101
|
Baig S, van Helmond Z, Love S. Tau hyperphosphorylation affects Smad 2/3 translocation. Neuroscience 2009; 163:561-70. [DOI: 10.1016/j.neuroscience.2009.06.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/15/2009] [Accepted: 06/17/2009] [Indexed: 11/29/2022]
|
102
|
Chen CL, Hou WH, Liu IH, Hsiao G, Huang SS, Huang JS. Inhibitors of clathrin-dependent endocytosis enhance TGFbeta signaling and responses. J Cell Sci 2009; 122:1863-71. [PMID: 19461075 DOI: 10.1242/jcs.038729] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clathrin-dependent endocytosis is believed to be involved in TGFbeta-stimulated cellular responses, but the subcellular locus at which TGFbeta induces signaling remains unclear. Here, we demonstrate that inhibitors of clathrin-dependent endocytosis, which are known to arrest the progression of endocytosis at coated-pit stages, inhibit internalization of cell-surface-bound TGFbeta and promote colocalization and accumulation of TbetaR-I and SARA at the plasma membrane. These inhibitors enhance TGFbeta-induced signaling and cellular responses (Smad2 phosphorylation/nuclear localization and expression of PAI-1). Dynasore, a newly identified inhibitor of dynamin GTPase activity, is one of the most potent inhibitors among those tested and, furthermore, is a potent enhancer of TGFbeta. Dynasore ameliorates atherosclerosis in the aortic endothelium of hypercholesterolemic ApoE-null mice by counteracting the suppressed TGFbeta responsiveness caused by the hypercholesterolemia, presumably acting through its effect on TGFbeta endocytosis and signaling in vascular cells.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Biochemistry, Saint Louis University School of Medicine, Doisy Research Center, St Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
103
|
The effect of tanshinone IIA upon the TGF-beta1/Smads signaling pathway in hypertrophic myocardium of hypertensive rats. ACTA ACUST UNITED AC 2009; 29:476-80. [PMID: 19662366 DOI: 10.1007/s11596-009-0417-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Indexed: 10/19/2022]
Abstract
To investigate the molecular mechanism by which Tanshinone IIA (TSN IIA) prevents left ventricular hypertrophy (LVH), we examined the expression of AT1R, TGF-beta1 and Smads gene in the hypertrophic myocardium of hypertensive rats with abdominal aorta constriction. LVH model was established by creating abdominal aorta constriction. Four weeks later, animals were randomly divided into 4 groups with 8 animals in each. One group was used as model control, the other three groups were treated with TSN IIA (20 mg/kg), TSN IIA (10 mg/kg) and valsartan (10 mg/kg), respectively. Another 8 SD rats were subjected to sham surgery and served as blank control. After 8-week treatment, the caudal artery pressure of the animals was measured. The tissues of left ventricle were taken for the measurement of the left ventricular mass index (LVMI) and pathological sectioning and HE-staining were used for determining the myocardial fiber dimension (MFD). The mRNA expression of AT1R, protein expression of TGF-beta1 and activity of Smad-2, 4, 7 were detected by RT-PCR and Western blotting, respectively. Our results showed that (1) the blood pressure of rats treated with TSN IIA, either at high or low dose, was significantly higher than those in the control and valsartan-treated group (P<0.01, P<0.05); (2) LVMI and MFD in TSN IIA and valsartan-treated rats were higher than those in the control group (P<0.05) but significantly lower than those in the model control (P<0.01); (3) the high doses of TSN IIA and valsartan significantly down-regulated the mRNA expression of AT1R and protein expression of TGF-beta1 and Smad-3 in the hypertrophic myocardium (P<0.01), and TGF-beta1 in valsartan-treated animals was more significantly lower than that in rats treated with TSN IIA; (4) the two doses of TSN IIA and valsartan significantly up-regulated the protein expression of Smad-7 in the hypertrophic myocardium (P<0.01), and Smad-7 in the animals treated with high-dose TSN IIA was significantly higher than that in rats treated with valsartan. It is concluded that inhibition of myocardial hypertrophy induced by TSN IIA independent of blood pressure. The underlying mechanism might be the down-regulated expression of AT1R mRNA and Smad-3, increased production of Smad-7, and blocking effect of TSN IIA on TGF beta1/Smads signal pathway in local myocardium.
Collapse
|
104
|
Giustiniani J, Couloubaly S, Baillet A, Pourci ML, Cantaloube I, Fourniat C, Paul JL, Poüs C. Basal endothelial nitric oxide synthase (eNOS) phosphorylation on Ser(1177) occurs in a stable microtubule- and tubulin acetylation-dependent manner. Exp Cell Res 2009; 315:3509-20. [PMID: 19632222 DOI: 10.1016/j.yexcr.2009.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 02/07/2023]
Abstract
To better understand the relationship between the subcellular compartmentalization of endothelial nitric oxide synthase (eNOS) and its function in endothelial cells, we addressed the roles of the microtubule network and of its dynamics in organizing Golgi-bound eNOS. We found that part of Golgi-bound eNOS localizes to the trans-Golgi network and/or to trans-Golgi network-derived vesicles and membrane tubules that are organized preferentially by stable microtubules. Also, while most of cellular eNOS was recovered in a detergent-resistant microtubule-enriched subcellular fraction, its recovery was impaired after total microtubule disassembly, but not after selective disassembly of dynamic microtubules or after microtubule stabilization. Basal eNOS phosphorylation on Ser(1177) further required the association of the trans-Golgi network to stable microtubules and was enhanced by microtubule stabilization. We finally show that the involvement of stable microtubules in basal eNOS phosphorylation involved alpha-tubulin acetylation. Microtubule-dependent organization of subcellular eNOS and control over its phosphorylation would thus be essential for endothelial cells to maintain their basal eNOS function.
Collapse
Affiliation(s)
- J Giustiniani
- Laboratoire de Biochimie et Biologie Cellulaire, Univ. Paris-Sud 11, JE 2493, IFR141, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Mansell JP, Farrar D, Jones S, Nowghani M. Cytoskeletal reorganisation, 1alpha,25-dihydroxy vitamin D3 and human MG63 osteoblast maturation. Mol Cell Endocrinol 2009; 305:38-46. [PMID: 19433260 DOI: 10.1016/j.mce.2009.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 01/11/2023]
Abstract
Bone tissue is especially receptive to physical stimulation and agents with the capacity to mimic the signalling incurred via mechanical loading on osteoblasts may find an application in a bone regenerative setting. Recently this laboratory revealed that the major serum lipid, lysophosphatidic acid (LPA), co-operated with 1alpha,25-dihydroxy vitamin D3 (D3) in stimulating human osteoblast maturation. Actin stress fiber accrual in LPA treated osteoblasts would have generated peripheral tension which in turn may have heightened the maturation response of these cells to D3. To test this hypothesis we examined if other agents known to trigger stress fiber accumulation co-operated with D3 in stimulating human osteoblast maturation. Colchicine, nocodazole and LPA all co-operated with D3 to promote MG63 maturation in a MEK dependent manner. In contrast, calpeptin, a direct activator of Rho kinase and stress fiber accumulation did not act with D3 to secure MG63 differentiation. Herein we describe how the signalling elicited via microtubule disruption cooperates with D3 in the development of mature osteoblasts.
Collapse
Affiliation(s)
- Jason Peter Mansell
- Department of Oral & Dental Science, University of Bristol Dental School, Lower Maudlin St., Bristol, BS1 2LY, UK.
| | | | | | | |
Collapse
|
106
|
Gu ZD, Shen LY, Wang H, Chen XM, Li Y, Ning T, Chen KN. HOXA13 promotes cancer cell growth and predicts poor survival of patients with esophageal squamous cell carcinoma. Cancer Res 2009; 69:4969-73. [PMID: 19491265 DOI: 10.1158/0008-5472.can-08-4546] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Homeobox genes are known to be classic examples of the intimate relationship between embryogenesis and tumorigenesis. Here, we investigated whether inhibition of HOXA13, a member of the homeobox genes, was sufficient to affect the proliferation of esophageal cancer cells in vitro and in vivo, and studied the association between HOXA13 expression and survival of patients with esophageal squamous cell carcinoma (ESCC). HOXA13 expression was permanently knocked down using an RNA interference technique, and cell strain with stable knockdown of HOXA13 protein was established. Colony formation assay showed that the number of colonies in HOXA13 protein-deficient cells was significantly less than that of control cells (P < 0.01). Tumor growth in nude mice showed that the weight and volume of tumors from the HOXA13 knockdown cells was significantly less than that from the control cells (P < 0.01). Then, HOXA13 expression in ESCC specimens and paired noncancerous mucosa was detected by immunohistochemistry, and overexpression of HOXA13 was found to be more pronounced in ESCCs than paired noncancerous mucosa (P < 0.05). Furthermore, the association of HOXA13 expression and disease-free survival time was analyzed in 155 ESCC cases. The median survival time of patients expressing HOXA13 was significantly shorter than HOXA13-negative patients (P = 0.0006). Multivariate analysis indicated that tumor-node-metastasis (TNM) stage and HOXA13 expression were independent predictors of disease-free survival time of patients with ESCC. Our results showed that HOXA13 expression enhanced tumor growth in vitro and in vivo, and was a negative independent predictor of disease-free survival of patients with ESCC.
Collapse
Affiliation(s)
- Zhen-Dong Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
107
|
Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C. Control of transforming growth factor β signal transduction by small GTPases. FEBS J 2009; 276:2947-65. [DOI: 10.1111/j.1742-4658.2009.07031.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
108
|
Samarakoon R, Higgins CE, Higgins SP, Higgins PJ. Differential requirement for MEK/ERK and SMAD signaling in PAI-1 and CTGF expression in response to microtubule disruption. Cell Signal 2009; 21:986-95. [PMID: 19249354 PMCID: PMC2666018 DOI: 10.1016/j.cellsig.2009.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 02/05/2009] [Accepted: 02/17/2009] [Indexed: 12/28/2022]
Abstract
Colchicine and nocodazole, both established microtubule disruptors, are useful tools to investigate cytoskeletal-dependent signaling cascades and the associated downstream transcriptional targets. Since cytoskeletal events impact pathophysiologic consequences in the vascular system, the signaling requirements underlying colchicine-stimulated expression of PAI-1 and CTGF, two prominent cell deformation-sensitive fibrosis-initiating proteins, were evaluated in vascular smooth muscle cells. Microtubule disruption rapidly induced EGFR transactivation (at the src kinase-sensitive EGFR(Y845) site) in a ROS-dependent manner. Genetic deficiency of EGFR, inhibition of EGFR signaling with AG1478 or introduction of a kinase-deficient EGFR construct effectively blocked colchicine-stimulated PAI-1 and CTGF expression. MEK/ERK involvement downstream of ROS generation was critical for PAI-1, but not CTGF, expression following cytoskeletal perturbation suggesting bifurcation of signaling pathways downstream of EGFR activation. Colchicine also stimulated SMAD2/3 phosphorylation by a Rho/ROCK-dependent mechanism independent of TGF-beta1 release or receptor activity. Rho/ROCK signaling initiated by tubulin network collapse was required for both CTGF and PAI-1 induction. Colchicine-initiated SMAD3 phosphorylation, however, was essential for PAI-1, but not CTGF, expression further highlighting divergence of signaling events downstream of Rho/ROCK that mediate microtubule deformation-associated changes in profibrotic gene transcription.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208
| | - Craig E. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208
| |
Collapse
|
109
|
Windish HP, Lin PL, Mattila JT, Green AM, Onuoha EO, Kane LP, Flynn JL. Aberrant TGF-beta signaling reduces T regulatory cells in ICAM-1-deficient mice, increasing the inflammatory response to Mycobacterium tuberculosis. J Leukoc Biol 2009; 86:713-25. [PMID: 19454651 DOI: 10.1189/jlb.1208740] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Foxp3+ T regulatory cells are required to prevent autoimmune disease, but also prevent clearance of some chronic infections. While natural T regulatory cells are produced in the thymus, TGF-beta1 signaling combined with T-cell receptor signaling induces the expression of Foxp3 in CD4+ T cells in the periphery. We found that ICAM-1-/- mice have fewer T regulatory cells in the periphery than WT controls, due to a role for ICAM-1 in induction of Foxp3 expression in response to TGF-beta1. Further investigation revealed a functional deficiency in the TGF-beta1-induced translocation of phosphorylated Smad3 from the cytoplasmic compartment to the nucleus in ICAM-1-deficient mice. This impairment in the TGF-beta1 signaling pathway is most likely responsible for the decrease in T regulatory cell induction in the absence of ICAM-1. We hypothesized that in the presence of an inflammatory response, reduced production of inducible T regulatory cells would be evident in ICAM-1-/- mice. Indeed, following Mycobacterium tuberculosis infection, ICAM-1-/- mice had a pronounced reduction in T regulatory cells in the lungs compared with control mice. Consequently, the effector T-cell response and inflammation were greater in the lungs of ICAM-1-/- mice, resulting in morbidity due to overwhelming pathology.
Collapse
Affiliation(s)
- Hillarie Plessner Windish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment. Mech Dev 2009; 126:430-42. [DOI: 10.1016/j.mod.2009.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/18/2009] [Accepted: 01/20/2009] [Indexed: 01/29/2023]
|
111
|
Zhou F, Leder P, Zuniga A, Dettenhofer M. Formin1 disruption confers oligodactylism and alters Bmp signaling. Hum Mol Genet 2009; 18:2472-82. [PMID: 19383632 DOI: 10.1093/hmg/ddp185] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proper limb development requires concerted communication between cells within the developing limb bud. Several molecules have been identified which contribute to the formation of a circuitry loop consisting in large part of secreted proteins. The intracellular actin nucleator, Formin 1 (Fmn1), has previously been implicated in limb development, but questions remain after the identification of a Gremlin transcriptional enhancer within the 3' end of the Fmn 1 locus. To resolve this issue, a knockout mouse devoid of Fmn1 protein was created and characterized. The mice exhibit a reduction of digit number to four, a deformed posterior metatarsal, phalangeal soft tissue fusion as well as the absence of a fibula to 100% penetrance in the FVB genetic background. Importantly, this mutant allele does not genetically disrupt the characterized Gremlin enhancer, and indeed Gremlin RNA expression is upregulated at the 35 somite stage of development. Our data reveal increased Bone Morphogenetic Protein (Bmp) activity in mice which carry a disruption in Fmn1, as evidenced by upregulation of Msx1 and a decrease in Fgf4 within the apical ectodermal ridge. Additionally, these studies show enhanced activity downstream of the Bmp receptor in cells where Fmn1 is perturbed, suggesting a role for Fmn1 in repression of Bmp signaling.
Collapse
Affiliation(s)
- Fen Zhou
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
112
|
Heldin CH, Landström M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 2009; 21:166-76. [PMID: 19237272 DOI: 10.1016/j.ceb.2009.01.021] [Citation(s) in RCA: 524] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/05/2009] [Indexed: 12/13/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) family have important roles during embryogenesis, as well as in the control of tissue homeostasis in the adult. They exert their cellular effects via binding to serine/threonine kinase receptors. Members of the Smad family of transcription factors are important intracellular messengers, and recent studies have shown that the ubiquitin ligase TRAF6 mediates other specific signals. TGF-beta signaling is tightly controlled by post-translational modifications, which regulate the activity, stability, and subcellular localization of the signaling components. The aim of this review is to summarize some of the recent findings on the mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Uppsala University, BMC, Uppsala, Sweden.
| | | | | |
Collapse
|
113
|
Lee SJ, Chae C, Wang MM. p150/glued modifies nuclear estrogen receptor function. Mol Endocrinol 2009; 23:620-9. [PMID: 19228793 DOI: 10.1210/me.2007-0477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Estrogen modulates gene expression through interactions with estrogen receptors (ERs) that bind chromosomal target genes. Recent studies have suggested an interaction between the cytoskeletal system and estrogen signaling; these have implicated a role of cytoplasmic microtubules in scaffolding ERalpha and enhancing nongenomic function; in addition, other experiments demonstrate that dynein light chain 1 may chaperone ERalpha to the nucleus, indirectly increasing transcriptional potency. Actin/myosin and dynein light chain 1 are also required for estrogen-mediated chromosomal movement that is required for transcriptional up-regulation of ERalpha targets. We present evidence that the dynactin component, p150/glued, directly influences the potency of nuclear ER function. Increasing the stoichiometric ratio of p150/glued and ERalpha by overexpression enhances estrogen responses. ERalpha enhancement by p150/glued does not appear to be influenced by shifts in subcellular localization because microtubule disruption fails to increase nuclear ERalpha. Rather, we find that modest amounts of p150/glued reside in the nucleus of cells, suggesting that it plays a direct role in nuclear transcription. Notably, p150/glued is recruited to the pS2 promoter in the presence of hormone, and, in MCF-7 cells, knockdown of p150/glued levels reduces estrogen-dependent transcription. Our results suggest that p150/glued modulates estrogen sensitivity in cells through nuclear mechanisms.
Collapse
Affiliation(s)
- Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | | | | |
Collapse
|
114
|
Hoover LL, Burton EG, O'Neill ML, Brooks BA, Sreedharan S, Dawson NA, Kubalak SW. Retinoids regulate TGFbeta signaling at the level of Smad2 phosphorylation and nuclear accumulation. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:2279-86. [PMID: 18773928 PMCID: PMC2596883 DOI: 10.1016/j.bbamcr.2008.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/17/2008] [Accepted: 07/31/2008] [Indexed: 01/17/2023]
Abstract
Indirect regulation of transforming growth factor (TGF)-beta signaling by retinoids occurs on a long-term timescale, secondary to transcriptional events. Studies by our group show loss of retinoid X receptor (RXR) alpha results in increased TGFbeta2 in the midgestational heart, which may play a role in the cardiac defects seen in this model [S.W. Kubalak, D.R. Hutson, K.K. Scott and R.A. Shannon, Elevated transforming growth factor beta2 enhances apoptosis and contributes to abnormal outflow tract and aortic sac development in retinoic X receptor alpha knockout embryos, Development 129 (2002) 733-746.]. Acute and direct interactions between retinoid and TGFbeta signaling, however, are not clearly understood. Treatment of dispersed hearts and NIH3T3 cells for 1 h with TGFbeta and retinoids (dual treatment) resulted in increased phosphorylated Smad2 and Smad3 when compared to treatment with TGFbeta alone. Of all dual treatments, those with the RXR agonist Bexarotene, resulted in the highest level of phosphorylated Smad2, a 7-fold increase over TGFbeta2 alone. Additionally, during dual treatment phosphorylation of Smad2 occurs via the TGFbeta type I receptor but not by increased activation of the receptor. As loss of RXRalpha results in increased levels of Smad2 phosphorylation in response to TGFbeta treatment and since nuclear accumulation of phosphorylated Smad2 is decreased during dual treatment, we propose that RXRalpha directly regulates the activities of Smad2. These data show retinoid signaling influences the TGFbeta pathway in an acute and direct manner that has been unappreciated until now.
Collapse
Affiliation(s)
- Loretta L Hoover
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, 173 Ashley Avenue Suite 601BSB Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
The identification of Smads as protein transcription factors in 1995 led to elucidation of the canonical transforming growth factor-beta (TGF-beta) signaling pathway. In the years that have followed, nuances of the pathway have been realized, and the once-simple scheme of ligand to receptor to activated transcription factor is now understood to be highly regulated at each step and riddled with crosstalk from other pathways. The Smads are also recognized as important players outside of canonical TGF-beta-dependent signaling and are responsible for regulating diverse cellular processes. New evidence suggests that Smad7 plays an integral role in maintaining cell-cell adhesion through direct regulation of beta-catenin. Receptor-activated Smads regulate the processing of a subset of microRNAs, particularly miR-21. The number of reports demonstrating the interactions of Smads with proteins outside of canonical TGF-beta signaling is increasing, although the functional relevance of these interactions is not known. Investigating these interactions will likely yield more evidence that Smads serve important and diverse purposes beyond their original reported function as signal transducers in the TGF-beta pathway.
Collapse
Affiliation(s)
- Loretta L. Hoover
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Steven W. Kubalak
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
116
|
Osmundson EC, Ray D, Moore FE, Gao Q, Thomsen GH, Kiyokawa H. The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. J Cell Biol 2008; 183:267-77. [PMID: 18852296 PMCID: PMC2568023 DOI: 10.1083/jcb.200801049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 09/10/2008] [Indexed: 01/17/2023] Open
Abstract
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase-anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.
Collapse
Affiliation(s)
- Evan C Osmundson
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
117
|
Unsworth A, Masuda H, Dhut S, Toda T. Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics. Mol Biol Cell 2008; 19:5104-15. [PMID: 18799626 DOI: 10.1091/mbc.e08-02-0224] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fission yeast has two kinesin-8s, Klp5 and Klp6, which associate to form a heterocomplex. Here, we show that Klp5 and Klp6 are mutually dependent on each other for nuclear mitotic localization. During interphase, they are exported to the cytoplasm. In sharp contrast, during mitosis, Klp5 and Klp6 remain in the nucleus, which requires the existence of each counterpart. Canonical nuclear localization signal (NLS) is identified in the nonkinesin C-terminal regions. Intriguingly individual NLS mutants (NLSmut) exhibit loss-of-function phenotypes, suggesting that Klp5 and Klp6 enter the nucleus separately. Indeed, although neither Klp5-NLSmut nor Klp6-NLSmut enters the nucleus, wild-type Klp6 or Klp5, respectively, does so with different kinetics. In the absence of Klp5/6, microtubule catastrophe/rescue frequency and dynamicity are suppressed, whereas growth and shrinkage rates are least affected. Remarkably, chimera strains containing only the N-terminal Klp5 kinesin domains cannot disassemble interphase microtubules during mitosis, leading to the coexistence of cytoplasmic microtubules and nuclear spindles with massive chromosome missegregation. In this strain, a marked reduction of microtubule dynamism, even higher than in klp5/6 deletions, is evident. We propose that Klp5 and Klp6 play a vital role in promoting microtubule dynamics, which is essential for the spatiotemporal control of microtubule morphogenesis.
Collapse
Affiliation(s)
- Amy Unsworth
- Laboratory of Cell Regulation Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
118
|
Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao H, Palmer ML, Holder KN, Lasky JA. Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J Biol Chem 2008; 283:21065-73. [PMID: 18499657 PMCID: PMC2475688 DOI: 10.1074/jbc.m802786200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/12/2008] [Indexed: 12/31/2022] Open
Abstract
The aberrant expression of transforming growth factor (TGF)-beta1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-beta1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including alpha-tubulin, and regulates cell motility. We showed that TGF-beta1-induced EMT is accompanied by HDAC6-dependent deacetylation of alpha-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-beta1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-beta1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of alpha-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-beta-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis.
Collapse
Affiliation(s)
- Bin Shan
- Department of Medicine and Tulane Cancer Center, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Quadrini KJ, Gruzglin E, Bieker JJ. Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 2008; 314:1595-604. [PMID: 18329016 PMCID: PMC2358985 DOI: 10.1016/j.yexcr.2008.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/29/2008] [Indexed: 11/22/2022]
Abstract
EKLF protein plays a prominent role during erythroid development as a nuclear transcription factor. Not surprisingly, exogenous EKLF quickly localizes to the nucleus. However, using two different assays we have unexpectedly found that a substantial proportion of endogenous EKLF resides in the cytoplasm at steady state in all erythroid cells examined. While EKLF localization does not appear to change during either erythroid development or terminal differentiation, we find that the protein displays subtle yet distinct biochemical and functional differences depending on which subcellular compartment it is isolated from, with PEST sequences possibly playing a role in these differences. Localization is unaffected by inhibition of CRM1 activity and the two populations are not differentiated by stability. Heterokaryon assays demonstrate that EKLF is able to shuttle out of the nucleus although its nuclear re-entry is rapid. These studies suggest there is an unexplored role for EKLF in the cytoplasm that is separate from its well-characterized nuclear function.
Collapse
Affiliation(s)
- Karen J Quadrini
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
120
|
Moustakas A, Heldin CH. Dynamic control of TGF-β signaling and its links to the cytoskeleton. FEBS Lett 2008; 582:2051-65. [DOI: 10.1016/j.febslet.2008.03.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/18/2008] [Indexed: 12/22/2022]
|
121
|
Das L, Levine AD. TGF-beta inhibits IL-2 production and promotes cell cycle arrest in TCR-activated effector/memory T cells in the presence of sustained TCR signal transduction. THE JOURNAL OF IMMUNOLOGY 2008; 180:1490-8. [PMID: 18209044 DOI: 10.4049/jimmunol.180.3.1490] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta signaling is critical for controlling naive T cell homeostasis and differentiation; however, the biological and biochemical changes induced by TGF-beta in effector/memory T cells are poorly defined. We show that although TGF-beta inhibits effector/memory peripheral blood T lymphoblast proliferation and IL-2 production, the intensity and kinetics for TCR-induced global tyrosine phosphorylation are markedly increased compared with that in untreated cells or naive T cells. After TCR ligation, tyrosine phosphorylation of proximal tyrosine kinases and docking proteins like linker for activation of T cells is maintained for >30 min in TGF-beta-primed cells compared with untreated cells where phosphorylation of these targets returned to basal levels by 10 min. Extended phosphorylation of linker for activation of T cells in treated peripheral blood T selectively prolongs ERK 1/2 signaling and phospholipase C-gamma1 activation leading to increased Ca(2+) flux. A kinase/phosphatase imbalance could not account for extended phosphorylation as CD45R, SHP-1, and SHP-2 expression remains unaltered. The contradiction between prolonged signal transduction and inhibition of proliferation is partially explained by the observation that TGF-beta priming results in ERK 1/2-independent p21 induction and decreased cyclin D1 expression leading to accumulation of T cells in G(0)/G(1) phases of the cell cycle and cell cycle arrest. Despite inhibition of T cell function by TGF-beta priming, TCR and cytokine signaling pathways are intact and selectively extended, suggesting that suppression in the effector/memory T cell is mediated by reprogramming signal transduction, rather than its inhibition as in the naive T cell.
Collapse
Affiliation(s)
- Lopamudra Das
- Department of Medicine, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
122
|
Abstract
Transforming growth factor-beta (TGF-beta) represents a large family of growth and differentiation factors that mobilize complex signaling networks to regulate cellular differentiation, proliferation, motility, adhesion, and apoptosis. TGF-beta signaling is tightly regulated by multiple complex mechanisms, and its deregulation plays a key role in the progression of many forms of cancer. Upon ligand binding, TGF-beta signals are transduced by Smad proteins, which in turn are tightly dependent on modulation by adaptor proteins such as embryonic liver fodrin, Smad anchor for receptor activation, filamin, and crkl. A further layer of regulation is imposed by ubiquitin-mediated targeting and proteasomal degradation of specific components of the TGF-beta signaling pathway. This review focuses on the ubiquitinators that regulate TGF-beta signaling and the association of these ubiquitin ligases with various forms of cancer. Delineating the role of ubiquitinators in the TGF-beta signaling pathway could yield powerful novel therapeutic targets for designing new cancer treatments.
Collapse
Affiliation(s)
- Eric Glasgow
- Laboratory of Cancer Genetics, Digestive Diseases, and GI Developmental Biology, Department of Surgery, Medicine and Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | |
Collapse
|
123
|
Fleur SS, Fujii H. Cytokine-induced nuclear translocation of signaling proteins and their analysis using the inducible translocation trap system. Cytokine 2008; 41:187-97. [PMID: 18203617 PMCID: PMC2289906 DOI: 10.1016/j.cyto.2007.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/06/2007] [Accepted: 11/20/2007] [Indexed: 11/16/2022]
Abstract
Binding of cytokines to their specific receptors induces activation of signal transduction pathways, many of which involve nuclear translocation of signaling proteins. In this review, an overview of cytokine-induced nuclear translocation of signaling proteins is provided. In addition, inducible translocation trap (ITT), a novel reporter-based system to detect nuclear translocation, and its application for identification of nuclear translocating proteins are elaborated. Finally, analysis of "nuclear translocatome", the entire set of proteins that translocate into or out of the nucleus in response to extracellular stimuli, by ITT is discussed.
Collapse
Affiliation(s)
- Shella Saint Fleur
- Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB-126, New York, NY 10016, USA
| | - Hodaka Fujii
- Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB-126, New York, NY 10016, USA
| |
Collapse
|
124
|
Saka Y, Hagemann A, Piepenburg O, Smith JC. Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus. Development 2007; 134:4209-18. [PMID: 17959720 PMCID: PMC2435607 DOI: 10.1242/dev.010645] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activin and the Nodal-related proteins induce mesendodermal tissues during Xenopus development. These signals act through specific receptors to cause the phosphorylation, at their carboxyl termini, of Smad2 and Smad3. The phosphorylated Smad proteins form heteromeric complexes with Smad4 and translocate into the nucleus to activate the transcription, after the midblastula transition, of target genes such as Xbra and goosecoid (gsc). In this paper we use bimolecular fluorescence complementation (BiFC) to study complex formation between Smad proteins both in vivo and in response to exogenous proteins. The technique has allowed us to detect Smad2-Smad4 heteromeric interactions during normal Xenopus development and Smad2 and Smad4 homo- and heteromers in isolated Xenopus blastomeres. Smad2-Smad2 and Smad2-Smad4 complexes accumulate rapidly in the nuclei of responding cells following Activin treatment, whereas Smad4 homomeric complexes remain cytoplasmic. When cells divide, Smad2-Smad4 complexes associate with chromatin, even in the absence of ligand. Our observation that Smad2-Smad4 complexes accumulate in the nucleus only after the midblastula transition, irrespective of the stage at which cells were treated with Activin, may shed light on the mechanisms of developmental timing.
Collapse
Affiliation(s)
- Yasushi Saka
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road. Cambridge CB2 1QN, UK
- Interdisciplinary Research Institute and Institut de Biologie de Lille, 1 rue du professeur Calmette, BP447, 59021 Lille Cedex, France
| | - Anja Hagemann
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road. Cambridge CB2 1QN, UK
| | | | - James C. Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road. Cambridge CB2 1QN, UK
| |
Collapse
|
125
|
Phosphorylated Smad 2/3 Colocalizes With Phospho-tau Inclusions in Pick Disease, Progressive Supranuclear Palsy, and Corticobasal Degeneration but Not With α-Synuclein Inclusions in Multiple System Atrophy or Dementia With Lewy Bodies. J Neuropathol Exp Neurol 2007; 66:1019-26. [DOI: 10.1097/nen.0b013e31815885ad] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
126
|
Neyton S, Lespinasse F, Lahaye F, Staccini P, Paquis-Flucklinger V, Santucci-Darmanin S. CRM1-dependent nuclear export and dimerization with hMSH5 contribute to the regulation of hMSH4 subcellular localization. Exp Cell Res 2007; 313:3680-93. [PMID: 17869244 DOI: 10.1016/j.yexcr.2007.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 08/09/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
MSH4 and MSH5 are members of the MutS homolog family, a conserved group of proteins involved in DNA mismatch correction and homologous recombination. Although several studies have provided compelling evidences suggesting that MSH4 and MSH5 could act together in early and late stages of meiotic recombination, their precise roles are poorly understood and recent findings suggest that the human MSH4 protein may also exert a cytoplasmic function. Here we show that MSH4 is present in the cytoplasm and the nucleus of both testicular cells and transfected somatic cells. Confocal studies on transfected cells provide the first evidence that the subcellular localization of MSH4 is regulated, at least in part, by an active nuclear export pathway dependent on the exportin CRM1. We used deletion mapping and mutagenesis to define two functional nuclear export sequences within the C-terminal part of hMSH4 that mediate nuclear export through the CRM1 pathway. Our results suggest that CRM1 is also involved in MSH5 nuclear export. In addition, we demonstrate that dimerization of MSH4 and MSH5 facilitates their nuclear localization suggesting that dimerization may regulate the intracellular trafficking of these proteins. Our findings suggest that nucleocytoplasmic traffic may constitute a regulatory mechanism for MSH4 and MSH5 functions.
Collapse
Affiliation(s)
- Sophie Neyton
- Equipe M3R, UMR 6543, Université de Nice Sophia-Antipolis, CNRS, Faculté de Médecine, Avenue de Valombrose 06107, Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
127
|
Haag J, Aigner T. Identification of calponin 3 as a novel Smad-binding modulator of BMP signaling expressed in cartilage. Exp Cell Res 2007; 313:3386-94. [PMID: 17825283 DOI: 10.1016/j.yexcr.2007.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 07/13/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Bone morphogenetic proteins (BMP) play a prominent role in cartilage tissue homeostasis and perturbations of BMP signaling contribute to pathological processes like osteoarthritis. The response to BMP is determined by intracellular proteins interacting with the signal mediators Smads 1 and 5. Applying the yeast two-hybrid technique we could identify the actin-binding protein calponin 3 as a novel Smad-binding protein expressed in chondrocytes. It interacted with Smads 1 and 5 and overexpression led to an attenuation of BMP-dependent transcription. Calponin 3 mRNA and protein were expressed in cartilage tissue and isolated chondrocytes and a slight, but statistically significant reduction of mRNA expression levels could be detected in osteoarthritic cartilage. Our results suggest a role of calponin 3 in the regulation of BMP-dependent cellular responses. By interaction with the Smad proteins 1 and 5 and the inhibition of BMP-induced transcription, calponin 3 provides a negative regulatory mechanism for the BMP signaling pathway. This inhibitory effect likely depends on a sequestration of the Smads to the cytoskeleton due to the actin-binding properties of calponin 3. The down-regulation of calponin 3 expression in osteoarthritic joints could contribute to the increased responsiveness to BMPs described previously. Furthermore, our data provide a possible explanation for the effect of the related protein calponin 1 on bone and cartilage development.
Collapse
Affiliation(s)
- Jochen Haag
- Cartilage Research, Department of Pathology, University of Leipzig, Liebigstrasse 26, 04103, Leipzig, Germany
| | | |
Collapse
|
128
|
Choi HS, Savard CE, Choi JW, Kuver R, Lee SP. Paclitaxel interrupts TGF-beta1 signaling between gallbladder epithelial cells and myofibroblasts. J Surg Res 2007; 141:183-91. [PMID: 17574589 PMCID: PMC3571727 DOI: 10.1016/j.jss.2006.12.558] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 12/13/2006] [Accepted: 12/21/2006] [Indexed: 01/19/2023]
Abstract
BACKGROUND The cellular and molecular mechanisms of fibrogenesis in the extrahepatic biliary epithelium are not known. Transforming growth factor-beta1 (TGF-beta1) is a cytokine implicated in signaling pathways that mediate collagen formation. An observation that paclitaxel (PT), applied topically into the rat common bile duct, inhibited stricture formation led us to hypothesize that PT's effects might be due to interruption of TGF-beta1 signaling between biliary epithelial cells and subepithelial myofibroblasts. MATERIALS AND METHODS We tested this hypothesis using an in vitro cell-culture model in which murine gallbladder epithelial cells (GBEC) are cultured separately or cocultured with human gallbladder myofibroblasts (GBMF). RESULTS Exposure to Escherichia coli lipopolysaccharide (LPS) enhanced TGF-beta1 mRNA expression and stimulated TGF-beta1 protein secretion into both apical and basolateral compartments in GBEC. This effect was more prominent with basolateral secretion and was also more pronounced in the coculture system. In GBMF, collagen I mRNA expression and protein secretion were stimulated by treatment with LPS or TGF-beta1. GBMF also expressed TGF-beta1 mRNA, whose levels were enhanced by exposure to either LPS or exogenous TGF-beta1. PT inhibited LPS-induced TGF-beta1 mRNA expression and protein secretion in GBEC in both culture systems. Tumor necrosis factor-alpha mRNA expression and protein secretion were not affected by PT in GBEC, demonstrating that the effects were specific for TGF-beta1. PT also inhibited LPS- and TGF-beta1-induced collagen I mRNA expression and protein secretion in GBMF. CONCLUSIONS These findings support a model in which GBEC communicate with subepithelial GBMF via TGF-beta1, leading to collagen deposition and fibrosis, and in which GBMF possess autocrine mechanisms involving TGF-beta1 that could regulate collagen production. PT inhibits these fibrogenic pathways.
Collapse
Affiliation(s)
- Ho-Soon Choi
- Division of Gastroenterology, Department of Medicine, University of Washington and Puget Sound Veterans Affairs Health Care System, Seattle, Washington 98195, USA
| | - Christopher E. Savard
- Division of Gastroenterology, Department of Medicine, University of Washington and Puget Sound Veterans Affairs Health Care System, Seattle, Washington 98195, USA
| | - Jae-Woon Choi
- Division of Gastroenterology, Department of Medicine, University of Washington and Puget Sound Veterans Affairs Health Care System, Seattle, Washington 98195, USA
| | - Rahul Kuver
- Division of Gastroenterology, Department of Medicine, University of Washington and Puget Sound Veterans Affairs Health Care System, Seattle, Washington 98195, USA
| | - Sum P. Lee
- Division of Gastroenterology, Department of Medicine, University of Washington and Puget Sound Veterans Affairs Health Care System, Seattle, Washington 98195, USA
| |
Collapse
|
129
|
Zhu S, Wang W, Clarke DC, Liu X. Activation of Mps1 Promotes Transforming Growth Factor-β-independent Smad Signaling. J Biol Chem 2007; 282:18327-18338. [PMID: 17452325 DOI: 10.1074/jbc.m700636200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary intracellular mediators of TGF-beta signaling are the Smad proteins. Phosphorylation of R-Smad at the C-terminal SSXS motif by the activated TGF-beta type I receptor kinase triggers a conformation change in R-Smad and facilitates complex formation between R-Smad and Smad4, which shuttle into the nucleus where they interact with DNA and other transcription factors to regulate gene expression. In an attempt to identify proteins interacting with activated Smad signaling complex, we discovered that Mps1, a protein kinase that plays important roles in normal mitotic progression and mitotic checkpoint signaling, co-purifies with this complex. We demonstrated that Smad2 and Smad3 but not Smad4 are substrates of Mps1 in vitro and in vivo. Mps1 phosphorylates Smad2 and Smad3 at the SSXS motif in their C-terminal regions in vitro and in vivo. Disruption of microtubule networks by nocodazole activates Mps1 and promotes TGF-beta-independent activation of Smad signaling. We found that Mps1 is involved in turning on Smad signaling by phosphorylating R-Smads. Our results reveal a novel functional link between Mps1 and Smads in a non-canonical Smad signaling pathway.
Collapse
Affiliation(s)
- Songcheng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - David C Clarke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.
| |
Collapse
|
130
|
Redondo S, Santos-Gallego CG, Tejerina T. TGF-β1: a novel target for cardiovascular pharmacology. Cytokine Growth Factor Rev 2007; 18:279-86. [PMID: 17485238 DOI: 10.1016/j.cytogfr.2007.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transforming growth factor beta-1 (TGF-beta1) plays a key role in cardiovascular disease by a process which allows the loss of its protective properties. The first therapeutic attempt to restore its function by selectively designed novel drugs are being made. In addition, it has been recognized that the TGF-beta1 pathway is involved in the vascular mechanism of action of some current clinical drugs, such as acetylsalicylic acid, thiazolidinediones and statins. The aim of this paper is to review the possible value of TGF-beta1 as both a disease marker and a therapeutical target for cardiovascular disease.
Collapse
Affiliation(s)
- Santiago Redondo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid Av Complutense s/n, Madrid, Spain
| | | | | |
Collapse
|
131
|
Wang LH, Kim SH, Lee JH, Choi YL, Kim YC, Park TS, Hong YC, Wu CF, Shin YK. Inactivation of SMAD4 tumor suppressor gene during gastric carcinoma progression. Clin Cancer Res 2007; 13:102-10. [PMID: 17200344 DOI: 10.1158/1078-0432.ccr-06-1467] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mothers against decapentaplegic homologue 4 (SMAD4) is a tumor suppressor gene associated with gastrointestinal carcinogenesis. The aim of the present study is to more precisely characterize its role in the development and progression of human gastric carcinoma. EXPERIMENTAL DESIGN The expression of SMAD4 was investigated in 283 gastric adenocarcinomas and related lesions, as well as in 9 gastric carcinoma cell lines. We also analyzed the methylation status of SMAD4 gene by using methylation-specific PCR, examined loss of heterozygosity (LOH) of this gene locus by using a vicinal marker, and detected exon mutation of SMAD4 through exon-by-exon amplification. Moreover, we assessed whether MG132, a proteasome inhibitor, affected the SMAD4 protein level. RESULTS We found loss of SMAD4 protein expression in the cytoplasm (36 of 114, 32%) and in the nucleus (46 of 114, 40%) of gastric cancer cells. The loss of nuclear SMAD4 expression in primary tumors correlated significantly with poor survival, and was an independent prognostic marker in multivariate analysis. We also found a substantial decrease in SMAD4 expression at both the RNA and protein level in several human gastric carcinoma cell lines. In addition, we found that LOH (20 of 70, 29%) and promoter hypermethylation (4 of 73, 5%) were associated with the loss of SMAD4 expression. SMAD4 protein levels were also affected in certain gastric carcinoma cell lines following incubation with MG132. CONCLUSION Taken together, our results indicate that the loss of SMAD4, especially loss of nuclear SMAD4 expression, is involved in gastric cancer progression. The loss of SMAD4 in gastric carcinomas was due to several mechanisms, including LOH, hypermethylation, and proteasome degradation.
Collapse
Affiliation(s)
- Li-Hui Wang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University College of Pharmacy, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Dai P, Nakagami T, Tanaka H, Hitomi T, Takamatsu T. Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Mol Biol Cell 2007; 18:2264-73. [PMID: 17429065 PMCID: PMC1877122 DOI: 10.1091/mbc.e06-12-1064] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members play an important role in growth, differentiation, adhesion, apoptosis, and development in many species from insects and worms to vertebrates. Recently, TGF-beta signaling has been demonstrated to be negatively regulated by microtubules (MTs), which anchor endogenous Smad2/3 to cytosol and also directly interact with connexin43 (Cx43), and the activity of TGF-beta is mediated by Cx43. However, the mechanism underlying the intracellular regulation of TGF-beta activity by Cx43 remains unknown. Here, we found that the functional link between TGF-beta activation and Cx43 is mediated by interactions among Smad2/3, MTs, and Cx43. We confirmed that Cx43 competes with Smad2/3 for binding to MTs, which Cx43 specifically induces release of Smad2/3 from MTs and increases phospho-Smad2 and which, as a result, Smad2/3 and Smad4 are accumulated in the nucleus, leading to activation of the transcription of target genes. Consistently, knockdown of the endogenous Cx43 activity with double-strand RNA (dsRNA) in HL1 cardiomyocytes and Cx43 knockout mice cardiomyocytes consistently show the opposite effect. Our findings demonstrate a novel mechanism for Cx43 positive regulation of TGF-beta function.
Collapse
Affiliation(s)
- Ping Dai
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takuo Nakagami
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiaki Hitomi
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
133
|
Batut J, Howell M, Hill CS. Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands. Dev Cell 2007; 12:261-74. [PMID: 17276343 DOI: 10.1016/j.devcel.2007.01.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 11/30/2006] [Accepted: 01/17/2007] [Indexed: 01/13/2023]
Abstract
During vertebrate development, Activin/Nodal-related ligands signal through Smad2, leading to its activation and accumulation in the nucleus. Here, we demonstrate that Smad2 constantly shuttles between the cytoplasm and nucleus both in early Xenopus embryo explants and in living zebrafish embryos, providing a mechanism whereby the intracellular components of the pathway constantly monitor receptor activity. We have gone on to demonstrate that an intact microtubule network and kinesin ATPase activity are required for Smad2 phosphorylation and nuclear accumulation in response to Activin/Nodal in early vertebrate embryos and TGF-beta in mammalian cells. The kinesin involved is kinesin-1, and Smad2 interacts with the kinesin-1 light chain subunit. Interfering with kinesin activity in Xenopus and zebrafish embryos phenocopies loss of Nodal signaling. Our results reveal that kinesin-mediated transport of Smad2 along microtubules to the receptors is an essential step in ligand-induced Smad2 activation.
Collapse
Affiliation(s)
- Julie Batut
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
134
|
Seong HA, Jung H, Kim KT, Ha H. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins. J Biol Chem 2007; 282:12272-89. [PMID: 17327236 DOI: 10.1074/jbc.m609279200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, Research Center for Bioresource and Health, Biotechnology Research Institute, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | |
Collapse
|
135
|
Chalmers KA, Love S. Neurofibrillary Tangles May Interfere With Smad 2/3 Signaling in Neurons. J Neuropathol Exp Neurol 2007; 66:158-67. [PMID: 17279001 DOI: 10.1097/nen.0b013e3180303b93] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transforming growth factor (TGF)-beta is a multifunctional cytokine with anti-inflammatory, reparative and neuroprotective functions. Increased levels of TGFbeta in Alzheimer disease (AD) are associated with perivascular deposition of extracellular matrix, which may impair clearance of beta-amyloid and contribute to the development of cerebral amyloid angiopathy. TGFbeta signaling is transduced by Smad proteins: on TGFbeta receptor activation, Smads 2 and 3 are released from sequestration by microtubules, phosphorylated (forming pSmad2/3), and, together with Smad 4, translocated to the nucleus, where they initiate the transcription of multiple genes. Neuronal microtubule assembly is disturbed in AD when tau, a microtubule-stabilizing protein, is hyperphosphorylated and forms neurofibrillary tangles. We have investigated the relationship between Ser202 phospho-tau and pSmads 2 and 3 in the temporal lobe in AD. Within neurons in control brains, pSmads 2 and 3 were almost exclusively intranuclear. In AD, pSmad 3 bound to phospho-tau (mostly insoluble tau) and accumulated in the cytoplasm of tangle-bearing neurons; this was accompanied by a marked decrease in nuclear pSmad3. pSmads 2 and 3 were also present in neuronal granulovacuolar inclusions. Our findings suggest that neurofibrillary tangles sequester pSmad3, preventing its translocation into the nucleus and the induction of gene transcription. Interference with the Smad signaling may adversely affect survival of tangle-bearing neurons in AD.
Collapse
Affiliation(s)
- Katy A Chalmers
- Dementia Research Group, University of Bristol Institute of Clinical Neurosciences, Department of Clinical Science at North Bristol, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
136
|
Arasaki K, Tani K, Yoshimori T, Stephens DJ, Tagaya M. Nordihydroguaiaretic acid affects multiple dynein-dynactin functions in interphase and mitotic cells. Mol Pharmacol 2007; 71:454-60. [PMID: 17105871 DOI: 10.1124/mol.106.029611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA), a well known lipoxygenase inhibitor, actually has pleiotropic effects on cells, which include cell proliferation, apoptosis, differentiation, and chemotaxis. We and others have shown previously that this compound causes Golgi disassembly by an unknown mechanism. In this study, we show that, in parallel with Golgi disassembly, NDGA induces the accumulation of the microtubule minus-end-directed motor dynein-dynactin complex at the centrosome, where microtubules minus-ends lie. Concomitant with this accumulation, dynein-dynactin-interacting proteins, such as ZW10 and EB1, were also redistributed to the centrosomal region. In cells where microtubules were depolymerized by nocodazole, NDGA promoted the formation of filaments consisting of dynein-dynactin and its interacting proteins, suggesting that it stimulates the association of these proteins in an ordered, not random, manner. Loss of dynactin function abolished not only NDGA-induced redistribution in intact cells but also filament formation in nocodazole-treated cells. The latter finding implies that dynactin is a key molecule for the association between dynein-dynactin and its interacting proteins. In mitotic cells, NDGA induced robust accumulation of dyneindynactin and its interacting proteins at the spindle poles. These results taken together suggest that NDGA perturbs membrane traffic by affecting the function of the microtubule motor dynein-dynactin complex and its auxiliary proteins. To our knowledge, NDGA is the first case of a reagent that can modulate dynein-dynactin-related processes.
Collapse
Affiliation(s)
- Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
137
|
Yang C, Patel K, Harding P, Sorokin A, Glass WF. Regulation of TGF-beta1/MAPK-mediated PAI-1 gene expression by the actin cytoskeleton in human mesangial cells. Exp Cell Res 2007; 313:1240-50. [PMID: 17328891 PMCID: PMC1896147 DOI: 10.1016/j.yexcr.2007.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.
Collapse
Affiliation(s)
- Chen Yang
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | | | | | | | | |
Collapse
|
138
|
Manavathi B, Acconcia F, Rayala SK, Kumar R. An inherent role of microtubule network in the action of nuclear receptor. Proc Natl Acad Sci U S A 2006; 103:15981-6. [PMID: 17043237 PMCID: PMC1635113 DOI: 10.1073/pnas.0607445103] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen receptor alpha (ERalpha) functions as both a transcription factor and a mediator of rapid estrogen signaling. Recent studies have shown a role for ERalpha-interacting membranous and cytosolic proteins in ERalpha action, but our understanding of the role of the microtubule network in the modulation of ERalpha signaling remains unclear. Here we found that endogenous ERalpha associates with microtubules through the microtubule-binding protein hematopoietic PBX-interaction protein (HPIP). Biochemical and RNA-interference studies demonstrated that HPIP influences ERalpha-dependent rapid estrogen signaling by acting as a scaffold protein and recruits Src kinase and the p85 subunit of phosphatidylinositol 3-kinase to a complex with ERalpha, which in turn stimulates AKT and MAPK. We also found that ERalpha interacts with beta-tubulin through HPIP. Destabilization of microtubules activated ERalpha signaling, whereas stabilization of microtubules repressed ERalpha transcriptional activity in a HPIP-dependent manner. These findings revealed a role for HPIP-microtubule complex in regulating 17beta-estradiol-ERalpha responses in mammalian cells and discovered an inherent role of microtubules in the action of nuclear receptor.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Filippo Acconcia
- Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Suresh K. Rayala
- Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Rakesh Kumar
- Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
139
|
Ueberham U, Ueberham E, Gruschka H, Arendt T. Altered subcellular location of phosphorylated Smads in Alzheimer's disease. Eur J Neurosci 2006; 24:2327-34. [PMID: 17074053 DOI: 10.1111/j.1460-9568.2006.05109.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of growth factors and cytokines, such as transforming growth factor beta 1 (TGF-beta1), is elevated in Alzheimer's disease (AD), giving rise to activated intracellular mitogenic signaling cascades. Activated mitogenic signaling involving the mitogen-activated protein kinases (MAPKs) and other protein kinases might alter the phosphorylation states of structural proteins such as tau, resulting in hyperphosphorylated deposits. Many intracellular signaling proteins are potential targets of misregulated phosphorylation and dephosphorylation. Recently, a crosstalk between MAPKs and Smad proteins, both involved in mediating TGF-beta1 signaling, has been reported. Although TGF-beta1 has previously been shown to be involved in the pathogenesis of AD, the role of Smad proteins has not been investigated. In this study we thus analysed the subcellular distribution of phosphorylated Smad2 and Smad3 in the hippocampus of both normal and AD brains. Here we report on strong nuclear detection of phosphorylated Smad2 and Smad3 in neurons of control brains. In AD brains these phosphorylated proteins were additionally found in cytoplasmic granules in hippocampal neurons, within amyloid plaques and attached to neurofibrillary tangles. Our data suggest a critical role of Smad proteins in the pathogenesis of AD.
Collapse
Affiliation(s)
- Uwe Ueberham
- Paul Flechsig Institute for Brain Research, Department of Neuroanatomy, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
140
|
Okano K, Schnaper HW, Bomsztyk K, Hayashida T. RACK1 Binds to Smad3 to Modulate Transforming Growth Factor-β1-stimulated α2(I) Collagen Transcription in Renal Tubular Epithelial Cells. J Biol Chem 2006; 281:26196-204. [PMID: 16849317 DOI: 10.1074/jbc.m606710200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it is clear that transforming growth factor-beta1 (TGF-beta1) is critical for renal fibrogenesis, the complexity of the involved mechanisms is increasingly apparent. TGF-beta1 stimulates phosphorylation of Smad2/3 and activates other signaling molecules as well. The molecular link between these other kinases and Smads is not known. We sought new binding partners for Smad3 in renal cells and identified receptor for activated protein kinase C 1 (RACK1) as a novel binding partner of Smad3. The linker region of Smad3 and the tryptophan-aspartic acid repeat 6 and 7 of RACK1 are sufficient for the association. RACK1 also interacts with Smad3 in the human kidney epithelial cell line, HKC. Silencing RACK1 increases transcriptional activity of TGF-beta1-responsive promoter sequences of the Smad binding element (SBE), p3TP-Lux, and alpha2(I) collagen. Conversely, overexpressed RACK1 negatively modulates alpha2(I) collagen transcriptional activity in TGF-beta1-stimulated cells. RACK1 did not affect phosphorylation of Smad3 at the C terminus or in the linker region. However, RACK1 reduced direct binding of Smad3 to the SBE motif. Mutating a RACK1 tyrosine at residue 246, but not at 228, decreased the inhibitory effect of RACK1 on both alpha2(I) collagen promoter activity and Smad binding to SBE induced by TGF-beta1. These results suggest that RACK1 modulates transcription of alpha2(I) collagen by TGF-beta1 through interference with Smad3 binding to the gene promoter.
Collapse
Affiliation(s)
- Kazuhiro Okano
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
141
|
Sun T, Ye F, Ding H, Chen K, Jiang H, Shen X. Protein tyrosine phosphatase 1B regulates TGFβ1-induced Smad2 activation through PI3 kinase-dependent pathway. Cytokine 2006; 35:88-94. [PMID: 16949833 DOI: 10.1016/j.cyto.2006.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 07/18/2006] [Accepted: 07/26/2006] [Indexed: 11/28/2022]
Abstract
Insulin is known to modulate transforming growth factor-beta (TGFbeta) signaling. In this report, by using the IN Cell Analyzer 1000, the fluorescence cell imaging instrument, we demonstrated that protein tyrosine phosphatase 1B (PTP1B) could regulate TGFbeta1-induced Smad2 activation in a PI3 kinase-dependent manner. By using the CHO cells stably expressing EGFP-Smad2, we showed that TGFbeta1 effectively stimulated Smad2 nuclear translocation in CHO cells. When pretreated with insulin, TGFbeta1-induced Smad2 nuclear entry was dramatically decreased. Furthermore, both the PI3K inhibitor LY294002 and the dominant negative AKT (DN-AKT) abolished the inhibitory effects of insulin, demonstrating that the inhibition of Smad2 activation by insulin was PI3K/AKT dependent. Since PTP1B negatively modulates insulin signaling, we further addressed the effects of PTP1B on insulin-mediated inhibition of Smad2 activation. Our data showed that overexpression of PTP1B effectively attenuated insulin-induced inhibition of Smad2 stimulation. Moreover, the PTP1B inhibitor, 3-(3,5-dibromo-4-hydroxy-benzoyl)-2-ethyl-benzofuran-6-sulfonicacid-(4-(thiazol-2-ylsulfamyl)-phenyl)-amide (Compound-2), recovered insulin inhibition of Smad2 activation. In conclusion, our data revealed the insulin inhibitory effects on TGFbeta1-induced Smad2 activation and the regulation role of PTP1B in the inhibition events.
Collapse
Affiliation(s)
- Tao Sun
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
142
|
Luo Q, Nieves E, Kzhyshkowska J, Angeletti RH. Endogenous transforming growth factor-beta receptor-mediated Smad signaling complexes analyzed by mass spectrometry. Mol Cell Proteomics 2006; 5:1245-60. [PMID: 16582422 DOI: 10.1074/mcp.m600065-mcp200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ASmad proteins are the central feature of the transforming growth factor-beta (TGF-beta) intracellular signaling cascade. They function by carrying signals from the cell surface to the nucleus through the formation of a series of signaling complexes. Changes in Smad proteins and their complexes upon treatment with TGF-beta were studied in mink lung epithelial (Mv1Lu) cell cultures. A time course of incubation with TGF-beta was carried out to determine the peak of appearance of phosphorylated Smad2. Immobilized monoclonal antibody against Smad2 was then used to isolate the naturally occurring complexes. Three strategies were used to identify changes in proteins partnering with Smad2: separation by one-dimensional SDS-PAGE followed by MALDI peptide mass fingerprinting, cleavable ICAT labeling of the protein mixtures analyzed by LC-MS/MS, and nano-LC followed by MALDI MS TOF/TOF. Smad2 forms complexes with many other polypeptides both in the presence and absence of TGF-beta. Some of the classes of proteins identified include: transcription regulators, proteins of the cytoskeletal scaffold and other tethering proteins, motility proteins, proteins involved in transport between the cytoplasm and nucleus, and a group of membrane adaptor proteins. Although some of these have been reported in the literature, most have not been reported previously. This work expands the repertoire of proteins known to participate in the TGF-beta signal transduction processes.
Collapse
Affiliation(s)
- Qilie Luo
- Laboratory for Macromolecular Analysis and Proteomics, Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
143
|
Zhao BM, Hoffmann FM. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA. Mol Biol Cell 2006; 17:3819-31. [PMID: 16775010 PMCID: PMC1556379 DOI: 10.1091/mbc.e05-10-0990] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.
Collapse
Affiliation(s)
| | - F. Michael Hoffmann
- *McArdle Laboratory for Cancer Research and
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
144
|
Runyan CE, Poncelet AC, Schnaper HW. TGF-beta receptor-binding proteins: complex interactions. Cell Signal 2006; 18:2077-88. [PMID: 16824734 DOI: 10.1016/j.cellsig.2006.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 05/11/2006] [Indexed: 01/06/2023]
Abstract
Members of the Smad protein family are fundamental downstream mediators of TGF-beta signals. However, the basic, linear Smad signaling pathway is unlikely to be the sole contributor to the plethora of cell type-specific TGF-beta responses. Investigators have identified a number of molecules that interact with the TGF-beta receptors (TbetaRs) and may explain, at least in part, the tight regulation of TGF-beta effects. Understanding these TbetaR-interacting molecules is thus a matter of great potential significance for elucidating TGF-beta-family signal transduction. The present article reviews our current understanding of the roles and mechanisms of action of this relatively understudied group of molecules.
Collapse
Affiliation(s)
- Constance E Runyan
- Department of Pediatrics, Feinberg School of Medicine, Chicago, IL, USA.
| | | | | |
Collapse
|
145
|
Katuri V, Tang Y, Li C, Jogunoori W, Deng CX, Rashid A, Sidawy AN, Evans S, Reddy EP, Mishra B, Mishra L. Critical interactions between TGF-beta signaling/ELF, and E-cadherin/beta-catenin mediated tumor suppression. Oncogene 2006; 25:1871-86. [PMID: 16288220 PMCID: PMC3821559 DOI: 10.1038/sj.onc.1209211] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Inactivation of the transforming growth factor-beta (TGF-beta) pathway occurs often in malignancies of the gastrointestinal (GI) system. However, only a fraction of sporadic GI tumors exhibit inactivating mutations in early stages of cancer formation, suggesting that other mechanisms play a critical role in the inactivation of this pathway. Here, we show a wide range of GI tumors, including those of the stomach, liver and colon in elf+/- and elf+/- / Smad4+/- mutant mice. We found that embryonic liver fodrin (ELF), a beta-Spectrin originally identified in endodermal stem/progenitor cells committed to foregut lineage, possesses potent antioncogenic activity and is frequently inactivated in GI cancers. Specifically, E-cadherin accumulation at cell-cell contacts and E-cadherin-beta-catenin-dependent epithelial cell-cell adhesion is disrupted in elf+/- / Smad4+/- mutant gastric epithelial cells, and could be rescued by ectopic expression of full-length elf, but not Smad3 or Smad4. Subcellular fractionation revealed that E-cadherin is expressed mainly at the cell membrane after TGF-beta stimulation. In contrast, elf+/- / Smad4+/- mutant tissues showed abnormal distribution of E-cadherin that could be rescued by overexpression of ELF but not Smad3 or Smad4. Our results identify a group of common lethal malignancies in which inactivation of TGF-beta signaling, which is essential for tumor suppression, is disrupted by inactivation of the ELF adaptor protein.
Collapse
Affiliation(s)
- V Katuri
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Y Tang
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - C Li
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, MD, USA
| | - W Jogunoori
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - C-X Deng
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, MD, USA
| | - A Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - AN Sidawy
- Department of Surgery, Washington, DC, USA
- Department of Veterans Affairs, Washington, DC, USA
| | - S Evans
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - EP Reddy
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - B Mishra
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - L Mishra
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
- Department of Surgery, Washington, DC, USA
- Department of Veterans Affairs, Washington, DC, USA
| |
Collapse
|
146
|
Kaivo-oja N, Jeffery LA, Ritvos O, Mottershead DG. Smad signalling in the ovary. Reprod Biol Endocrinol 2006; 4:21. [PMID: 16611366 PMCID: PMC1459162 DOI: 10.1186/1477-7827-4-21] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/12/2006] [Indexed: 02/08/2023] Open
Abstract
It has now been a decade since the first discovery of the intracellular Smad proteins, the downstream signalling molecules of one of the most important growth factor families in the animal kingdom, the transforming growth factor beta (TGF-beta) superfamily. In the ovary, several TGF-beta superfamily members are expressed by the oocyte, granulosa and thecal cells at different stages of folliculogenesis, and they signal mainly through two different Smad pathways in an autocrine/paracrine manner. Defects in the upstream signalling cascade molecules, the ligands and receptors, are known to have adverse effects on ovarian organogenesis and folliculogenesis, but the role of the individual Smad proteins in the proper function of the ovary is just beginning to be understood for example through the use of Smad knockout models. Although most of the different Smad knockouts are embryonic lethal, it is known, however, that in Smad1 and Smad5 knockout mice primordial germ cell development is impaired and that Smad3 deficient mice harbouring a deletion in exon 8 exhibit impaired folliculogenesis and reduced fertility. In this minireview we discuss the role of Smad structure and function in the ovarian context.
Collapse
Affiliation(s)
- Noora Kaivo-oja
- Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Luke A Jeffery
- Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - David G Mottershead
- Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
147
|
Lasorella A, Iavarone A. The protein ENH is a cytoplasmic sequestration factor for Id2 in normal and tumor cells from the nervous system. Proc Natl Acad Sci U S A 2006; 103:4976-81. [PMID: 16549780 PMCID: PMC1458780 DOI: 10.1073/pnas.0600168103] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Id2 is a natural inhibitor of the basic helix-loop-helix transcription factors and the retinoblastoma tumor suppressor protein. Active Id2 prevents differentiation and promotes cell-cycle progression and tumorigenesis in the nervous system. A key event that regulates Id2 activity during differentiation is translocation from the nucleus to the cytoplasm. Here we show that the actin-associated protein enigma homolog (ENH) is a cytoplasmic retention factor for Id2. ENH contains three LIM domains, which bind to the helix-loop-helix domain of Id proteins in vitro and in vivo. ENH is up-regulated during neural differentiation, and its ectopic expression in neuroblastoma cells leads to translocation of Id2 from the nucleus to the cytoplasm, with consequent inactivation of transcriptional and cell-cycle-promoting functions of Id2. Conversely, silencing of ENH by RNA interference prevents cytoplasmic relocation of Id2 in neuroblastoma cells differentiated with retinoic acid. Finally, the differentiated neural crest-derived tumor ganglioneuroblastoma coexpresses Id2 and ENH in the cytoplasm of ganglionic cells. These data indicate that ENH contributes to differentiation of the nervous system through cytoplasmic sequestration of Id2. They also suggest that ENH is a restraining factor of the oncogenic activity of Id proteins in neural tumors.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology, Pediatrics, and Neurology, Columbia University Medical Center, New York, NY 10032
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology, Pediatrics, and Neurology, Columbia University Medical Center, New York, NY 10032
- *To whom correspondence should be addressed at:
Institute for Cancer Genetics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY 10032. E-mail:
| |
Collapse
|
148
|
Katuri V, Tang Y, Marshall B, Rashid A, Jogunoori W, Volpe EA, Sidawy AN, Evans S, Blay J, Gallicano GI, Premkumar Reddy E, Mishra L, Mishra B. Inactivation of ELF/TGF-beta signaling in human gastrointestinal cancer. Oncogene 2005; 24:8012-24. [PMID: 16158060 DOI: 10.1038/sj.onc.1208946] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TGF-beta/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. ELF, a beta-spectrin, plays a key role in the transmission of TGF-beta-mediated transcriptional response through Smads. ELF was originally identified as a key protein involved in endodermal stem/progenitor cells committed to foregut lineage. Also, as a major dynamic adaptor and scaffolding protein, ELF is important for the generation of functionally distinct membranes, protein sorting and the development of polarized differentiated epithelial cells. Disruption of elf results in the loss of Smad3/Smad4 activation and, therefore, a disruption of the TGF-beta pathway. These observations led us to pursue the function of ELF in gastrointestinal (GI) epithelial cell-cell adhesion and tumor suppression. Here, we show a significant loss of ELF and reduced Smad4 expression in human gastric cancer tissue samples. Also, of the six human gastric cancer cell lines examined, three show deficient ELF expression. Furthermore, we demonstrate the rescue of E-cadherin-dependent homophilic cell-cell adhesion by ectopic expression of full-length elf. Our results suggest that ELF has an essential role in tumor suppression in GI cancers.
Collapse
Affiliation(s)
- Varalakshmi Katuri
- Laboratory of Developmental Molecular Biology, Department of Surgical Sciences, Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Liu X, Zhu S, Wang T, Hummers L, Wigley FM, Goldschmidt-Clermont PJ, Dong C. Paclitaxel modulates TGFbeta signaling in scleroderma skin grafts in immunodeficient mice. PLoS Med 2005; 2:e354. [PMID: 16250671 PMCID: PMC1274282 DOI: 10.1371/journal.pmed.0020354] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 08/25/2005] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is characterized by excessive fibrosis and obliterative vascular lesions. Abnormal TGFbeta activation is implicated in the pathogenesis of SSc. Aberrant TGFbeta/Smad signaling can be controlled by stabilization of microtubules with paclitaxel. METHODS AND FINDINGS SSc and healthy human skin biopsies were incubated in the presence or absence of paclitaxel followed by transplantation into severe combined immunodeficient mice. TGFbeta signaling, fibrosis, and neovessel formation were evaluated by quantitative RT-PCR and immunohistochemical staining. Paclitaxel markedly suppressed Smad2 and Smad3 phosphorylation and collagen deposition in SSc grafts. As a result, the autonomous maintenance/reconstitution of the SSc phenotype was prevented. Remarkably, SSc grafts showed a 2-fold increase in neovessel formation relative to normal grafts, regardless of paclitaxel treatment. Angiogenesis in SSc grafts was associated with a substantial increase in mouse PECAM-1 expression, indicating the mouse origin of the neovascular cells. CONCLUSION Low-dose paclitaxel can significantly suppress TGFbeta/Smad activity and lessen fibrosis in SCID mice. Transplantation of SSc skin into SCID mice elicits a strong angiogenesis-an effect not affected by paclitaxel. Although prolonged chemotherapy with paclitaxel at higher doses is associated with pro-fibrotic and anti-angiogenic changes, the findings described here indicate that low-dose paclitaxel may have therapeutic benefits for SSc via modulating TGFbeta signaling.
Collapse
Affiliation(s)
- Xialin Liu
- 1Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shoukang Zhu
- 1Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Tao Wang
- 1Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura Hummers
- 2Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fredrick M Wigley
- 2Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Pascal J Goldschmidt-Clermont
- 1Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chunming Dong
- 1Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
150
|
Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JGN, Verin AD. Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J Cell Physiol 2005; 204:934-47. [PMID: 15828024 DOI: 10.1002/jcp.20359] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a cytokine critically involved in acute lung injury and endothelial cell (EC) barrier dysfunction. We have studied TGF-beta1-mediated signaling pathways and examined a role of microtubule (MT) dynamics in TGF-beta1-induced actin cytoskeletal remodeling and EC barrier dysfunction. TGF-beta1 (0.1-50 ng/ml) induced dose-dependent decrease in transendothelial electrical resistance (TER) in bovine pulmonary ECs, which was linked to increased actin stress fiber formation, myosin light chain (MLC) phosphorylation, EC retraction, and gap formation. Inhibitor of TGF-beta1 receptor kinase RI (5 microM) abolished TGF-beta1-induced TER decline, whereas inhibitor of caspase-3 zVAD (10 microM) was without effect. TGF-beta1-induced EC barrier dysfunction was linked to partial dissolution of peripheral MT meshwork and decreased levels of stable (acetylated) MT pool, whereas MT stabilization by taxol (5 microM) attenuated TGF-beta1-induced barrier dysfunction and actin remodeling. TGF-beta1 induced sustained activation of small GTPase Rho and its effector Rho-kinase; phosphorylation of myosin binding subunit of myosin specific phosphatase; MLC phosphorylation; EC contraction; and gap formation, which was abolished by inhibition of Rho and Rho-kinase, and by MT stabilization with taxol. Finally, elevation of intracellular cAMP induced by forskolin (50 microM) attenuated TGF-beta1-induced barrier dysfunction, MLC phosphorylation, and protected the MT peripheral network. These results suggest a novel role for MT dynamics in the TGF-beta1-mediated Rho regulation, EC barrier dysfunction, and actin remodeling.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|