101
|
Sánchez IE, Beltrao P, Stricher F, Schymkowitz J, Ferkinghoff-Borg J, Rousseau F, Serrano L. Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm. PLoS Comput Biol 2008; 4:e1000052. [PMID: 18389064 PMCID: PMC2271153 DOI: 10.1371/journal.pcbi.1000052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 03/07/2008] [Indexed: 11/30/2022] Open
Abstract
Current experiments likely cover only a fraction of all protein-protein interactions. Here, we developed a method to predict SH2-mediated protein-protein interactions using the structure of SH2-phosphopeptide complexes and the FoldX algorithm. We show that our approach performs similarly to experimentally derived consensus sequences and substitution matrices at predicting known in vitro and in vivo targets of SH2 domains. We use our method to provide a set of high-confidence interactions for human SH2 domains with known structure filtered on secondary structure and phosphorylation state. We validated the predictions using literature-derived SH2 interactions and a probabilistic score obtained from a naive Bayes integration of information on coexpression, conservation of the interaction in other species, shared interaction partners, and functions. We show how our predictions lead to a new hypothesis for the role of SH2 domains in signaling. Understanding the functional role of every protein in the cell is a long-standing goal of cellular biology. An important step in this direction is to discover how and when proteins interact inside the cell to accomplish their tasks. Many of the cellular functions depend on reversible protein modifications like phosphorylation. To sense these modifications, cells have protein domains capable of binding phosphorylated proteins such as the SH2 domain. In this work, we show that it is possible to use the three-dimensional structure of protein domains to predict its binding preferences. Using a computational tool called FoldX, we have predicted the binding specificity of several human SH2 domains. These predictions, based on the computational analysis of the 3-D structure, were shown to be of similar accuracy as those obtained from experimental binding assays. We show here that it is also possible to understand how a mutation changes the binding preference of protein binding domains, opening the way for better understanding of some disease causing mutations. The combination of this novel computational approach with other sources of information allowed us to provide a set of high-confidence novel interactions for the proteins here studied.
Collapse
Affiliation(s)
| | - Pedro Beltrao
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francois Stricher
- European Molecular Biology Laboratory, Heidelberg, Germany
- EMBL-CRG Systems Biology Unit, CRG-Centre de Regulacio Genomica, Barcelona, Spain
| | - Joost Schymkowitz
- Switch Laboratory, Flanders Interuniversity Institute for Biotechnology (VIB), Brussels, Belgium
| | | | - Frederic Rousseau
- Switch Laboratory, Flanders Interuniversity Institute for Biotechnology (VIB), Brussels, Belgium
| | - Luis Serrano
- European Molecular Biology Laboratory, Heidelberg, Germany
- EMBL-CRG Systems Biology Unit, CRG-Centre de Regulacio Genomica, Barcelona, Spain
- * E-mail:
| |
Collapse
|
102
|
Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell 2008; 29:350-61. [PMID: 18280240 DOI: 10.1016/j.molcel.2007.12.022] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 09/24/2007] [Accepted: 12/03/2007] [Indexed: 01/28/2023]
Abstract
Cells undergo apoptosis upon exposure to severe DNA damage stress. Under this condition, p73 is phosphorylated and activated by c-Abl. The transcription coactivator Yap1 binds p73 to generate a complex that escapes p73 proteasomal degradation and recruits p300 to support transcription of proapoptotic genes. However, the mechanism of selective activation of proapoptotic genes by Yap1 remained unclear. In this study, we show that c-Abl directly phosphorylates Yap1 at position Y357 in response to DNA damage. Tyrosine-phosphorylated Yap1 is a more stable protein that displays higher affinity to p73 and selectively coactivates p73 proapoptotic target genes. Furthermore, we show that Yap1 switches between p73-mediated proapoptotic and growth arrest target genes based on its phosphorylation state. Thus, our data demonstrate that modification of a transcription coactivator, namely the DNA damage-induced phosphorylation of Yap1 by c-Abl, influences the specificity of target gene activation.
Collapse
Affiliation(s)
- Dan Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
103
|
Fernández-Riejos P, Goberna R, Sánchez-Margalet V. Leptin promotes cell survival and activates Jurkat T lymphocytes by stimulation of mitogen-activated protein kinase. Clin Exp Immunol 2008; 151:505-18. [PMID: 18234059 DOI: 10.1111/j.1365-2249.2007.03563.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Leptin (Ob) is a non-glycosylated peptide hormone that regulates energy homeostasis centrally, but also has systemic effects including the regulation of the immune function. We have reported previously that leptin activates human peripheral blood lymphocytes co-stimulated with phytohaemagglutinin (PHA) (4 microg/ml), which prevented the employment of pharmacological inhibitors of signalling pathways. In the present study, we used Jurkat T cells that responded to leptin with minimal PHA co-stimulation (0.25 microg/ml). The long isoform of leptin receptor is expressed on Jurkat T cells and upon leptin stimulation, the expression of early activation marker CD69 increases in a dose-dependent manner (0.1-10 nM). We have also found that leptin activates receptor-associated kinases of the Janus family-signal transucers and activators of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K) signalling pathways. Moreover, we sought to study the possible effect of leptin on cell survival and apoptosis of Jurkat T cells by culture in serum-free conditions. We have assayed the early phases of apoptosis by flow cytometric detection of fluorescein isothiocyanate (FITC)-labelled annexin V simultaneously with dye exclusion of propidium iodide (PI). As well, we have assayed the activation level of caspase-3 by inmunoblot with a specific antibody that recognizes active caspase-3. We have found that leptin inhibits the apoptotic process dose-dependently. By using pharmacological inhibitors, we have found that the stimulatory and anti-apoptotic effects of leptin in Jurkat T cells are dependent on MAPK activation, rather than the PI3K pathway, providing new data regarding the mechanism of action of leptin in T cells, which may be useful to understand more clearly the association between nutritional status and the immune function.
Collapse
Affiliation(s)
- P Fernández-Riejos
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, Medical School University of Seville, Seville, Spain
| | | | | |
Collapse
|
104
|
Miller ML, Hanke S, Hinsby AM, Friis C, Brunak S, Mann M, Blom N. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2. Mol Cell Proteomics 2008; 7:181-92. [PMID: 17938406 DOI: 10.1074/mcp.m700241-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Advances in mass spectrometry-based proteomics have yielded a substantial mapping of the tyrosine phosphoproteome and thus provided an important step toward a systematic analysis of intracellular signaling networks in higher eukaryotes. In this study we decomposed an uncharacterized proteomics data set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic acid binding.
Collapse
Affiliation(s)
- Martin Lee Miller
- Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, Building 208, DK-2800 Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
105
|
Barua D, Faeder JR, Haugh JM. Computational models of tandem SRC homology 2 domain interactions and application to phosphoinositide 3-kinase. J Biol Chem 2008; 283:7338-45. [PMID: 18204097 DOI: 10.1074/jbc.m708359200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intracellular signal transduction proteins typically utilize multiple interaction domains for proper targeting, and thus a broad diversity of distinct signaling complexes may be assembled. Considering the coordination of only two such domains, as in tandem Src homology 2 (SH2) domain constructs, gives rise to a kinetic scheme that is not adequately described by simple models used routinely to interpret in vitro binding measurements. To analyze the interactions between tandem SH2 domains and bisphosphorylated peptides, we formulated detailed kinetic models and applied them to the phosphoinositide 3-kinase p85 regulatory subunit/platelet-derived growth factor beta-receptor system. Data for this system from different in vitro assay platforms, including surface plasmon resonance, competition binding, and isothermal titration calorimetry, were reconciled to estimate the magnitude of the cooperativity characterizing the sequential binding of the high and low affinity SH2 domains (C-SH2 and N-SH2, respectively). Compared with values based on an effective volume approximation, the estimated cooperativity is 3 orders of magnitude lower, indicative of significant structural constraints. Homodimerization of full-length p85 was found to be an alternative mechanism for high avidity binding to phosphorylated platelet-derived growth factor receptors, which would render the N-SH2 domain dispensable for receptor binding.
Collapse
Affiliation(s)
- Dipak Barua
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
106
|
Shin DS, Kim YG, Kim EM, Kim M, Park HY, Kim JH, Lee BS, Kim BG, Lee YS. Solid-phase peptide library synthesis on HiCore resin for screening substrate specificity of Brk protein tyrosine kinase. ACTA ACUST UNITED AC 2007; 10:20-3. [PMID: 18052331 DOI: 10.1021/cc7001217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong-Sik Shin
- School of Chemical and Biological Engineering and Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Kwanak Gu, Seoul 151-744, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Bullock AN, Rodriguez MC, Debreczeni JÉ, Songyang Z, Knapp S. Structure of the SOCS4-ElonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation. Structure 2007; 15:1493-504. [PMID: 17997974 PMCID: PMC2225448 DOI: 10.1016/j.str.2007.09.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/06/2007] [Accepted: 09/18/2007] [Indexed: 11/21/2022]
Abstract
Tyrosine kinase signaling is tightly controlled by negative feedback inhibitors including suppressors of cytokine signaling (SOCS). SOCS assemble as SH2 domain substrate recognition modules in ElonginB/C-cullin ubiquitin ligases. In accordance, SOCS4 reduces STAT3 signaling from EGFR through increased receptor degradation. Variable C-termini in SOCS4-SOCS7 exclude these family members from a SOCS2-type domain arrangement in which a strictly conserved C terminus determines domain packing. The structure of the SOCS4-ElonginC-ElonginB complex reveals a distinct SOCS structural class. The N-terminal ESS helix functionally replaces the CIS/SOCS1-SOCS3 family C terminus in a distinct SH2-SOCS box interface that facilitates further interdomain packing between the extended N- and C-terminal regions characteristic for this subfamily. Using peptide arrays and calorimetry the STAT3 site in EGFR (pY(1092)) was identified as a high affinity SOCS4 substrate (K(D) = 0.5 microM) revealing a mechanism for EGFR degradation. SOCS4 also bound JAK2 and KIT with low micromolar affinity, whereas SOCS2 was specific for GH-receptor.
Collapse
Affiliation(s)
- Alex N. Bullock
- University of Oxford, Structural Genomics Consortium, Botnar Research Centre, Oxford OX3 7LD, United Kingdom
| | - Maria C. Rodriguez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Judit É. Debreczeni
- University of Oxford, Structural Genomics Consortium, Botnar Research Centre, Oxford OX3 7LD, United Kingdom
| | - Zhou Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Stefan Knapp
- University of Oxford, Structural Genomics Consortium, Botnar Research Centre, Oxford OX3 7LD, United Kingdom
| |
Collapse
|
108
|
Baldanzi G, Cutrupi S, Chianale F, Gnocchi V, Rainero E, Porporato P, Filigheddu N, van Blitterswijk WJ, Parolini O, Bussolino F, Sinigaglia F, Graziani A. Diacylglycerol kinase-alpha phosphorylation by Src on Y335 is required for activation, membrane recruitment and Hgf-induced cell motility. Oncogene 2007; 27:942-56. [PMID: 17700527 DOI: 10.1038/sj.onc.1210717] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diacylglycerol (DAG) kinases (Dgk), which phosphorylate DAG to generate phosphatidic acid, act as either positive or negative key regulators of cell signaling. We previously showed that Src mediates growth factors-induced activation of Dgk-alpha, whose activity is required for cell motility, proliferation and angiogenesis. Here, we demonstrate that both hepatocytes growth factor (HGF) stimulation and v-Src transformation induce tyrosine phosphorylation of Dgk-alpha on Y335, through a mechanism requiring its proline-rich C-terminal sequence. Moreover, we show that both proline-rich sequence and phosphorylation of Y335 of Dgk-alpha mediate: (i) its enzymatic activation, (ii) its ability to interact respectively with SH3 and SH2 domains of Src, (iii) its recruitment to the membrane. In addition, we show that phosphorylation of Dgk-alpha on Y335 is required for HGF-induced motility, while its constitutive recruitment at the membrane by myristylation is sufficient to trigger spontaneous motility in absence of HGF. Providing the first evidence that tyrosine phosphorylation of Dgk-alpha is required for growth-factors-induced activation and membrane recruitment, these findings underscore its relevance as a rheostat, whose activation is a threshold to elicit growth factors-induced migratory signaling.
Collapse
Affiliation(s)
- G Baldanzi
- Department of Medical Sciences, University Amedeo Avogadro of Piemonte Oriental, Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Pillai MR, Lefevre EA, Carr BV, Charleston B, O'Grady P. Workshop cluster 1, a γδ T cell specific receptor is phosphorylated and down regulated by activation induced Src family kinase activity. Mol Immunol 2007; 44:1691-703. [PMID: 16997376 DOI: 10.1016/j.molimm.2006.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/12/2006] [Accepted: 08/03/2006] [Indexed: 11/28/2022]
Abstract
Workshop cluster 1(+) gamma delta (WC1(+)gammadelta) T cells have been shown to play important roles in the immune response to infections. WC1 is a transmembrane glycoprotein, uniquely expressed on the surface of gammadelta T cells of ruminants and pigs. A role for WC1 in inducing a reversible growth arrest of gammadelta T cells has been previously demonstrated. WC1-induced growth inhibition has been shown to be overcome following gammadelta T cell activation with Concanavalin A (Con A). However, molecular mechanism(s) by which WC1 signalling might be modulated following activation have not been elucidated. In this paper we show that Con A activation of bovine lymphocytes induces the tyrosine phosphorylation of WC1 in a Src-family kinase-dependent manner. Src family kinases also phosphorylated WC1 in a COS-7 co-transfection system. Furthermore, a glutathione-S-transferase (GST)-WC1 cytoplasmic domain fusion protein was directly phosphorylated by recombinant Lck (rLck) in vitro. The Y(1303) of WC1 was identified by mutational analysis as the only one of the five WC1 tyrosine residues to be critical for Src family phosphorylation. The importance of activation-induced Src family activity for WC1 function was investigated with the Src-family specific inhibitor PP2. These studies show that the surface levels of WC1 are down regulated in a Src-family-dependent manner following activation of bovine lymphocytes. Down regulation of surface WC1 was accompanied by a Src-family-dependent accumulation of intracellular WC1. These data show that WC1 is modulated by activation-induced tyrosine phosphorylation thus providing a new insight into the signalling mechanisms by which WC1 and gammadelta T cell activation are regulated in this important and unique cell population.
Collapse
Affiliation(s)
- Meenu R Pillai
- Department of Immunology, Institute for Animal Health, Pirbright Laboratory, Pirbright, Woking, Surrey GU24 0NF, UK
| | | | | | | | | |
Collapse
|
110
|
Abstract
In this issue of Chemistry & Biology, Schust et al. report the discovery of a small molecule (Stattic) that inhibits the binding of a high affinity phosphopeptide for the SH2 domain of Stat3. Stattic is a new tool for studying Stat3 signaling and demonstrates that the SH2 domain is not a dead target.
Collapse
Affiliation(s)
- John S McMurray
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 36, Houston, Texas 77030, USA
| |
Collapse
|
111
|
Yang P, Whelan RJ, Mao Y, Lee AWM, Carter-Su C, Kennedy RT. Multiplexed Detection of Protein−Peptide Interaction and Inhibition Using Capillary Electrophoresis. Anal Chem 2006; 79:1690-5. [PMID: 17297974 DOI: 10.1021/ac061936e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-speed capillary electrophoresis (CE) was employed to detect binding and inhibition of SH2 domain proteins using fluorescently labeled phosphopeptides as affinity probes. Single SH2 protein-phosphopeptide complexes were detected and confirmed by competition and fluorescence anisotropy. The assay was then extended to a multiplexed system involving separation of three SH2 domain proteins: Src, SH2-Bbeta, and Fyn. The selectivity of the separation was improved by altering the charge of the peptide binding partners used, thus demonstrating a convenient way to control resolution for the multiplexed assay. The separation was completed within 6 s, allowing rapidly dissociating complexes to be detected. Two low molecular weight inhibitors were tested for inhibition selectivity and efficacy. One inhibitor interrupted binding interaction of all three proteins, while the other selectively inhibited Src only leaving SH2-Bbeta and Fyn complex barely affected. IC(50) of both selective and nonselective inhibitors were determined and compared for different proteins. The IC(50) of the nonselective inhibitor was 49 +/- 9, 323 +/- 42, and 228 +/- 19 microM (n = 3) for Src, SH2-Bbeta, and Fyn, respectively, indicating different efficacy of the nonselective inhibitor for different SH2 domain protein. It is concluded that high-speed CE has the potential for multiplexed screening of drugs that disrupt protein-protein interactions.
Collapse
Affiliation(s)
- Peilin Yang
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
112
|
Sanjay A, Miyazaki T, Itzstein C, Purev E, Horne WC, Baron R. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. FEBS J 2006; 273:5442-56. [PMID: 17094785 DOI: 10.1111/j.1742-4658.2006.05535.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.
Collapse
Affiliation(s)
- Archana Sanjay
- Departments of Orthopedics & Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
113
|
Pirruccello M, Sondermann H, Pelton JG, Pellicena P, Hoelz A, Chernoff J, Wemmer DE, Kuriyan J. A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J Mol Biol 2006; 361:312-26. [PMID: 16837009 DOI: 10.1016/j.jmb.2006.06.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 12/14/2022]
Abstract
The p21-activated kinases (PAKs) are serine/threonine kinases that are involved in a wide variety of cellular functions including cytoskeletal motility, apoptosis, and cell cycle regulation. PAKs are inactivated by blockage of the active site of the kinase domain by an N-terminal regulatory domain. GTP-bound forms of Cdc42 and Rac bind to the regulatory domain and displace it, thereby allowing phosphorylation of the kinase domain and maximal activation. A key step in the activation process is the phosphorylation of the activation loop of one PAK kinase domain by another, but little is known about the underlying recognition events that make this phosphorylation specific. We show that the phosphorylated kinase domain of PAK2 dimerizes in solution and that this association is prevented by addition of a substrate peptide. We have identified a crystallographic dimer in a previously determined crystal structure of activated PAK1 in which two kinase domains are arranged face to face and interact through a surface on the large lobe of the kinase domain that is exposed upon release of the auto-inhibitory domain. The crystallographic dimer is suggestive of an engagement that mediates trans-autophosphorylation. Mutations at the predicted dimerization interface block dimerization and reduce the rate of autophosphorylation, supporting the role of this interface in PAK activation.
Collapse
Affiliation(s)
- Michelle Pirruccello
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Petti F, Thomson S, Haley JD. Peptide, domain, and DNA affinity selection in the identification and quantitation of proteins from complex biological samples. Anal Biochem 2006; 356:1-11. [PMID: 16797468 DOI: 10.1016/j.ab.2006.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/24/2006] [Accepted: 05/25/2006] [Indexed: 12/22/2022]
Affiliation(s)
- Filippo Petti
- Translational Research, OSI Oncology, Farmingdale, NY 11735, USA
| | | | | |
Collapse
|
115
|
Corbalán-García S, Gómez-Fernández JC. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:633-54. [PMID: 16809062 DOI: 10.1016/j.bbalip.2006.04.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/29/2022]
Abstract
Protein kinase C (PKC) is a member of a family of Ser/Thr phosphotransferases that are involved in many cellular signaling pathways. These enzymes possess two regulatory domains, C1 and C2, that are the targets of different second messengers. The purpose of this review is to describe in molecular terms the diverse mechanisms of activation of PKCs in the light of very significant advances made in this field over recent years. The role of some critical amino acid residues concerning activation of the enzymes and their location within known structures of isolated domains will be presented. For example, the recently deduced 3D structures of the C2 domains show that these domains can additionally act as PtdIns(4,5)P(2)-binding or phosphotyrosine-binding modules depending on the isoenzyme. All these capacities to play different roles in the cell wide web of signals underline the notion that we are dealing with a multifunctional family of enzymes which, after 30 years of investigation, we are just beginning to understand.
Collapse
Affiliation(s)
- Senena Corbalán-García
- Dpto. de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30100 Murcia, Spain.
| | | |
Collapse
|
116
|
Derkinderen P, Scales TME, Hanger DP, Leung KY, Byers HL, Ward MA, Lenz C, Price C, Bird IN, Perera T, Kellie S, Williamson R, Noble W, Van Etten RA, Leroy K, Brion JP, Reynolds CH, Anderton BH. Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci 2006; 25:6584-93. [PMID: 16014719 PMCID: PMC6725430 DOI: 10.1523/jneurosci.1487-05.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tau is a major microtubule-associated protein of axons and is also the principal component of the paired helical filaments (PHFs) that comprise the neurofibrillary tangles found in Alzheimer's disease and other tauopathies. Besides phosphorylation of tau on serine and threonine residues in both normal tau and tau from neurofibrillary tangles, Tyr-18 was reported to be a site of phosphorylation by the Src-family kinase Fyn. We examined whether tyrosine residues other than Tyr-18 are phosphorylated in tau and whether other tyrosine kinases might phosphorylate tau. Using mass spectrometry, we positively identified phosphorylated Tyr-394 in PHF-tau from an Alzheimer brain and in human fetal brain tau. When wild-type human tau was transfected into fibroblasts or neuroblastoma cells, treatment with pervanadate caused tau to become phosphorylated on tyrosine by endogenous kinases. By replacing each of the five tyrosines in tau with phenylalanine, we identified Tyr-394 as the major site of tyrosine phosphorylation in tau. Tyrosine phosphorylation of tau was inhibited by PP2 (4-amino-5-(4-chlorophenyl-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), which is known to inhibit Src-family kinases and c-Abl. Cotransfection of tau and kinases showed that Tyr-18 was the major site for Fyn phosphorylation, but Tyr-394 was the main residue for Abl. In vitro, Abl phosphorylated tau directly. Abl could be coprecipitated with tau and was present in pretangle neurons in brain sections from Alzheimer cases. These results show that phosphorylation of tau on Tyr-394 is a physiological event that is potentially part of a signal relay and suggest that Abl could have a pathogenic role in Alzheimer's disease.
Collapse
Affiliation(s)
- Pascal Derkinderen
- Department of Neuroscience, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Hausel P, Latado H, Courjault-Gautier F, Felley-Bosco E. Src-mediated phosphorylation regulates subcellular distribution and activity of human inducible nitric oxide synthase. Oncogene 2006; 25:198-206. [PMID: 16116474 DOI: 10.1038/sj.onc.1209030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inducible nitric oxide synthase (iNOS) expression is regulated at both the transcriptional and post-transcriptional level in epithelial cells. The aim of this study was to characterize the effects of tyrosine phosphorylation on iNOS activity. In a human intestinal epithelial cell line stimulated with cytokines, tyrosine phosphorylation of human iNOS protein was observed after 30 min exposure to pervanadate (PV), an inhibitor of protein tyrosine phosphatases. 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, a specific inhibitor of Src tyrosine kinases, abolished the PV-induced iNOS tyrosine phosphorylation. Cotransfection of Src with iNOS cDNA in human embryonic kidney (HEK) 293 cells resulted in a threefold (P<0.001) increase of iNOS protein levels and tyrosine phosphorylation of iNOS. In the presence of Src, 76% of wild-type (wt) iNOS was redistributed to detergent-insoluble domains and iNOS activity was decreased by 28% (P<0.05) despite increased iNOS protein levels. Analysis of iNOS tyrosine mutants revealed decreased Src-induced effects in Y151F iNOS mutant. Using a GST-fusion protein containing a domain encompassing Y151, we show that Y151 is a direct substrate for active Src in vitro. These findings indicate a role for iNOS tyrosine phosphorylation in the regulation of iNOS activity and the implication of Src tyrosine kinases in this pathway.
Collapse
Affiliation(s)
- P Hausel
- Department of Pharmacology and Toxicology, Rue du Bugnon 27, Lausanne 1005, Switzerland
| | | | | | | |
Collapse
|
118
|
Newsome TP, Weisswange I, Frischknecht F, Way M. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell Microbiol 2006; 8:233-41. [PMID: 16441434 DOI: 10.1111/j.1462-5822.2005.00613.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Local activation of Src at the plasma membrane by extracellular vaccinia virus results in a signalling cascade that acts to stimulate actin polymerization beneath the virus to enhance its cell-to-cell spread. Initiation of this signalling cascade involves Src-mediated phosphorylation of tyrosine 112 and 132 of the viral membrane protein A36R. Here we show that recruitment of Src is dependent on its myristoylation and an interaction with A36R upstream of tyrosine 112 and 132. We further show that Src, Fyn and Yes have unique specificities towards these tyrosine residues. Using cell lines deficient in Src, Fyn and Yes, we demonstrate that multiple Src family members can stimulate vaccinia-induced actin polymerization and also uncover a role for Abl family kinases. Additionally, Abl and Arg are able to phosphorylate A36R in vitro and are recruited to vaccinia-induced actin tails. The ability of multiple families of tyrosine kinases to directly phosphorylate A36R ensures robust cell-to-cell spread of vaccinia virus will occur under a variety of cellular conditions.
Collapse
Affiliation(s)
- Timothy P Newsome
- Cell Motility Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | | | | | | |
Collapse
|
119
|
Li SSC. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 2006; 390:641-53. [PMID: 16134966 PMCID: PMC1199657 DOI: 10.1042/bj20050411] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions occurring via the recognition of short peptide sequences by modular interaction domains play a central role in the assembly of signalling protein complexes and larger protein networks that regulate cellular behaviour. In addition to spatial and temporal factors, the specificity of signal transduction is intimately associated with the specificity of many co-operative, pairwise binding events upon which various pathways are built. Although protein interaction domains are usually identified via the recognition code, the consensus sequence motif, to which they selectively bind, they are highly versatile and play diverse roles in the cell. For example, a given interaction domain can bind to multiple sequences that exhibit no apparent identity, and, on the other hand, domains of the same class or different classes may favour a given consensus motif. This promiscuity in ligand selection is typified by the SH3 (Src homology 3) domain and several other interaction modules that commonly recognize proline-rich sequences. Furthermore, interaction domains are highly adaptable, a property that is essential for the evolution of novel pathways and modulation of signalling dynamics. The ability of certain interaction domains to perform multiple tasks, however, poses a challenge for the cell to control signalling specificity when cross-talk between pathways is undesired. Extensive structural and biochemical analysis of many interaction domains in recent years has started to shed light on the molecular basis underlying specific compared with diverse binding events that are mediated by interaction domains and the role affinity plays in affecting domain specificity and regulating cellular signal transduction.
Collapse
Affiliation(s)
- Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
120
|
Grangeasse C, Vaganay E, Doublet P, Riberty M, Cozzone AJ, Duclos B. Cyclic AMP stimulates the protein tyrosine kinase activity of Acinetobacter calcoaceticus. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10448.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
121
|
Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2006; 208:106-25. [PMID: 16313344 DOI: 10.1111/j.0105-2896.2005.00335.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The osteoclast resorbs mineralized bone during bone development, homeostasis, and repair. The deletion of the gene encoding the nonreceptor tyrosine kinase c-Src produces an osteopetrotic skeletal phenotype that is the consequence of the inability of the mature osteoclast to efficiently resorb bone. Src-/- osteoclasts exhibit reduced motility and abnormal organization of the apical secretory domain (the ruffled border) and attachment-related cytoskeletal elements that are necessary for bone resorption. A key function of Src in osteoclasts is to promote the rapid assembly and disassembly of the podosomes, the specialized integrin-based attachment structures of osteoclasts and other highly motile cells. Once recruited to the activated integrins, especially alphavbeta3), by the adhesion tyrosine kinase Pyk2, Src binds and phosphorylates Cbl and Cbl-b, homologous multisite adapter proteins with ubiquitin ligase activity. The Cbl proteins in turn recruit and activate additional signaling effectors, including phosphatidylinositol 3-kinase and dynamin, which play key roles in the development of cell polarity and the regulation of cell attachment and motility. In addition, Src and the Cbl proteins contribute to signaling cascades that are activated by several important receptors, including receptor activator of nuclear factor kappaB and the macrophage colony-stimulating factor receptor, and also downregulate the signaling from many of these receptors.
Collapse
Affiliation(s)
- William C Horne
- Department of Orthopaedics and Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | | | |
Collapse
|
122
|
Dharmawardana PG, Peruzzi B, Giubellino A, Burke TR, Bottaro DP. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs 2006; 17:13-20. [PMID: 16317285 DOI: 10.1097/01.cad.0000185180.72604.ac] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.
Collapse
Affiliation(s)
- Pathirage G Dharmawardana
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1107, USA
| | | | | | | | | |
Collapse
|
123
|
Kobe B, Kampmann T, Forwood JK, Listwan P, Brinkworth RI. Substrate specificity of protein kinases and computational prediction of substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:200-9. [PMID: 16172032 DOI: 10.1016/j.bbapap.2005.07.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of "peptide specificity" of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
124
|
de Souza AJ, Oriss TB, O'malley KJ, Ray A, Kane LP. T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proc Natl Acad Sci U S A 2005; 102:17113-8. [PMID: 16284246 PMCID: PMC1288013 DOI: 10.1073/pnas.0508643102] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polymorphisms in TIM-1, a member of the T cell Ig and mucin (TIM) domain family, are associated with relative susceptibility to the development of T helper 2-dominated immune responses such as in allergic asthma. Recent data have also suggested that ligation of TIM-1 can augment T cell activation. We have found that the TIM-1 protein is expressed on CD4(+) T cells in vivo after intranasal immunization. Ectopic expression of TIM-1 during T cell differentiation results in a significant increase in the number of cells producing IL-4 but not IFN-gamma. Furthermore, TIM-1 expression provides a costimulatory signal that increases transcription from the IL-4 promoter and from isolated nuclear factor of activated T cells/activating protein-1 (NFAT/AP-1) elements. Finally, we provide evidence that TIM-1 can be phosphorylated on tyrosine and that TIM-1 costimulation requires its cytoplasmic tail and the conserved tyrosine within that domain. These results constitute evidence that TIM-1 directly couples to phosphotyrosine-dependent intracellular signaling pathways.
Collapse
Affiliation(s)
- Anjali J de Souza
- Department of Immunology and Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
125
|
Schwartz D, Gygi SP. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 2005; 23:1391-8. [PMID: 16273072 DOI: 10.1038/nbt1146] [Citation(s) in RCA: 715] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the recent exponential increase in protein phosphorylation sites identified by mass spectrometry, a unique opportunity has arisen to understand the motifs surrounding such sites. Here we present an algorithm designed to extract motifs from large data sets of naturally occurring phosphorylation sites. The methodology relies on the intrinsic alignment of phospho-residues and the extraction of motifs through iterative comparison to a dynamic statistical background. Results show the identification of dozens of novel and known phosphorylation motifs from recently published serine, threonine and tyrosine phosphorylation studies. When applied to a linguistic data set to test the versatility of the approach, the algorithm successfully extracted hundreds of language motifs. This method, in addition to shedding light on the consensus sequences of identified and as yet unidentified kinases and modular protein domains, may also eventually be used as a tool to determine potential phosphorylation sites in proteins of interest.
Collapse
Affiliation(s)
- Daniel Schwartz
- Department of Cell Biology, 240 Longwood Ave., Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
126
|
Ahn E, Lee H, Yun Y. LIME acts as a transmembrane adapter mediating BCR-dependent B-cell activation. Blood 2005; 107:1521-7. [PMID: 16249387 DOI: 10.1182/blood-2005-05-1859] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Assembly of a signaling complex around the transmembrane adapter LAT is essential for the transmission of T-cell receptor (TCR)-mediated signaling. However, a LAT-like molecule responsible for the initial activation events in B-cell receptor (BCR) signaling has not yet been identified. Here, we show that LIME is a transmembrane adaptor required for BCR-mediated B-cell activation. LIME was found to be expressed in mouse splenic B cells. Upon BCR cross-linking, LIME was tyrosine phosphorylated by Lyn and associated with Lyn, Grb2, PLC-gamma2, and PI3K. Reduction of LIME expression by the introduction of siRNA resulted in the disruption of BCR-mediated activation of MAPK, calcium flux, NF-AT, PI3K, and NF-kappaB. Taken together, these results establish that LIME is an essential transmembrane adaptor linking BCR ligation to the downstream signaling events that lead to B-cell activation.
Collapse
Affiliation(s)
- Eunseon Ahn
- Division of Molecular Life Science, Ewha Womans University, 11-1, Daehyun-dong, Seodaemoon-gu, Seoul, 120-750, Korea
| | | | | |
Collapse
|
127
|
Meurer S, Pioch S, Gross S, Müller-Esterl W. Reactive Oxygen Species Induce Tyrosine Phosphorylation of and Src Kinase Recruitment to NO-sensitive Guanylyl Cyclase. J Biol Chem 2005; 280:33149-56. [PMID: 16079134 DOI: 10.1074/jbc.m507565200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Soluble guanylyl cyclase (sGC) is the major cytosolic receptor for nitric oxide (NO) that converts GTP into the second messenger cGMP in a NO-dependent manner. Other factors controlling this key enzyme are intracellular proteins such as Hsp90 and PSD95, which bind to sGC and modulate its activity, stability, and localization. To date little is known about the effects of posttranslational modifications of sGC, although circumstantial evidence suggests that reversible phosphorylation may contribute to sGC regulation. Here we demonstrate that inhibitors of protein-tyrosine phosphatases such as pervanadate and bisperoxo(1,10-phenanthroline)oxovanadate(V) as well as reactive oxygen species such as H2O2 induce specific tyrosine phosphorylation of the beta1 but not of the alpha1 subunit of sGC. Tyrosine phosphorylation of sGCbeta1 is also inducible by pervanadate and H2O2 in intact PC12 cells, rat aortic smooth muscle cells, and in rat aortic tissues, indicating that tyrosine phosphorylation of sGC may also occur in vivo. We have mapped the major tyrosine phosphorylation site to position 192 of beta1, where it forms part of a highly acidic phospho-acceptor site for Src-like kinases. In the phosphorylated state Tyr(P)-192 exposes a docking site for SH2 domains and efficiently recruits Src and Fyn to sGCbeta1, thereby promoting multiple phosphorylation of the enzyme. Our results demonstrate that sGC is subject to tyrosine phosphorylation and interaction with Src-like kinases, revealing an unexpected cross-talk between the NO/cGMP and tyrosine kinase signaling pathways at the level of sGC.
Collapse
Affiliation(s)
- Sabine Meurer
- Institute for Biochemistry II, University of Frankfurt Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
128
|
Huang H, Jiao Y, Xu R, Gao Y. Construction of a non-redundant human SH2 domain database. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 2:119-22. [PMID: 15629051 PMCID: PMC5172440 DOI: 10.1016/s1672-0229(04)02017-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Domain database is essential for domain property research. Eliminating redundant information in database query is very important for database quality. Here we report the manual construction of a non-redundant human SH2 domain database. There are 119 human SH2 domains in 110 SH2-containing proteins. Human SH2s were aligned with ClustalX, and a homologous tree was generated. In this tree, proteins with similar known function were classified into the same group. Some proteins in the same group have been reported to have similar binding motifs experimentally. The tree might provide clues about possible functions of hypothetical proteins for further experimental verification.
Collapse
|
129
|
Benes CH, Wu N, Elia AEH, Dharia T, Cantley LC, Soltoff SP. The C2 domain of PKCdelta is a phosphotyrosine binding domain. Cell 2005; 121:271-80. [PMID: 15851033 DOI: 10.1016/j.cell.2005.02.019] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/04/2005] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
In eukaryotic cells, the SH2 and PTB domains mediate protein-protein interactions by recognizing phosphotyrosine residues on target proteins. Here we make the unexpected finding that the C2 domain of PKCdelta directly binds to phosphotyrosine peptides in a sequence-specific manner. We provide evidence that this domain mediates PKCdelta interaction with a Src binding glycoprotein, CDCP1. The crystal structure of the PKCdelta C2 domain in complex with an optimal phosphopeptide reveals a new mode of phosphotyrosine binding in which the phosphotyrosine moiety forms a ring-stacking interaction with a histidine residue of the C2 domain. This is also the first example of a protein Ser/Thr kinase containing a domain that binds phosphotyrosine.
Collapse
Affiliation(s)
- Cyril H Benes
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
130
|
Mehlmann LM, Jaffe LA. SH2 domain-mediated activation of an SRC family kinase is not required to initiate Ca2+ release at fertilization in mouse eggs. Reproduction 2005; 129:557-64. [PMID: 15855619 DOI: 10.1530/rep.1.00638] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SRC family kinases (SFKs) function in initiating Ca2+release at fertilization in several species in the vertebrate evolutionary line, but whether they play a similar role in mammalian fertilization has been uncertain. We investigated this question by first determining which SFK proteins are expressed in mouse eggs, and then measuring Ca2+release at fertilization in the presence of dominant negative inhibitors. FYN and YES proteins were found in mouse eggs, but other SFKs were not detected; based on this, we injected mouse eggs with a mixture of FYN and YES Src homology 2 (SH2) domains. These SH2 domains were effective inhibitors of Ca2+release at fertilization in starfish eggs, but did not inhibit Ca2+release at fertilization in mouse eggs. Thus the mechanism by which sperm initiate Ca2+release in mouse eggs does not depend on SH2 domain-mediated activation of an SFK. We also tested the small molecule SFK inhibitor SU6656, and found that it became compartmentalized in the egg cytoplasm, thus suggesting caution in the use of this inhibitor. Our findings indicate that although the initiation of Ca2+release at fertilization of mammalian eggs occurs by a pathway that has many similarities to that in evolutionarily earlier animal groups, the requirement for SH2 domain-mediated activation of an SFK is not conserved.
Collapse
Affiliation(s)
- Lisa M Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA.
| | | |
Collapse
|
131
|
Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C, Salmona M, Bendotti C, Bonetto V. Protein Nitration in a Mouse Model of Familial Amyotrophic Lateral Sclerosis. J Biol Chem 2005; 280:16295-304. [PMID: 15699043 DOI: 10.1074/jbc.m413111200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple mechanisms have been proposed to contribute to amyotrophic lateral sclerosis (ALS) pathogenesis, including oxidative stress. Early evidence of a role for oxidative damage was based on the finding, in patients and murine models, of high levels of markers, such as free nitrotyrosine (NT). However, no comprehensive study on the protein targets of nitration in ALS has been reported. We found an increased level of NT immunoreactivity in spinal cord protein extracts of a transgenic mouse model of familial ALS (FALS) at a presymptomatic stage of the disease compared with age-matched controls. NT immunoreactivity is increased in the soluble fraction of spinal cord homogenates and is found as a punctate staining in motor neuron perikarya of presymptomatic FALS mice. Using a proteome-based strategy, we identified proteins nitrated in vivo, under physiological or pathological conditions, and compared their level of specific nitration. alpha- and gamma-enolase, ATP synthase beta chain, and heat shock cognate 71-kDa protein and actin were overnitrated in presymptomatic FALS mice. We identified by matrix-assisted laser desorption/ionization mass spectrometry 16 sites of nitration in proteins oxidized in vivo. In particular, alpha-enolase nitration at Tyr(43), target also of phosphorylation, brings additional evidence on the possible interference of nitration with phosphorylation. In conclusion, we propose that protein nitration may have a role in ALS pathogenesis, acting directly by inhibiting the function of specific proteins and indirectly interfering with protein degradation pathways and phosphorylation cascades.
Collapse
|
132
|
Abstract
Programmed cell death, or apoptosis, is a genetically controlled process of cell suicide that is a common fate during an animal's life. In metazoans, apoptotic cells are rapidly removed from the body through the process of phagocytosis. Genetic analyses probing the mechanisms controlling the engulfment of apoptotic cells were pioneered in the nematode Caenorhabditis elegans. So far, at least seven genes have been identified that are required for the recognition and engulfment of apoptotic cells and have been shown to function in two partially redundant signaling pathways. Molecular characterization of their gene products has lead to the finding that similar genes act to control the same processes in other organisms, including mammals. In this paper, we review these exciting findings in C. elegans and discuss their implications in understanding the clearance of apoptotic cells in mammals.
Collapse
Affiliation(s)
- Paolo M Mangahas
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
133
|
de Mol NJ, Dekker FJ, Broutin I, Fischer MJE, Liskamp RMJ. Surface Plasmon Resonance Thermodynamic and Kinetic Analysis as a Strategic Tool in Drug Design. Distinct Ways for Phosphopeptides to Plug into Src- and Grb2 SH2 Domains. J Med Chem 2005; 48:753-63. [PMID: 15689159 DOI: 10.1021/jm049359e] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermodynamic and kinetic studies of biomolecular interactions give insight into specificity of molecular recognition processes and advance rational drug design. Binding of phosphotyrosine (pY)-containing peptides to Src- and Grb2-SH2 domains was investigated using a surface plasmon resonance (SPR)-based method. This SPR assay yielded thermodynamic binding constants in solution, and the kinetic information contained in the SPR signal allowed kinetic analysis, which demonstrated distinct ways for pY ligands to interact with the SH2 domains. The results for binding to Src SH2 were consistent with sequestration of water molecules in the interface of the pYEEI peptide/Src SH2 complex. The results for a pYVNV peptide binding to Grb2 SH2 suggested a conformational change for Grb2 SH2 upon binding, which is not observed for Src SH2. Binding of a cyclic construct, allowing the pYVNV sequence in the bound conformation, did not have the expected entropy advantage. The results suggest an alternative binding mode for this construct, with the hydrophobic ring-closing part interacting with the protein. In all cases, except for full-length Grb2 protein, the affinity for the immobilized peptide at the SPR sensor and in solution was identical. This study demonstrates that SPR thermodynamic and kinetic analysis is a useful strategic tool in drug design.
Collapse
Affiliation(s)
- Nico J de Mol
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
134
|
Saxinger C, Conrads TP, Goldstein DJ, Veenstra TD. Fully automated synthesis of (phospho)peptide arrays in microtiter plate wells provides efficient access to protein tyrosine kinase characterization. BMC Immunol 2005; 6:1. [PMID: 15647109 PMCID: PMC546003 DOI: 10.1186/1471-2172-6-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 01/12/2005] [Indexed: 01/15/2023] Open
Abstract
Background Synthetic peptides have played a useful role in studies of protein kinase substrates and interaction domains. Synthetic peptide arrays and libraries, in particular, have accelerated the process. Several factors have hindered or limited the applicability of various techniques, such as the need for deconvolution of combinatorial libraries, the inability or impracticality of achieving full automation using two-dimensional or pin solid phases, the lack of convenient interfacing with standard analytical platforms, or the difficulty of compartmentalization of a planar surface when contact between assay components needs to be avoided. This paper describes a process for synthesis of peptides and phosphopeptides on microtiter plate wells that overcomes previous limitations and demonstrates utility in determination of the epitope of an autophosphorylation site phospho-motif antibody and utility in substrate utilization assays of the protein tyrosine kinase, p60c-src. Results The overall reproducibility of phospho-peptide synthesis and multiplexed EGF receptor (EGFR) autophosphorylation site (pY1173) antibody ELISA (9H2) was within 5.5 to 8.0%. Mass spectrometric analyses of the released (phospho)peptides showed homogeneous peaks of the expected molecular weights. An overlapping peptide array of the complete EGFR cytoplasmic sequence revealed a high redundancy of 9H2 reactive sites. The eight reactive phospopeptides were structurally related and interestingly, the most conserved antibody reactive peptide motif coincided with a subset of other known EGFR autophosphorylation and SH2 binding motifs and an EGFR optimal substrate motif. Finally, peptides based on known substrate specificities of c-src and related enzymes were synthesized in microtiter plate array format and were phosphorylated by c-Src with the predicted specificities. The level of phosphorylation was proportional to c-Src concentration with sensitivities below 0.1 Units of enzyme. Conclusions The ability of this method to interface with various robotics and instrumentation is highly flexible since the microtiter plate is an industry standard. It is highly scalable by increasing the surface area within the well or the number of wells and does not require specialized robotics. The microtiter plate array system is well suited to the study of protein kinase substrates, antigens, binding molecules, and inhibitors since these all can be quantitatively studied at a single uniform, reproducible interface.
Collapse
Affiliation(s)
- Carl Saxinger
- Center for Cancer Research, NCI, Building 1052, Frederick, MD, 21702, USA
| | - Thomas P Conrads
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc., National Cancer Institute at Frederick, PO Box B, Frederick, MD, 21702, USA
| | - David J Goldstein
- Center for Cancer Research, NCI, Building 31, Bethesda, MD 20892, USA
| | - Timothy D Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc., National Cancer Institute at Frederick, PO Box B, Frederick, MD, 21702, USA
| |
Collapse
|
135
|
Liu XL, Kilpeläinen P, Hellman U, Sun Y, Wartiovaara J, Morgunova E, Pikkarainen T, Yan K, Jonsson AP, Tryggvason K. Characterization of the interactions of the nephrin intracellular domain. FEBS J 2004; 272:228-43. [PMID: 15634346 DOI: 10.1111/j.1432-1033.2004.04408.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nephrin is a signalling cell-cell adhesion protein of the Ig superfamily and the first identified component of the slit diaphragm that forms the critical and ultimate part of the glomerular ultrafiltration barrier. The extracellular domains of the nephrin molecules form a network of homophilic and heterophilic interactions building the structural scaffold of the slit diaphragm between the podocyte foot processes. The intracellular domain of nephrin is connected indirectly to the actin cytoskeleton, is tyrosine phosphorylated, and mediates signalling from the slit diaphragm into the podocytes. CD2AP, podocin, Fyn kinase, and phosphoinositide 3-kinase are reported intracellular interacting partners of nephrin, although the biological roles of these interactions are unclarified. To characterize the structural properties and protein-protein interactions of the nephrin intracellular domain, we produced a series of recombinant nephrin proteins. These were able to bind all previously identified ligands, although the interaction with CD2AP appeared to be of extremely low stoichiometry. Fyn phosphorylated nephrin proteins efficiently in vitro. This phosphorylation was required for the binding of phosphoinositide 3-kinase, and significantly enhanced binding of Fyn itself. A protein of 190 kDa was found to associate with the immobilized glutathione S-transferase-nephrin. Peptide mass fingerprinting and amino acid sequencing identified this protein as IQGAP1, an effector protein of small GTPases Rac1 and Cdc42 and a putative regulator of cell-cell adherens junctions. IQGAP1 is expressed in podocytes at significant levels, and could be found at the immediate vicinity of the slit diaphragm. However, further studies are needed to confirm the biological significance of this interaction and its occurrence in vivo.
Collapse
Affiliation(s)
- Xiao Li Liu
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Roskoski R. Src protein–tyrosine kinase structure and regulation. Biochem Biophys Res Commun 2004; 324:1155-64. [PMID: 15504335 DOI: 10.1016/j.bbrc.2004.09.171] [Citation(s) in RCA: 414] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Indexed: 11/30/2022]
Abstract
Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPalpha displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the alphaD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu(4)Tyr).
Collapse
Affiliation(s)
- Robert Roskoski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
137
|
Klint P, Hellman U, Wernstedt C, Aman P, Ron D, Claesson-Welsh L. Translocated in liposarcoma (TLS) is a substrate for fibroblast growth factor receptor-1. Cell Signal 2004; 16:515-20. [PMID: 14709340 DOI: 10.1016/j.cellsig.2003.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Binding of fibroblast growth factor (FGF) to the high affinity receptor-1 (FGFR-1) leads to activation of its endogenous tyrosine kinase activity. A number of substrates for the FGFR-1 kinase have been identified. Among those, FGF receptor-substrate-2 (FRS-2) was identified by virtue of its interaction with p13suc, a yeast protein involved in cell cycle regulation. We have used immobilized p13suc to identify a new substrate for FGRF-1, which is identical to "translocated in liposarcoma" (TLS). TLS is a RNA/DNA-binding protein which occurs in fusion products with different transcription factors in a variety of solid tumours. We show that TLS is tyrosine phosphorylated in intact cells by a number of different growth factors, indicating a role in growth regulation.
Collapse
Affiliation(s)
- Peter Klint
- Rudbeck Laboratory, Department of Genetics and Pathology, 751 85, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
138
|
Hinsby AM, Olsen JV, Mann M. Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. J Biol Chem 2004; 279:46438-47. [PMID: 15316024 DOI: 10.1074/jbc.m404537200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction by receptor tyrosine kinases is initiated by recruitment of a variety of signaling proteins to tyrosine-phosphorylated motifs in the activated receptors. Several signaling pathways are thus activated in parallel, the combination of which decides the cellular response. Here, we present a dual strategy for extensive mapping of tyrosine-phosphorylated proteins and probing of signal-dependent protein interactions of a signaling cascade. The approach relies on labeling of cells with "heavy" and "light" isotopic forms of Arg to distinguish two cell populations. First, tyrosine-phosphorylated proteins from stimulated ("heavy"-labeled) and control samples ("normal"-labeled) are isolated and subjected to high sensitivity Fourier transform ion cyclotron resonance mass spectrometry analysis. Next, phosphopeptides corresponding to tyrosine phosphorylation sites identified during the tyrosine phosphoproteomic analysis are used as baits to isolate phosphospecific protein binding partners, which are subsequently identified by mass spectrometry. We used this approach to identify 28 components of the signaling cascade induced by stimulation with the basic fibroblast growth factor. Insulin receptor substrate-4 was identified as a novel candidate in fibroblast growth factor receptor signaling, and we defined phosphorylation-dependent interactions with other components, such as adaptor protein Grb2, of the signaling cascade. Finally, we present evidence for a complex containing insulin receptor substrate-4 and ShcA in signaling by the fibroblast growth factor receptor.
Collapse
Affiliation(s)
- Anders M Hinsby
- Protein Laboratory, Panum Institute 6.1, Blegdamsvej 3C, University of Copenhagen, DK-2200, Denmark
| | | | | |
Collapse
|
139
|
Abstract
The growth factor receptor-bound protein 2 (Grb2) plays an important role in the Ras signaling pathway. Several proteins were found to be overexpressed by oncogenes in the Ras signaling pathway, rendering Grb2 a potential target for the design of antitumor agents. Blocking the interaction between the phosphotyrosine-containing activated receptor and the Src-homology 2 (SH2) domain of Grb2 thus constitutes an important strategy for the development of potential anticancer agents. X-ray, NMR structural investigations, and molecular modeling studies have provided the target structure of Grb2 SH2 domain-alone or complexed with a phosphotyrosine-containing peptide-which is useful for the structure-based design of peptides or peptidomimetics with high affinity for the Grb2 SH2 domain. We review here the variety of approaches to Grb2 SH2 pepide inhibitors developed with the aim of interrupting Grb2 recognition. Inhibitory effects of peptide analogs on the Grb2 SH2 domain and their binding affinities for Grb2 SH2 were determined by ELISA, cell-based assays, or Surface Plasman Resonance (SPR) technology. Results of theses studies provide important information for further modifications of lead peptides, and should lead to the discovery of potent peptides as anticancer agents.
Collapse
Affiliation(s)
- Feng-Di T Lung
- Department of Nutrition, China Medical College 91, Hsueh-Shih Road, Taichung 404, Taiwan, Republic of China.
| | | |
Collapse
|
140
|
Sanada K, Gupta A, Tsai LH. Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 2004; 42:197-211. [PMID: 15091337 DOI: 10.1016/s0896-6273(04)00222-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 02/09/2004] [Accepted: 03/30/2004] [Indexed: 11/21/2022]
Abstract
Disabled-1 regulates laminar organization in the developing mammalian brain. Although mutation of the disabled-1 gene in scrambler mice results in abnormalities in neuronal positioning, migratory behavior linked to Disabled-1 signaling is not completely understood. Here we show that newborn neurons in the scrambler cortex remain attached to the process of their parental radial glia during the entire course of radial migration, whereas wild-type neurons detach from the glial fiber in the later stage of migration. This abnormal neuronal-glial adhesion is highly linked to the positional abnormality of scrambler neurons and depends intrinsically on Disabled-1 Tyr220 and Tyr232, potential phosphorylation sites during corticogenesis. Importantly, phosphorylation at those sites regulates alpha3 integrin levels, which is critical for the timely detachment of migrating neurons from radial glia. Altogether, these results outline the molecular mechanism by which Disabled-1 signaling controls the adhesive property of neurons to radial glia, thereby maintaining proper neuronal positioning during corticogenesis.
Collapse
Affiliation(s)
- Kamon Sanada
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|
141
|
Runft LL, Carroll DJ, Gillett J, Giusti AF, O'Neill FJ, Foltz KR. Identification of a starfish egg PLC-gamma that regulates Ca2+ release at fertilization. Dev Biol 2004; 269:220-36. [PMID: 15081369 DOI: 10.1016/j.ydbio.2004.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 01/23/2004] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
At fertilization, eggs undergo a cytoplasmic free Ca2+ rise, which is necessary for stimulating embryogenesis. In starfish eggs, studies using inhibitors designed against vertebrate proteins have shown that this Ca2+ rise requires an egg Src family kinase (SFK) that directly or indirectly activates phospholipase C-gamma (PLC-gamma) to produce IP3, which triggers Ca2+ release from the egg's endoplasmic reticulum (ER) [reviewed in Semin. Cell Dev. Biol. 12 (2001) 45]. To examine in more detail the endogenous factors in starfish eggs that are required for Ca2+ release at fertilization, an oocyte cDNA encoding PLC-gamma was isolated from the starfish Asterina miniata. This cDNA, designated AmPLC-gamma, encodes a protein with 49% identity to mammalian PLC-gamma1. A 58-kDa Src family kinase interacted with recombinant AmPLC-gamma Src homology 2 (SH2) domains in a specific, fertilization-responsive manner. Immunoprecipitations of sea urchin egg PLC-gamma using an affinity-purified antibody directed against AmPLC-gamma revealed fertilization-dependent phosphorylation of PLC-gamma. Injecting starfish eggs with the tandem SH2 domains of AmPLC-gamma (which inhibits PLC-gamma activation) specifically inhibited Ca2+ release at fertilization. These results indicate that an endogenous starfish egg PLC-gamma interacts with an egg SFK and mediates Ca2+ release at fertilization via a PLC-gamma SH2 domain-mediated mechanism.
Collapse
Affiliation(s)
- Linda L Runft
- Department of Molecular, Cellular & Developmental Biology and the Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | | | | | | | | | | |
Collapse
|
142
|
Huang N, Nagarsekar A, Xia G, Hayashi J, MacKerell AD. Identification of Non-Phosphate-Containing Small Molecular Weight Inhibitors of the Tyrosine Kinase p56 Lck SH2 Domain via in Silico Screening against the pY + 3 Binding Site. J Med Chem 2004; 47:3502-11. [PMID: 15214778 DOI: 10.1021/jm030470e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein p56 lymphoid T cell tyrosine kinase (Lck) is predominantly expressed in T lymphocytes where it plays a critical role in T-cell-mediated immune response. Lck participates in phosphotyrosine-dependent protein-protein interactions through its modular binding unit, the Src homology-2 (SH2) domain. Accordingly, virtual screening methods combined with experimental assays were used to identify small molecular weight nonpeptidic compounds that block Lck SH2 domain-dependent interactions. Virtual screening included scoring normalization procedures and postdocking structural clustering that is shown to facilitate the selection of active compounds. By targeting the well-defined hydrophobic binding pocket known to impart specificity on Lck-protein interactions (i.e., pY + 3 site), inhibitors of the Lck SH2 domain were discovered that omit the phosphotyrosine (pY) or related moieties. The 34 out of 196 computationally selected compounds were shown to inhibit Lck SH2 domain association with phosphorylated immunoreceptor tyrosine based activation motifs peptide. Twenty-four of the active compounds were further tested for their ability to modulate biological function. Thirteen of these compounds showed inhibitory activity in mixed lymphocyte culture assay. Fluorescence titration experiments on four of these active compounds further verified their binding to the SH2 domain. Because of their simple chemical structures, these small organic compounds have the potential to act as lead compounds for the development of novel immunosuppressant drugs.
Collapse
Affiliation(s)
- Niu Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland-Baltimore, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
143
|
Campbell KS, Yusa SI, Kikuchi-Maki A, Catina TL. NKp44 triggers NK cell activation through DAP12 association that is not influenced by a putative cytoplasmic inhibitory sequence. THE JOURNAL OF IMMUNOLOGY 2004; 172:899-906. [PMID: 14707061 DOI: 10.4049/jimmunol.172.2.899] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKp44 (NCR2) is a member of the natural cytotoxicity receptor (NCR) family that is expressed on activated human NK cells. We dissected structural attributes of NKp44 to determine their contributions to receptor function. Our results demonstrate that surface expression and NK cell activation by NKp44 is mediated through noncovalent association with the immunoreceptor tyrosine-based activation motif-containing protein, DAP12. Physical linkage to DAP12 requires lysine-183 in the NKp44 transmembrane domain. Intriguingly, the cytoplasmic domain of NKp44 also contains a sequence that matches the immunoreceptor tyrosine-based inhibitory motif (ITIM) consensus. By expressing a chimeric receptor in an NK-like cell line, we found that this ITIM-like motif from NKp44 lacks inhibitory capacity in a redirected cytotoxicity assay. The NKp44 cytoplasmic tyrosine was efficiently phosphorylated in the chimeric receptor upon treating the cells with pervanadate, but it was unable to recruit ITIM-binding negative effector phosphatases. We also generated NK-like cell lines expressing epitope-tagged wild-type or tyrosine to phenylalanine mutant (Y238F) versions of NKp44 and compared their capacities to induce activation marker expression, promote IFN-gamma production, or stimulate target cell cytotoxicity. We did not detect any tyrosine-dependent reduction or enhancement of NK cell activation through wild-type vs. Y238F mutant NKp44. Finally, the cytoplasmic tyrosine-based sequence did not provide a docking site for the AP-2 clathrin adaptor, nor did it potentiate receptor internalization. In summary, all activating properties and surface expression of NKp44 are mediated through its association with DAP12, and the putative ITIM in the NKp44 cytoplasmic domain does not appear to attenuate activating function.
Collapse
Affiliation(s)
- Kerry S Campbell
- Division of Basic Science, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA.
| | | | | | | |
Collapse
|
144
|
Pekarsky Y, Garrison PN, Palamarchuk A, Zanesi N, Aqeilan RI, Huebner K, Barnes LD, Croce CM. Fhit is a physiological target of the protein kinase Src. Proc Natl Acad Sci U S A 2004; 101:3775-9. [PMID: 15007172 PMCID: PMC374320 DOI: 10.1073/pnas.0400481101] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The FHIT gene is a tumor suppressor that is frequently inactivated by genomic alterations at chromosomal region 3p14.2. In the last few years, a considerable amount of data describing inactivation of FHIT in a variety of human malignancies and demonstrating the tumor suppressor potential of Fhit have been reported. Despite the demonstration that FHIT functions as a tumor suppressor, the pathway through which Fhit induces apoptosis and inhibits growth of cancer cells is not known. Our data demonstrate that Fhit is a target of tyrosine phosphorylation by the Src protein kinase. We show that Src phosphorylates Y114 of Fhit in vitro and in vivo, providing insight into a biochemical pathway involved in Fhit signaling.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Sato KI, Iwasaki T, Hirahara S, Nishihira Y, Fukami Y. Molecular dissection of egg fertilization signaling with the aid of tyrosine kinase-specific inhibitor and activator strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:103-21. [PMID: 15023354 DOI: 10.1016/j.bbapap.2003.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 11/12/2003] [Indexed: 11/28/2022]
Abstract
Fertilization is triggered by sperm-egg interaction and fusion that initiate a transient rise(s) in the free intracellular calcium ([Ca(2+)](i)) that is responsible for a series of biochemical and cell biological events, so-called "egg activation". Calcium-dependent egg activation leads to the initiation of developmental program that culminates in the birth of individuals. A growing body of knowledge has uncovered the molecular mechanisms underlying sperm-induced transient [Ca(2+)](i) increase(s) to some extent; namely, in most animals so far studied, a second messenger inositol 1,4,5-trisphosphate (IP(3)) seems to play a pivotal role in inducing [Ca(2+)](i) transient(s) at fertilization. However, signaling mechanisms used by sperm to initiate IP(3)-[Ca(2+)](i) transient pathway have not been elucidated. To approach this problem, we have employed African clawed frog, Xenopus laevis, as a model animal and conducted experiments designed specifically to determine the role of the Src family protein-tyrosine kinases (SFKs or Src family PTKs) in the sperm-induced egg activation. This review compiles information about the use of PTK-specific inhibitors and activators for analyzing signal transduction events in egg fertilization. Specifically, we focus on molecular identification of Xenopus Src and the signaling mechanism of the Src-dependent egg activation that has been established recently. We also summarize recent advances in understanding the role of the Src family kinases in egg fertilization of other model organisms, and discuss future directions of the field.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
146
|
Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32:1037-49. [PMID: 14960716 PMCID: PMC373391 DOI: 10.1093/nar/gkh253] [Citation(s) in RCA: 1090] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reversible protein phosphorylation provides a major regulatory mechanism in eukaryotic cells. Due to the high variability of amino acid residues flanking a relatively limited number of experimentally identified phosphorylation sites, reliable prediction of such sites still remains an important issue. Here we report the development of a new web-based tool for the prediction of protein phosphorylation sites, DISPHOS (DISorder-enhanced PHOSphorylation predictor, http://www.ist.temple. edu/DISPHOS). We observed that amino acid compositions, sequence complexity, hydrophobicity, charge and other sequence attributes of regions adjacent to phosphorylation sites are very similar to those of intrinsically disordered protein regions. Thus, DISPHOS uses position-specific amino acid frequencies and disorder information to improve the discrimination between phosphorylation and non-phosphorylation sites. Based on the estimates of phosphorylation rates in various protein categories, the outputs of DISPHOS are adjusted in order to reduce the total number of misclassified residues. When tested on an equal number of phosphorylated and non-phosphorylated residues, the accuracy of DISPHOS reaches 76% for serine, 81% for threonine and 83% for tyrosine. The significant enrichment in disorder-promoting residues surrounding phosphorylation sites together with the results obtained by applying DISPHOS to various protein functional classes and proteomes, provide strong support for the hypothesis that protein phosphorylation predominantly occurs within intrinsically disordered protein regions.
Collapse
Affiliation(s)
- Lilia M Iakoucheva
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Ojida A, Mito-oka Y, Sada K, Hamachi I. Molecular Recognition and Fluorescence Sensing of Monophosphorylated Peptides in Aqueous Solution by Bis(zinc(II)−dipicolylamine)-Based Artificial Receptors. J Am Chem Soc 2004; 126:2454-63. [PMID: 14982454 DOI: 10.1021/ja038277x] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The phosphorylation of proteins represents a ubiquitous mechanism for the cellular signal control of many different processes, and thus selective recognition and sensing of phosphorylated peptides and proteins in aqueous solution should be regarded as important targets in the research field of molecular recognition. We now describe the design of fluorescent chemosensors bearing two zinc ions coordinated to distinct dipicolylamine (Dpa) sites. Fluorescence titration experiments show the selective and strong binding toward phosphate derivatives in aqueous solution. On the basis of (1)H NMR and (31)P NMR studies, and the single-crystal X-ray structural analysis, it is clear that two Zn(Dpa) units of the binuclear receptors cooperatively act to bind a phosphate site of these derivatives. Good agreement of the binding affinity estimated by isothermal titration calorimetry with fluorescence titration measurements revealed that these two receptors can fluorometrically sense several phosphorylated peptides that have consensus sequences modified with natural kinases. These chemosensors display the following significant features: (i) clear distinction between phosphorylated and nonphosphorylated peptides, (ii) sequence-dependent recognition, and (iii) strong binding to a negatively charged phosphorylated peptide, all of which can be mainly ascribed to coordination chemistry and electrostatic interactions between the receptors and the corresponding peptides. Detailed titration experiments clarified that the phosphate anion-assisted coordination of the second Zn(II) to the binuclear receptors is crucial for the fluorescence intensification upon binding to the phosphorylated derivatives. In addition, it is demonstrated that the binuclear receptors can be useful for the convenient fluorescent detection of a natural phosphatase (PTP1B) catalyzed dephosphorylation.
Collapse
Affiliation(s)
- Akio Ojida
- PRESTO, Organization and Function, JST, Fukuoka, 812-8581, Japan
| | | | | | | |
Collapse
|
148
|
Mulcahy JV, Riddell DR, Owen JS. Human scavenger receptor class B type II (SR-BII) and cellular cholesterol efflux. Biochem J 2004; 377:741-7. [PMID: 14570588 PMCID: PMC1223905 DOI: 10.1042/bj20030307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 09/12/2003] [Accepted: 10/21/2003] [Indexed: 11/17/2022]
Abstract
Although studies in recombinant cells indicate that scavenger receptor class B, type I (SR-BI) can promote cholesterol efflux, investigations in transgenic mice overexpressing or deficient in SR-BI endorse its physiological function as selectively sequestering cholesteryl esters from high-density lipoproteins (HDLs). Less clear is the role of SR-BII, a splice variant of the SR-B gene that differs only in the C-terminal cytoplasmic domain. Here, we identify several putative signalling motifs in the C-terminus of human SR-BII, which are absent from SR-BI, and hypothesize that these motifs interact with signalling molecules to mobilize stored cholesteryl esters and/or promote the efflux of intracellular free cholesterol. 'Pull-down' assays using a panel of tagged SH3 (Src homology 3) domains showed that cytoplasmic SR-BII, but not cytoplasmic SR-BI, bound the SH3 domain of phospholipase C-gamma1; this interaction was not, however, detected under more physiological conditions. Specific anti-peptide antisera identified SR-BII in human monocyte/macrophage THP-1 cells and, in recombinant cells, revealed receptor localization to caveolae, a plasma membrane microdomain that concentrates signal-transducer molecules and acts as a conduit for cholesterol flux between cells and lipoproteins. Consistent with its caveolar localization, expression of human SR-BII in recombinant Chinese hamster ovary cells (CHO-SR-BII) was associated with increased HDL-mediated cholesterol efflux. Nevertheless, when CHO-SR-BII cells were pre-loaded with cholesteryl [(3)H]oleate and incubated with HDL, cholesteryl ester stores were not reduced compared with control cells. We conclude that although human SR-BII is expressed by macrophages, contains cytoplasmic signalling motifs and localizes to caveolae, its ability to stimulate cholesterol efflux does not reflect enhanced hydrolysis of stored cholesteryl esters.
Collapse
Affiliation(s)
- Jane V Mulcahy
- Department of Medicine, Royal Free, University College Medical School, University College London, Royal Free Campus, London NW3 2PF, U.K
| | | | | |
Collapse
|
149
|
Rychlewski L, Kschischo M, Dong L, Schutkowski M, Reimer U. Target Specificity Analysis of the Abl Kinase using Peptide Microarray Data. J Mol Biol 2004; 336:307-11. [PMID: 14757045 DOI: 10.1016/j.jmb.2003.12.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Protein kinases play an important role in cellular signalling. The reliable prediction of their substrates is of high importance for the deciphering of signalling pathways. A recently developed peptide microarray technology for the charcterisation of protein kinases delivers data on the individual phosphorylation status of each single member of a large peptide library. This data can be used to approximate the substrate specificity of the investigated kinase. We present an approach to process the collected information using a combination of a weight matrix approach and a nearest neighbor approach. Experiments with the protein-tyrosine kinase Abl are conducted to validate the results. Randomly selected peptides (1433) are used to estimate the substrate preferences of the kinase. The obtained prediction results are compared with standard methods. The new approach is tested further on bona fide Abl phosphorylation sites.
Collapse
Affiliation(s)
- Leszek Rychlewski
- BioInfoBank Institute, Limanowskiego 24A/16, 60-744, Poznan, Poland.
| | | | | | | | | |
Collapse
|
150
|
Sheinerman FB, Al-Lazikani B, Honig B. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. J Mol Biol 2004; 334:823-41. [PMID: 14636606 DOI: 10.1016/j.jmb.2003.09.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Here, we present an approach for the prediction of binding preferences of members of a large protein family for which structural information for a number of family members bound to a substrate is available. The approach involves a number of steps. First, an accurate multiple alignment of sequences of all members of a protein family is constructed on the basis of a multiple structural superposition of family members with known structure. Second, the methods of continuum electrostatics are used to characterize the energetic contribution of each residue in a protein to the binding of its substrate. Residues that make a significant contribution are mapped onto the protein sequence and are used to define a "binding site signature" for the complex being considered. Third, sequences whose structures have not been determined are checked to see if they have binding-site signatures similar to one of the known complexes. Predictions of binding affinity to a given substrate are based on similarities in binding-site signature. An important component of the approach is the introduction of a context-specific substitution matrix suitable for comparison of binding-site residues. The methods are applied to the prediction of phosphopeptide selectivity of SH2 domains. To this end, the energetic roles of all protein residues in 17 different complexes of SH2 domains with their cognate targets are analyzed. The total number of residues that make significant contributions to binding is found to vary from nine to 19 in different complexes. These energetically important residues are found to contribute to binding through a variety of mechanisms, involving both electrostatic and hydrophobic interactions. Binding-site signatures are found to involve residues in different positions in SH2 sequences, some of them as far as 9A away from a bound peptide. Surprisingly, similarities in the signatures of different domains do not correlate with whole-domain sequence identities unless the latter is greater than 50%. An extensive comparison with the optimal binding motifs determined by peptide library experiments, as well as other experimental data indicate that the similarity in binding preferences of different SH2 domains can be deduced on the basis of their binding-site signatures. The analysis provides a rationale for the empirically derived classification of SH2 domains described by Songyang & Cantley, in that proteins in the same group are found to have similar residues at positions important for binding. Confident predictions of binding preference can be made for about 85% of SH2 domain sequences found in SWISSPROT. The approach described in this work is quite general and can, in principle, be used to analyze binding preferences of members of large protein families for which structural information for a number of family members is available. It also offers a strategy for predicting cross-reactivity of compounds designed to bind to a particular target, for example in structure-based drug design.
Collapse
Affiliation(s)
- Felix B Sheinerman
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|