101
|
Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood 2014; 124:1460-72. [PMID: 24825865 DOI: 10.1182/blood-2014-03-559542] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia.
Collapse
|
102
|
Nandagopal N, Ali AK, Komal AK, Lee SH. The Critical Role of IL-15-PI3K-mTOR Pathway in Natural Killer Cell Effector Functions. Front Immunol 2014; 5:187. [PMID: 24795729 PMCID: PMC4005952 DOI: 10.3389/fimmu.2014.00187] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells were so named for their uniqueness in killing certain tumor and virus-infected cells without prior sensitization. Their functions are modulated in vivo by several soluble immune mediators; interleukin-15 (IL-15) being the most potent among them in enabling NK cell homeostasis, maturation, and activation. During microbial infections, NK cells stimulated with IL-15 display enhanced cytokine responses. This priming effect has previously been shown with respect to increased IFN-γ production in NK cells upon IL-12 and IL-15/IL-2 co-stimulation. In this study, we explored if this effect of IL-15 priming can be extended to various other cytokines and observed enhanced NK cell responses to stimulation with IL-4, IL-21, IFN-α, and IL-2 in addition to IL-12. Notably, we also observed elevated IFN-γ production in primed NK cells upon stimulation through the Ly49H activation receptor. Currently, the fundamental processes required for priming and whether these signaling pathways work collaboratively or independently for NK cell functions are poorly understood. To identify the key signaling events for NK cell priming, we examined IL-15 effects on NK cells in which the pathways emanating from IL-15 receptor activation were blocked with specific inhibitors. Our results demonstrate that the PI3K–AKT–mTOR pathway is critical for cytokine responses in IL-15 primed NK cells. Furthermore, this pathway is also implicated in a broad range of IL-15-induced NK cell effector functions such as proliferation and cytotoxicity. Likewise, NK cells from mice treated with rapamycin to block the mTOR pathway displayed defects in proliferation, and IFN-γ and granzyme B productions resulting in elevated viral burdens upon murine cytomegalovirus infection. Taken together, our data demonstrate the requirement of PI3K–mTOR pathway for enhanced NK cell functions by IL-15, thereby coupling the metabolic sensor mTOR to NK cell anti-viral responses.
Collapse
Affiliation(s)
- Neethi Nandagopal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Alaa Kassim Ali
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Amandeep Kaur Komal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
103
|
Waight JD, Banik D, Griffiths EA, Nemeth MJ, Abrams SI. Regulation of the interferon regulatory factor-8 (IRF-8) tumor suppressor gene by the signal transducer and activator of transcription 5 (STAT5) transcription factor in chronic myeloid leukemia. J Biol Chem 2014; 289:15642-52. [PMID: 24753251 DOI: 10.1074/jbc.m113.544320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase inhibitors such as imatinib can effectively target the BCR-ABL oncoprotein in a majority of patients with chronic myeloid leukemia (CML). Unfortunately, some patients are resistant primarily to imatinib and others develop drug resistance, prompting interest in the discovery of new drug targets. Although much of this resistance can be explained by the presence of mutations within the tyrosine kinase domain of BCR-ABL, such mutations are not universally identified. Interferon regulatory factor-8 (IRF-8) is a transcription factor that is essential for myelopoiesis. Depressed IRF-8 levels are observed in a majority of CML patients and Irf-8(-/-) mice exhibit a CML-like disease. The underlying mechanisms of IRF-8 loss in CML are unknown. We hypothesized that BCR-ABL suppresses transcription of IRF-8 through STAT5, a proximal BCR-ABL target. Treatment of primary cells from newly diagnosed CML patients in chronic phase as well as BCR-ABL(+) cell lines with imatinib increased IRF-8 transcription. Furthermore, IRF-8 expression in cell line models was necessary for imatinib-induced antitumor responses. We have demonstrated that IRF-8 is a direct target of STAT5 and that silencing of STAT5 induced IRF-8 expression. Conversely, activating STAT5 suppressed IRF-8 transcription. Finally, we showed that STAT5 blockade using a recently discovered antagonist increased IRF-8 expression in patient samples. These data reveal a previously unrecognized BCR-ABL-STAT5-IRF-8 network, which widens the repertoire of potentially new anti-CML targets.
Collapse
Affiliation(s)
| | | | - Elizabeth A Griffiths
- Pharmacology and Therapeutics, and Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michael J Nemeth
- From the Departments of Immunology, Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
104
|
The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014; 2014:630797. [PMID: 24757565 PMCID: PMC3976820 DOI: 10.1155/2014/630797] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022] Open
Abstract
Suppressors of cytokine signalling 1-7 (SOCS1-7) and cytokine-inducible SH2-containing protein (CIS) are a group of intracellular proteins that are well known as JAK-STAT and several other signalling pathways negative feedback regulators. More recently several members have been identified as tumour suppressors and dysregulation of their biological roles in controlling cytokine and growth factor signalling may contribute to the development of many solid organ and haematological malignancies. This review explores their biological functions and their possible tumour suppressing role in human neoplasms.
Collapse
|
105
|
Genetic contribution of CISH promoter polymorphisms to susceptibility to tuberculosis in Chinese children. PLoS One 2014; 9:e92020. [PMID: 24632804 PMCID: PMC3954833 DOI: 10.1371/journal.pone.0092020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death due to an infectious disease worldwide, particularly in developing countries. A series of candidate genes have been suggested to be associated with development of TB disease. Among them, the human Cytokine-inducible Src homology 2(SH2) domain protein (CISH) gene has been very recently reported to be involved in T cell activation and differentiation in response to Mycobacterium tuberculosis infection. Here, we studied the association between CISH promoter polymorphisms and pediatric TB. A case-control study enrolled 352 TB patients and 527 healthy controls, who were of Han Chinese ethnicity and aged from 0.2 to 18 years. CISH gene promoter SNPs rs414171, rs622502 and rs809451 were genotyped in all subjects and transcriptional activity, mRNA level, and plasma cytokine level of subjects with different genotypes were further examined. Carriers with rs414171TT homozygotes and rs809451GC heterozygotes had a 1.78-fold (95% CI,1.16–2.74) and 1.86-fold (95% CI, 1.26–2.74) excess risk of developing TB compared to those with wild-type genotypes. A greater risk of TB disease was observed in population carrying C−809451-T−414171-C−622502 haplotype (OR 3.66, 95% CI:2.12–6.32). The G−809451-A−414171-C−622502-containing CISH promoter drove a 5.43-fold increased reporter expression compared to the C−809451-T−414171-C−622502-containing counterpart in Hela cell lines (P = 0.0009). PBMCs carrying rs414171TT homozygotes and rs809451GC heterozygotes showed a reduced CISH mRNA level compared to cells carrying wild type genotypes. Individuals with the rs414171TT genotype had significantly increased IL-12p40 and IL-10 production. In conclusion, CISH promoter rs414171 and rs809451 polymorphisms may play a vital role in mediating individual susceptibility to tuberculosis.
Collapse
|
106
|
Sim GC, Martin-Orozco N, Jin L, Yang Y, Wu S, Washington E, Sanders D, Lacey C, Wang Y, Vence L, Hwu P, Radvanyi L. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J Clin Invest 2014; 124:99-110. [PMID: 24292706 DOI: 10.1172/jci46266] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022] Open
Abstract
High-dose (HD) IL-2 therapy in patients with cancer increases the general population of Tregs, which are positive for CD4, CD25, and the Treg-specific marker Foxp3. It is unknown whether specific subsets of Tregs are activated and expanded during HD IL-2 therapy or whether activation of any particular Treg subset correlates with clinical outcome. Here, we evaluated Treg population subsets that were induced in patients with melanoma following HD IL-2 therapy. We identified a Treg population that was positive for CD4, CD25, Foxp3, and the inducible T cell costimulator (ICOS). This Treg population increased more than any other lymphocyte subset during HD IL-2 therapy and had an activated Treg phenotype, as indicated by high levels of CD39, CD73, and TGF-β. ICOS(+) Tregs were the most proliferative lymphocyte population in the blood after IL-2 therapy. Patients with melanoma with enhanced expansion of ICOS(+) Tregs in blood following the first cycle of HD IL-2 therapy had worse clinical outcomes than patients with fewer ICOS(+) Tregs. However, there was no difference in total Treg expansion between HD IL-2 responders and nonresponders. These data suggest that increased expansion of the ICOS(+) Treg population following the first cycle of HD IL-2 therapy may be predictive of clinical outcome.
Collapse
|
107
|
Workman AM, Jacobs AK, Vogel AJ, Condon S, Brown DM. Inflammation enhances IL-2 driven differentiation of cytolytic CD4 T cells. PLoS One 2014; 9:e89010. [PMID: 24586481 PMCID: PMC3930678 DOI: 10.1371/journal.pone.0089010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/14/2014] [Indexed: 12/24/2022] Open
Abstract
Cytolytic CD4 T cells (CD4 CTL) have been identified in vivo in response to viral infections; however, the factors necessary for driving the cytolytic phenotype have not been fully elucidated. Our previously published work suggests IL-2 may be the master regulator of perforin-mediated cytotoxicity in CD4 effectors. To further dissect the role of IL-2 in CD4 CTL generation, T cell receptor transgenic mice deficient in the ability to produce IL-2 or the high affinity IL-2 receptor (IL-2Rα, CD25) were used. Increasing concentrations of IL-2 were necessary to drive perforin (Prf) expression and maximal cytotoxicity. Granzyme B (GrB) expression and killing correlated with STAT5 activation and CD25 expression in vitro, suggesting that signaling through the high affinity IL-2R is critical for full cytotoxicity. IL-2 signaling was also necessary in vivo for inducing the Th1 phenotype and IFN-γ expression in CD4 T cells during influenza A (IAV) infection. In addition, GrB expression, as measured by mean fluorescent intensity, was decreased in CD25 deficient cells; however, the frequency of CD4 cells expressing GrB was unchanged. Similarly, analysis of cytolytic markers such as CD107a/b and Eomesodermin indicate high IL-2Rα expression is not necessary to drive the CD4 CTL phenotype during IAV infection. Thus, inflammatory signals induced by viral infection may overcome the need for strong IL-2 signals in driving cytotoxicity in CD4 cells.
Collapse
Affiliation(s)
- Aspen M Workman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley K Jacobs
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Alexander J Vogel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Shirley Condon
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
108
|
Sekine Y. Adaptor Protein STAP-2 Modulates Cellular Signaling in Immune Systems. Biol Pharm Bull 2014; 37:185-94. [DOI: 10.1248/bpb.b13-00421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration and Repair Program,
Departments of Neurology and Neurobiology, Yale University School of Medicine
| |
Collapse
|
109
|
Lee JK, Won C, Yi EH, Seok SH, Kim MH, Kim SJ, Chung MH, Lee HG, Ikuta K, Ye SK. Signal transducer and activator of transcription 3 (Stat3) contributes to T-cell homeostasis by regulating pro-survival Bcl-2 family genes. Immunology 2013; 140:288-300. [PMID: 23746113 DOI: 10.1111/imm.12133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022] Open
Abstract
The naive T-cell pool in peripheral lymphoid tissues is fairly stable in terms of number, diversity and functional capabilities in spite of the absence of prominent stimuli. This stability is attributed to continuous tuning of the composition of the T-cell pool by various homeostatic signals. Despite extensive research into the link between signal transducer and activator of transcription 3 (Stat3) and T-cell survival, little is known about how Stat3 regulates homeostasis by maintaining the required naive T-cell population in peripheral lymphoid organs. We assessed whether the elimination of Stat3 in T cells limits T-cell survival. We demonstrated that the proportion and number of single-positive thymocytes as well as T cells in the spleen and lymph nodes were significantly decreased in the Stat3-deficient group as a result of the enhanced susceptibility of Stat3-deleted T lymphocytes to apoptosis. Importantly, expression of the anti-apoptotic Bcl-2 and Bcl-xL was markedly decreased in Stat3-deleted single-positive thymocytes and T lymphocytes, suggesting that Stat3 helps to maintain the T-cell pool in the resting condition by promoting the expression of Bcl-2 family genes. These findings suggest the importance of Stat3 in the integration of homeostatic cues for the maintenance and functional tuning of the T-cell pool.
Collapse
Affiliation(s)
- Jin-Ku Lee
- Department of Pharmacology and Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea; Ischaemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuro-Immune Information Storage Network Research Centre, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Wang Z, Bunting KD. STAT5 in hematopoietic stem cell biology and transplantation. JAKSTAT 2013; 2:e27159. [PMID: 24498540 DOI: 10.4161/jkst.27159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023] Open
Abstract
Signal transducer and activator of transcription 5 (STAT5) regulates normal lympho-myeloid development through activation downstream of early-acting cytokines, their receptors, and Janus kinases (JAKs). Despite a general understanding of the role of STAT5 in hematopoietic stem cell (HSC) proliferation, survival, and self-renewal, the transcriptional targets and mechanisms of gene regulation that control multi-lineage engraftment following transplantation for the most part remain to be understood. In this review, we focus on the role of STAT5 in HSC transplantation and recent developments toward identifying the relevant downstream target genes and their role as part of a pleiotropic STAT5 mediated signaling response.
Collapse
Affiliation(s)
- Zhengqi Wang
- Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta; Department of Pediatrics; Emory University School of Medicine; Atlanta, GA USA
| | - Kevin D Bunting
- Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta; Department of Pediatrics; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
111
|
Cho JH, Kim HO, Kim KS, Yang DH, Surh CD, Sprent J. Unique Features of Naive CD8+ T Cell Activation by IL-2. THE JOURNAL OF IMMUNOLOGY 2013; 191:5559-73. [DOI: 10.4049/jimmunol.1302293] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
112
|
Mityushova EV, Shatrova AN, Zenin VV, Aksenov ND, Marakhova II. STAT5 signaling in expression of the α-subunit of interleukin-2 receptor in human blood lymphocytes. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13050076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
113
|
Chu TL, Guan Q, Nguan CY, Du C. Halofuginone suppresses T cell proliferation by blocking proline uptake and inducing cell apoptosis. Int Immunopharmacol 2013; 16:414-23. [DOI: 10.1016/j.intimp.2013.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/17/2013] [Accepted: 04/25/2013] [Indexed: 01/31/2023]
|
114
|
Heneghan AF, Pierre JF, Kudsk KA. JAK-STAT and intestinal mucosal immunology. JAKSTAT 2013; 2:e25530. [PMID: 24416649 PMCID: PMC3876429 DOI: 10.4161/jkst.25530] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosal immune system is challenged with bacteria, viruses, and parasites, in addition to food and environmental antigens, that require dynamic immune responsiveness for homeostasis. One central signaling pathway is JAK-STAT, which regulates the adaptive and innate immune arms of mucosal immunity as well as epithelial repair and regeneration. Adaptive immunity includes lymphocyte mediated secretion of specific antibodies, while innate immune respones include secretion of non-antigen specific compounds. This review examines effects of specialized nutrition support on JAK-STAT in innate immune function and in lymphocyte modulation and epithelial antibody transport in gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Aaron F Heneghan
- Department of Surgery; University of Wisconsin-Madison School of Medicine and Public Health; Madison, WI USA
| | - Joseph F Pierre
- Department of Surgery; University of Wisconsin-Madison School of Medicine and Public Health; Madison, WI USA
| | - Kenneth A Kudsk
- Department of Surgery; University of Wisconsin-Madison School of Medicine and Public Health; Madison, WI USA ; Veteran Administration Surgical Service; William S. Middleton Memorial Veterans Hospital; Madison, WI USA
| |
Collapse
|
115
|
Shin HY, Reich NC. Dynamic trafficking of STAT5 depends on an unconventional nuclear localization signal. J Cell Sci 2013; 126:3333-43. [PMID: 23704351 DOI: 10.1242/jcs.123042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transducer and activator of transcription 5 (STAT5) is crucial for physiological processes that include hematopoiesis, liver metabolism and mammary gland development. However, aberrant continual activity of STAT5 has been causally linked to human leukemias and solid tumor formation. As a regulated transcription factor, precise cellular localization of STAT5 is essential. Conventional nuclear localization signals consist of short stretches of basic amino acids. In this study, we provide evidence that STAT5 nuclear import is dependent on an unconventional nuclear localization signal that functions within the conformation of an extensive coiled-coil domain. Both in vitro binding and in vivo functional assays reveal that STAT5 nuclear import is mediated by the importin-α3/β1 system independently of STAT5 activation by tyrosine phosphorylation. The integrity of the coiled-coil domain is essential for STAT5 transcriptional induction of the β-casein gene following prolactin stimulation as well as its ability to synergize with the glucocorticoid receptor. The glucocorticoid receptor accumulates in the nucleus in response to prolactin and this nuclear import is dependent on STAT5 nuclear import. STAT5 continually shuttles in and out of the nucleus and live cell imaging demonstrates that STAT5 nuclear export is mediated by both chromosome region maintenance 1 (Crm1)-dependent and Crm1-independent pathways. A Crm1-dependent nuclear export signal was identified within the STAT5 N-terminus. These findings provide insight into the fundamental mechanisms that regulate STAT5 nuclear trafficking and cooperation with the glucocorticoid receptor and provide a basis for clinical intervention of STAT5 function in disease.
Collapse
Affiliation(s)
- Ha Youn Shin
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | | |
Collapse
|
116
|
Lin WC, Schmidt JW, Creamer BA, Triplett AA, Wagner KU. Gain-of-function of Stat5 leads to excessive granulopoiesis and lethal extravasation of granulocytes to the lung. PLoS One 2013; 8:e60902. [PMID: 23565285 PMCID: PMC3614894 DOI: 10.1371/journal.pone.0060902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 11/25/2022] Open
Abstract
The Signal Transducer and Activator of Transcription 5 (Stat5) plays a significant role in normal hematopoiesis and a variety of hematopoietic malignancies. Deficiency in Stat5 causes impaired cytokine-mediated proliferation and survival of progenitors and their differentiated descendants along major hematopoietic lineages such as erythroid, lymphoid, and myeloid cells. Overexpression and persistent activation of Stat5 are sufficient for neoplastic transformation and development of multi-lineage leukemia in a transplant model. Little is known, however, whether a continuous activation of this signal transducer is essential for the maintenance of hematopoietic malignancies. To address this issue, we developed transgenic mice that express a hyperactive mutant of Stat5 in hematopoietic progenitors and derived lineages in a ligand-controlled manner. In contrast to the transplant model, expression of mutant Stat5 did not adversely affect normal hematopoiesis in the presence of endogenous wildtype Stat5 alleles. However, the gain-of-function of this signal transducer in mice that carry Stat5a/b hypomorphic alleles resulted in abnormally high numbers of circulating granulocytes that caused severe airway obstruction. Downregulation of hyperactive Stat5 in diseased animals restored normal granulopoiesis, which also resulted in a swift clearance of granulocytes from the lung. Moreover, we demonstrate that Stat5 promotes the initiation and maintenance of severe granulophilia in a cell autonomous manner. The results of this study show that the gain-of-function of Stat5 causes excessive granulopoiesis and prolonged survival of granulocytes in circulation. Collectively, our findings underline the critical importance of Stat5 in maintaining a normal balance between myeloid and lymphoid cells during hematopoiesis, and we provide direct evidence for a function of Stat5 in granulophilia–associated pulmonary dysfunction.
Collapse
Affiliation(s)
- Wan-chi Lin
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey W. Schmidt
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bradley A. Creamer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aleata A. Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
117
|
Spoerl D, Duroux-Richard I, Louis-Plence P, Jorgensen C. The role of miR-155 in regulatory T cells and rheumatoid arthritis. Clin Immunol 2013; 148:56-65. [PMID: 23649045 DOI: 10.1016/j.clim.2013.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
Recently, various micro(mi)RNAs have been found deregulated in the setting of rheumatoid arthritis (RA), but their role in the pathogenesis of this disease remains a matter of debate. In the meanwhile, increasing evidence indicates a defective function of regulatory T cells (Tregs) in RA. This review discusses relevant studies addressing the function of Tregs and Cytotoxic T-Lymphocyte Antigen 4 in RA, provides recent data on the role of miRNAs for Tregs homeostasis, and focuses on the role of miR-155 in Tregs. In a final perspective section we discuss the potential impact of therapeutic miR-155 modulation in RA.
Collapse
Affiliation(s)
- D Spoerl
- Inserm U844, CHU Saint Eloi, INM, 80 rue Augustin Fliche, 34295 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
118
|
Nagy ZS, Ross JA, Rodriguez G, Balint BL, Szeles L, Nagy L, Kirken RA. Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells. PLoS One 2013; 8:e57326. [PMID: 23451206 PMCID: PMC3581501 DOI: 10.1371/journal.pone.0057326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
IL-2 is the primary growth factor for promoting survival and proliferation of activated T cells that occurs following engagement of the Janus Kinase (JAK)1–3/and Signal Transducer and Activator of Transcription (STAT) 5 signaling pathway. STAT5 has two isoforms: STAT5A and STAT5B (commonly referred to as STAT5) which, in T cells, play redundant roles transcribing cell cycle and survival genes. As such, inhibition of STAT5 by a variety of mechanisms can rapidly induce apoptosis in certain lymphoid tumor cells, suggesting that it and its target genes represent therapeutic targets to control certain lymphoid diseases. To search for these molecules we aligned IL-2 regulated genes detected by Affymetrix gene expression microarrays with the STAT5 cistrome identified by chip-on-ChIP analysis in an IL-2-dependent human leukemia cell line, Kit225. Select overlapping genes were then validated using qRT2PCR medium-throughput arrays in human PHA-activated PBMCs. Of 19 putative genes, one key regulator of T cell receptor signaling, PDE4B, was identified as a novel target, which was readily up-regulated at the protein level (3 h) in IL-2 stimulated, activated human PBMCs. Surprisingly, only purified CD8+ primary T-cells expressed PDE4B, but not CD4+ cells. Moreover, PDE4B was found to be highly expressed in CD4+ lymphoid cancer cells, which suggests that it may represent a physiological role unique to the CD8+ and lymphoid cancer cells and thus might represent a target for pharmaceutical intervention for certain lymphoid diseases.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
119
|
Chen B, Yi B, Mao R, Liu H, Wang J, Sharma A, Peiper S, Leonard WJ, She JX. Enhanced T cell lymphoma in NOD.Stat5b transgenic mice is caused by hyperactivation of Stat5b in CD8+ thymocytes. PLoS One 2013; 8:e56600. [PMID: 23457589 PMCID: PMC3572980 DOI: 10.1371/journal.pone.0056600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/11/2013] [Indexed: 11/29/2022] Open
Abstract
Activation of signal transducers and activators of transcription (STAT) proteins may be critical to their oncogenic functions as demonstrated by the development of B-cell lymphoma/leukemia in transgenic (TG) mice overexpressing a constitutively activated form of Stat5b. However, low incidence of CD8+ T cell lymphoma was observed in B6 transgenic mice overexpressing a wild-type Stat5b (B6.Stat5bTg) despite of undetectable Stat5b phosphorylation and the rate of lymphomagenesis was markedly enhanced by immunization or the introduction of TCR transgenes [1]. Here, we report that the wild-type Stat5b transgene leads to the acceleration and high incidence (74%) of CD8+ T cell lymphoblastic lymphomas in the non-obese-diabetic (NOD) background. In contrast to the B6.Stat5bTg mice, Stat5b in transgenic NOD (NOD.Stat5bTg) mice is selectively and progressively phosphorylated in CD8+ thymocytes. Stat5 phosphorylation also leads to up-regulation of many genes putatively relevant to tumorigenesis. Treatment of NOD.Stat5bTg mice with cancer chemopreventive agents Apigenin and Xanthohumol efficiently blocked lymphomagenesis through reduction of Stat5 phosphorylation and genes up-regulated in the NOD.Stat5bTg mice. These results suggest that NOD genetic background is critical to the Stat5b-mediated lymphomagenesis through regulation of Stat5 hyperactivation. NOD.Stat5bTg mouse is an excellent model for studying the molecular mechanisms underlying lymphomagenesis and testing novel chemoprevention strategies.
Collapse
Affiliation(s)
- Bo Chen
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Sino-American Institute for Translational Medicine, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Bing Yi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Rui Mao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Haitao Liu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jinhua Wang
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Sino-American Institute for Translational Medicine, Nanjing University of Technology, Nanjing, People's Republic of China
- Jiangsu Cancer Hospital, Nanjing, People's Republic of China
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen Peiper
- Department of Pathology, Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Warren J. Leonard
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Sino-American Institute for Translational Medicine, Nanjing University of Technology, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
120
|
Gardner PJ, Joshi L, Lee RWJ, Dick AD, Adamson P, Calder VL. SIRT1 activation protects against autoimmune T cell-driven retinal disease in mice via inhibition of IL-2/Stat5 signaling. J Autoimmun 2013; 42:117-29. [PMID: 23395551 DOI: 10.1016/j.jaut.2013.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/09/2013] [Accepted: 01/13/2013] [Indexed: 01/01/2023]
Abstract
Sirtuins are a mammalian family of NAD(+)-dependent histone deacetylases that regulate cell function and survival as well as regulating cell responses under inflammatory conditions. SIRT1 activator treatment in vitro using mouse pLN cells, normal human and ocular Behçet's disease donor PBMC resulted in suppressed T cell proliferation and pro-inflammatory cytokine production. Our data suggest a novel mechanism by which SIRT1 activators contribute to suppression of T cell proliferation by both down regulating STAT5A/B expression and suppression of pSTAT5A/B signaling in response to IL-2. Experimental autoimmune uveoretinitis (EAU) in B10.RIII mice is an antigen-specific cell-mediated model of human intra-ocular inflammatory disease. Infiltrating CD4(+) T cells in the retina secrete both IFN-γ and IL-17 and are accompanied by inflammatory granulocytes and macrophages which together result in retinal destruction. Oral SIRT1 activator treatment administered to EAU mice suppressed disease with an accompanying reduction in retinal leukocytic infiltrate, suppressed antigen-specific T cell responses and marked suppression of innate and adaptive pro-inflammatory cytokine production in the eye including IL-6, IL-17A and IFN-γ. In vivo SIRT1 activator treatment also suppressed production of IL-17A, IL-17F, IL-6, TGFβ and IL-22 by pLN cells. Oral SIRT1 activator treatment administered to mice during the efferent phase (days7-14) of EAU was effective at suppressing disease. These observations demonstrate that SIRT1 activation is anti-inflammatory in nature and future targeted activation of SIRT1 shows promise as a potential treatment for non-infectious intra-ocular disorders such as uveitis associated with Behçets disease.
Collapse
Affiliation(s)
- Peter J Gardner
- Department of Genetics, UCL Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | | | | | | | | |
Collapse
|
121
|
Liu Y, Yang T, Li H, Li MH, Liu J, Wang YT, Yang SX, Zheng J, Luo XY, Lai Y, Yang P, Li LM, Zou Q. BD750, a benzothiazole derivative, inhibits T cell proliferation by affecting the JAK3/STAT5 signalling pathway. Br J Pharmacol 2013; 168:632-43. [PMID: 22906008 PMCID: PMC3579284 DOI: 10.1111/j.1476-5381.2012.02172.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/21/2012] [Accepted: 08/10/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE A series of benzothiazole derivatives were screened for immunosuppressive activity; of these compounds BD750 was found to be the most effective immunosuppressant. The purpose of the current study was to determine the immunosuppressive activity of BD750 on T cell proliferation and its potential mode of action. EXPERIMENTAL APPROACH T cell proliferation, CD25 and CD69 expression and cell cycle distribution were measured in vitro by flow cytometry. Cell viability was determined by CCK-8 assay. Cytokine levels were measured by elisa. The activation of signal-regulated molecules was assessed by Western blot analysis. The effects of BD750 were evaluated in vivo in a mouse model of delayed-type hypersensitivity. KEY RESULTS BD750 significantly inhibited mouse and human T cell proliferation, stimulated either by anti-CD3/anti-CD28 monoclonal antibodies or by an alloantigen, in a dose-dependent manner in vitro. No obvious cytotoxic effects of BD750 were observed in our experimental conditions. Furthermore, BD750 did not inhibit CD25 and CD69 expression or IL-2 and IL-4 secretion, but induced cell cycle arrest at the G(0) /G(1) phase in activated T cells. In IL-2-stimulated CTLL-2 cells and primary activated T cells, BD750 inhibited cell proliferation and STAT5 phosphorylation, but not Akt or p70S6K phosphorylation. BD750 also reduced the T cell-mediated delayed-type hypersensitivity response in mice in a dose-dependent manner. CONCLUSION AND IMPLICATIONS These data indicate that BD750 inhibits IL-2-induced JAK3/STAT5-dependent T cell proliferation. BD750 has the potential to be used as a lead compound for the design and development of new immunosuppressants for preventing graft rejection and treating autoimmune diseases.
Collapse
Affiliation(s)
- Y Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
A cell's decision to divide must be regulated with the highest fidelity. Otherwise, abnormalities occurring in the replication of genetic material and cytokinesis would be incompatible with life. It has been known for almost a century that cells comprising a population undergo cellular division at extremely variable rates, even though genetically identical cell clones have been examined. Studies with T lymphocytes at the single cell level have revealed that the rate of cellular division is determined by the accumulation of a critical number of ligand-triggered interleukin-2 (IL2) receptors at the cell surface throughout the G(1) phase of the cell cycle. Thus, the cell "counts" the number of triggered IL2 receptors, and only decides to divide when the critical number has been attained. This information is then transferred to the cellular interior via intracellular sensors comprised of D-type cyclins, which ultimately determine when the cell surpasses the "Restriction Point" in late G(1), and which commits the cell irrevocably to initiate DNA replication. Beyond the R-point, the cell assembles a definite number of macromolecular pre-replication complexes (Pre-RCs) comprised of at least 6 distinct proteins at sites of the origin of replication on DNA. Complete assembly of the Pre-RCs is a prerequisite for their subsequent disassembly, which must occur before the initiation of DNA strand replication, and which occurs asynchronously throughout the S-phase of the cell cycle and only terminates when the entire DNA has been duplicated. Thus, the fidelity of the decision to divide is exquisitely regulated by macromolecular mechanisms initiated at the cell surface and transferred to the cellular interior so that the cell can make the decision in a quantal (all-or-none) fashion. The question before us is how this quantal decision is made at the molecular level. The available data indicate that the assembly and disassembly of a definite number of large multicomponent macromolecular complexes make the quantal decisions. Here, it is postulated that all fundamental cellular decisions, i.e. survival, death, proliferation and differentiation, are regulated in this fashion. It remains to be determined how the cell counts the signals it receives, and what the molecular forces are that dictate the behavior of macromolecular complexes.
Collapse
Affiliation(s)
- Kendall A Smith
- The Division of Immunology, Department of Medicine, Weill Medical College, Cornell University, New York, NY U.S.A
| |
Collapse
|
123
|
Rodriguez G, Ross JA, Nagy ZS, Kirken RA. Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex. J Biol Chem 2013; 288:7137-46. [PMID: 23341462 DOI: 10.1074/jbc.m112.408765] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytokine-mediated regulation of T-cell activity involves a complex interplay between key signal transduction pathways. Determining how these signaling pathways cross-talk is essential to understanding T-cell function and dysfunction. In this work, we provide evidence that cross-talk exists between at least two signaling pathways: the Jak3/Stat5 and cAMP-mediated cascades. The adenylate cyclase activator forskolin (Fsk) significantly increased intracellular cAMP levels and reduced proliferation of the human T-cells via inhibition of cell cycle regulatory genes but did not induce apoptosis. To determine this inhibitory mechanism, effects of Fsk on IL-2 signaling was investigated. Fsk treatment of MT-2 and Kit 225 T-cells inhibited IL-2-induced Stat5a/b tyrosine and serine phosphorylation, nuclear translocation, and DNA binding activity. Fsk treatment also uncoupled IL-2 induced association of the IL-2Rβ and γc chain, consequently blocking Jak3 activation. Interestingly, phosphoamino acid analysis revealed that Fsk-treated cells resulted in elevated serine phosphorylation of Jak3 but not Stat5, suggesting that Fsk can negatively regulate Jak3 activity possibly mediated through PKA. Indeed, in vitro kinase assays and small molecule inhibition studies indicated that PKA can directly serine phosphorylate and functionally inactivate Jak3. Taken together, these findings suggest that Fsk activation of adenylate cyclase and PKA can negatively regulate IL-2 signaling at multiple levels that include IL-2R complex formation and Jak3/Stat5 activation.
Collapse
Affiliation(s)
- Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79902, USA
| | | | | | | |
Collapse
|
124
|
Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomark Res 2013; 1:5. [PMID: 24252238 PMCID: PMC3776247 DOI: 10.1186/2050-7771-1-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 12/15/2022] Open
Abstract
JAK-STAT (Janus associated kinase-signal transducer and activator of transcription) pathway plays a critical role in transduction of extracellular signals from cytokines and growth factors involved in hematopoiesis, immune regulation, fertility, lactation, growth and embryogenesis. JAK family contains four cytoplasmic tyrosine kinases, JAK1-3 and Tyk2. Seven STAT proteins have been identified in human cells, STAT1-6, including STAT5a and STAT5b. Negative regulators of JAK-STAT pathways include tyrosine phosphatases (SHP1 and 2, CD45), protein inhibitors of activated STATs (PIAS), suppressors of cytokine signaling (SOCS) proteins, and cytokine-inducible SH2-containing protein (CIS). Dysregulation of JAK-STAT pathway have been found to be key events in a variety of hematological malignancies. JAK inhibitors are among the first successful agents reaching clinical application. Ruxolitinib (Jakafi), a non-selective inhibitor of JAK1 & 2, has been approved by FDA for patients with intermediate to high risk primary or secondary myelofibrosis. This review will also summarize early data on selective JAK inhibitors, including SAR302503 (TG101348), lestaurtinib (CEP701), CYT387, SB1518 (pacritinib), LY2784544, XL019, BMS-911543, NS-018, and AZD1480.
Collapse
|
125
|
Abstract
The transcription factor Signal Tranducer and Activator of Transcription 5 (STAT5) plays an important role in many biological processes. To study STAT5 biology, several different constructs have been designed that render STAT5 constitutively active. These constructs have now been used to generate animal models that allow for targeted expression of constitutively active STAT5 including a model where STAT5 is expressed in developing B and T cells. Herein we briefly describe the design of constitutively active STAT5 constructs and recent advances in their use.
Collapse
Affiliation(s)
- Lynn M Heltemes-Harris
- Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
126
|
Chueh FY, Yu CL. Engagement of T-cell antigen receptor and CD4/CD8 co-receptors induces prolonged STAT activation through autocrine/paracrine stimulation in human primary T cells. Biochem Biophys Res Commun 2012; 426:242-6. [PMID: 22935418 DOI: 10.1016/j.bbrc.2012.08.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 08/15/2012] [Indexed: 01/27/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins are key signaling molecules in response to cytokines and in regulating T cell biology. However, there are contradicting reports on whether STAT is involved in T-cell antigen receptor (TCR) signaling. To better define the role of STAT in TCR signaling, we activated the CD4/CD8-associated Lck kinase by co-crosslinking TCR and CD4/CD8 co-receptors in human peripheral blood T cells. Sequential STAT1, STAT3 and STAT5 activation was observed 1 h after TCR stimulation suggesting that STAT proteins are not the immediate targets in the TCR complex. We further identified interferon-γ as the key cytokine in STAT1 activation upon TCR engagement. In contrast to transient STAT activation in cytokine response, this autocrine/paracrine-induced STAT activation was sustained. It correlated with the absence of two suppressors of cytokine signaling (SOCS) proteins, SOCS3 and cytokine-inducible SH2 containing protein that are negative feedback regulators of STAT signaling. Moreover, enforced expression of SOCS3 inhibited tyrosine phosphorylation of zeta-associated protein kinase of 70 kD in TCR-stimulated human Jurkat T cells. This is the first report demonstrating delayed and prolonged STAT activation coordinated with the loss of SOCS expression in human primary T cells after co-crosslinking of TCR and CD4/CD8 co-receptors.
Collapse
Affiliation(s)
- Fu-Yu Chueh
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | |
Collapse
|
127
|
Lin JX, Li P, Liu D, Jin HT, He J, Ata Ur Rasheed M, Rochman Y, Wang L, Cui K, Liu C, Kelsall BL, Ahmed R, Leonard WJ. Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 2012; 36:586-99. [PMID: 22520852 DOI: 10.1016/j.immuni.2012.02.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/25/2012] [Accepted: 02/07/2012] [Indexed: 01/05/2023]
Abstract
Cytokine-activated STAT proteins dimerize and bind to high-affinity motifs, and N-terminal domain-mediated oligomerization of dimers allows tetramer formation and binding to low-affinity tandem motifs, but the functions of dimers versus tetramers are unknown. We generated Stat5a-Stat5b double knockin (DKI) N-domain mutant mice in which STAT5 proteins form dimers but not tetramers, identified cytokine-regulated genes whose expression required STAT5 tetramers, and defined dimer versus tetramer consensus motifs. Whereas Stat5-deficient mice exhibited perinatal lethality, DKI mice were viable; thus, STAT5 dimers were sufficient for survival. Nevertheless, STAT5 DKI mice had fewer CD4(+)CD25(+) T cells, NK cells, and CD8(+) T cells, with impaired cytokine-induced and homeostatic proliferation of CD8(+) T cells. Moreover, DKI CD8(+) T cell proliferation after viral infection was diminished and DKI Treg cells did not efficiently control colitis. Thus, tetramerization of STAT5 is critical for cytokine responses and normal immune function, establishing a critical role for STAT5 tetramerization in vivo.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Almeida ARM, Amado IF, Reynolds J, Berges J, Lythe G, Molina-París C, Freitas AA. Quorum-Sensing in CD4(+) T Cell Homeostasis: A Hypothesis and a Model. Front Immunol 2012; 3:125. [PMID: 22654881 PMCID: PMC3360200 DOI: 10.3389/fimmu.2012.00125] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/02/2012] [Indexed: 12/16/2022] Open
Abstract
Homeostasis of lymphocyte numbers is believed to be due to competition between cellular populations for a common niche of restricted size, defined by the combination of interactions and trophic factors required for cell survival. Here we propose a new mechanism: homeostasis of lymphocyte numbers could also be achieved by the ability of lymphocytes to perceive the density of their own populations. Such a mechanism would be reminiscent of the primordial quorum-sensing systems used by bacteria, in which some bacteria sense the accumulation of bacterial metabolites secreted by other elements of the population, allowing them to “count” the number of cells present and adapt their growth accordingly. We propose that homeostasis of CD4+ T cell numbers may occur via a quorum-sensing-like mechanism, where IL-2 is produced by activated CD4+ T cells and sensed by a population of CD4+ Treg cells that expresses the high-affinity IL-2Rα-chain and can regulate the number of activated IL-2-producing CD4+ T cells and the total CD4+ T cell population. In other words, CD4+ T cell populations can restrain their growth by monitoring the number of activated cells, thus preventing uncontrolled lymphocyte proliferation during immune responses. We hypothesize that malfunction of this quorum-sensing mechanism may lead to uncontrolled T cell activation and autoimmunity. Finally, we present a mathematical model that describes the key role of IL-2 and quorum-sensing mechanisms in CD4+ T cell homeostasis during an immune response.
Collapse
|
129
|
Le Gallou S, Caron G, Delaloy C, Rossille D, Tarte K, Fest T. IL-2 requirement for human plasma cell generation: coupling differentiation and proliferation by enhancing MAPK-ERK signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:161-73. [PMID: 22634617 DOI: 10.4049/jimmunol.1200301] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mature B cell differentiation involves a well-established transcription factor cascade. However, the temporal dynamics of cell signaling pathways regulating transcription factor network and coordinating cell proliferation and differentiation remain poorly defined. To gain insight into the molecular processes and extrinsic cues required for B cell differentiation, we set up a controlled primary culture system to differentiate human naive B cells into plasma cells (PCs). We identified T cell-produced IL-2 to be critically involved in ERK1/2-triggered PC differentiation. IL-2 drove activated B cell differentiation toward PC independently of its proliferation and survival functions. Indeed, IL-2 potentiated ERK activation and subsequent BACH2 and IRF8 downregulation, sustaining BLIMP1 expression, the master regulator for PC differentiation. Inhibition of the MAPK-ERK pathway, unlike STAT5 signaling, impaired IL-2-induced PC differentiation and rescued the expression profile of BACH2 and IRF8. These results identify IL-2 as a crucial early input in mature B cell fate commitment.
Collapse
Affiliation(s)
- Simon Le Gallou
- INSERM, Unité Mixte de Recherche 917, Rennes F-35043, France
| | | | | | | | | | | |
Collapse
|
130
|
Popmihajlov Z, Xu D, Morgan H, Milligan Z, Smith KA. Conditional IL-2 Gene Deletion: Consequences for T Cell Proliferation. Front Immunol 2012; 3:102. [PMID: 22590468 PMCID: PMC3349275 DOI: 10.3389/fimmu.2012.00102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/15/2012] [Indexed: 01/02/2023] Open
Abstract
To explore the role of interleukin-2 (IL-2) in T cell proliferation, and to circumvent the IL-2 deficiency autoimmune syndrome of conventional il2 gene deletion, mice were created to allow conditional il2 gene deletion when treated with the estrogen analog, tamoxifen (TAM) as adults. Splenocytes from four different mouse strains, C57Bl/6 wild type (WT), conventional IL-2(−/−), TAM-treated Cre recombinase-negative (Cre−)/IL2fl/fl, and Cre recombinase-positive (Cre+)/IL2fl/fl, were activated with anti-CD3 and anti-CD28, and monitored for CD4+ and CD8+ T cell lymphocyte blastogenesis, aerobic glycolysis, BrdU incorporation into newly synthesized DNA, and CFSE dye dilution to monitor cell division. IL-2 production was monitored by quantitative ELISA and multiple additional cytokines were monitored by quantitative protein-bead arrays. Splenocytes from conventional IL-2(−/−) and TAM-treated Cre+ mice resulted in undetectable IL-2 production by ELISA, so that both strains were IL-2-deficient. As monitored by flow cytometry, activated CD4+ and CD8+ T cells from WT, Cre+, and Cre− mice all underwent blastogenesis, whereas far fewer cells from conventional IL-2(−/−) mice did so. By comparison, only cells from IL-2 sufficient WT and Cre− mice switched to aerobic glycolysis as evidenced by a drop in media pH. Blastogenesis was mirrored by BrdU incorporation and CFSE dye dilution by CD4+ and CD8+ T cells from WT, Cre+, and Cre− mice, which were all equivalent, while proliferation of cells from conventional IL-2(−/−) mice was compromised. Splenocytes from IL-2 deficient conventional IL-2(−/−) mice produced low or undetectable other γc-chain cytokines (IL-4, IL-7, IL-9, IL-13, IL-15, and IL-21), whereas production of these γc-chain cytokines from IL-2-deficient conditional IL-2(−/−) Cre+ mice were comparable with WT and Cre− mice. These results indicate that CD4+ and CD8+ T cell blastogenesis cannot be attributable to IL-2 alone, but a switch to aerobic glycolysis was attributable to IL-2, and proliferation after CD3/CD28 activation is dependent on γc-chain cytokines, and not CD3/28 triggering per se.
Collapse
Affiliation(s)
- Zoran Popmihajlov
- Division of Immunology, Department of Medicine, Weill Cornell Medical College New York, NY, USA
| | | | | | | | | |
Collapse
|
131
|
Mohan M, Kaushal D, Aye PP, Alvarez X, Veazey RS, Lackner AA. Focused examination of the intestinal lamina propria yields greater molecular insight into mechanisms underlying SIV induced immune dysfunction. PLoS One 2012; 7:e34561. [PMID: 22511950 PMCID: PMC3325268 DOI: 10.1371/journal.pone.0034561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 03/05/2012] [Indexed: 12/12/2022] Open
Abstract
Background The Gastrointestinal (GI) tract is critical to AIDS pathogenesis as it is the primary site for viral transmission and a major site of viral replication and CD4+ T cell destruction. Consequently GI disease, a major complication of HIV/SIV infection can facilitate translocation of lumenal bacterial products causing localized/systemic immune activation leading to AIDS progression. Methodology/Principal Findings To better understand the molecular mechanisms underlying GI disease we analyzed global gene expression profiles sequentially in the intestine of the same animals prior to and at 21 and 90d post SIV infection (PI). More importantly we maximized information gathering by examining distinct mucosal components (intraepithelial lymphocytes, lamina propria leukocytes [LPL], epithelium and fibrovascular stroma) separately. The use of sequential intestinal resections combined with focused examination of distinct mucosal compartments represents novel approaches not previously attempted. Here we report data pertaining to the LPL. A significant increase (±1.7-fold) in immune defense/inflammation, cell adhesion/migration, cell signaling, transcription and cell division/differentiation genes were observed at 21 and 90d PI. Genes associated with the JAK-STAT pathway (IL21, IL12R, STAT5A, IL10, SOCS1) and T-cell activation (NFATc1, CDK6, Gelsolin, Moesin) were notably upregulated at 21d PI. Markedly downregulated genes at 21d PI included IL17D/IL27 and IL28B/IFNγ3 (anti-HIV/viral), activation induced cytidine deaminase (B-cell function) and approximately 57 genes regulating oxidative phosphorylation, a critical metabolic shift associated with T-cell activation. The 90d transcriptome revealed further augmentation of inflammation (CXCL11, chitinase-1, JNK3), immune activation (CD38, semaphorin7A, CD109), B-cell dysfunction (CD70), intestinal microbial translocation (Lipopolysaccharide binding protein) and mitochondrial antiviral signaling (NLRX1) genes. Reduced expression of CD28, CD4, CD86, CD93, NFATc1 (T-cells), TLR8, IL8, CCL18, DECTIN1 (macrophages), HLA-DOA and GPR183 (B-cells) at 90d PI suggests further deterioration of overall immune function. Conclusions/Significance The reported transcriptional signatures provide significant new details on the molecular pathology of HIV/SIV induced GI disease and provide new opportunity for future investigation.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Andrew A. Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
132
|
Beech RD, Qu J, Leffert JJ, Lin A, Hong KA, Hansen J, Umlauf S, Mane S, Zhao H, Sinha R. Altered expression of cytokine signaling pathway genes in peripheral blood cells of alcohol dependent subjects: preliminary findings. Alcohol Clin Exp Res 2012; 36:1487-96. [PMID: 22471388 DOI: 10.1111/j.1530-0277.2012.01775.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 12/31/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Preclinical and clinical studies have implicated changes in cytokine and innate immune gene-expression in both the development of and end-organ damage resulting from alcohol dependence. However, these changes have not been systematically assessed on the basis of alcohol consumption in human subjects. METHODS Illumina Sentrix Beadchip (Human-6v2) microarrays were used to measure levels of gene-expression in peripheral blood in 3 groups of subjects: those with alcohol dependence (AD, n = 12), heavy drinkers (HD; defined as regular alcohol use over the past year of at least 8 standard drinks/wk for women and at least 15 standard drinks/wk for men, n = 13), and moderate drinkers (MD; defined as up to 7 standard drinks/wk for women and 14 standard drinks/wk for men, n = 17). RESULTS Four hundred and thirty-six genes were differentially expressed among the 3 groups of subjects (false discovery rate corrected p-value < 0.05). Two hundred and ninety-one genes differed between AD and MD subjects, 240 differed between AD and HD subjects, but only 6 differed between HD and MD subjects. Pathway analysis using DAVID and GeneGO Metacore(®) software showed that the most affected pathways were those related to T-cell receptor and Janus kinase-Signal transducer and activator of transcription (JAK-Stat) signaling. CONCLUSIONS These results suggest the transition from heavy alcohol use to dependence is accompanied by changes in the expression of genes involved in regulation of the innate immune response. Such changes may underlie some of the previously described changes in immune function associated with chronic alcohol abuse. Early detection of these changes may allow individuals at high risk for dependence to be identified.
Collapse
Affiliation(s)
- Robert D Beech
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
Since its discovery two decades ago, the activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well-studied intracellular signalling networks. The field has progressed from the identification of the individual components to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and deregulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment.
Collapse
Affiliation(s)
- Hiu Kiu
- Walter & Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
| | | |
Collapse
|
134
|
Wang J, Pae M, Meydani SN, Wu D. Epigallocatechin-3-gallate inhibits expression of receptors for T cell regulatory cytokines and their downstream signaling in mouse CD4+ T cells. J Nutr 2012; 142:566-71. [PMID: 22323768 DOI: 10.3945/jn.111.154419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously showed a suppressive effect of epigallocatechin-3-gallate (EGCG) on T cell cycling and expansion as well as a paradoxical effect on IL-2 levels (upregulating) and IL-2 receptor (IL-2R)α expression (downregulating). Thus, in the current study, we tested the hypothesis that EGCG affects T cell responses via impairing the IL-2/IL-2R signaling. We found that EGCG inhibited anti-CD3/CD28-induced proliferation of naïve CD4(+) T cells from C57BL/6 mice. EGCG increased accumulation of IL-2 but inhibited expression of IL-2R, including all its subunits [IL-2Rα, IL-2/IL-15Rβ, and common γ chain (γc)]. Using phosphorylation of STAT5 as a marker, we further found that EGCG suppressed IL-2R downstream signaling. Because IL-2R subunits IL-2/IL-15Rβ- and γc are shared with IL-15R and γc is shared with IL-7R, we suspected that EGCG might also influence the signaling of IL-15 and IL-7, the two key regulators in maintaining T cell homeostasis. Results showed that EGCG suppressed IL-15 and IL-7 signaling; further, EGCG not only inhibited the subunits in IL-15R and IL-7R shared with IL-2R, but also affected their proprietary α chains in a manner that aligns with an impaired signaling. Although IL-2, IL-15, and IL-7 have separate and distinctive roles in regulating T cells, all of them are critical for T cell survival, expansion, and differentiation. Thus, these findings indicate an involvement of T cell growth cytokines in EGCG-induced T cell suppression through downregulated expression of their receptors and downstream signaling. This implies a potential application in controlling dysregulated T cell functions such as those observed in autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Junpeng Wang
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | | | | |
Collapse
|
135
|
Longo DM, Louie B, Putta S, Evensen E, Ptacek J, Cordeiro J, Wang E, Pos Z, Hawtin RE, Marincola FM, Cesano A. Single-cell network profiling of peripheral blood mononuclear cells from healthy donors reveals age- and race-associated differences in immune signaling pathway activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:1717-25. [PMID: 22246624 PMCID: PMC3517183 DOI: 10.4049/jimmunol.1102514] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A greater understanding of the function of the human immune system at the single-cell level in healthy individuals is critical for discerning aberrant cellular behavior that occurs in settings such as autoimmunity, immunosenescence, and cancer. To achieve this goal, a systems-level approach capable of capturing the response of the interdependent immune cell types to external stimuli is required. In this study, an extensive characterization of signaling responses in multiple immune cell subpopulations within PBMCs from a cohort of 60 healthy donors was performed using single-cell network profiling (SCNP). SCNP is a multiparametric flow cytometry-based approach that enables the simultaneous measurement of basal and evoked signaling in multiple cell subsets within heterogeneous populations. In addition to establishing the interindividual degree of variation within a broad panel of immune signaling responses, the possible association of any observed variation with demographic variables including age and race was investigated. Using half of the donors as a training set, multiple age- and race-associated variations in signaling responses in discrete cell subsets were identified, and several were subsequently confirmed in the remaining samples (test set). Such associations may provide insight into age-related immune alterations associated with high infection rates and diminished protection following vaccination and into the basis for ethnic differences in autoimmune disease incidence and treatment response. SCNP allowed for the generation of a functional map of healthy immune cell signaling responses that can provide clinically relevant information regarding both the mechanisms underlying immune pathological conditions and the selection and effect of therapeutics.
Collapse
|
136
|
Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood 2012; 119:3550-60. [PMID: 22234689 DOI: 10.1182/blood-2011-12-397554] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STAT5 proteins are constitutively activated in malignant cells from many patients with leukemia, including the myeloproliferative neoplasms (MPNs) chronic myeloid leukemia (CML) and polycythemia vera (PV), but whether STAT5 is essential for the pathogenesis of these diseases is not known. In the present study, we used mice with a conditional null mutation in the Stat5a/b gene locus to determine the requirement for STAT5 in MPNs induced by BCR-ABL1 and JAK2(V617F) in retroviral transplantation models of CML and PV. Loss of one Stat5a/b allele resulted in a decrease in BCR-ABL1-induced CML-like MPN and the appearance of B-cell acute lymphoblastic leukemia, whereas complete deletion of Stat5a/b prevented the development of leukemia in primary recipients. However, BCR-ABL1 was expressed and active in Stat5-null leukemic stem cells, and Stat5 deletion did not prevent progression to lymphoid blast crisis or abolish established B-cell acute lymphoblastic leukemia. JAK2(V617F) failed to induce polycythemia in recipients after deletion of Stat5a/b, although the loss of STAT5 did not prevent the development of myelofibrosis. These results demonstrate that STAT5a/b is essential for the induction of CML-like leukemia by BCR-ABL1 and of polycythemia by JAK2(V617F), and validate STAT5a/b and the genes they regulate as targets for therapy in these MPNs.
Collapse
|
137
|
Hussein O, Tiedemann K, Murshed M, Komarova SV. Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett 2012; 314:176-84. [DOI: 10.1016/j.canlet.2011.09.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/15/2022]
|
138
|
Mechanisms of Immune Evasion by Gliomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:53-76. [DOI: 10.1007/978-1-4614-3146-6_5] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
139
|
Kohanbash G, Okada H. MicroRNAs and STAT interplay. Semin Cancer Biol 2011; 22:70-5. [PMID: 22210182 DOI: 10.1016/j.semcancer.2011.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/15/2011] [Indexed: 12/19/2022]
Abstract
MicroRNA (miR) are emerging as important gene expression regulators often involved in a variety of pathogenesis such as cancers and autoimmunity. Signal transducers and activators of transcription (STAT) proteins are the principle signaling proteins for many cytokines and growth factors, thereby play a critical role in regulating immune cell homeostasis, differentiation and cellular functions. In this review, we discuss recent advances in the field demonstrating active interactions between STATs and miRs, with our primary focus on the promotion and inhibition of immune cells and cancer. Additionally, we review the reciprocal regulations between STATs and miR, and discuss how we can use this knowledge in the context of diseases. For example, recent findings related to STAT1 and miR-155 support the presence of a positive feedback loop of miR-155 and STAT1 in response to inflammatory signals or infection. STAT3 is known to play critical roles in tumorigenesis and cancer-induced immunosuppression. There is a growing body of evidence demonstrating that STAT3 directly activates miR-21, one of miRs that promote cancer cell survival and proliferation. While some miRs directly regulate STATs, there are findings demonstrating indirect STAT regulation by miRs also mediate important biological mechanisms. Therefore, further research is warranted to elucidate significant contributions made by direct and indirect miR-STAT mechanisms. As we learn more about miR pathways, we gain the opportunity to manipulate them in cancer cells to slow down growth or increase their susceptibility anti-tumor immunity.
Collapse
Affiliation(s)
- Gary Kohanbash
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
140
|
Bouzid D, Fourati H, Amouri A, Marques I, Abida O, Haddouk S, Ayed MB, Tahri N, Penha-Gonçalves C, Masmoudi H. The CREM gene is involved in genetic predisposition to inflammatory bowel disease in the Tunisian population. Hum Immunol 2011; 72:1204-9. [DOI: 10.1016/j.humimm.2011.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/02/2011] [Accepted: 10/03/2011] [Indexed: 01/09/2023]
|
141
|
Rani A, Afzali B, Kelly A, Tewolde-Berhan L, Hackett M, Kanhere AS, Pedroza-Pacheco I, Bowen H, Jurcevic S, Jenner RG, Cousins DJ, Ragheb JA, Lavender P, John S. IL-2 regulates expression of C-MAF in human CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:3721-9. [PMID: 21876034 DOI: 10.4049/jimmunol.1002354] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Blockade of IL-2R with humanized anti-CD25 Abs, such as daclizumab, inhibits Th2 responses in human T cells. Recent murine studies have shown that IL-2 also plays a significant role in regulating Th2 cell differentiation by activated STAT5. To explore the role of activated STAT5 in the Th2 differentiation of primary human T cells, we studied the mechanisms underlying IL-2 regulation of C-MAF expression. Chromatin immunoprecipitation studies revealed that IL-2 induced STAT5 binding to specific sites in the C-MAF promoter. These sites corresponded to regions enriched for markers of chromatin architectural features in both resting CD4 and differentiated Th2 cells. Unlike IL-6, IL-2 induced C-MAF expression in CD4 T cells with or without prior TCR stimulation. TCR-induced C-MAF expression was significantly inhibited by treatment with daclizumab or a JAK3 inhibitor, R333. Furthermore, IL-2 and IL-6 synergistically induced C-MAF expression in TCR-activated T cells, suggesting functional cooperation between these cytokines. Finally, both TCR-induced early IL4 mRNA expression and IL-4 cytokine expression in differentiated Th2 cells were significantly inhibited by IL-2R blockade. Thus, our findings demonstrate the importance of IL-2 in Th2 differentiation in human T cells and support the notion that IL-2R-directed therapies may have utility in the treatment of allergic disorders.
Collapse
Affiliation(s)
- Aradhana Rani
- Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Melanoma is the most aggressive form of skin cancer whose worldwide incidence is rising faster than any other cancer. Few treatment options are available to patients with metastatic disease, and standard chemotherapeutic agents are generally ineffective. Cytokines such as IFN-α or IL-2 can promote immune recognition of melanoma, occasionally inducing dramatic and durable clinical responses. Here, we discuss several immunomodulatory agents, the safety of which are being evaluated in clinical trials. Challenges include an incomplete understanding of signaling pathways, appropriate clinical dose and route, and systemic immunosuppression in advanced melanoma patients. We consider how targeted cytokine therapy will integrate into the clinical arena, as well as the low likelihood of success of single cytokine therapies. Evidence supports a synergy between cytokine immunotherapy and other therapeutic approaches in melanoma, and strengthening this area of research will improve our understanding of how to use cytokine therapy better.
Collapse
Affiliation(s)
- Courtney Nicholas
- The Ohio State University, Department of Internal Medicine, Division of Medical Oncology, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- The Ohio State University, Department of Internal Medicine, Division of Medical Oncology, Columbus, OH 43210, USA
| |
Collapse
|
143
|
Nadeau K, Hwa V, Rosenfeld RG. STAT5b deficiency: an unsuspected cause of growth failure, immunodeficiency, and severe pulmonary disease. J Pediatr 2011; 158:701-8. [PMID: 21414633 DOI: 10.1016/j.jpeds.2010.12.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/02/2010] [Accepted: 12/23/2010] [Indexed: 01/03/2023]
Affiliation(s)
- Kari Nadeau
- Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
144
|
Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J DAIRY RES 2011; 78:242-9. [PMID: 21435309 DOI: 10.1017/s0022029911000148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CD4+ T cells play a key role in the immune response of pathogen-induced mastitis in dairy cattle. Mammary gland factor STAT5b is involved in the regulation of CD4+T cell differentiation during inflammatory response and milk production. Little is known about the genetic variation effects of bovine CD4 and STAT5b genes on somatic cell score (SCS) and milk production traits in dairy cattle. The aim of the study was to investigate the single nucleotide polymorphisms (SNPs) of bovine CD4 and STAT5b in Chinese Holsteins and to analyse their association with estimated breeding values (EBVs) for SCS and milk production traits. In the present study, SNPs of CD4 (NC_007303 g.13598C>T) and STAT5b (NC_007317 g.31562 T>C) were identified and genotyped in Chinese Holstein population. The results showed that both SNPs were significantly associated with the EBVs for milk yield and protein yield in Chinese Holstein cows, and the SNP in CD4 was associated with the EBV for SCS (P<0.01). The additive effect of CD4 SNP on protein yield was significant (P<0.05), and the dominant effect of STAT5b SNP was significant on milk yield and protein yield (P<0.01). Cows with combination genotype C7 (CCTT: CD4 g.13598C>T and STAT5b g.31562 T>C) had the highest SCS EBV but lower milk yield, while cows with C2 (TTTC) produced more milk, fat and protein than the other eight combination genotypes. These results suggested that the SNPs in CD4 and STAT5b may be potential genetic markers for SCS and milk/protein yields selecting and warrant further functional research.
Collapse
|
145
|
Heltemes-Harris LM, Willette MJL, Vang KB, Farrar MA. The role of STAT5 in the development, function, and transformation of B and T lymphocytes. Ann N Y Acad Sci 2011; 1217:18-31. [PMID: 21276004 DOI: 10.1111/j.1749-6632.2010.05907.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor signal transducer and activator of transcription 5 (STAT5) is activated by a number of cytokine and growth hormone receptors and plays a key role in the development and function of many organ systems. In this review, we focus on recent discoveries about the role of STAT5 in the development and function of B and T lymphocytes. Of particular interest is the growing appreciation for the function of STAT5 as a transcriptional repressor. Finally, we discuss recent discoveries about the role of STAT5 in transformation of B and T lymphocytes.
Collapse
|
146
|
Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, Hirahara K, Sun HW, Wei L, Vahedi G, Kanno Y, O'Shea JJ, Laurence A. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 2011; 12:247-54. [PMID: 21278738 PMCID: PMC3182404 DOI: 10.1038/ni.1995] [Citation(s) in RCA: 499] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 01/11/2011] [Indexed: 12/12/2022]
Abstract
Interleukin 2 (IL-2), a cytokine linked to human autoimmune disease, limits IL-17 production. Here we found that deletion of the gene encoding the transcription factor STAT3 in T cells abrogated IL-17 production and attenuated autoimmunity associated with IL-2 deficiency. Whereas STAT3 induced IL-17 and the transcription factor RORγt and inhibited the transcription factor Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and RORγt. STAT3 and STAT5 bound to multiple common sites across the locus encoding IL-17. The induction of STAT5 binding by IL-2 was associated with less binding of STAT3 at these sites and the inhibition of associated active epigenetic marks. 'Titration' of the relative activation of STAT3 and STAT5 modulated the specification of cells to the IL-17-producing helper T cell (T(H)17 cell) subset. Thus, the balance rather than the absolute magnitude of these signals determined the propensity of cells to make a key inflammatory cytokine.
Collapse
Affiliation(s)
- Xiang-Ping Yang
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Rawlings JS, Gatzka M, Thomas PG, Ihle JN. Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J 2011; 30:263-76. [PMID: 21169989 PMCID: PMC3025460 DOI: 10.1038/emboj.2010.314] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/11/2010] [Indexed: 11/08/2022] Open
Abstract
Naive T cells encountering their cognate antigen become activated and acquire the ability to proliferate in response to cytokines. Stat5 is an essential component in this response. We demonstrate that Stat5 cannot access DNA in naive T cells and acquires this ability only after T-cell receptor (TCR) engagement. The transition is not associated with changes in DNA methylation or global histone modification but rather chromatin decondensation. Condensation occurs during thymocyte development and proper condensation is dependent on kleisin-β of the condensin II complex. Our findings suggest that this unique chromatin condensation, which can affect interpretations of chromatin accessibility assays, is required for proper T-cell development and maintenance of the quiescent state. This mechanism ensures that cytokine driven proliferation can only occur in the context of TCR stimulation.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Base Sequence
- Blotting, Western
- Cell Proliferation
- Chromatin Assembly and Disassembly/immunology
- Chromatin Assembly and Disassembly/physiology
- Chromatin Immunoprecipitation
- DNA-Binding Proteins/metabolism
- Fluorescent Antibody Technique
- Gene Expression Regulation/immunology
- Immunity, Cellular/immunology
- Interleukin-2/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Antigen, T-Cell/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/immunology
- Sequence Analysis, DNA
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Jason S Rawlings
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Martina Gatzka
- Department of Immunology, Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James N Ihle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
148
|
Vigliano I, Fusco A, Palamaro L, Aloj G, Cirillo E, Salerno MC, Pignata C. γ Chain transducing element: A shared pathway between endocrine and immune system. Cell Immunol 2011; 269:10-5. [DOI: 10.1016/j.cellimm.2011.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
|
149
|
Abstract
Natural killer (NK) cells play an important role in host defense against tumors and viruses and other infectious diseases. NK cell development is regulated by mechanisms that are both shared with and separate from other hematopoietic cell lineages. Functionally, NK cells use activating and inhibitory receptors to recognize both healthy and altered cells such as transformed or infected cells. Upon activation, NK cells produce cytokines and cytotoxic granules using mechanisms similar to other hematopoietic cell lineages especially cytotoxic T cells. Here we review the transcription factors that control NK cell development and function. Although many of these transcription factors are shared with other hematopoietic cell lineages, they control unexpected and unique aspects of NK cell biology. We review the mechanisms and target genes by which these transcriptional regulators control NK cell development and functional activity.
Collapse
Affiliation(s)
- David G T Hesslein
- Department of Microbiology and Immunology, The Cancer Research Institute, University of California, San Francisco, USA
| | | |
Collapse
|
150
|
Dhennin-Duthille I, Nyga R, Yahiaoui S, Gouilleux-Gruart V, Régnier A, Lassoued K, Gouilleux F. The tumor suppressor hTid1 inhibits STAT5b activity via functional interaction. J Biol Chem 2010; 286:5034-42. [PMID: 21106534 DOI: 10.1074/jbc.m110.155903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT5a and -5b (signal transducers and activators of transcription 5a and 5b) proteins play an essential role in hematopoietic cell proliferation and survival and are frequently constitutively active in hematologic neoplasms and solid tumors. Because STAT5a and STAT5b differ mainly in the carboxyl-terminal transactivation domain, we sought to identify new proteins that bind specifically to this domain by using a bacterial two-hybrid screening. We isolated hTid1, a human DnaJ protein that acts as a tumor suppressor in various solid tumors. hTid1 interacts specifically with STAT5b but not with STAT5a in hematopoietic cell lines. This interaction involves the cysteine-rich region of the hTid1 DnaJ domain. We also demonstrated that hTid1 negatively regulates the expression and transcriptional activity of STAT5b and suppresses the growth of hematopoietic cells transformed by an oncogenic form of STAT5b. Our findings define hTid1 as a novel partner and negative regulator of STAT5b.
Collapse
Affiliation(s)
- Isabelle Dhennin-Duthille
- INSERM, U925, Université de Picardie Jules Verne, UFR de Médecine, 3 Rue des Louvels, 80036 Amiens, France
| | | | | | | | | | | | | |
Collapse
|