappa B (NF-kappaB) translocation. Another important molecular event is osteopontin (OPN) expression. OPN expression by AKT activation triggers cell migration. These results suggest that HA-induced glioma invasion is tightly regulated by signaling mechanisms, and a detailed understanding of this molecular mechanism will provide important clues for glioma treatment.
Collapse
Affiliation(s)
- Jong Bae Park
- Research Institute and Hospital, National Cancer Center, Goyang Gyeonggi, Korea
| | | | | |
Collapse
|
112
|
Huo YY, Li G, Duan RF, Gou Q, Fu CL, Hu YC, Song BQ, Yang ZH, Wu DC, Zhou PK. PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts. Free Radic Biol Med 2008; 44:1578-91. [PMID: 18275859 DOI: 10.1016/j.freeradbiomed.2008.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 12/25/2007] [Accepted: 01/10/2008] [Indexed: 12/29/2022]
Abstract
Despite the significance of oxidative damage in carcinogenesis, the molecular mechanisms that lead to increased susceptibility to oxidative stress are not well understood. We now report a link between loss of protection against oxidative damage and loss of function of PTEN, a highly mutated tumor suppressor gene in a variety of human tumors. Using two-dimensional gel electrophoresis, combined with Western and Northern blot analyses, we found that PTEN deficiency in mouse embryonic fibroblasts (MEFs) displays deregulated expression of several antioxidant enzymes, including peroxiredoxins 1, 2, 5, and 6 and Cu, Zn superoxide dismutase. In these Pten-deleted MEFs, the basal levels of reactive oxygen species (ROS) were increased, and both the basal level and the ROS-induced oxidative damage of DNA were increased, as evidenced by increased levels of hydrogen peroxide (H2O2), superoxide anion, 8-hydroxy-2'-deoxyguanosine, and DNA double-strand breaks. We further show that Pten deletion is correlated with resistance to H2O2-induced expression of several antioxidants. These findings suggest an essential role for PTEN in maintaining the normal redox state of mouse embryonic fibroblasts against oxidative damage. They also provide a molecular link between PTEN, whose inactivation is known to be involved in a variety of human tumors, and antioxidants, whose perturbation leads to oxidative damage of cells.
Collapse
Affiliation(s)
- Yan-Ying Huo
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Dey N, Crosswell HE, De P, Parsons R, Peng Q, Su JD, Durden DL. The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration. Cancer Res 2008; 68:1862-71. [PMID: 18339867 DOI: 10.1158/0008-5472.can-07-1182] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is mutated or lost in 60% to 70% of advanced gliomas and is associated with malignant phenotypic changes such as migration, which contribute to the morbidity and mortality of this disease. Most of the tumor suppressor function of PTEN has been attributed to its ability to dephosphorylate the second messenger, phosphatidylinositol 3,4,5-triphosphate, resulting in the biological control of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Despite recent work suggesting that the protein phosphatase activity of PTEN controls glioma cell migration, the mechanisms by which this occurs are unclear. Herein, we show using glioma cell lines (U87MG and U373MG) stably transfected with wild-type PTEN or catalytically altered mutants of PTEN that PTEN controls integrin-directed migration in a lipid phosphatase, PI3K/AKT-independent manner. Confirming this observation, we show that the stable overexpression of COOH-terminal Src kinase, the physiologic negative regulator of SRC family kinases (SFK), or treatment with the SFK inhibitor PP1 abrogates glioma migration. The results provide direct evidence that the downstream effect of the protein phosphatase activity of PTEN is to suppress SFK and FYN, and to regulate RAC-GTPase activity after alpha(v) integrin stimulation. Furthermore, studying vitronectin-directed migration using (a) Fyn small interfering RNA and (b) astrocytes from Fyn heterozygous (+/-) mice, Pten heterozygous (+/-) mice, Pten and Fyn double heterozygous (+/-) mice, or Fyn knockout (-/-) mice confirmed a role of FYN in alpha(v) integrin-mediated haptotaxis in glial cells. Our combined results provide direct biochemical and genetic evidence that PTEN's protein phosphatase activity controls FYN kinase function in glioma cells and regulates migration in a PI3K/AKT-independent manner.
Collapse
Affiliation(s)
- Nandini Dey
- Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Dourdin N, Schade B, Lesurf R, Hallett M, Munn RJ, Cardiff RD, Muller WJ. Phosphatase and tensin homologue deleted on chromosome 10 deficiency accelerates tumor induction in a mouse model of ErbB-2 mammary tumorigenesis. Cancer Res 2008; 68:2122-31. [PMID: 18381417 PMCID: PMC2752841 DOI: 10.1158/0008-5472.can-07-5727] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and amplification or elevated expression of ErbB-2 are both involved in human breast cancer. To directly test the importance of these genetic events in mammary tumorigenesis, we have assessed whether mammary-specific disruption of PTEN could cooperate with activation of ErbB-2. Transgenic mice expressing ErbB-2 under the transcriptional control of its endogenous promoter (ErbB-2(KI)) were interbred with mice carrying conditional PTEN alleles and an MMTV/Cre transgene. Loss of one or both PTEN alleles resulted in a dramatic acceleration of mammary tumor onset and an increased occurrence of lung metastases in the ErbB-2(KI) strain. Tumor progression in PTEN-deficient/ErbB-2(KI) strains was associated with elevated ErbB-2 protein levels, which were not due to ErbB-2 amplification or to a dramatic increase in ErbB-2 transcripts. Moreover, the PTEN-deficient/ErbB-2(KI)-derived mouse mammary tumors display striking morphologic heterogeneity in comparison with the homogeneous pathology of the ErbB-2(KI) parental strain. Therefore, inactivation of PTEN would not only have a dramatic effect on ErbB-2-induced mammary tumorigenesis but would also lead to the formation of mammary tumors that, in part, display pathologic and molecular features associated with the basal-like subtype of primary human breast cancer.
Collapse
Affiliation(s)
- Nathalie Dourdin
- Molecular Oncology Group, McGill University Health Center, Montreal, Quebec, Canada
| | - Babette Schade
- Molecular Oncology Group, McGill University Health Center, Montreal, Quebec, Canada
| | - Robert Lesurf
- McGill Center for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Michael Hallett
- McGill Center for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Robert J. Munn
- Center for Comparative Medicine and Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Davis, California
| | - Robert D. Cardiff
- Center for Comparative Medicine and Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Davis, California
| | - William J. Muller
- Molecular Oncology Group, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
115
|
Monine MI, Haugh JM. Cell population-based model of dermal wound invasion with heterogeneous intracellular signaling properties. Cell Adh Migr 2008; 2:137-46. [PMID: 19262100 PMCID: PMC2634996 DOI: 10.4161/cam.2.2.6511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/26/2008] [Indexed: 11/19/2022] Open
Abstract
A deterministic model of dermal wound invasion, which accounts for the platelet-derived growth factor (PDGF) gradient sensing mechanism in fibroblasts mediated by cell surface receptors and the phosphoinositide 3-kinase (PI3K) signal transduction pathway, was previously described (Biophys J 2006; 90:2297-308). Here, we extend that work and implement a hybrid modeling strategy that treats fibroblasts as discrete entities endowed with heterogeneous properties, namely receptor, PI3K and 3' phosphoinositide phosphatase expression levels. Analysis of the model suggests that the wound environment fosters the advancement of cells within the population that are better fit to migrate and/or proliferate in response to PDGF stimulation. Thus, cell-to-cell variability results in a significantly higher rate of wound invasion as compared with the deterministic model, in a manner that depends on the way in which individual cell properties are sampled or inherited upon cell division.
Collapse
Affiliation(s)
- Michael I Monine
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, New Mexico, USA
| | | |
Collapse
|
116
|
|
117
|
Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol Cell Biol 2008; 28:1528-40. [PMID: 18172008 DOI: 10.1128/mcb.02061-07] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The product of the Snail1 gene is a transcriptional repressor required for triggering the epithelial-to-mesenchymal transition. Furthermore, ectopic expression of Snail1 in epithelial cells promotes resistance to apoptosis. In this study, we demonstrate that this resistance to gamma radiation-induced apoptosis caused by Snail1 is associated with the inhibition of PTEN phosphatase. In MDCK cells, mRNA levels of the p53 target gene PTEN are induced after gamma radiation; the transfection of Snail1 prevents this up-regulation. Decreased mRNA levels of PTEN were also detected in RWP-1 cells after the ectopic expression of this transcriptional factor. Snail1 represses and associates to the PTEN promoter as detected both by the electrophoretic mobility shift assay and chromatin immunoprecipitation experiments performed with either endogenous or ectopic Snail1. The binding of Snail1 to the PTEN promoter increases after gamma radiation, correlating with the stabilization of Snail1 protein, and prevents the association of p53 to the PTEN promoter. These results stress the critical role of Snail1 in the control of apoptosis and demonstrate the regulation of PTEN phosphatase by this transcriptional repressor.
Collapse
|
118
|
Strumane K, Song JY, Baas I, Collard JG. Increased Rac activity is required for the progression of T-lymphomas induced by Pten-deficiency. Leuk Res 2008; 32:113-20. [PMID: 17521720 DOI: 10.1016/j.leukres.2007.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 01/30/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
Mutation of the tumor suppressor PTEN results in loss of its PI3-kinase counteracting function. PI3-kinase stimulates tumor formation by PKB/Akt-mediated cell proliferation and prevention of apoptosis. PI3-kinase may also activate Rho-GTPases and their regulatory GEFs to promote invasion. Here we have analyzed the function of the Rac-specific activator, Tiam1, in PI3-kinase-induced T-lymphomagenesis. Mice with a T cell-specific Pten deletion developed T-lymphomas with enhanced PKB/Akt phosphorylation. However, these T-lymphomas infiltrated more frequently into various organs in Tiam1-deficient mice compared to wild type mice. Surprisingly, Tiam1-deficient lymphomas showed increased Rac activity, suggesting that the lack of Tiam1 is compensated by alternative Rac-activating mechanisms that lead to increased progression of PI3-kinase-induced T-lymphomas.
Collapse
Affiliation(s)
- Kristin Strumane
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
119
|
Barami K. Biology of the subventricular zone in relation to gliomagenesis. J Clin Neurosci 2007; 14:1143-9. [DOI: 10.1016/j.jocn.2007.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/05/2023]
|
120
|
Lao BJ, Kamei DT. Investigation of cellular movement in the prostate epithelium using an agent-based model. J Theor Biol 2007; 250:642-54. [PMID: 18076909 DOI: 10.1016/j.jtbi.2007.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 11/01/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
Abstract
Experimental patterns of epithelial cell proliferation in the prostate suggest that cell movement may play an important role in prostate epithelial homeostasis, and genes known to regulate cell movement are commonly mutated or deleted in prostate carcinomas. However, the nature of cell movement within the prostate epithelium remains unknown. Here, the role of cellular movement in the prostate epithelium was explored by developing an agent-based model of the prostate duct. Prostatic adult stem cells, transit amplifying/intermediate cells (TA/ICs), and luminal cells were individually modeled within a three-dimensional reconstruction of a prostate duct. Different movement behaviors for TA/ICs and luminal cells were assessed by their ability to recreate experimental patterns of prostate cell proliferation and epithelial morphology. Strongly directed TA/IC movement toward the distal region of the prostate duct combined with weakly directed luminal cell movement toward the proximal region of the prostate duct was able to best recreate experimental patterns of prostate proliferation and morphology. The effects on cell mobility from abnormalities in PTEN and thymosin beta15 (Tbeta15), genes which are commonly altered in prostate cancer, were simulated in the model. These simulations show that altering prostate stem cell movement can dysregulate epithelial homeostasis and lead to excessive cell growth, suggesting that disruption of cell movement may contribute to prostate carcinogenesis.
Collapse
Affiliation(s)
- Bert J Lao
- Department of Bioengineering, University of California, 7523 Boelter Hall, Los Angeles, CA 90095, USA
| | | |
Collapse
|
121
|
Hu Y, Li Z, Guo L, Wang L, Zhang L, Cai X, Zhao H, Zha X. MAGI-2 Inhibits cell migration and proliferation via PTEN in human hepatocarcinoma cells. Arch Biochem Biophys 2007; 467:1-9. [PMID: 17880912 DOI: 10.1016/j.abb.2007.07.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022]
Abstract
MAGI-2, a multidomain scaffolding protein, contains nine potential protein-protein interaction modules, including a GuK domain, two WW domains and six PDZ domains. In this study, we examined eight human hepatocarcinoma cell lines (HHCCs) and found that MAGI-2 was expressed only in 7721 cells. After 7721, 7404 and 97H cells were transfected with myc-MAGI-2 plasmid, their migration and proliferation was significantly inhibited, which was associated with downregulation of p-FAK and p-Akt. It is known that p-FAK is a substrate of PTEN and p-Akt can be regulated by PTEN via PIP(3). We demonstrated that PTEN was upregulated after myc-MAGI-2 transfection, which was due to the enhancement of PTEN protein stability rather than mRNA levels. Furthermore, MAGI-2-induced inhibition of cell migration and proliferation was attenuated in 7721 cells with PTEN silence or in PTEN-null cell line U87MG, and PTEN transfection could restore the effect of MAGI-2 in U87MG cells. Finally, the molecular association between PTEN and MAGI-2 was confirmed. Our results suggested that PTEN played a critical role in MAGI-2-induced inhibition of cell migration and proliferation in HHCCs.
Collapse
Affiliation(s)
- Yali Hu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Paliwal S, Kovi RC, Nath B, Chen YW, Lewis BC, Grossman SR. The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Res 2007; 67:9322-9. [PMID: 17909040 DOI: 10.1158/0008-5472.can-07-1743] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The alternative reading frame (ARF) tumor suppressor exerts both p53-dependent and p53-independent activities critical to the prevention of cancer in mice and humans. Recent evidence from mouse models suggests that when p53 is absent, further loss of ARF can widen the tumor spectrum, and potentiate invasion and metastasis. A major target of the p53-independent activity of ARF is the COOH-terminal binding protein (CtBP) family of metabolically regulated transcriptional corepressors, which are degraded upon acute exposure to the ARF protein. CtBPs are activated under conditions of metabolic stress, such as hypoxia, to repress epithelial and proapoptotic genes, and can mediate hypoxia-induced migration of cancer cells. The possibility that ARF could suppress tumor cell migration as part of its p53-independent activities was thus explored. Small-interfering RNA (siRNA)-mediated knockdown of ARF in human lung carcinoma cells led to increased cell migration, especially during hypoxia, and this effect was blocked by concomitant treatment with CtBP2 siRNA. Introduction of ARF into p53 and ARF-null human colon cancer cells inhibited hypoxia-induced migration. Furthermore, overexpression of CtBP2 in ARF-expressing cells enhanced cell migration, and an ARF mutant defective in CtBP-family binding was impaired in its ability to inhibit cell migration induced by CtBP2. ARF depletion or CtBP2 overexpression was associated with decreased PTEN expression and activation of the phosphatidylinositol 3-kinase pathway, and a phosphatidylinositol 3-kinase inhibitor blocked CtBP2-mediated cell migration. Thus, ARF can suppress cell migration by antagonizing CtBP2 and the phosphatidylinositol 3-kinase pathway, and these data may explain the increased aggressiveness of ARF-null tumors in mouse models.
Collapse
Affiliation(s)
- Seema Paliwal
- Department of Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
123
|
Davé V, Wert SE, Tanner T, Thitoff AR, Loudy DE, Whitsett JA. Conditional deletion of Pten causes bronchiolar hyperplasia. Am J Respir Cell Mol Biol 2007; 38:337-45. [PMID: 17921358 DOI: 10.1165/rcmb.2007-0182oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.
Collapse
Affiliation(s)
- Vrushank Davé
- Division of Pulmonary Biology, 4403, Cincinnati Children's Hospital Research Foundation, University of Cincinnati Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
The acquisition of invasive behaviour is the key transition in the progression of benign melanocyte hyperplasia to life threatening melanoma. Understanding this transition and the mechanisms of invasion are the key to understanding why malignant melanoma is such a devastating disease and will aid treatment strategies. Underlying the invasive behaviour is increased cell motility caused by changes in cytoskeletal organization and altered contacts with the extra-cellular matrix (ECM). In addition, changes in the interactions of melanoma cells with keratinocytes and fibroblasts enable them to survive and proliferate outside their normal epidermal location. Proteomic and genomic initiatives are greatly increasing our knowledge of which gene products are deregulated in invasive and metastatic melanoma; however, the next challenge is to understand how these genes promote the invasion of melanoma cells. In recent years new models have been developed that more closely recapitulate the conditions of melanoma invasion in vivo. It is hoped that these models will give us a better understanding of how the genes implicated in melanoma progression affect the motility of melanoma cells and their interactions with the ECM, stromal cells and blood vessels. This review will summarise our current understanding of melanoma invasion and focus on the new model systems that can be used to study melanoma.
Collapse
Affiliation(s)
- Cedric Gaggioli
- Tumour Cell Biology Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | |
Collapse
|
125
|
Kim D, Dressler GR. PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol 2007; 307:290-9. [PMID: 17540362 PMCID: PMC2129124 DOI: 10.1016/j.ydbio.2007.04.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/12/2007] [Accepted: 04/30/2007] [Indexed: 01/20/2023]
Abstract
The RET receptor tyrosine kinase is activated by GDNF and controls outgrowth and invasion of the ureteric bud epithelia in the developing kidney. In renal epithelial cells and in enteric neuronal precursor cells, activation of RET results in chemotaxis as Ret expressing cells invade the surrounding GDNF expressing tissue. One potential downstream signaling pathway governing RET mediated chemotaxis may require phosphatidylinositol 3-kinase (PI3K), which generates PI(3,4,5) triphosphate. The PTEN tumor suppressor gene encodes a protein and lipid phosphatase that regulates cell growth, apoptosis and many other cellular processes. PTEN helps regulate cellular chemotaxis by antagonizing the PI3K signaling pathway through dephosphorylation of phosphotidylinositol triphosphates. In this report, we show that PTEN suppresses RET mediated cell migration and chemotaxis in cell culture assays, that RET activation results in asymmetric localization of inositol triphosphates and that loss of PTEN affects the pattern of branching morphogenesis in developing mouse kidneys. These data suggest a critical role for the PI3K/PTEN axis in shaping the pattern of epithelial branches in response to RET activation.
Collapse
Affiliation(s)
- Doyeob Kim
- Department of Pathology, University of Michigan, MSRB1, BSRB 2049, 109 Zina Pitcher Dr., Ann Arbor, MI 48109, USA
| | - Gregory R. Dressler
- Department of Pathology, University of Michigan, MSRB1, BSRB 2049, 109 Zina Pitcher Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
126
|
Bedolla R, Prihoda TJ, Kreisberg JI, Malik SN, Krishnegowda NK, Troyer DA, Ghosh PM. Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin Cancer Res 2007; 13:3860-7. [PMID: 17606718 DOI: 10.1158/1078-0432.ccr-07-0091] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE A considerable fraction of patients who undergo radical prostatectomy as treatment for primary prostate cancer experience biochemical recurrence detected by elevated serum levels of prostate-specific antigen. In this study, we investigate whether loss of expression of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and the phosphorylated form of the cell survival protein Akt (pAkt) predicts biochemical recurrence. EXPERIMENTAL DESIGN Expression of PTEN and pAkt was detected by immunohistochemistry in paraffin-embedded prostate cancer tissue obtained from men undergoing radical prostatectomy. Outcome was determined by 60-month follow-up determining serum prostate-specific antigen levels. RESULTS By itself, PTEN was not a good predictor of biochemical recurrence; however, in combination with pAkt, it was a better predictor of the risk of biochemical recurrence compared with pAkt alone. Ninety percent of all cases with high pAkt and negative PTEN were recurrent whereas 88.2% of those with low pAkt and positive PTEN were nonrecurrent. In addition, high Gleason scores resulted in reduced protection from decreased pAkt and increased PTEN. By univariate logistic regression, pAkt alone gives an area under the receiver-operator characteristic curve of 0.82 whereas the area under the receiver-operator characteristic curve for the combination of PTEN, pAkt, and Gleason based on a stepwise selection model is 0.89, indicating excellent discrimination. CONCLUSIONS Our results indicate that loss of PTEN expression, together with increased Akt phosphorylation and Gleason score, is of significant predictive value for determining, at the time of prostatectomy, the risk of biochemical recurrence.
Collapse
Affiliation(s)
- Roble Bedolla
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, Jiao J, Rose J, Xie W, Loda M, Golub T, Mellinghoff IK, Davis RJ, Wu H, Sawyers CL. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 2007; 11:555-69. [PMID: 17560336 DOI: 10.1016/j.ccr.2007.04.021] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 02/14/2007] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
Although most oncogenic phenotypes of PTEN loss are attributed to AKT activation, AKT alone is not sufficient to induce all of the biological activities associated with PTEN inactivation. We searched for additional PTEN-regulated pathways through gene set enrichment analysis (GSEA) and identified genes associated with JNK activation. PTEN null cells exhibit higher JNK activity, and genetic studies demonstrate that JNK functions parallel to and independently of AKT. Furthermore, PTEN deficiency sensitizes cells to JNK inhibition and negative feedback regulation of PI3K was impaired in PTEN null cells. Akt and JNK activation are highly correlated in human prostate cancer. These findings implicate JNK in PI3K-driven cancers and demonstrate the utility of GSEA to identify functional pathways using genetically defined systems.
Collapse
Affiliation(s)
- Igor Vivanco
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Wu Z, McRoberts KS, Theodorescu D. The role of PTEN in prostate cancer cell tropism to the bone micro-environment. Carcinogenesis 2007; 28:1393-400. [PMID: 17347137 DOI: 10.1093/carcin/bgm050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about the role of the tumor suppressor gene phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in prostate cancer bone metastasis. To explore this, we used a pTetOn PTEN cell line in which PTEN expression was reconstituted in a PTEN-null bone metastatic human prostate cancer cell line, LnCaP-C4-2. We found that C4-2 cells selectively migrated toward conditioned medium from primary mouse calvaria cells compared with that derived from lung fibroblasts. Further evaluation with conditioned medium from an established mouse calvaria osteoblast cell line and control non-osteoblast cell line indicates that osteoblastic characteristics convey this specific migration to C4-2 cells. We evaluated promiscuously metastatic PC-3 prostate as well as T24T and UMUC-3 bladder cells and found they did not have a specific migratory response to calvaria-conditioned medium as did C4-2. Induction of PTEN expression inhibited the motility of C4-2 cells toward calvaria-conditioned medium but had no effect on migration toward lung-conditioned medium and this inhibitory effect was dependent on the PTEN lipid phosphatase activity. Calvaria- but not lung-conditioned medium induced activation of the small GTPase Rac1. Constitutively active Rac1 but not focal adhesion kinase or Cdc42 could rescue cells from the inhibitory effect of PTEN on cell migration and PTEN induction was observed to inhibit Rac1 activation in response to calvaria-conditioned medium. Our results support the notion that loss of PTEN function in human prostate cancer may specifically facilitate bone rather than other organ metastasis and suggest that Rac1, as a PTEN effector, may contribute to this metastatic tropism.
Collapse
Affiliation(s)
- Z Wu
- Department of Molecular Physiology and Biological Physics, Box 422, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
129
|
Liu X, Bruxvoort KJ, Zylstra CR, Liu J, Cichowski R, Faugere MC, Bouxsein ML, Wan C, Williams BO, Clemens TL. Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc Natl Acad Sci U S A 2007; 104:2259-64. [PMID: 17287359 PMCID: PMC1892939 DOI: 10.1073/pnas.0604153104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone formation is carried out by the osteoblast, a mesenchymal cell whose lifespan and activity are regulated by growth factor signaling networks. Growth factors activate phosphatidylinositol 3-kinase (PI3K), which enhances cell survival and antagonizes apoptosis through activation of Akt/PKB. This process is negatively regulated by the Pten phosphatase, which inhibits the activity of PI3K. In this study, we investigated the effects of Akt activation in bone in vivo by conditionally disrupting the Pten gene in osteoblasts by using Cre-mediated recombination. Mice deficient in Pten in osteoblasts were of normal size but demonstrated a dramatic and progressively increasing bone mineral density throughout life. In vitro osteoblasts lacking Pten differentiated more rapidly than controls and exhibited greatly reduced apoptosis in association with markedly increased levels of phosphorylated Akt and activation of signaling pathways downstream of activated Akt. These findings support a critical role for this tumor-suppressor gene in regulating osteoblast lifespan and likely explain the skeletal abnormalities in patients carrying germ-line mutations of PTEN.
Collapse
Affiliation(s)
- Ximeng Liu
- *Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Katia J. Bruxvoort
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Cassandra R. Zylstra
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Jiarong Liu
- *Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Rachel Cichowski
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, MI 49503
| | | | - Mary L. Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Chao Wan
- *Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bart O. Williams
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, MI 49503
- To whom correspondence may be addressed. E-mail:
or
| | - Thomas L. Clemens
- *Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
130
|
Leslie NR, Yang X, Downes CP, Weijer CJ. PtdIns(3,4,5)P(3)-dependent and -independent roles for PTEN in the control of cell migration. Curr Biol 2007; 17:115-25. [PMID: 17240336 PMCID: PMC1885949 DOI: 10.1016/j.cub.2006.12.026] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Phosphatase and tensin homolog (PTEN) mediates many of its effects on proliferation, growth, survival, and migration through its PtdIns(3,4,5)P(3) lipid phosphatase activity, suppressing phosphoinositide 3-kinase (PI3K)-dependent signaling pathways. PTEN also possesses a protein phosphatase activity, the role of which is less well characterized. RESULTS We have investigated the role of PTEN in the control of cell migration of mesoderm cells ingressing through the primitive streak in the chick embryo. Overexpression of PTEN strongly inhibits the epithelial-to-mesenchymal transition (EMT) of mesoderm cells ingressing through the anterior and middle primitive streak, but it does not affect EMT of cells located in the posterior streak. The inhibitory activity on EMT is completely dependent on targeting PTEN through its C-terminal PDZ binding site, but can be achieved by a PTEN mutant (PTEN G129E) with only protein phosphatase activity. Expression either of PTEN lacking the PDZ binding site or of the PTEN C2 domain, or inhibition of PI3K through specific inhibitors, does not inhibit EMT, but results in a loss of both cell polarity and directional migration of mesoderm cells. The PTEN-related protein TPTE, which normally lacks any detectable lipid and protein phosphatase activity, can be reactivated through mutation, and only this reactivated mutant leads to nondirectional migration of these cells in vivo. CONCLUSIONS PTEN modulates cell migration of mesoderm cells in the chick embryo through at least two distinct mechanisms: controlling EMT, which involves its protein phosphatase activity; and controlling the directional motility of mesoderm cells, through its lipid phosphatase activity.
Collapse
Affiliation(s)
- Nick R Leslie
- Division of Molecular Physiology, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
131
|
Yoshizaki H, Mochizuki N, Gotoh Y, Matsuda M. Akt-PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation. Mol Biol Cell 2007; 18:119-28. [PMID: 17079732 PMCID: PMC1751317 DOI: 10.1091/mbc.e06-05-0467] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/16/2006] [Accepted: 10/19/2006] [Indexed: 11/11/2022] Open
Abstract
We studied the spatiotemporal regulation of Akt (also called protein kinase B), phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] by using probes based on the principle of fluorescence resonance energy transfer. On epidermal growth factor (EGF) stimulation, the amount of PtdIns(3,4,5)P3 was increased diffusely in the plasma membrane, whereas that of PtdIns(3,4)P2 was increased more in the nascent lamellipodia than in the plasma membrane of the central region. The distribution and time course of Akt activation were similar to that of increased PtdIns(3,4)P2 levels, which were most prominent in the nascent lamellipodia. Moreover, we found that upon EGF stimulation 3-phosphoinositide-dependent protein kinase-1 (PDK1) was also recruited to nascent lamellipodia in an Akt-dependent manner. Because PDK1 is known to activate Ral GTPase and because Ral is required for EGF-induced lamellipodial protrusion, we speculated that the PDK1-Akt complex may be indispensable for the induction of lamellipodia. In agreement with this idea, EGF-induced lamellipodia formation was promoted by the overexpression of Akt and inhibited by an Akt inhibitor or a Ral-binding domain of Sec5. These results identified the Akt-PDK1 complex as an upstream positive regulator of Ral GTPase in the induction of lamellipodial protrusion.
Collapse
Affiliation(s)
- Hisayoshi Yoshizaki
- *Department of Structural Analysis, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and
| | - Naoki Mochizuki
- *Department of Structural Analysis, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Yukiko Gotoh
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and
| |
Collapse
|
132
|
von Philipsborn A, Bastmeyer M. Mechanisms of Gradient Detection: A Comparison of Axon Pathfinding with Eukaryotic Cell Migration. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:1-62. [PMID: 17725964 DOI: 10.1016/s0074-7696(07)63001-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The detection of gradients of chemotactic cues is a common task for migrating cells and outgrowing axons. Eukaryotic gradient detection employs a spatial mechanism, meaning that the external gradient has to be translated into an intracellular signaling gradient, which affects cell polarization and directional movement. The sensitivity of gradient detection is governed by signal amplification and adaptation mechanisms. Comparison of the major signal transduction pathways underlying gradient detection in three exemplary chemotaxing cell types, Dictyostelium, neutrophils, and fibroblasts and in neuronal growth cones, reveals conserved mechanisms such as localized PI3 kinase/PIP3 signaling and a common output, the regulation of the cytoskeleton by Rho GTPases. Local protein translation plays a role in directional movement of both fibroblasts and neuronal growth cones. Ca(2+) signaling is prominently involved in growth cone gradient detection. The diversity of signaling between different cell types and its functional implications make sense in the biological context.
Collapse
Affiliation(s)
- Anne von Philipsborn
- Department of Cell Biology and Neurobiology, University of Karlsruhe, D-76131 Karlsruhe, Germany
| | | |
Collapse
|
133
|
Shi HY, Stafford LJ, Liu Z, Liu M, Zhang M. Maspin controls mammary tumor cell migration through inhibiting Rac1 and Cdc42, but not the RhoA GTPase. ACTA ACUST UNITED AC 2007; 64:338-46. [PMID: 17301947 DOI: 10.1002/cm.20187] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rac1 and Cdc42 are members of the Rho family of small GTPases that play essential roles in diverse cellular functions, including cell migration. The activities of these Rho family proteins are controlled by growth factor receptor activation and cell-ECM interactions. Here, we show that maspin, a well-documented tumor suppressor gene, also controls cell motility through inhibiting Rac1/Cdc42 activity. Using the GST-PAK and GST-Rho binding protein pull-down assays for GTP-bound Rac1, Cdc42, and RhoA, we showed that treatment of MDA-MB-231 tumor cells with recombinant maspin for a short time period significantly inhibited the activity of Rac1 and Cdc42, but not RhoA. The reactive site loop (RSL) within maspin protein is the functional domain involved in the inhibition. Maspin mutants with the RSL deleted or a point mutation in the RSL region lost their inhibitory activity. We further examined the ability of maspin to inhibit Rac1- and Cdc42-mediated signaling pathways and transcription factors. Treatment of MDA-MB-231 cells with maspin led to the inhibition of JNK kinase activity as assayed by immuno-kinase assays. In addition, the AP-1 transcription activity downstream of JNK kinase pathway was also reduced. Together, we have identified Rac1 and Cdc42 as the downstream targets that mediate the inhibition of mammary tumor cell migration by maspin.
Collapse
Affiliation(s)
- Heidi Y Shi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
134
|
Debidda M, Williams DA, Zheng Y. Rac1 GTPase Regulates Cell Genomic Stability and Senescence. J Biol Chem 2006; 281:38519-28. [PMID: 17032649 DOI: 10.1074/jbc.m604607200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho family small GTPase Rac1 has been shown to play multiple roles in cell regulation, including actin cytoskeleton organization, transcriptional activation, microtubule dynamics, and endocytosis. Here, we report a novel role of Rac1 in regulating genomic stability and cell senescence. We observed in primary mouse embryonic fibroblasts that deletion of rac1 by gene targeting, as well as expression of the constitutively active Rac1 mutant L61Rac1, led to decreased cell growth that was associated with altered cell cycle progression at both G(1)/S and G(2)/M phases, increased apoptosis, and premature senescence. The senescence induction by either loss or gain of Rac1 activity was due at least in part to an increase in cellular reactive oxygen species (ROS). rac1 gene deletion caused a compensatory up-regulation of a closely related family member, Rac3, in mouse embryonic fibroblasts, the activity of which induced ROS production independently of Rac1. Furthermore, the Rac1-regulated ROS production and senescence correlated with the extent of DNA damage in the Rac1(-/-) and L61Rac1 cells. Treatment of these cells with a ROS inhibitor inhibited phospho-H2AX-positive nuclear focus formation. Finally, phospho-Ser(15) p53 was significantly increased in L61Rac1 and Rac1(-/-) cells, and genetic deletion of p53 from these cells readily reversed the senescence phenotype, indicating that Rac1 is functionally dependent on p53 in regulating cell senescence. Taken together, our results show that Rac1 activity serves as a regulator of cell senescence through modulation of cellular ROS, genomic stability, and p53 activity.
Collapse
Affiliation(s)
- Marcella Debidda
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
135
|
Huang W, Chang HY, Fei T, Wu H, Chen YG. GSK3 beta mediates suppression of cyclin D2 expression by tumor suppressor PTEN. Oncogene 2006; 26:2471-82. [PMID: 17043650 DOI: 10.1038/sj.onc.1210033] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PTEN, encoding a lipid phosphatase, is a tumor suppressor gene and is mutated in various types of cancers. It is reported to regulate G1 to S phase transition of the cell cycle by influencing the expression, protein stability and subcellular location of cyclin D1. Here, we provide evidence that PTEN modulates the transcription and protein stability of cyclin D2. Targeted deletion of Pten in mouse embryonic fibroblasts (MEFs) endowed cells with greater potential to overcome G1 arrest than wild-type MEFs and led to the elevated expression of cyclin D2, which was suppressed by the introduction of PTEN. We further defined a pathway involving GSK3beta and beta-catenin/TCF in PTEN-mediated suppression of cyclin D2 transcription. LiCl, an inhibitor of GSK3beta, abolished inhibitory effect of PTEN on cyclin D2 expression, and TCF members could directly bind to the promoter of cyclin D2 and regulate its transcription in a CREB-dependent manner. Our results indicate that the downregulation of cyclin D2 expression by PTEN is mediated by the GSK3beta/beta-catenin/TCF pathway in cooperation with CREB, and suggest a convergence from the PI-3 kinase/PTEN pathway and the Wnt pathway in modulation of cyclin D2 expression.
Collapse
Affiliation(s)
- W Huang
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
136
|
Chow LML, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett 2006; 241:184-96. [PMID: 16412571 DOI: 10.1016/j.canlet.2005.11.042] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/21/2005] [Accepted: 11/22/2005] [Indexed: 01/19/2023]
Abstract
The PTEN tumor suppressor is a central negative regulator of the PI3K/AKT signaling cascade that influences multiple cellular functions including cell growth, survival, proliferation and migration in a context-dependent manner. Dysregulation of this signaling pathway contributes to many cancers in man. PTEN is the most commonly altered component of the PI3K pathway in human malignancies. Mutations occur in both heritable and sporadic settings, with high frequency in sporadic glioblastoma, prostate and endometrial cancer. Data from human tumors and animal models support the concept that the effects of PTEN inactivation are tissue-specific. Elucidation of the mechanisms regulating activation of unique downstream effectors that mediate distinct outcomes of PTEN loss will augment our understanding of tumorigenesis and ultimately lead to novel therapeutic options.
Collapse
Affiliation(s)
- Lionel M L Chow
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | |
Collapse
|
137
|
Kang-Park S, Im JH, Lee JH, Lee YI. PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells. Virus Res 2006; 122:53-60. [PMID: 16872708 DOI: 10.1016/j.virusres.2006.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/07/2006] [Accepted: 06/12/2006] [Indexed: 11/22/2022]
Abstract
PTEN gene, a novel tumor suppressor is frequently mutated or deleted in several malignancies including human hepatocellular carcinoma (HCC). We report previously that human hepatitis B virus-X (HBx) protein achieves protection from apoptotic cell death through-PI3K-Akt-Bad signaling that is p53-independent in liver cells (JBC; 276, 16969 (2000)). In this report, we demonstrated the PTEN effect on HBx induced anti-apoptotic signaling in Chang liver cells (CHL). Expression of PTEN in CHL cells downregulate HBx induced PI3K, Akt activities, Akt, Bad phosphorylations, decreased caspase 3 activity and protection from DNA fragmentations. PTEN suppression of CHL cell growth at G1 phase (JBC;278,4057(2003)) in cell cycle analysis, which is overcome by HBx activated Akt/PKB further confirmed that same PI3K/Akt pathway is involved in cell survival and apoptosis by HBx and PTEN. PTEN suppression of HBx-mediated cell survival through PI3K pathway is specific, since PTEN does not suppress the effect of HBx on the protection from Fas-mediated apoptosis. Taken together, these findings demonstrate that PTEN potently modulate HBx-mediated signaling and is a viable target in therapeutic approaches to inhibit the formation of HCC caused by HBV infections.
Collapse
Affiliation(s)
- Sukmi Kang-Park
- Liver Cell Signal Transduction Lab., Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-606, Republic of Korea
| | | | | | | |
Collapse
|
138
|
Ueno S, Kono R, Iwao Y. PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos. Dev Biol 2006; 297:274-83. [PMID: 16919259 DOI: 10.1016/j.ydbio.2006.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/30/2006] [Accepted: 06/01/2006] [Indexed: 11/16/2022]
Abstract
PTEN phosphatase mediates several developmental cues involving cell proliferation, growth, death, and migration. We investigated the function of the PTEN gene at the transition from the cell proliferation state to morphogenesis around the midblastula transition (MBT) and gastrulation in Xenopus embryos. An immunoblotting analysis indicated that PTEN expresses constantly through embryogenesis. By up- or down-regulating PTEN activity using overexpression of the active form or C terminus of PTEN before MBT, we induced elongation of the cell cycle time just before MBT or maintained its speed even after MBT, respectively. The disruption of the cell cycle time by changing the activity of PTEN delayed gastrulation after MBT. In addition, PTEN began to localize to the plasma membranes and nuclei at MBT. Overexpression of a membrane-localizing mutant of PTEN caused dephosphorylation of Akt, whereas overexpression of the C terminus of PTEN caused phosphorylation of Akt and inhibited the localization of EGFP-PTEN to the plasma membranes and nuclei. These results indicate that an appropriate PTEN activity, probably regulated by its differential localization, is necessary for coordinating cell proliferation and early morphogenesis.
Collapse
Affiliation(s)
- Shuichi Ueno
- Department of Biological Science, Faculty of Science, Yamaguchi University, 753-8512 Yamaguchi, Japan.
| | | | | |
Collapse
|
139
|
Li G, Hu Y, Huo Y, Liu M, Freeman D, Gao J, Liu X, Wu DC, Wu H. PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin. J Biol Chem 2006; 281:10663-8. [PMID: 16507572 DOI: 10.1074/jbc.m512509200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tumor suppressor gene PTEN is highly mutated in a wide variety of human tumors. To identify unknown targets or signal transduction pathways that are regulated by PTEN, microarray analysis was performed to compare the gene expression profiles of Pten null mouse embryonic fibroblasts (MEFs) cell lines and their isogenic counterparts. Expression of a heparin binding growth factor, pleiotrophin (Ptn), was found to be up-regulated in Pten-/- MEFs as well as Pten null mammary tumors. Further experiments revealed that Ptn expression is regulated by the PTEN-PI3K-AKT pathway. Knocking down the expression of Ptn by small interfering RNA resulted in the reduction of Akt and GSK-3beta phosphorylation and suppression of the growth and the tumorigenicity of Pten null MEFs. Our results suggest that PTN participates in tumorigenesis caused by PTEN loss and PTN may be a potential target for anticancer therapy, especially for those tumors with PTEN deficiencies.
Collapse
Affiliation(s)
- Gang Li
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California 90095-1735, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Vazquez F, Matsuoka S, Sellers WR, Yanagida T, Ueda M, Devreotes PN. Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc Natl Acad Sci U S A 2006; 103:3633-8. [PMID: 16537447 PMCID: PMC1450134 DOI: 10.1073/pnas.0510570103] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tumor suppressor function of PTEN is strongly linked to its ability to dephosphorylate phosphatidylinositol-3,4,5 trisphosphate and, thereby, control cell growth, survival, and migration. However, the mechanism of action of PTEN in living cells is largely unexplored. Here we use single-molecule TIRF microscopy in living cells to reveal that the enzyme binds to the membrane for a few hundred milliseconds, sufficient to degrade several phosphatidylinositol-3,4,5 trisphosphate molecules. Deletion of an N-terminal lipid-binding motif completely abrogates membrane interaction and in vivo function. Several mechanisms, including C-terminal tail phosphorylations, appear to hold PTEN in a constrained conformation that limits its rate of association with the membrane. The steady-state level of bound PTEN is highest at sites of retracting membrane, including the rear of highly polarized cells. The dynamic membrane association could be modulated temporally or spatially to alter PTEN activity in specific physiological situations and could have important implications for tumor suppressor function.
Collapse
Affiliation(s)
- Francisca Vazquez
- *Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Satomi Matsuoka
- Laboratory of Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - William R. Sellers
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA 02115
| | - Toshio Yanagida
- Laboratory of Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Masahiro Ueda
- Laboratory of Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Peter N. Devreotes
- *Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
141
|
Bose S, Chandran S, Mirocha JM, Bose N. The Akt pathway in human breast cancer: a tissue-array-based analysis. Mod Pathol 2006; 19:238-45. [PMID: 16341149 DOI: 10.1038/modpathol.3800525] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Akt pathway, an important regulator of cell proliferation and survival, is deregulated in many cancers. The pathway has achieved considerable importance due to the development of kinase inhibitors that are able to successfully reduce tumor growth. This study was conducted to determine the status of the Akt pathway in human breast cancers and to study the relationship between the different component proteins. Expression levels of PTEN, phosphorylated forms of the constituent proteins (Akt, FKHR, mTOR, and S6) and cyclin D1 were evaluated by immunohistochemistry, on consecutive sections from a tissue microarray containing 145 invasive breast cancers and 140 pure ductal carcinomas in-situ. Aberrant expression was correlated statistically with tumor characteristics and disease outcome. The Akt pathway was found to be activated early in breast cancer, in the in-situ stage. In all, 33, 15, 32, and 60% of ductal carcinoma in-situ showed overexpression of Akt, FKHR, mTOR, and cyclin D1. PTEN loss did not correlate statistically with expression of AKT or any of the other proteins with the exception of S6, indicating that Akt activation was not a result of PTEN loss. Expression levels of PTEN and S6 were significantly different in in-situ and invasive cancers, indicating association with disease progression. Loss of PTEN was noted in 11% of in-situ as compared to 26% of invasive cancers, while S6 overexpression was seen in 47% in-situ and in 72% invasive cancers. High-grade carcinomas were associated with PTEN loss, while low-grade carcinomas with good prognostic features showed cyclin D1 overexpression and were associated with longer disease free survival. Additionally, cancers with mTOR overexpression showed a three times greater risk for disease recurrence. Overall, a large proportion of in-situ and invasive breast cancers overexpressed cyclinD1 and S6. Our results may have significant implications in the development and application of targeted therapy.
Collapse
Affiliation(s)
- Shikha Bose
- Department of Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | |
Collapse
|
142
|
Edwin F, Singh R, Endersby R, Baker SJ, Patel TB. The tumor suppressor PTEN is necessary for human Sprouty 2-mediated inhibition of cell proliferation. J Biol Chem 2005; 281:4816-22. [PMID: 16371366 DOI: 10.1074/jbc.m508300200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sprouty family proteins are novel regulators of growth factor actions. Human Sprouty 2 (hSPRY2) inhibits the proliferation of a number of different cell types. However, the mechanisms involved in the anti-proliferative actions of hSPRY2 remain to be elucidated. Here we have demonstrated that hSPRY2 increases the amount of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and decreases its phosphorylation. The resultant increase in PTEN activity is reflected in decreased activation of Akt by epidermal growth factor and serum. Consistent with increased PTEN activity, in hSPRY2-expressing cells, the progression of cells from the G1 to S phase is decreased. By using PTEN null primary mouse embryonic fibroblasts and their isogenic controls as well as small interfering RNA against PTEN, we demonstrated that PTEN is necessary for hSPRY2 to inhibit Akt activation by epidermal growth factor as well as cell proliferation. Overall, we concluded that hSPRY2 mediates its anti-proliferative actions by altering PTEN content and activity.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
143
|
Abstract
In vertebrates, the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) regulates many cellular processes through its PtdIns(3,4,5)P3 lipid phosphatase activity, antagonizing PI3K (phosphoinositide 3-kinase) signalling. Given the important role of PI3Ks in the regulation of directed cell migration and the role of PTEN as an inhibitor of migration, it is somewhat surprising that data now indicate that PTEN is able to regulate cell migration independent of its lipid phosphatase activity. Here, we discuss the role of PTEN in the regulation of cell migration.
Collapse
|
144
|
Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JHY, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353:2012-24. [PMID: 16282176 DOI: 10.1056/nejmoa051918] [Citation(s) in RCA: 1033] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) is frequently amplified, overexpressed, or mutated in glioblastomas, but only 10 to 20 percent of patients have a response to EGFR kinase inhibitors. The mechanism of responsiveness of glioblastomas to these inhibitors is unknown. METHODS We sequenced kinase domains in the EGFR and human EGFR type 2 (Her2/neu) genes and analyzed the expression of EGFR, EGFR deletion mutant variant III (EGFRvIII), and the tumor-suppressor protein PTEN in recurrent malignant gliomas from patients who had received EGFR kinase inhibitors. We determined the molecular correlates of clinical response, validated them in an independent data set, and identified effects of the molecular abnormalities in vitro. RESULTS Of 49 patients with recurrent malignant glioma who were treated with EGFR kinase inhibitors, 9 had tumor shrinkage of at least 25 percent. Pretreatment tissue was available for molecular analysis from 26 patients, 7 of whom had had a response and 19 of whom had rapid progression during therapy. No mutations in EGFR or Her2/neu kinase domains were detected in the tumors. Coexpression of EGFRvIII and PTEN was significantly associated with a clinical response (P<0.001; odds ratio, 51; 95 percent confidence interval, 4 to 669). These findings were validated in 33 patients who received similar treatment for glioblastoma at a different institution (P=0.001; odds ratio, 40; 95 percent confidence interval, 3 to 468). In vitro, coexpression of EGFRvIII and PTEN sensitized glioblastoma cells to erlotinib. CONCLUSIONS Coexpression of EGFRvIII and PTEN by glioblastoma cells is associated with responsiveness to EGFR kinase inhibitors.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Department of Molecular and Medical Pharmacology and Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles 90095-1732, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Filipenko NR, Attwell S, Roskelley C, Dedhar S. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX. Oncogene 2005; 24:5837-49. [PMID: 15897874 DOI: 10.1038/sj.onc.1208737] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell spreading and migration are regulated in a Rho family GTPase-dependent manner by growth factors and integrin-mediated cell-extracellular matrix (ECM) interactions. The molecular mechanisms involved in the ECM- and growth factor-mediated activation of these small GTPases remain unclear. In the present study, we demonstrate that integrin-linked kinase (ILK), which is a focal adhesion protein activated by both ECM and growth factors, is required for the activation of Rac and Cdc42 in epithelial cells. Ectopic expression of active ILK in mammary epithelial cells induces dramatic reorganization of the actin cytoskeleton and promotes rapid cell spreading on fibronectin. These effects are associated with constitutive activation of both Rac and Cdc42, but not Rho. The use of ILK siRNA or small molecule inhibitors to inhibit ILK expression and kinase activity, respectively, results in diminished cell spreading and actin cytoskeleton reorganization, concomitant with a reduction in Rac and Cdc42 activation. Studies into the mechanism of ILK-mediated Rac activation suggest an important role for the ILK-beta-parvin interaction and the activity of the Rac/Cdc42-specific guanine nucleotide exchange factor alpha-PIX downstream of ILK. Taken together, these data demonstrate an essential role of ILK kinase activity in Rac- and Cdc42-mediated actin cytoskeleton reorganization in epithelial cells, further solidifying a role for ILK in the regulation of cancer cell motility and invasiveness.
Collapse
|
146
|
Liu JL, Sheng X, Hortobagyi ZK, Mao Z, Gallick GE, Yung WKA. Nuclear PTEN-mediated growth suppression is independent of Akt down-regulation. Mol Cell Biol 2005; 25:6211-24. [PMID: 15988030 PMCID: PMC1168816 DOI: 10.1128/mcb.25.14.6211-6224.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tumor suppressor gene PTEN is a phosphoinositide phosphatase that is inactivated by deletion and/or mutation in diverse human tumors. Wild-type PTEN is expressed both in the cytoplasm and nucleus in normal cells, with a preferential nuclear localization in differentiated or resting cells. To elucidate the relationship between PTEN's subcellular localization and its biologic activities, we constructed different PTEN mutants that targeted PTEN protein into different subcellular compartments. Our data show that the subcellular localization patterns of a PTEN (deltaPDZB) mutant versus a G129R phosphatase mutant were indistinguishable from those of wild-type PTEN. In contrast, the Myr-PTEN mutant demonstrated an enhanced association with the cell membrane. We found that nuclear PTEN alone is capable of suppressing anchorage-independent growth and facilitating G1 arrest in U251MG cells without inhibiting Akt activity. Nuclear compartment-specific PTEN-induced growth suppression is dependent on possessing a functional lipid phosphatase domain. In addition, the down-regulation of p70S6K could be mediated, at least in part, through activation of AMP-activated protein kinase in an Akt-independent fashion. Introduction of a constitutively active mutant of Akt, Akt-DD, only partially rescues nuclear PTEN-mediated growth suppression. Our collective results provide the first direct evidence that PTEN can contribute to G1 growth arrest through an Akt-independent signaling pathway.
Collapse
Affiliation(s)
- Juinn-Lin Liu
- Brain Tumor Center, Department of Neuro-Oncology, UT M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 431, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
147
|
Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res 2005; 65:5172-80. [PMID: 15958561 DOI: 10.1158/0008-5472.can-04-3902] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-grade astrocytomas are invariably deadly and minimally responsive to therapy. Pten is frequently mutated in aggressive astrocytoma but not in low-grade astrocytoma. However, the Pten astrocytoma suppression mechanisms are unknown. Here we introduced conditional null alleles of Pten (Pten(loxp/loxp)) into a genetically engineered mouse astrocytoma model [TgG(deltaZ)T121] in which the pRb family proteins are inactivated specifically in astrocytes. Pten inactivation was induced by localized somatic retroviral (MSCV)-Cre delivery. Depletion of Pten function in adult astrocytoma cells alleviated the apoptosis evoked by pRb family protein inactivation and also induced tumor cell invasion. In primary astrocytes derived from TgG(deltaZ)T121; Pten(loxp/loxp) mice, Pten deficiency resulted in a marked increase in cell invasiveness that was suppressed by inhibitors of protein kinase C (PKC) or of PKC-zeta, specifically. Finally, focal induction of Pten deficiency in vivo promoted angiogenesis in affected brains. Thus, we show that Pten deficiency in pRb-deficient astrocytoma cells contributes to tumor progression via multiple mechanisms, including suppression of apoptosis, increased cell invasion, and angiogenesis, all of which are hallmarks of high-grade astrocytoma. These studies not only provide mechanistic insight into the role of Pten in astrocytoma suppression but also describe a valuable animal model for preclinical testing that is coupled with a primary cell-based system for target discovery and drug screening.
Collapse
Affiliation(s)
- Andrew Xiao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
148
|
Lacalle RA, Gómez-Moutón C, Barber DF, Jiménez-Baranda S, Mira E, Martínez-A C, Carrera AC, Mañes S. PTEN regulates motility but not directionality during leukocyte chemotaxis. J Cell Sci 2005; 117:6207-15. [PMID: 15564381 DOI: 10.1242/jcs.01545] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The localization at opposite cell poles of phosphatidylinositol-3 kinases and PTEN (phosphatase and tensin homolog on chromosome 10) governs Dictyostelium chemotaxis. To study this model in mammalian cells, we analyzed the dynamic redistribution of green fluorescent protein (GFP)-tagged PTEN chimeras during chemotaxis. N- or C-terminus GFP-tagged PTEN was distributed homogeneously in the cytoplasm of chemotaxing PTEN-negative Jurkat cells and PTEN-positive HL60 cells. Moreover, we did not detect uropod accumulation of endogenous PTEN in chemoattractant-stimulated HL60 cells. Cell fractionation indicated that both endogenous and ectopically expressed PTEN were confined largely to the cytosol, and that chemoattractant stimulation did not alter this location. PTEN re-expression in Jurkat cells or PTEN depletion by specific siRNA in HL60 cells did not affect cell gradient sensing; PTEN nonetheless modulated chemoattractant-induced actin polymerization and the speed of cell movement. The results suggest a role for PTEN in regulating actin polymerization, but not directionality during mammalian cell chemotaxis.
Collapse
Affiliation(s)
- Rosa Ana Lacalle
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Yue Q, Groszer M, Gil JS, Berk AJ, Messing A, Wu H, Liu X. PTEN deletion in Bergmann glia leads to premature differentiation and affects laminar organization. Development 2005; 132:3281-91. [PMID: 15944184 DOI: 10.1242/dev.01891] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the central nervous system is controlled by both intrinsic and extrinsic signals that guide neuronal migration to form laminae. Although defects in neuronal mobility have been well documented as a mechanism for abnormal laminar formation, the role of radial glia, which provide the environmental cues, in modulating neuronal migration is less clear. We provide evidence that loss of PTEN in Bergmann glia leads to premature differentiation of this crucial cell population and subsequently to extensive layering defects. Accordingly, severe granule neuron migration defects and abnormal laminar formation are observed. These results uncover an unexpected role for PTEN in regulating Bergmann glia differentiation, as well as the importance of time-dependent Bergmann glia differentiation during cerebellar development.
Collapse
Affiliation(s)
- Qing Yue
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
The movement of cancer cells into tissue surrounding the tumour and the vasculature is the first step in the spread of metastatic cancers. Recent advances in imaging, the use of 3D model systems and the application of microarray technologies have yielded new insights into these processes. This work has challenged our views about what causes cancer cells to become motile in the first place, and has demonstrated that cancer cells can move in many different ways.
Collapse
Affiliation(s)
- Erik Sahai
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| |
Collapse
|