101
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
102
|
Murali A, Rajalingam K. Small Rho GTPases in the control of cell shape and mobility. Cell Mol Life Sci 2014; 71:1703-21. [PMID: 24276852 PMCID: PMC11113993 DOI: 10.1007/s00018-013-1519-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
Rho GTPases are a class of evolutionarily conserved proteins comprising 20 members, which are predominantly known for their role in regulating the actin cytoskeleton. They are primarily regulated by binding of GTP/GDP, which is again controlled by regulators like GEFs, GAPs, and RhoGDIs. Rho GTPases are thus far well known for their role in the regulation of actin cytoskeleton and migration. Here we present an overview on the role of Rho GTPases in regulating cell shape and plasticity of cell migration. Finally, we discuss the emerging roles of ubiquitination and sumoylation in regulating Rho GTPases and cell migration.
Collapse
Affiliation(s)
- Arun Murali
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | - Krishnaraj Rajalingam
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| |
Collapse
|
103
|
Baier A, Ndoh VNE, Lacy P, Eitzen G. Rac1 and Rac2 control distinct events during antigen-stimulated mast cell exocytosis. J Leukoc Biol 2014; 95:763-774. [PMID: 24399839 DOI: 10.1189/jlb.0513281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 02/02/2023] Open
Abstract
The release of preformed mediators from immune cells is through a process described as exocytosis. In mast cells, exocytosis is regulated by several coordinated intracellular signaling pathways. Here, we investigated the role of the hematopoietic-specific Rho GTPase, Rac2, and the ubiquitously expressed Rac1, in controlling mast cell exocytosis. These two isoforms showed equivalent levels of expression in mouse BMMCs. Although Rac1 and Rac2 share 92% sequence identity, they were not functionally redundant, as Rac2-/- BMMCs were defective in exocytosis, even though Rac1 levels were unaffected. Antigen-stimulated WT mast cells underwent a series of morphological transitions: initial flattening, followed by actin-mediated peripheral membrane ruffling and calcium influx, which preceded exocytosis. Whereas membrane ruffling was unaffected in Rac2-/- BMMCs, calcium influx was decreased significantly. Calcium influx was studied further by examining SOCE. In Rac2-/- BMMCs, the activation of PLCγ1 and calcium release from intracellular stores occurred normally; however, activation of plasma membrane calcium channels was defective, shown by the lack of extracellular calcium influx and a reduction of YFP-STIM1 puncta at the plasma membrane. Additionally, we used the small molecule Rac inhibitor, EHT 1864, to target Rac signaling acutely in WT BMMCs. EHT 1864 blocked exocytosis and membrane ruffling completely in conjunction with exocytosis. Our findings suggest that antigen-stimulated membrane ruffling in mast cells is a Rac1-mediated process, as this persisted in the absence of Rac2. Therefore, we define distinct modes of Rac-regulated mast cell exocytosis: Rac2-mediated calcium influx and Rac1-mediated membrane ruffling.
Collapse
Affiliation(s)
| | - Vivian N E Ndoh
- Department of Cell Biology and
- Department of Medicine, University of Örebro, Örebro, Sweden
| | - Paige Lacy
- The Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | | |
Collapse
|
104
|
Joshi S, Singh AR, Zulcic M, Bao L, Messer K, Ideker T, Dutkowski J, Durden DL. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo. PLoS One 2014; 9:e95893. [PMID: 24770346 PMCID: PMC4000195 DOI: 10.1371/journal.pone.0095893] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/31/2014] [Indexed: 12/16/2022] Open
Abstract
Although it is well-established that the macrophage M1 to M2 transition plays a role in tumor progression, the molecular basis for this process remains incompletely understood. Herein, we demonstrate that the small GTPase, Rac2 controls macrophage M1 to M2 differentiation and the metastatic phenotype in vivo. Using a genetic approach, combined with syngeneic and orthotopic tumor models we demonstrate that Rac2-/- mice display a marked defect in tumor growth, angiogenesis and metastasis. Microarray, RT-PCR and metabolomic analysis on bone marrow derived macrophages isolated from the Rac2-/- mice identify an important role for Rac2 in M2 macrophage differentiation. Furthermore, we define a novel molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin and MCSF receptor lead to the activation of Rac2 and potentially regulate macrophage M2 differentiation. Collectively, our findings demonstrate a macrophage autonomous process by which the Rac2 GTPase is activated downstream of the α4β1 integrin and the MCSF receptor to control tumor growth, metastasis and macrophage differentiation into the M2 phenotype. Finally, using gene expression and metabolomic data from our Rac2-/- model, and information related to M1-M2 macrophage differentiation curated from the literature we executed a systems biologic analysis of hierarchical protein-protein interaction networks in an effort to develop an iterative interactome map which will predict additional mechanisms by which Rac2 may coordinately control macrophage M1 to M2 differentiation and metastasis.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Alok R. Singh
- UCSD Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Lei Bao
- UCSD Department of Biostatistics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Karen Messer
- UCSD Department of Biostatistics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Janusz Dutkowski
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Donald L. Durden
- UCSD Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children's Hospital, San Diego, La Jolla, California, United States of America
| |
Collapse
|
105
|
Johnsson AKE, Dai Y, Nobis M, Baker MJ, McGhee EJ, Walker S, Schwarz JP, Kadir S, Morton JP, Myant KB, Huels DJ, Segonds-Pichon A, Sansom OJ, Anderson KI, Timpson P, Welch HCE. The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Rep 2014; 6:1153-1164. [PMID: 24630994 PMCID: PMC3988842 DOI: 10.1016/j.celrep.2014.02.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/05/2014] [Accepted: 02/15/2014] [Indexed: 01/19/2023] Open
Abstract
The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.
Collapse
Affiliation(s)
- Anna-Karin E Johnsson
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Yanfeng Dai
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Max Nobis
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Martin J Baker
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ewan J McGhee
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Simon Walker
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Juliane P Schwarz
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Shereen Kadir
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jennifer P Morton
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Kevin B Myant
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David J Huels
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Anne Segonds-Pichon
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Owen J Sansom
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Kurt I Anderson
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW, 2010 Sydney, Australia.
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
106
|
Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task. Small GTPases 2014; 5:e27952. [PMID: 24598074 PMCID: PMC4114928 DOI: 10.4161/sgtp.27952] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b 558 (a heterodimer of Nox2 and p22(phox)) and 4 cytosolic components: p47(phox), p67(phox), p40(phox), and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67(phox) playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67(phox); (5) Induction of a conformational change in p67(phox), promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general.
Collapse
Affiliation(s)
- Edgar Pick
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research; Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| |
Collapse
|
107
|
Stanley AC, Wong CX, Micaroni M, Venturato J, Khromykh T, Stow JL, Lacy P. The Rho GTPase Rac1 is required for recycling endosome-mediated secretion of TNF in macrophages. Immunol Cell Biol 2014; 92:275-86. [PMID: 24343664 DOI: 10.1038/icb.2013.90] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/17/2022]
Abstract
Rho GTPases are required for many cellular events such as adhesion, motility, and membrane trafficking. Here we show that in macrophages, the Rho GTPases Rac1 and Cdc42 are involved in lamellipodia and filopodia formation, respectively, and that both of these Rho GTPases are essential for the efficient surface delivery of tumor necrosis factor (TNF) to the plasma membrane following TLR4 stimulation. We have previously demonstrated intracellular trafficking of TNF via recycling endosomes in lipopolysaccharide (LPS)-activated macrophages. Here, we further define a specific role for Rac1 in intracellular TNF trafficking, demonstrating impairment in TNF release following TLR4 stimulation in the presence of a Rac inhibitor, in cells expressing a dominant negative (DN) form of Rac1, and following small interfering RNA (siRNA) knockdown of Rac1. Rac1 activity was required for TNF trafficking but not for TLR4 signaling following LPS stimulation. Reduced TNF secretion was due to a defect in Rac1 activity, but not of the closely related Rho GTPase Rac2, demonstrated by the additional use of macrophages derived from Rac2-deficient mice. Labeling recycling endosomes by the uptake of fluorescent transferrin enabled us to show that Rac1 was required for the final stages of TNF trafficking and delivery from recycling endosomes to the plasma membrane. Thus, actin remodeling by the Rho GTPase Rac1 is required for TNF cell surface delivery and release from macrophages.
Collapse
Affiliation(s)
- Amanda C Stanley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Colin X Wong
- Institute of Medical Biology, Immunos, Singapore
| | - Massimo Micaroni
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Juliana Venturato
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tatiana Khromykh
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
108
|
Lőrincz ÁM, Szarvas G, Smith SME, Ligeti E. Role of Rac GTPase activating proteins in regulation of NADPH oxidase in human neutrophils. Free Radic Biol Med 2014; 68:65-71. [PMID: 24321316 DOI: 10.1016/j.freeradbiomed.2013.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/15/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
Abstract
Precise spatiotemporal regulation of O2(-)-generating NADPH oxidases (Nox) is a vital requirement. In the case of Nox1-3, which depend on the small GTPase Rac, acceleration of GTP hydrolysis by GTPase activating protein (GAP) could represent a feasible temporal control mechanism. Our goal was to investigate the molecular interactions between RacGAPs and phagocytic Nox2 in neutrophilic granulocytes. In structural studies we revealed that simultaneous interaction of Rac with its effector protein p67(phox) and regulatory protein RacGAP was sterically possible. The effect of RacGAPs was experimentally investigated in a cell-free O2(-)-generating system consisting of isolated membranes and recombinant p47(phox) and p67(phox) proteins. Addition of soluble RacGAPs decreased O2(-) production and there was no difference in the effect of four RacGAPs previously identified in neutrophils. Depletion of membrane-associated RacGAPs had a selective effect: a decrease in ARHGAP1 or ARHGAP25 level increased O2(-) production but a depletion of ARHGAP35 had no effect. Only membrane-localized RacGAPs seem to be able to interact with Rac when it is assembled in the Nox2 complex. Thus, in neutrophils multiple RacGAPs are involved in the control of O2(-) production by Nox2, allowing selective regulation via different signaling pathways.
Collapse
Affiliation(s)
- Ákos M Lőrincz
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Gábor Szarvas
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Susan M E Smith
- Department of Biology and Physics, Kennesaw State University, 1000 Chastain Road, Building 12, Room 308, Kennesaw, GA 30144, USA
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
109
|
Abstract
We initially described the WHIM syndrome based on the combination of Warts, Hypogammaglobulinaemia, Infections and Myelokathexis (neutrophil retention in the bone marrow). Translational research led to the discovery that this rare immunodeficiency disease is caused by a heterozygous mutation in the CXCR4 gene. Recently, Plerixafor has been suggested as a treatment for WHIM syndrome due to its efficacy as a CXCR4 antagonist, closing the translational research loop. In this review, we will focus on the clinical manifestations, pathophysiology, diagnosis and possible therapies for this rare entity.
Collapse
Affiliation(s)
- Omar Al Ustwani
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY
| | - Razelle Kurzrock
- University of California, San Diego, Moores Cancer Center, San Diego, CA
| | - Meir Wetzler
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY
| |
Collapse
|
110
|
Yamauchi A, Degawa-Yamauchi M, Kuribayashi F, Kanegasaki S, Tsuchiya T. Systematic single cell analysis of migration and morphological changes of human neutrophils over stimulus concentration gradients. J Immunol Methods 2013; 404:59-70. [PMID: 24370750 DOI: 10.1016/j.jim.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/01/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022]
Abstract
To compare the responses of individual neutrophils to chemoattractants, migration pathway data were obtained using TAXIScan, an optically accessible/horizontal apparatus in which a concentration gradient is established reproducibly for a given stimulus. The observed linear-mode trajectory pattern of neutrophils toward N-formyl-methionyl-leucyl-phenylalanine (fMLP) or Interleukin (IL)-8/CXCL8 was distinguished from random migration patterns toward leukotriene (LT) B4 or platelet activating factor (PAF). The median values of velocity and directionality calculated for individual cells toward fMLP and IL-8 were both relatively similar and high, whereas the values toward LTB4 and PAF were widely dispersed over a lower range of directionality and from low to high ranges of velocity. The different patterns between the groups may be explained by unique morphology with single polarity toward fMLP and IL-8, and unstable morphology with multiple polarities toward LTB4 and PAF. Unique morphologies toward fMLP and IL-8 were not affected by coexisting LTB4 or PAF. On the other hand, the addition of suboptimum concentrations of fMLP or IL-8 to LTB4 or PAF induced a nearly maximum chemotactic response in most cells. These data suggest that exogenous formyl peptides and endogenous chemokines augment neutrophil accumulation at inflammation sites, whereas lipid mediators may play a role in supporting activation of the inflammatory cells for recruitment.
Collapse
Affiliation(s)
- Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan.
| | | | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan
| | - Shiro Kanegasaki
- YU-ECI Research Center for Medical Science, Yeungnam University, Gyeongsan-City 712-749, Republic of Korea
| | - Tomoko Tsuchiya
- YU-ECI Research Center for Medical Science, Yeungnam University, Gyeongsan-City 712-749, Republic of Korea.
| |
Collapse
|
111
|
Sima C, Gastfreund S, Sun C, Glogauer M. Rac-null leukocytes are associated with increased inflammation-mediated alveolar bone loss. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:472-82. [PMID: 24269593 DOI: 10.1016/j.ajpath.2013.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023]
Abstract
Periodontitis is characterized by altered host-biofilm interactions that result in irreversible inflammation-mediated alveolar bone loss. Genetic and epigenetic factors that predispose to ineffective control of biofilm composition and maintenance of tissue homeostasis are not fully understood. We elucidated how leukocytes affect the course of periodontitis in Rac-null mice. Mouse models of acute gingivitis and periodontitis were used to assess the early inflammatory response and patterns of chronicity leading to loss of alveolar bone due to inflammation in Rac-null mice. Leukocyte margination was differentially impaired in these mice during attachment in conditional Rac1-null (granulocyte/monocyte lineage) mice and during rolling and attachment in Rac2-null (all blood cells) mice. Inflammatory responses to subgingival ligatures, assessed by changes in peripheral blood differential leukocyte numbers, were altered in Rac-null compared with wild-type mice. In response to persistent subgingival ligature-mediated challenge, Rac-null mice had increased loss of alveolar bone with patterns of resorption characteristic of aggressive forms of periodontitis. These findings were partially explained by higher osteoclastic coverage of the bone-periodontal ligament interface in Rac-null compared with wild-type mice. In conclusion, this study demonstrates that leukocyte defects, such as decreased endothelial margination and tissue recruitment, are rate-limiting steps in the periodontal inflammatory process that lead to more aggressive forms of periodontitis.
Collapse
Affiliation(s)
- Corneliu Sima
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Shoshi Gastfreund
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada
| | - Chunxiang Sun
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada
| | - Michael Glogauer
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
112
|
He Y, Li D, Cook SL, Yoon MS, Kapoor A, Rao CV, Kenis PJA, Chen J, Wang F. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell 2013; 24:3369-80. [PMID: 24006489 PMCID: PMC3814157 DOI: 10.1091/mbc.e13-07-0405] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/02/2022] Open
Abstract
Chemotaxis allows neutrophils to seek out sites of infection and inflammation. The asymmetric accumulation of filamentous actin (F-actin) at the leading edge provides the driving force for protrusion and is essential for the development and maintenance of neutrophil polarity. The mechanism that governs actin cytoskeleton dynamics and assembly in neutrophils has been extensively explored and is still not fully understood. By using neutrophil-like HL-60 cells, we describe a pivotal role for Rictor, a component of mammalian target of rapamycin complex 2 (mTORC2), in regulating assembly of the actin cytoskeleton during neutrophil chemotaxis. Depletion of mTOR and Rictor, but not Raptor, impairs actin polymerization, leading-edge establishment, and directional migration in neutrophils stimulated with chemoattractants. Of interest, depletion of mSin1, an integral component of mTORC2, causes no detectable defects in neutrophil polarity and chemotaxis. In addition, experiments with chemical inhibition and kinase-dead mutants indicate that mTOR kinase activity and AKT phosphorylation are dispensable for chemotaxis. Instead, our results suggest that the small Rho GTPases Rac and Cdc42 serve as downstream effectors of Rictor to regulate actin assembly and organization in neutrophils. Together our findings reveal an mTORC2- and mTOR kinase-independent function and mechanism of Rictor in the regulation of neutrophil chemotaxis.
Collapse
Affiliation(s)
- Yuan He
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Dong Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Sara L. Cook
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Mee-Sup Yoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Ashish Kapoor
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Paul J. A. Kenis
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fei Wang
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
113
|
Shelef MA, Tauzin S, Huttenlocher A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev 2013; 256:269-81. [PMID: 24117827 PMCID: PMC4117680 DOI: 10.1111/imr.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a resurgence of interest in the neutrophil's role in autoimmune disease. Classically considered an early responder that dies at the site of inflammation, new findings using live imaging of embryonic zebrafish and other modalities suggest that neutrophils can reverse migrate away from sites of inflammation. These 'inflammation-sensitized' neutrophils, as well as the neutrophil extracellular traps and other products made by neutrophils in general, may have many implications for autoimmunity. Here, we review what is known about the role of neutrophils in three different autoimmune diseases: rheumatoid arthritis, systemic lupus erythematosus, and small vessel vasculitis. We then highlight recent findings related to several cytoskeletal regulators that guide neutrophil recruitment including Lyn, Rac2, and SHIP. Finally, we discuss how our improved understanding of the molecules that control neutrophil chemotaxis may impact our knowledge of autoimmunity.
Collapse
Affiliation(s)
- Miriam A. Shelef
- Division of Rheumatology, Department of Medicine, University of Wisconsin – Madison, Madison, WI
| | - Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| |
Collapse
|
114
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|
115
|
Gambardella L, Vermeren S. Molecular players in neutrophil chemotaxis-focus on PI3K and small GTPases. J Leukoc Biol 2013; 94:603-12. [DOI: 10.1189/jlb.1112564] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
116
|
Martin H, Mali RS, Ma P, Chatterjee A, Ramdas B, Sims E, Munugalavadla V, Ghosh J, Mattingly RR, Visconte V, Tiu RV, Vlaar CP, Dharmawardhane S, Kapur R. Pak and Rac GTPases promote oncogenic KIT-induced neoplasms. J Clin Invest 2013; 123:4449-63. [PMID: 24091327 DOI: 10.1172/jci67509] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 07/11/2013] [Indexed: 11/17/2022] Open
Abstract
An acquired somatic mutation at codon 816 in the KIT receptor tyrosine kinase is associated with poor prognosis in patients with systemic mastocytosis and acute myeloid leukemia (AML). Treatment of leukemic cells bearing this mutation with an allosteric inhibitor of p21-activated kinase (Pak) or its genetic inactivation results in growth repression due to enhanced apoptosis. Inhibition of the upstream effector Rac abrogates the oncogene-induced growth and activity of Pak. Although both Rac1 and Rac2 are constitutively activated via the guanine nucleotide exchange factor (GEF) Vav1, loss of Rac1 or Rac2 alone moderately corrected the growth of KIT-bearing leukemic cells, whereas the combined loss resulted in 75% growth repression. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of myeloproliferative neoplasms (MPNs) and corrected the associated pathology in mice. To assess the role of Rac GEFs in oncogene-induced transformation, we used an inhibitor of Rac, EHop-016, which specifically targets Vav1 and found that EHop-016 was a potent inhibitor of human and murine leukemic cell growth. These studies identify Pak and Rac GTPases, including Vav1, as potential therapeutic targets in MPN and AML involving an oncogenic form of KIT.
Collapse
|
117
|
Ding Z, Mizeracki AM, Hu C, Mehta JL. LOX-1 deletion and macrophage trafficking in atherosclerosis. Biochem Biophys Res Commun 2013; 440:210-4. [PMID: 24036126 DOI: 10.1016/j.bbrc.2013.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Atherosclerosis is associated with macrophage accumulation. LOX-1 has been shown to induce macrophage attachment, and its deletion (LOX-1 knockout, KO) reduces atherosclerosis in LDLr KO mice fed a high cholesterol diet. We examined differences in macrophage trafficking in age-matched wild type, LOX-1 KO, LDLr KO, and LDLr/LOX-1 double KO mice. METHODS Sections of aortas of mice fed high cholesterol diet were collected at weeks 0, 4, 8, 12 and 19 and analyzed by immunohistochemistry and flow cytometry. RESULTS In the LDLr KO mice aorta, CD68 positivity (macrophage accumulation) increased over time up to 12 weeks, and then the accumulation fell modestly but significantly. The periaortal fat and adventitia showed more CD68 positivity than the media and intima. This pattern was also evident in the non-atherosclerotic areas. Importantly, LOX-1 KO and LDLr-LOX-1 double KO mice showed diminished CD68 positivity in comparison to wild type and LDLR KO mice, respectively. Further, macrophages from LOX-1 KO mice revealed a marked reduction in migration (vs. macrophages from wild type mice) in in vitro migration assay. CONCLUSIONS LOX-1 deletion translates into reduction in macrophage trafficking in the aorta of LDLr KO mice. Most of the macrophage trafficking appears in the subadventitial regions.
Collapse
Affiliation(s)
- Zufeng Ding
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| | | | | | | |
Collapse
|
118
|
Troeger A, Williams DA. Hematopoietic-specific Rho GTPases Rac2 and RhoH and human blood disorders. Exp Cell Res 2013; 319:2375-83. [PMID: 23850828 PMCID: PMC3997055 DOI: 10.1016/j.yexcr.2013.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/26/2023]
Abstract
The small guanosine triphosphotases (GTPases) Rho proteins are members of the Ras-like superfamily. Similar to Ras, most Rho GTPases cycle between active GTP-bound, and inactive GDP-bound conformations and act as molecular switches that control multiple cellular functions. While most Rho GTPases are expressed widely, the expression of Rac2 and RhoH are restricted to hematopoietic cells. RhoH is an atypical GTPase that lacks GTPase activity and remains in the active conformation. The generation of mouse knock-out lines has led to new understanding of the functions of both of these proteins in blood cells. The phenotype of these mice also led to the identification of mutations in human RAC2 and RHOH genes and the role of these proteins in immunodeficiency diseases. This review outlines the basic biology of Rho GTPases, focusing on Rac and RhoH and summarizes human diseases associated with mutations of these genes.
Collapse
Affiliation(s)
- Anja Troeger
- Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Duesseldorf, Moorenstreet 5, 40225 Duesseldorf, Germany
| | | |
Collapse
|
119
|
Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol 2013; 3:49. [PMID: 24032108 PMCID: PMC3764926 DOI: 10.3389/fcimb.2013.00049] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
There is a rapidly growing body of evidence that production of microvesicles (MVs) is a universal feature of cellular life. MVs can incorporate microRNA (miRNA), mRNA, mtDNA, DNA and retrotransposons, camouflage viruses/viral components from immune surveillance, and transfer cargo between cells. These properties make MVs an essential player in intercellular communication. Increasing evidence supports the notion that MVs can also act as long-distance vehicles for RNA molecules and participate in metabolic synchronization and reprogramming eukaryotic cells including stem and germinal cells. MV ability to carry on DNA and their general distribution makes them attractive candidates for horizontal gene transfer, particularly between multi-cellular organisms and their parasites; this suggests important implications for the co-evolution of parasites and their hosts. In this review, we provide current understanding of the roles played by MVs in intracellular pathogens and parasitic infections. We also discuss the possible role of MVs in co-infection and host shifting.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Natasha.Barteneva@ childrens.harvard.edu
| | | | | |
Collapse
|
120
|
Spencer NY, Zhou W, Li Q, Zhang Y, Luo M, Yan Z, Lynch TJ, Abbott D, Banfi B, Engelhardt JF. Hepatocytes produce TNF-α following hypoxia-reoxygenation and liver ischemia-reperfusion in a NADPH oxidase- and c-Src-dependent manner. Am J Physiol Gastrointest Liver Physiol 2013; 305:G84-94. [PMID: 23639811 PMCID: PMC3725690 DOI: 10.1152/ajpgi.00430.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell line studies have previously demonstrated that hypoxia-reoxygenation (H/R) leads to the production of NADPH oxidase 1 and 2 (NOX1 and NOX2)-dependent reactive oxygen species (ROS) required for the activation of c-Src and NF-κB. We now extend these studies into mouse models to evaluate the contribution of hepatocytes to the NOX- and c-Src-dependent TNF-α production that follows H/R in primary hepatocytes and liver ischemia-reperfusion (I/R). In vitro, c-Src-deficient primary hepatocytes produced less ROS and TNF-α following H/R compared with controls. In vivo, c-Src-KO mice also had impaired TNF-α and NF-κB responses following partial lobar liver I/R. Studies in NOX1 and p47phox knockout primary hepatocytes demonstrated that both NOX1 and p47phox are partially required for H/R-mediated TNF-α production. To further investigate the involvement of NADPH oxidases in the production of TNF-α following liver I/R, we performed additional in vivo experiments in knockout mice deficient for NOX1, NOX2, p47phox, Rac1, and/or Rac2. Cumulatively, these results demonstrate that NOX2 and its activator subunits (p47phox and Rac) control the secretion of TNF-α by the liver following I/R. Interestingly, in the absence of Kupffer cells and NOX2, NOX1 played a dominant role in TNF-α production following hepatic I/R. However, NOX1 deletion alone had little effect on I/R-induced TNF-α. Thus Kupffer cell-derived factors and NOX2 act to suppress hepatic NOX1-dependent TNF-α production. We conclude that c-Src and NADPH oxidase components are necessary for redox-mediated production of TNF-α following liver I/R and that hepatocytes play an important role in this process.
Collapse
Affiliation(s)
- Netanya Y. Spencer
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Weihong Zhou
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Qiang Li
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Meihui Luo
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Ziying Yan
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Thomas J. Lynch
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Duane Abbott
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Botond Banfi
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
121
|
Fattouh R, Guo CH, Lam GY, Gareau MG, Ngan BY, Glogauer M, Muise AM, Brumell JH. Rac2-deficiency leads to exacerbated and protracted colitis in response to Citrobacter rodentium infection. PLoS One 2013; 8:e61629. [PMID: 23613889 PMCID: PMC3628927 DOI: 10.1371/journal.pone.0061629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/12/2013] [Indexed: 02/04/2023] Open
Abstract
Recent genetic-based studies have implicated a number of immune-related genes in the pathogenesis of inflammatory bowel disease (IBD). Our recent genetic studies showed that RAC2 is associated with human IBD; however, its role in disease pathogenesis is unclear. Given Rac2's importance in various fundamental immune cell processes, we investigated whether a defect in Rac2 may impair host immune responses in the intestine and promote disease in the context of an infection-based (Citrobacter rodentium) model of colitis. In response to infection, Rac2(-/-) mice showed i) worsened clinical symptoms (days 13-18), ii) increased crypt hyperplasia at days 11 and 22 (a time when crypt hyperplasia was largely resolved in wild-type mice; WT), and iii) marked mononuclear cell infiltration characterized by higher numbers of T (CD3(+)) cells (day 22), compared to WT-infected mice. Moreover, splenocytes harvested from infected Rac2(-/-) mice and stimulated in vitro with C. rodentium lysate produced considerably higher levels of interferon-γ and interleukin-17A. The augmented responses observed in Rac2(-/-) mice did not appear to stem from Rac2's role in NADPH oxidase-driven reactive oxygen species production as no differences in crypt hyperplasia, nor inflammation, were observed in infected NOX2(-/-) mice compared to WT. Collectively, our findings demonstrate that Rac2(-/-) mice develop more severe disease when subjected to a C. rodentium-induced model of infectious colitis, and suggest that impaired Rac2 function may promote the development of IBD in humans.
Collapse
Affiliation(s)
- Ramzi Fattouh
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cong-Hui Guo
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Grace Y. Lam
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melanie G. Gareau
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bo-Yee Ngan
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Aleixo M. Muise
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Sickkids IBD Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John H. Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Sickkids IBD Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
122
|
Fumagalli L, Campa CC, Germena G, Lowell CA, Hirsch E, Berton G. Class I phosphoinositide-3-kinases and SRC kinases play a nonredundant role in regulation of adhesion-independent and -dependent neutrophil reactive oxygen species generation. THE JOURNAL OF IMMUNOLOGY 2013; 190:3648-60. [PMID: 23447687 DOI: 10.4049/jimmunol.1201951] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemoattractant-induced reactive oxygen species (ROS) generation by adherent neutrophils occurs in two phases: the first is very rapid and transient, and the second one is delayed and lasts up to 30-40 min. We examined the role of phosphoinositide 3-kinases (PI3Ks) and Src-family kinases (SFKs) in these responses using human neutrophils treated with inhibitory compounds or murine neutrophils deficient of PI3Kγ or Hck, Fgr, and Lyn. Our studies show that PI3Kγ is indispensable for the early, fMLF-induced ROS generation and AKT and ERK phosphorylation, but is dispensable for the late response to fMLF. Additionally, the response to TNF, an agonist triggering only the delayed phase of ROS generation, was also unaffected in PI3Kγ-deficient neutrophils. In contrast, inhibition of SFKs by a selective inhibitor in human, or SFK deficiency in murine, neutrophils resulted in the inhibition of both the early and late phase of ROS generation, without affecting the early phase of AKT phosphorylation, but inhibiting the late one. Selective inhibitors of PI3Kα and PI3Kδ markedly reduced both the early and late response to fMLF and TNF in human neutrophils. These findings suggest that class IA PI3Ks may be activated by PI3Kγ via Ras in the early phase of the response and by SFKs in the late phase. The evidence that inhibition of SFKs in human, or SFK deficiency in murine, neutrophils results in suppression of Vav phosphorylation at all time points of the response to fMLF or TNF suggests that SFKs are indispensable for Vav phosphorylation.
Collapse
Affiliation(s)
- Laura Fumagalli
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | | | | | | | | | | |
Collapse
|
123
|
Boyle KB, Stephens LR, Hawkins PT. Activation of the neutrophil NADPH oxidase by Aspergillus fumigatus. Ann N Y Acad Sci 2013; 1273:68-73. [PMID: 23230839 DOI: 10.1111/j.1749-6632.2012.06821.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Upon infection of the respiratory system with the fungus Aspergillus fumigatus various leukoctytes, in particular neutrophils, are recruited to the lung to mount an immune response. Neutrophils respond by both phagocytosing conidia and mediating extracellular killing of germinated, invasive hyphae. Of paramount importance to an appropriate immune response is the neutrophil NADPH oxidase enzyme, which mediates the production of various reactive oxygen species (ROS). This is evidenced by the acute sensitivity of both oxidase-deficient humans and mice to invasive aspergillosis. Herein we briefly review the mechanisms and functions of oxidase activation and discuss our recent work identifying at least some of the important players in hyphal-induced oxidase activation and neutrophil function. Among these we define the phosphoinositide 3-kinase enzyme and the regulatory protein Vav to be of critical importance and allude to a kinase-independent role for Syk.
Collapse
Affiliation(s)
- Keith B Boyle
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | | | |
Collapse
|
124
|
Abstract
In vivo animal models have proven very useful to the understanding of basic biologic pathways of the immune system, a prerequisite for the development of innovate therapies. This article addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish, and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system.
Collapse
Affiliation(s)
- Alejandro A. Schäffer
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894 USA;
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-maximilians-University, Lindwurmstraβe 4 D-80337 Munich GERMANY;
| |
Collapse
|
125
|
Integrin activation by P-Rex1 is required for selectin-mediated slow leukocyte rolling and intravascular crawling. Blood 2013; 121:2301-10. [PMID: 23343834 DOI: 10.1182/blood-2012-09-457085] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrin activation is essential for the function of leukocytes. Impaired integrin activation on leukocytes is the hallmark of the leukocyte adhesion deficiency syndrome in humans, characterized by impaired leukocyte recruitment and recurrent infections. In inflammation, leukocytes collect different signals during the contact with the microvasculature, which activate signaling pathways leading to integrin activation and leukocyte recruitment. We report the role of P-Rex1, a Rac-specific guanine nucleotide exchanging factor, in integrin activation and leukocyte recruitment. We find that P-Rex1 is required for inducing selectin-mediated lymphocyte function-associated antigen-1 (LFA-1) extension that corresponds to intermediate affinity and induces slow leukocyte rolling, whereas P-Rex1 is not involved in the induction of the high-affinity conformation of LFA-1 obligatory for leukocyte arrest. Furthermore, we demonstrate that P-Rex1 is involved in Mac-1-dependent intravascular crawling. In vivo, both LFA-1-dependent slow rolling and Mac-1-dependent crawling are defective in P-Rex1(-/-) leukocytes, whereas chemokine-induced arrest and postadhesion strengthening remain intact in P-Rex1-deficient leukocytes. Rac1 is involved in E-selectin-mediated slow rolling and crawling. In vivo, in an ischemia-reperfusion-induced model of acute kidney injury, abolished selectin-mediated integrin activation contributed to decreased neutrophil recruitment and reduced kidney damage in P-Rex1-deficient mice. We conclude that P-Rex1 serves distinct functions in LFA-1 and Mac-1 activation.
Collapse
|
126
|
Abstract
The formyl peptide receptor 1 (FPR1) is mainly expressed by mammalian phagocytic leukocytes and plays a role in chemotaxis, killing of microorganisms through phagocytosis, and the generation of reactive oxygen species. A large number of ligands have been identified triggering FPR1 including formylated and non-formylated peptides of microbial and endogenous origin. While the expression of FPR1 in neutrophils has been investigated intensively, knowledge on the regulation of FPR1 expression in polarized macrophages is lacking. In this study we show that primary human neutrophils, monocytes and resting macrophages do express the receptor on their cell surface. Polarization of macrophages with IFNγ, LPS and with the TLR8 ligand 3M-002 further increases FPR1 mRNA levels but does not consistently increase protein expression or chemotaxis towards the FPR1 ligand fMLF. In contrast, polarization of primary human macrophages with IL-4 and IL-13 leading to the alternative activated macrophages, reduces FPR1 cell surface expression and abolishes chemotaxis towards fMLF. These results show that M2 macrophages will not react to triggering of FPR1, limiting the role for FPR1 to chemotaxis and superoxide production of resting and pro-inflammatory M1 macrophages.
Collapse
|
127
|
Tell RM, Kimura K, Palić D. Rac2 expression and its role in neutrophil functions of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2012; 33:1086-94. [PMID: 22992407 DOI: 10.1016/j.fsi.2012.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/26/2012] [Accepted: 07/29/2012] [Indexed: 06/01/2023]
Abstract
The neutrophil contributes significantly to the immune response. In particular, their phagocytosis and pathogen-killing functions are vital for defense from invading pathogens. Rac2, a Rho small GTPase, is involved in many key neutrophil functions. Loss of Rac2 activity results in severe bacterial infections and neutrophil function deficits in humans and mice. While the genes rac1, 2, and 3 have been identified in the zebrafish genome, their expression has not been well-characterized. We describe rac1, 2, and 3 expression over the first three days of development, as well as the presence and localization of Rac2 protein in adult zebrafish neutrophils. The mRNA for each Rac isoform was detected in zebrafish embryos as early as 12 h post fertilization. Immunocytochemistry and confocal microscopy of adult zebrafish neutrophils confirmed diffuse Rac2 protein within the cytoplasm. Only rac2 was found in sorted neutrophil samples. Armed with knowledge of its presence and exclusive expression, the role of Rac2 in key antimicrobial zebrafish neutrophil responses was examined by small molecule inhibition of Rac during respiratory burst, NET release, and phagocytosis assays. Inhibition of Rac2 during these assays produced a dose-dependent decrease in each function, as was expected due to previous work in mammals. The expression pattern and role of Rac2 in zebrafish neutrophil function allows for comparative studies of innate immune responses in this animal model.
Collapse
Affiliation(s)
- Rachel M Tell
- Immunobiology Graduate Program, 1068 Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
128
|
Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y, Filippi MD. Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 2012; 120:3563-74. [PMID: 22932798 PMCID: PMC3482864 DOI: 10.1182/blood-2012-04-426981] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/12/2012] [Indexed: 12/18/2022] Open
Abstract
Chemotaxis promotes neutrophil participation in cellular defense by enabling neutrophil migration to infected tissue and is controlled by persistent cell polarization. One long-standing question of neutrophil polarity has been how the pseudopod and the uropod are coordinated. In our previous report, we suggested that Rho GTPase Cdc42 controls neutrophil polarity through CD11b signaling at the uropod, albeit through an unknown mechanism. Here, we show that Cdc42 controls polarity, unexpectedly, via its effector WASp. Cdc42 controls WASp activation and its distant localization to the uropod. At the uropod, WASp regulates the reorganization of CD11b integrin into detergent resistant membrane domains; in turn, CD11b recruits the microtubule end binding protein EB1 to capture and stabilize microtubules at the uropod. This organization is necessary to maintain neutrophil polarity during migration and is critical for neutrophil emigration into inflamed lungs. These results suggest unrecognized mechanism of neutrophil polarity in which WASp mediates long-distance control of the uropod by Cdc42 to maintain a proper balance between the pseudopod and the uropod. Our study reveals a new function for WASp in the control of neutrophil polarity via crosstalk between CD11b and microtubules.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Gupta R, Palchaudhuri S, Chattopadhyay D. Glutamate induces neutrophil cell migration by activating class I metabotropic glutamate receptors. Amino Acids 2012; 44:757-67. [DOI: 10.1007/s00726-012-1400-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 09/05/2012] [Indexed: 12/11/2022]
|
130
|
TIPE2 protein serves as a negative regulator of phagocytosis and oxidative burst during infection. Proc Natl Acad Sci U S A 2012; 109:15413-8. [PMID: 22949657 DOI: 10.1073/pnas.1204525109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phagocytosis and oxidative burst are two major effector arms of innate immunity. Although it is known that both are activated by Toll-like receptors (TLRs) and Rac GTPases, how their strengths are controlled in quiescent and TLR-activated cells is not clear. We report here that TIPE2 (TNFAIP8L2) serves as a negative regulator of innate immunity by linking TLRs to Rac. TLRs control the expression levels of TIPE2, which in turn dictates the strengths of phagocytosis and oxidative burst by binding to and blocking Rac GTPases. Consequently, TIPE2 knockout cells have enhanced phagocytic and bactericidal activities and TIPE2 knockout mice are resistant to bacterial infection. Thus, TIPE2 sets the strengths of phagocytosis and oxidative burst and may be targeted to effectively control infections.
Collapse
|
131
|
Chang KH, Sanchez-Aguilera A, Shen S, Sengupta A, Madhu MN, Ficker AM, Dunn SK, Kuenzi AM, Arnett JL, Santho RA, Agirre X, Perentesis JP, Deininger MW, Zheng Y, Bustelo XR, Williams DA, Cancelas JA. Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation, and survival. Blood 2012; 120:800-11. [PMID: 22692505 PMCID: PMC3412345 DOI: 10.1182/blood-2011-06-361709] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 05/29/2012] [Indexed: 11/20/2022] Open
Abstract
Despite the introduction of tyrosine kinase inhibitor therapy, the prognosis for p190-BCR-ABL(+) acute lymphoblastic leukemia remains poor. In the present study, we present the cellular and molecular roles of the Rho GTPase guanine nucleotide exchange factor Vav in lymphoid leukemogenesis and explore the roles of Vav proteins in BCR-ABL-dependent signaling. We show that genetic deficiency of the guanine nucleotide exchange factor Vav3 delays leukemogenesis by p190-BCR-ABL and phenocopies the effect of Rac2 deficiency, a downstream effector of Vav3. Compensatory up-regulation of expression and activation of Vav3 in Vav1/Vav2-deficient B-cell progenitors increases the transformation ability of p190-BCR-ABL. Vav3 deficiency induces apoptosis of murine and human leukemic lymphoid progenitors, decreases the activation of Rho GTPase family members and p21-activated kinase, and is associated with increased Bad phosphorylation and up-regulation of Bax, Bak, and Bik. Finally, Vav3 activation only partly depends on ABL TK activity, and Vav3 deficiency collaborates with tyrosine kinase inhibitors to inhibit CrkL activation and impair leukemogenesis in vitro and in vivo. We conclude that Vav3 represents a novel specific molecular leukemic effector for multitarget therapy in p190-BCR-ABL-expressing acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Kyung Hee Chang
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Chen G, Dimitriou I, Milne L, Lang KS, Lang PA, Fine N, Ohashi PS, Kubes P, Rottapel R. The 3BP2 adapter protein is required for chemoattractant-mediated neutrophil activation. THE JOURNAL OF IMMUNOLOGY 2012; 189:2138-50. [PMID: 22815290 DOI: 10.4049/jimmunol.1103184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
3BP2 is a pleckstrin homology and Src homology 2 domain-containing adapter protein mutated in cherubism, a rare autosomal-dominant human bone disorder. Previously, we have demonstrated a functional role for 3BP2 in peripheral B cell development and in peritoneal B1 and splenic marginal zone B cell-mediated Ab responses. In this study, we show that 3BP2 is required for G protein-coupled receptor-mediated neutrophil functions. Neutrophils derived from 3BP2-deficient (Sh3bp2-/-) mice failed to polarize their actin cytoskeleton or migrate in response to a gradient of chemotactic peptide, fMLF. Sh3bp2-/- neutrophils failed to adhere, crawl, and emigrate out of the vasculature in response to fMLF superfusion. 3BP2 is required for optimal activation of Src family kinases, small GTPase Rac2, neutrophil superoxide anion production, and for Listeria monocytogenes bacterial clearance in vivo. The functional defects observed in Sh3bp2-/- neutrophils may partially be explained by the failure to fully activate Vav1 guanine nucleotide exchange factor and properly localize P-Rex1 guanine nucleotide exchange factor at the leading edge of migrating cells. Our results reveal an obligate requirement for the adapter protein 3BP2 in G protein-coupled receptor-mediated neutrophil function.
Collapse
Affiliation(s)
- Grace Chen
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 148, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Shao X, Miao M, Qi X, Chen Z. Ras-proximate-1 GTPase-activating protein and Rac2 may play pivotal roles in the initial development of myelodysplastic syndrome. Oncol Lett 2012; 4:289-298. [PMID: 22844372 DOI: 10.3892/ol.2012.736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/09/2012] [Indexed: 11/06/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a stem cell disease that has a characteristic morphological dysplasia. Adhesion molecules and the Wnt signaling pathway are mostly involved with the self-renewal, proliferation and differentiation of hematopoietic stem cells (HSCs) while Rho GTPases are closely correlated with the cytoskeleton and therefore cell morphology. To gain insight into the poorly understood pathophysiology of MDS, the present study focused on analyzing the gene expression profiles of these molecules with whole genomic array using CD34(+) cells from MDS patients. These profiles showed that N-cadherin, E-cadherin and c-myc binding protein tended to be downregulated, whereas β-catenin, Ras-proximate-1 GTPase-activating protein (Rap1GAP), c-myc promoter binding protein, Rac1, Rac2 and CDC42 tended to be upregulated. However, no change in the expression of genes involved in the canonical Wnt signaling pathway, with the exception of β-catenin, was observed. The array results were confirmed by real-time quantitative polymerase chain reaction (RQ-PCR) using CD34(+) cells from a cohort of patients with MDS-refractory anemia (RA) [WHO (2008) RCUD, RCMD and MDS-U] who had normal karyotypes. Only Rap1GAP and Rac2 showed higher expression levels when mononuclear cells were used from another group of patients with MDS-RA [WHO (2008) RCUD, RCMD and MDS-U] who also had normal karyotypes. We believe that the cadherin-β-catenin-c-myc signaling axis is crucial in the hematopoiesis of HSCs in the early stages of MDS. In addition, Ras-proximate-1 (Rap1), which is negatively regulated by Rap1GAP, may serve as an initiator of this axis through interplay with cadherin. This pathway is strengthened by the upregulation of Rac2, which may allow the nuclear translocation of β-catenin. The aberrant expression of Rho GTPases may also be responsible for the dysplasia characteristics observed in MDS. This study provides vital and new insights into the pathophysiology of MDS. The two small G proteins, Rap1GAP and Rac2, may act as new molecular markers for the diagnosis of MDS.
Collapse
Affiliation(s)
- Xuejun Shao
- The First Affiliated Hospital, Soochow University, Jiangsu Institute of Hematology, Jiangsu, P.R. China
| | | | | | | |
Collapse
|
134
|
Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS, Kazanietz MG. Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal 2012; 24:353-362. [PMID: 21893191 PMCID: PMC3312797 DOI: 10.1016/j.cellsig.2011.08.011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/20/2011] [Indexed: 11/28/2022]
Abstract
Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.
Collapse
Affiliation(s)
- Eva Wertheimer
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Alvaro Gutierrez-Uzquiza
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Cinthia Rosemblit
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Cynthia Lopez-Haber
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Maria Soledad Sosa
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Marcelo G Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
135
|
Osborn-Heaford HL, Ryan AJ, Murthy S, Racila AM, He C, Sieren JC, Spitz DR, Carter AB. Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis. J Biol Chem 2012; 287:3301-12. [PMID: 22157762 PMCID: PMC3270985 DOI: 10.1074/jbc.m111.308387] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/21/2011] [Indexed: 12/22/2022] Open
Abstract
The generation of reactive oxygen species, particularly H(2)O(2), from alveolar macrophages is causally related to the development of pulmonary fibrosis. Rac1, a small GTPase, is known to increase mitochondrial H(2)O(2) generation in macrophages; however, the mechanism by which this occurs is not known. This study shows that Rac1 is localized in the mitochondria of alveolar macrophages from asbestosis patients, and mitochondrial import requires the C-terminal cysteine of Rac1 (Cys-189), which is post-translationally modified by geranylgeranylation. Furthermore, H(2)O(2) generation mediated by mitochondrial Rac1 requires electron transfer from cytochrome c to a cysteine residue on Rac1 (Cys-178). Asbestos-exposed mice harboring a conditional deletion of Rac1 in macrophages demonstrated decreased oxidative stress and were significantly protected from developing pulmonary fibrosis. These observations demonstrate that mitochondrial import and direct electron transfer from cytochrome c to Rac1 modulates mitochondrial H(2)O(2) production in alveolar macrophages pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Chao He
- Radiation Oncology, Free Radical and Radiation Biology Program, and
| | - Jessica C. Sieren
- Department of Radiology, University of Iowa Carver College of Medicine, and
| | - Douglas R. Spitz
- Radiation Oncology, Free Radical and Radiation Biology Program, and
| | - A. Brent Carter
- From the Departments of Internal Medicine and
- Radiation Oncology, Free Radical and Radiation Biology Program, and
- Human Toxicology Program, University of Iowa College of Public Health, Iowa City, Iowa 52242
| |
Collapse
|
136
|
Abstract
Rac GTPases form part of the family of Rho small GTPases. Rac GTPases, like other Rho family GTPases, are key molecular switches controlling the transduction of external signals to cytoplasmic and nuclear effectors. The development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rac GTPases in hematopoietic stem cells (HSCs). Our current knowledge has enabled dissection of their specific and redundant roles. Rac GTPases are now known to be crucial in the response of HSCs to the hematopoietic microenvironment cues. This review will briefly summarize the known HSC functions that are regulated by Rac GTPases, focusing on adhesion, migration, retention, proliferation, and survival, and how Rac relates to the physiological functions of HSC. The development of small molecule inhibitors with the ability to interfere with Rac GTPase activation offers new therapeutic strategies to manipulate the function of HSC in vivo and ex vivo.
Collapse
Affiliation(s)
- J A Cancelas
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, and Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
137
|
Abstract
In 1985, the first members of the Rho GTPase family were identified. Over the next 10 years, rapid progress was made in understanding Rho GTPase signalling. Multiple Rho GTPases were discovered in a wide range of eukaryotes, and shown to regulate a diverse range of cellular processes, including cytoskeletal dynamics, NADPH oxidase activation, cell migration, cell polarity, membrane trafficking, and transcription. The Rho regulators, guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs), were found through a combination of biochemistry, genetics, and detective work. Downstream targets for Rho GTPases were also rapidly identified, and linked to Rho-regulated cellular responses. In parallel, a wide range of bacterial proteins were found to modify Rho proteins or alter their activity in cells, many of which turned out to be useful tools to study Rho functions. More recent work has delineated where Rho GTPases act in cells, the molecular pathways linking some of them to specific cellular responses, and their functions in the development of multicellular organisms.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
138
|
Le Cabec V, Van Goethem E, Guiet R, Maridonneau-Parini I. La migration des phagocytes. Med Sci (Paris) 2011; 27:1112-9. [DOI: 10.1051/medsci/20112712018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
139
|
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis. Nat Commun 2011; 2:552. [PMID: 22109526 PMCID: PMC3537828 DOI: 10.1038/ncomms1554] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/19/2011] [Indexed: 01/01/2023] Open
Abstract
Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.
Collapse
|
140
|
Croke M, Ross FP, Korhonen M, Williams DA, Zou W, Teitelbaum SL. Rac deletion in osteoclasts causes severe osteopetrosis. J Cell Sci 2011; 124:3811-21. [PMID: 22114304 PMCID: PMC3225269 DOI: 10.1242/jcs.086280] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2011] [Indexed: 02/04/2023] Open
Abstract
Cdc42 mediates bone resorption principally by stimulating osteoclastogenesis. Whether its sister GTPase, Rac, meaningfully impacts upon the osteoclast and, if so, by what means, is unclear. We find that whereas deletion of Rac1 or Rac2 alone has no effect, variable reduction of Rac1 in osteoclastic cells of Rac2(-/-) mice causes severe osteopetrosis. Osteoclasts lacking Rac1 and Rac2 in combination (Rac double-knockout, RacDKO), fail to effectively resorb bone. By contrast, osteoclasts are abundant in RacDKO osteopetrotic mice and, unlike those deficient in Cdc42, express the maturation markers of the cells normally. Hence, the osteopetrotic lesion of RacDKO mice largely reflects impaired function, and not arrested differentiation, of the resorptive polykaryon. The dysfunction of RacDKO osteoclasts represents failed cytoskeleton organization as evidenced by reduced motility of the cells and their inability to spread or generate the key resorptive organelles (i.e. actin rings and ruffled borders), which is accompanied by abnormal Arp3 distribution. The cytoskeleton-organizing capacity of Rac1 is mediated through its 20-amino-acid effector domain. Thus, Rac1 and Rac2 are mutually compensatory. Unlike Cdc42 deficiency, their combined absence does not impact upon differentiation but promotes severe osteopetrosis by dysregulating the osteoclast cytoskeleton.
Collapse
Affiliation(s)
- Monica Croke
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - F. Patrick Ross
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | | | - David A. Williams
- Division of Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA
| | - Wei Zou
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Steven L. Teitelbaum
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
141
|
Eitzen G, Lo AN, Mitchell T, Kim JD, Chao DV, Lacy P. Proteomic analysis of secretagogue-stimulated neutrophils implicates a role for actin and actin-interacting proteins in Rac2-mediated granule exocytosis. Proteome Sci 2011; 9:70. [PMID: 22081935 PMCID: PMC3379032 DOI: 10.1186/1477-5956-9-70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 11/14/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Neutrophils are abundant leukocytes that play a primary role in defence against pathogens. Neutrophils enter sites of infection where they eliminate pathogens via phagocytosis and the release of antimicrobial mediators via degranulation. Rho GTPases, particularly Rac2, play a key role in neutrophil degranulation. The purpose of this study was to identify Rac2-dependent changes in protein abundance in stimulated neutrophils. METHODS We performed a proteomic analysis on secretagogue-stimulated bone marrow neutrophils that were isolated from wild-type and Rac2-/- mice. Protein abundance was analyzed by 2-dimensional SDS-PAGE of fluorescently labelled samples which allowed the detection ~3500 proteins. RESULTS We identified 22 proteins that showed significant changes in abundance after secretagogue-stimulation of wild-type neutrophils, which did not occur in neutrophils isolated from Rac2-/- mice. As expected, the abundance of several granule proteins was reduced in wild-type cells; this did not occur in Rac2-/- neutrophils which confirms the requirement for Rac2 in degranulation. We also found changes in abundance of many actin remodelling proteins including coronin-1A, β-actin and the F-actin capping protein, (CapZ-β). Coronin-1A showed elevated levels of several isoforms after stimulation of neutrophils from wild-type, but not from Rac2-/- mice. These isoforms were immunoreactive with anti-phospho-threonine antibodies, suggesting that neutrophil stimulation triggers a Rac2-dependent kinase cascade that results in the phosphorylation of coronin-1A. CONCLUSION The control of Rac2-mediated degranulation in neutrophils likely functions through actin remodelling via activation of several actin-binding proteins. We found coronin-1A to be a novel downstream effector protein of this pathway that is threonine phosphorylated in response to secretagogue stimulation.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | |
Collapse
|
142
|
Mondal S, Ghosh-Roy S, Loison F, Li Y, Jia Y, Harris C, Williams DA, Luo HR. PTEN negatively regulates engulfment of apoptotic cells by modulating activation of Rac GTPase. THE JOURNAL OF IMMUNOLOGY 2011; 187:5783-94. [PMID: 22043008 DOI: 10.4049/jimmunol.1100484] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Efficient clearance of apoptotic cells by phagocytes (efferocytosis) is critical for normal tissue homeostasis and regulation of the immune system. Apoptotic cells are recognized by a vast repertoire of receptors on macrophage that lead to transient formation of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] and subsequent cytoskeletal reorganization necessary for engulfment. Certain PI3K isoforms are required for engulfment of apoptotic cells, but relatively little is known about the role of lipid phosphatases in this process. In this study, we report that the activity of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatidylinositol 3-phosphatase, is elevated upon efferocytosis. Depletion of PTEN in macrophage results in elevated PtdIns(3,4,5)P(3) production and enhanced phagocytic ability both in vivo and in vitro, whereas overexpression of wild-type PTEN abrogates this process. Loss of PTEN in macrophage leads to activation of the pleckstrin homology domain-containing guanine-nucleotide exchange factor Vav1 and subsequent activation of Rac1 GTPase, resulting in increased amounts of F-actin upon engulfment of apoptotic cells. PTEN disruption also leads to increased production of anti-inflammatory cytokine IL-10 and decreased production of proinflammatory IL-6 and TNF-α upon engulfment of apoptotic cells. These data suggest that PTEN exerts control over efferocytosis potentially by regulating PtdIns(3,4,5)P(3) levels that modulate Rac GTPase and F-actin reorganization through Vav1 exchange factor and enhancing apoptotic cell-induced anti-inflammatory response.
Collapse
Affiliation(s)
- Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Deng Q, Yoo SK, Cavnar PJ, Green JM, Huttenlocher A. Dual roles for Rac2 in neutrophil motility and active retention in zebrafish hematopoietic tissue. Dev Cell 2011; 21:735-45. [PMID: 22014524 PMCID: PMC3199325 DOI: 10.1016/j.devcel.2011.07.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/02/2011] [Accepted: 07/22/2011] [Indexed: 12/23/2022]
Abstract
Neutrophil homeostasis is essential for host defense. Here we identify dual roles for Rac2 during neutrophil homeostasis using a zebrafish model of primary immune deficiency induced by the human inhibitory Rac2D57N mutation in neutrophils. Noninvasive live imaging of Rac2 morphants or Rac2D57N zebrafish larvae demonstrates an essential role for Rac2 in regulating 3D motility and the polarization of F-actin dynamics and PI(3)K signaling in vivo. Tracking of photolabeled Rac2-deficient neutrophils from hematopoietic tissue also shows increased mobilization into the circulation, indicating that neutrophil mobilization does not require traditionally defined cell motility. Moreover, excessive neutrophil retention in hematopoietic tissue resulting from a constitutively active CXCR4 mutation in zebrafish warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is partially rescued by the inhibitory Rac2 mutation. These findings reveal that Rac2 signaling is necessary for both neutrophil 3D motility and CXCR4-mediated neutrophil retention in hematopoietic tissue, thereby limiting neutrophil mobilization, a critical first step in the innate immune response.
Collapse
Affiliation(s)
- Qing Deng
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sa Kan Yoo
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter J. Cavnar
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Julie M. Green
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
144
|
Karlsson T, Glogauer M, Ellen RP, Loitto VM, Magnusson KE, Magalhães MAO. Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization. J Leukoc Biol 2011; 90:963-73. [PMID: 21873454 DOI: 10.1189/jlb.0910540] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are of prime importance in the host innate defense against invading microorganisms by using two primary mechanisms-locomotion toward and phagocytosis of the prey. Recent research points to pivotal roles for water channels known as AQPs in cell motility. Here, we focused on the role of AQP9 in chemoattractant-induced polarization and migration of primary mouse neutrophils and neutrophil-like HL60 cells. We found that AQP9 is phosphorylated downstream of fMLFR or PMA stimulation in primary human neutrophils. The dynamics of AQP9 were assessed using GFP-tagged AQP9 constructs and other fluorescent markers through various live-cell imaging techniques. Expression of WT or the phosphomimic S11D AQP9 changed cell volume regulation as a response to hyperosmotic changes and enhanced neutrophil polarization and chemotaxis. WT AQP9 and S11D AQP9 displayed a very dynamic distribution at the cell membrane, whereas the phosphorylation-deficient S11A AQP9 failed to localize to the plasma membrane. Furthermore, we found that Rac1 regulated the translocation of AQP9 to the plasma membrane. Our results show that AQP9 plays an active role in neutrophil volume regulation and migration. The display of AQP9 at the plasma membrane depends on AQP9 phosphorylation, which appeared to be regulated through a Rac1-dependent pathway.
Collapse
Affiliation(s)
- Thommie Karlsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | | | | | | | | | | |
Collapse
|
145
|
Vinolo MAR, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly-Y M, Stephens L, Hawkins PT, Curi R. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 2011; 6:e21205. [PMID: 21698257 PMCID: PMC3115979 DOI: 10.1371/journal.pone.0021205] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/22/2011] [Indexed: 12/17/2022] Open
Abstract
Short chain fatty acids (SCFAs) have recently attracted attention as potential mediators of the effects of gut microbiota on intestinal inflammation. Some of these effects have been suggested to occur through the direct actions of SCFAs on the GPR43 receptor in neutrophils, though the precise role of this receptor in neutrophil activation is still unclear. We show that mouse bone marrow derived neutrophils (BMNs) can chemotax effectively through polycarbonate filters towards a source of acetate, propionate or butyrate. Moreover, we show that BMNs move with good speed and directionality towards a source of propionate in an EZ-Taxiscan chamber coated with fibrinogen. These effects of SCFAs were mimicked by low concentrations of the synthetic GPR43 agonist phenylacetamide-1 and were abolished in GPR43(-/-) BMNs. SCFAs and phenylacetamide-1 also elicited GPR43-dependent activation of PKB, p38 and ERK and these responses were sensitive to pertussis toxin, indicating a role for Gi proteins. Phenylacetamide-1 also elicited rapid and transient activation of Rac1/2 GTPases and phosphorylation of ribosomal protein S6. Genetic and pharmacological intervention identified important roles for PI3Kγ, Rac2, p38 and ERK, but not mTOR, in GPR43-dependent chemotaxis. These results identify GPR43 as a bona fide chemotactic receptor for neutrophils in vitro and start to define important elements in its signal transduction pathways.
Collapse
Affiliation(s)
- Marco A. R. Vinolo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - G. John Ferguson
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Suhasini Kulkarni
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - George Damoulakis
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Karen Anderson
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Len Stephens
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip T. Hawkins
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
146
|
Peng HJ, Henkels KM, Mahankali M, Marchal C, Bubulya P, Dinauer MC, Gomez-Cambronero J. The dual effect of Rac2 on phospholipase D2 regulation that explains both the onset and termination of chemotaxis. Mol Cell Biol 2011; 31:2227-40. [PMID: 21444720 PMCID: PMC3133238 DOI: 10.1128/mcb.01348-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/15/2011] [Indexed: 01/16/2023] Open
Abstract
We document a biphasic effect of Rac2 on the activation and inhibition of PLD2. Cells overexpressing Rac2 and PLD2 simultaneously show a robust initial (<10 min) response toward a chemoattractant that is later (>30 min) greatly diminished over PLD2-only controls. The first phase is due to the presence of a Rac2-PLD2 positive-feedback loop. To explain the mechanism for the Rac2-led PLD2 inhibition (the second phase), we used leukocytes from wild-type (WT) and Rac2(-/-) knockout mice. Rac2(-/-) cells displayed an enhanced PLD2 (but not PLD1) enzymatic activity, confirming the inhibitory role of Rac2. Late inhibitory responses on PLD2 due to Rac2 were reversed in the presence of phosphatidylinositol 4,5-bisphosphate (PIP(2)) both in vitro (purified GST-PH-PLD2, where GST is glutathione S-transferase and PH is pleckstrin homology) and in vivo. Coimmunoprecipitation and immunofluorescence microscopy indicated that PLD2 and Rac2 remain together. The presence of an "arc" of Rac2 at the leading edge of leukocyte pseudopodia and PLD2 physically posterior to this wave of Rac2 was observed in late chemotaxis. We propose Rac-led inhibition of PLD2 function is due to sterical interference of Rac with PLD2's PH binding site to the membrane and deprivation of the PIP(2). This work supports the importance of functional interactions between PLD and Rac in the biological response of cell migration.
Collapse
Affiliation(s)
- Hong-Juan Peng
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Karen M. Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Madhu Mahankali
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Christophe Marchal
- Department of Pediatrics (Hematology/Oncology), Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Paula Bubulya
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| | - Mary C. Dinauer
- Department of Pediatrics (Hematology/Oncology), Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| |
Collapse
|
147
|
Lacy P, Willetts L, Kim JD, Lo AN, Lam B, Maclean EI, Moqbel R, Rothenberg ME, Zimmermann N. Agonist activation of f-actin-mediated eosinophil shape change and mediator release is dependent on Rac2. Int Arch Allergy Immunol 2011; 156:137-47. [PMID: 21576984 PMCID: PMC3104871 DOI: 10.1159/000322597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/03/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Tissue recruitment and activation of eosinophils contribute to allergic symptoms by causing airway hyperresponsiveness and inflammation. Shape changes and mediator release in eosinophils may be regulated by mammalian Rho-related guanosine triphosphatases. Of these, Rac2 is essential for F-actin formation as a central process underlying cell motility, exocytosis, and respiratory burst in neutrophils, while the role of Rac2 in eosinophils is unknown.We set out to determine the role of Rac2 in eosinophil mediator release and F-actin-dependent shape change in response to chemotactic stimuli. METHODS Rac2-deficient eosinophils from CD2-IL-5 transgenic mice crossed with rac2 gene knockout animals were examined for their ability to release superoxide through respiratory burst or eosinophil peroxidase by degranulation. Eosinophil shape change and actin polymerization were also assessed by flow cytometry and confocal microscopy following stimulation with eotaxin-2 or platelet-activating factor. RESULTS Eosinophils from wild-type mice displayed inducible superoxide release, but at a small fraction (4-5%) of human eosinophils. Rac2-deficient eosinophils showed significantly less superoxide release (p < 0.05, 26% less than wild type). Eosinophils lacking Rac2 had diminished degranulation (p < 0.05, 62% less eosinophil peroxidase) and shape changes in response to eotaxin-2 or platelet-activating factor (with 68 and 49% less F-actin formation, respectively; p < 0.02) compared with wild-type cells. CONCLUSION These results demonstrate that Rac2 is an important regulator of eosinophil function by contributing to superoxide production, granule protein release, and eosinophil shape change. Our findings suggest that Rho guanosine triphosphatases are key regulators of cellular inflammation in allergy and asthma.
Collapse
Affiliation(s)
- Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alta., Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Basso V, Corbetta S, Gualdoni S, Tonoli D, Poliani PL, Sanvito F, Doglioni C, Mondino A, de Curtis I. Absence of Rac1 and Rac3 GTPases in the nervous system hinders thymic, splenic and immune-competence development. Eur J Immunol 2011; 41:1410-9. [PMID: 21469092 PMCID: PMC3132589 DOI: 10.1002/eji.201040892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/07/2011] [Accepted: 02/23/2011] [Indexed: 11/06/2022]
Abstract
The nervous system influences organ development by direct innervation and the action of hormones. We recently showed that the specific absence of Rac1 in neurons (Rac1(N) ) in a Rac3-deficient (Rac3(KO) ) background causes motor behavioural defects, epilepsy, and premature mouse death around postnatal day 13. We report here that Rac1(N) /Rac3(KO) mice display a progressive loss of immune-competence. Comparative longitudinal analysis of lymphoid organs from control, single Rac1(N) or Rac3(KO) , and double Rac1(N) /Rac3(KO) mutant animals showed that thymus development is preserved up to postnatal day 9 in all animals, but is impaired in Rac1(N) /Rac3(KO) mice at later times. This is evidenced by a drastic reduction in thymic cell numbers. Cell numbers were also reduced in the spleen, leading to splenic tissue disarray. Organ involution occurs in spite of unaltered thymocyte and lymphocyte subset composition, and proper mature T-cell responses to polyclonal stimuli in vitro. Suboptimal thymus innervation by tau-positive neuronal terminals possibly explains the suboptimal thymic output and arrested thymic development, which is accompanied by higher apoptotic rates. Our results support a role for neuronal Rac1 and Rac3 in dictating proper lymphoid organ development, and suggest the existence of lymphoid-extrinsic mechanisms linking neural defects to the loss of immune-competence.
Collapse
Affiliation(s)
- Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific InstituteMilan, Italy
| | - Sara Corbetta
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific InstituteMilan, Italy
| | - Sara Gualdoni
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific InstituteMilan, Italy
| | - Diletta Tonoli
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific InstituteMilan, Italy
| | | | | | - Claudio Doglioni
- Pathology Unit, San Raffaele Scientific InstituteMilan, Italy
- Vita-Salute San Raffaele UniversityMilan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific InstituteMilan, Italy
| | - Ivan de Curtis
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific InstituteMilan, Italy
- Vita-Salute San Raffaele UniversityMilan, Italy
| |
Collapse
|
149
|
Magalhaes JKRS, Grynpas MD, Willett TL, Glogauer M. Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model. Osteoporos Int 2011; 22:1481-92. [PMID: 20683708 DOI: 10.1007/s00198-010-1355-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/06/2010] [Indexed: 12/19/2022]
Abstract
SUMMARY The roles of Rac1 and Rac2 in regulating osteoclast-mediated bone quality in postmenopausal osteoporosis were evaluated using an ovariectomized murine model. Animals' bone composition and architecture were evaluated. Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to wild-type bones in an ovariectomized model. INTRODUCTION To determine the roles of the Rho family small GTPases Rac1 and Rac2 in regulating osteoclast-mediated bone quality in a model of postmenopausal osteoporosis. METHODS Twelve-month-old female mice from three genotypes-wild type (WT), Rac1 null (LysM.Rac1 KO), and Rac2 null (Rac2KO)--were studied in control and ovariectomized groups (mice previously ovariectomized at 4 months of age). Animals were sacrificed at 12 months of age, and the femora and vertebrae were harvested for mechanical testing, bone densitometry, micro-computed tomography, and histomorphometric analyses to evaluate bone mineralization and architecture. The results were compared between groups using ANOVA and LSD post-hoc tests. RESULTS We observed that LysM.Rac1 KO mice showed higher vertebral bone mineral density compared to WT in both control and ovariectomized groups. Consistent with this finding, LysM.Rac1 KO vertebrae showed increased resistance to fracture and increased trabecular connectivity compared to WT in both groups. Micro-CT analysis revealed that Rac2KO ovariectomized vertebrae have more trabecular bone compared to WT and LysM.Rac1 KO, but this did not translate into increased fracture resistance. CONCLUSION Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to WT bones in a postmenopausal osteoporosis model.
Collapse
Affiliation(s)
- J K R S Magalhaes
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Fitzgerald Building-150 College Street, Room 221, Toronto, ON, Canada M5S 3E2
| | | | | | | |
Collapse
|
150
|
H-ras and N-ras are dispensable for T-cell development and activation but critical for protective Th1 immunity. Blood 2011; 117:5102-11. [PMID: 21444916 DOI: 10.1182/blood-2010-10-315770] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small guanine nucleotide binding proteins of the Ras family, including in mammals the highly homologous H-ras, N-ras, and K-ras isoforms, are rapidly activated on ligation of the T-cell antigen receptor (TCR), but whether each isoform plays specific roles in T cells is largely unknown. Here, we show, with the use of mice specifically lacking H-ras or N-ras, that these isoforms are dispensable for thymocyte development and mature T-cell activation. By contrast, CD4⁺ T cells from Ras-deficient mice exhibited markedly decreased production of the Th1 signature cytokine IFN-γ early after TCR stimulation, concomitantly with impaired induction of the Th1-specific transcription factor T-bet. Accordingly, Ras-deficient mice failed to mount a protective Th1 response in vivo against the intracellular parasite Leishmania major, although they could be rendered resistant to infection if a Th1-biased milieu was provided during parasite challenge. Collectively, our data indicate that the TCR recruits distinct Ras isoforms for signal transduction in developing and mature T cells, thus providing a mechanism for differential signaling from the same surface receptor. Furthermore, we demonstrate for the first time that H-ras and N-ras act as critical controllers of Th1 responses, mostly by transmitting TCR signals for Th1 priming of CD4⁺ T cells.
Collapse
|