101
|
Coré N, Joly F, Boned A, Djabali M. Disruption of E2F signaling suppresses the INK4a-induced proliferative defect in M33-deficient mice. Oncogene 2004; 23:7660-8. [PMID: 15377996 DOI: 10.1038/sj.onc.1207998] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycomb group (Pc-G) proteins associate to form large complexes that repress Hox genes, thereby imposing Hox gene expression pattern required for development. However, Pc-G proteins have a Hox-independent function in controlling cell proliferation. Here we show that embryonic fibroblasts derived from M33-deficient mice are impaired in the progression into the S phase of the cell cycle, as shown by a reduced rate of incorporation of bromodeoxyuridine. These cells have a senescent phenotype, associated to an abnormal accumulation of the cyclin-dependent kinase inhibitor p16INK4a protein. We demonstrate that this defect is bypassed in mutant embryonic fibroblasts expressing a transdominant negative form of the cell cycle controlling transcription factor E2F (E2F-DB). In addition, we show that the polycomb protein M33 controls critical expansion of B- and T-lymphocyte precursors. Together, our results emphasize M33-Polycomb protein function in cell cycle control.
Collapse
Affiliation(s)
- Nathalie Coré
- Centre d'Immunologie INSERM/CNRS, Case 906, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
102
|
Abstract
Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development. This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Anders H Lund
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.
| | | |
Collapse
|
103
|
Coisy M, Roure V, Ribot M, Philips A, Muchardt C, Blanchard JM, Dantonel JC. Cyclin A repression in quiescent cells is associated with chromatin remodeling of its promoter and requires Brahma/SNF2alpha. Mol Cell 2004; 15:43-56. [PMID: 15225547 DOI: 10.1016/j.molcel.2004.06.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 05/03/2004] [Accepted: 05/04/2004] [Indexed: 12/23/2022]
Abstract
Cell cycle-dependent expression of cyclin A is controlled by transcriptional repression in early phase of the cell cycle. In this study, we directly examine the chromatin structure of the mouse cyclin A promoter through in vivo micrococcal nuclease footprinting. We describe here that cyclin A repression is associated with two positioned nucleosomes and that histones progressively lose DNA contact synchronously with gene activation. This particular nucleosomal organization is disrupted by mutations of the cyclin A bipartite repressor sequence. Moreover, the same sequence recruits the chromatin remodeling factor Brahma/SNF2alpha (Brm) onto the cyclin A promoter. Accordingly, cyclin A proximal promoter is not wrapped around nucleosomes and not repressed in quiescent cells lacking Brm. These results provide molecular explanations for the transcriptional repression state of cyclin A, as well as insights into the action of Brm chromatin remodeling factor as cell cycle regulator.
Collapse
Affiliation(s)
- Marjorie Coisy
- Institut de Génétique Moléculaire, CNRS, UMR 5535, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
104
|
Wang S, Yu X, Zhang T, Zhang X, Zhang Z, Chen Y. Chick Pcl2 regulates the left-right asymmetry by repressing Shh expression in Hensen's node. Development 2004; 131:4381-91. [PMID: 15294861 DOI: 10.1242/dev.01269] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric expression of sonic hedgehog (Shh) in the left side of Hensen's node, a crucial step for specifying the left-right (LR) axis in the chick embryo, is established by the repression of Shhexpression in the right side of the node. The transcriptional regulator that mediates this repression has not been identified. We report the isolation and characterization of a novel chick Polycomblike 2 gene, chick Pcl2, which encodes a transcription repressor and displays an asymmetric expression, downstream from Activin-βB and Bmp4, in the right side of Hensen's node in the developing embryo. In vitro mapping studies define the transcription repression activity to the PHD finger domain of the chick Pcl2 protein. Repression of chick Pcl2expression in the early embryo results in randomized heart looping direction,which is accompanied by the ectopic expression of Shh in the right side of the node and Shh downstream genes in the right lateral plate mesoderm (LPM), while overexpression of chick Pcl2 represses Shh expression in the node. The repression of Shh by chick Pcl2 was also supported by studies in which chick Pcl2 was overexpressed in the developing chick limb bud and feather bud. Similarly,transgenic overexpression of chick Pcl2 in the developing mouse limb inhibits Shh expression in the ZPA. In vitro pull-down assays demonstrated a direct interaction of the chick Pcl2 PHD finger with EZH2, a component of the ESC/E(Z) repressive complex. Taken together with the fact that chick Pcl2 was found to directly repress Shh promoter activity in vitro, our results demonstrate a crucial role for chick Pcl2 in regulating LR axis patterning in the chick by silencing Shh in the right side of the node.
Collapse
Affiliation(s)
- Shusheng Wang
- Division of Developmental Biology, Department of Cell and Molecular Biology and Center for Bioenvironmental Research, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
105
|
Ebel C, Mariconti L, Gruissem W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 2004; 429:776-80. [PMID: 15201912 DOI: 10.1038/nature02637] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/10/2004] [Indexed: 11/09/2022]
Abstract
Haploid spores of plants divide mitotically to form multicellular gametophytes. The female spore (megaspore) of most flowering plants develops by means of a well-defined programme into the mature megagametophyte consisting of the egg apparatus and a central cell. We investigated the role of the Arabidopsis retinoblastoma protein homologue and its function as a negative regulator of cell proliferation during megagametophyte development. Here we show that three mutant alleles of the gene for the Arabidopsis retinoblastoma-related protein, RBR1 (ref. 4), are gametophytic lethal. In heterozygous plants 50% of the ovules are aborted when the mutant allele is maternally inherited. The mature unfertilized mutant megagametophyte fails to arrest mitosis and undergoes excessive nuclear proliferation in the embryo sac. Supernumerary nuclei are present at the micropylar end of the megagametophyte, which develops into the egg apparatus and central cell. The central cell nucleus, which gives rise to the endosperm after fertilization, initiates autonomous endosperm development reminiscent of fertilization-independent seed (fis) mutants. Thus, RBR1 has a novel and previously unrecognized function in cell cycle control during gametogenesis and in the repression of autonomous endosperm development.
Collapse
Affiliation(s)
- Chantal Ebel
- Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Zürich, Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
106
|
Fay DS, Qiu X, Large E, Smith CP, Mango S, Johanson BL. The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18. Dev Biol 2004; 271:11-25. [PMID: 15196946 DOI: 10.1016/j.ydbio.2004.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2004] [Accepted: 03/20/2004] [Indexed: 01/22/2023]
Abstract
Organ development is a complex process involving the coordination of cell proliferation, differentiation, and morphogenetic events. Using a screen to identify genes that function coordinately with lin-35/Rb during animal development, we have isolated a weak loss-of-function (LOF) mutation in pha-1. lin-35; pha-1 double mutants are defective at an early step in pharyngeal morphogenesis leading to an abnormal pharyngeal architecture. pha-1 is also synthetically lethal with other class B synthetic multivulval (SynMuv) genes including the C. elegans E2F homolog, efl-1. Reporter analyses indicate that pha-1 is broadly expressed during embryonic development and that its functions reside in the cytoplasm. We also provide genetic and phenotypic evidence to support the model that PHA-1, a novel protein, and UBC-18, a ubiquitin-conjugating enzyme that we have previously shown to function with lin-35 during pharyngeal development, act in parallel pathways to regulate the activity of a common cellular target.
Collapse
Affiliation(s)
- David S Fay
- Department of Molecular Biology, College of Agriculture, University of Wyoming, Laramie 82071-3944, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Mosquna A, Katz A, Shochat S, Grafi G, Ohad N. Interaction of FIE, a polycomb protein, with pRb: a possible mechanism regulating endosperm development. Mol Genet Genomics 2004; 271:651-7. [PMID: 15221456 DOI: 10.1007/s00438-004-1024-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/05/2004] [Indexed: 01/30/2023]
Abstract
Inactivation of the Arabidopsis protein FERTILIZATION INDEPENDENT ENDOSPERM (FIE) induces division of the central cell of the embryo sac, leading to endosperm development in the absence of fertilization. The mechanism whereby FIE regulates this process is unknown. We postulated that activation of central cell division in fie mutant plants might involve the retinoblastoma protein (pRb), a cell cycle regulatory element. Pull-down and surface plasmon resonance assays demonstrated that FIE interacts in-vitro with the pRb homologues from Arabidopsis (AtRb), maize (ZmRb) and human (HuRb). The interaction of FIE with ZmRB and HuRb in the yeast two-hybrid system supports the possibility that a FIE-pRb interaction may occur also in planta. Mutational analysis showed that this interaction does not occur via the LxCxE motif of the FIE protein nor via the pocket B domain of pRb. These results suggest that FIE may inhibit premature division of the central cell of the embryo sac, at least partly, through interaction with pRb, and suppression of pRb-regulated genes.
Collapse
Affiliation(s)
- A Mosquna
- Department of Plant Sciences, Tel-Aviv University, 69978, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
108
|
Otte AP, Kwaks THJ. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 2004; 13:448-54. [PMID: 14550408 DOI: 10.1016/s0959-437x(03)00108-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polycomb group (PcG) proteins play important roles in maintaining the repressed transcriptional state of genes. PcG proteins operate as part of Polycomb repressive complexes (PRCs). 'Core' PRCs have been purified that contain only a limited number of PcG proteins. In addition, many gene regulatory proteins have been identified to interact with PcG proteins. However, it remains subject to discussion whether these interactions are transient or whether the regulatory proteins are real components of PRCs. It has also become clear that the compositions of 'core' PRCs differ amongst cell types and that extensive changes in compositions occur during the embryonic development of cells. Because of these dynamic changes, we argue that speaking of a definitive core PRC can be misleading.
Collapse
Affiliation(s)
- Arie P Otte
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands.
| | | |
Collapse
|
109
|
Raaphorst FM, Meijer CJLM, Fieret E, Blokzijl T, Mommers E, Buerger H, Packeisen J, Sewalt RAB, Otte AP, van Diest PJ. Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia 2004; 5:481-8. [PMID: 14965441 PMCID: PMC1502571 DOI: 10.1016/s1476-5586(03)80032-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polycomb group (PcG) genes contribute to the maintenance of cell identity, cell cycle regulation, and oncogenesis. We describe the expression of five PcG genes (BMI-1, RING1, HPC1, HPC2, and EZH2) innormal breast tissues, invasive breast carcinomas, and their precursors. Members of the HPC-HPH/PRC1 PcG complex, including BMI-1, RING1, HPC1, and HPC2, were detected in normal resting and cycling breast cells. The EED-EZH/PRC2 PcG complex protein EZH2 was only found in rare cycling cells, whereas normal resting breast cells were negative for EZH2. PcG gene expression patterns in ductal hyperplasia (DH), well-differentiated ductal carcinoma in situ (DCIS), and well-differentiated invasive carcinomas closely resembled the pattern in healthy cells. However, poorly differentiated DCIS and invasive carcinomas frequently expressed EZH2 in combination with HPC-HPH/PRC1 proteins. Most BMI-1/EZH2 double-positive cells in poorly differentiated DCIS were resting. Poorly differentiated invasive carcinoma displayed an enhanced rate of cell division within BMI-1/EZH2 double-positive cells. We propose that the enhanced expression of EZH2 in BMI-1(+) cells contributes to the loss of cell identity in poorly differentiated breast carcinomas, and that increased EZH2 expression precedes high frequencies of proliferation. These observations suggest that deregulated expression of EZH2 is associated with loss of differentiation and development of poorly differentiated breast cancer in humans.
Collapse
Affiliation(s)
- Frank M Raaphorst
- Department of Pathology, VU University Medical Center, BioCentrum Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Covalent modifications of histones, such as acetylation, methylation, and phosphorylation, and other epigenetic modulations of the chromatin, such as methylation of DNA and ATP-dependent chromatin reorganisation, can play a major part in the multistep process of carcinogenesis, with far-reaching implications for human biology and human health. This review focuses on how aberrant covalent histone modifications may contribute to the development of a variety of human cancers, and discusses the recent findings with regard to potential therapies.
Collapse
Affiliation(s)
- S B Hake
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, New York, NY 10021, USA
| | - A Xiao
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, New York, NY 10021, USA
| | - C D Allis
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, New York, NY 10021, USA
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, New York, NY 10021, USA. E-mail:
| |
Collapse
|
111
|
Lavigne M, Francis NJ, King IFG, Kingston RE. Propagation of silencing; recruitment and repression of naive chromatin in trans by polycomb repressed chromatin. Mol Cell 2004; 13:415-25. [PMID: 14967148 DOI: 10.1016/s1097-2765(04)00006-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 11/24/2003] [Accepted: 12/10/2003] [Indexed: 11/20/2022]
Abstract
The Polycomb group (PcG) proteins maintain stable and heritable repression of homeotic genes. Typically, Polycomb response elements (PRE) that direct PcG repression are located at great distances (10s of kb) from the promoters of PcG-repressed genes, and it is not known how these PREs can communicate with promoters over such distances. Using Class II mouse PRC core complexes (mPCCs) assembled from recombinant subunits, we investigated how PcG complexes might bridge distant chromosomal regions. Like native and recombinant Drosophila Class II complexes, mPCC represses chromatin remodeling and transcription. Interestingly, mPCC bound to one polynucleosome template can recruit a second template from solution and renders it refractory to transcription and chromatin remodeling. A Drosophila PRC core complex (dPCC) also is able to recruit a second template. Posterior sex combs (PSC), a subunit of dPCC, inhibits chromatin remodeling and transcription efficiently but requires assembly with dRING1 to recruit chromatin. Thus, repression and template bridging require different subunits of PcG complexes, suggesting that long-range effects may be mechanistically distinct from repression.
Collapse
Affiliation(s)
- Marc Lavigne
- Department of Molecular Biology Massachusetts General Hospital, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
112
|
Raaphorst FM, Vermeer M, Fieret E, Blokzijl T, Dukers D, Sewalt RGAB, Otte AP, Willemze R, Meijer CJLM. Site-specific expression of polycomb-group genes encoding the HPC-HPH/PRC1 complex in clinically defined primary nodal and cutaneous large B-cell lymphomas. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:533-42. [PMID: 14742259 PMCID: PMC1602277 DOI: 10.1016/s0002-9440(10)63143-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs.
Collapse
Affiliation(s)
- Frank M Raaphorst
- Department of Pathology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Qin H, Wang J, Liang Y, Taniguchi Y, Tanigaki K, Han H. RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Res 2004; 32:1492-501. [PMID: 14999091 PMCID: PMC390284 DOI: 10.1093/nar/gkh295] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The DNA-binding protein recombination signal binding protein-Jkappa (RBP-J) mediates transcriptional activation of the Notch intracellular domain (NIC). In the absence of transcriptional activators, RBP-J suppresses transcription by recruiting co-suppressors. KyoT2 is a LIM domain protein that inhibits the RBP-J-mediated transcriptional activation. Here we provide evidence that the polycomb group protein RING1 interacts with the LIM domains of KyoT2 in yeast and mammalian cells. The interaction between KyoT2 and RING1 was detected both in vitro and in vivo. By using a co-immunoprecipitation assay, we also showed that, though RING1 and RBP-J did not associate directly, the two molecules could be co-precipitated simultaneously by KyoT2, probably through the LIM domains and the RBP-J-binding motif of KyoT2, respectively. These results suggested the formation of a three-molecule complex consisting of RBP-J, KyoT2 and RING1 in cells. Moreover, we found that overexpression of RING1 together with KyoT2 in cells inhibited transactivation of RBP-J by NIC. Suppression of the NIC- mediated transactivation of RBP-J by RING1 was abrogated by overexpression of KBP1, a molecule that competed with RING1 for binding to LIM domains of KyoT2, suggesting that suppression of RBP-J by RING1 was dependent on its associating with KyoT2. Taken together, our data suggested that there might be at least two ways of the KyoT2-mediated suppression of RBP-J, namely competition for binding sites with transactivators, and recruitment of suppressors such as RING1.
Collapse
Affiliation(s)
- Hongyan Qin
- Department of Medical Genetics and Developmental Biology, Tangdu Hospital, The Fourth Military Medical University, Chang-Le Xi Street 17, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
114
|
Affiliation(s)
- Andrew P Feinberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
115
|
Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2004; 22:5323-35. [PMID: 14532106 PMCID: PMC213796 DOI: 10.1093/emboj/cdg542] [Citation(s) in RCA: 950] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent experiments have demonstrated that the Polycomb group (PcG) gene EZH2 is highly expressed in metastatic prostate cancer and in lymphomas. EZH2 is a component of the PRC2 histone methyltransferase complex, which also contains EED and SUZ12 and is required for the silencing of HOX gene expression during embryonic development. Here we demonstrate that both EZH2 and EED are essential for the proliferation of both transformed and non-transformed human cells. In addition, the pRB-E2F pathway tightly regulates their expression and, consistent with this, we find that EZH2 is highly expressed in a large set of human tumors. These results raise the question whether EZH2 is a marker of proliferation or if it is actually contributing to tumor formation. Significantly, we propose that EZH2 is a bona fide oncogene, since we find that ectopic expression of EZH2 is capable of providing a proliferative advantage to primary cells and, in addition, its gene locus is specifically amplified in several primary tumors.
Collapse
Affiliation(s)
- Adrian P Bracken
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | |
Collapse
|
116
|
Affiliation(s)
- Jenny O'Nions
- Faculty of Medicine, Department of Virology and Ludwig Institute for Cancer Research, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
117
|
Angus SP, Solomon DA, Kuschel L, Hennigan RF, Knudsen ES. Retinoblastoma tumor suppressor: analyses of dynamic behavior in living cells reveal multiple modes of regulation. Mol Cell Biol 2003; 23:8172-88. [PMID: 14585976 PMCID: PMC262398 DOI: 10.1128/mcb.23.22.8172-8188.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 06/19/2003] [Accepted: 08/06/2003] [Indexed: 12/20/2022] Open
Abstract
The retinoblastoma tumor suppressor, RB, assembles multiprotein complexes to mediate cell cycle inhibition. Although many RB binding partners have been suggested to underlie these functions, the validity of these interactions on the behavior of RB complexes in living cells has not been investigated. Here, we studied the dynamic behavior of RB by using green fluorescent protein-RB fusion proteins. Although these proteins were universally nuclear, phosphorylation or oncoprotein binding mediated their active exclusion from the nucleolus. In vivo imaging approaches revealed that RB exists in dynamic equilibrium between a highly mobile and a slower diffusing species, and genetic lesions associated with tumorigenesis increased the fraction of RB in a highly mobile state. The RB complexes dictating cell cycle arrest were surprisingly dynamic and harbored a relatively short residence time on chromatin. In contrast, this rapid exchange was attenuated in cells that are hypersensitive to RB, suggesting that responsiveness may inversely correlate with mobility. The stability of RB dynamics within the cell was additionally modified by the presence and function of critical corepressors. Last, the RB-assembled complexes present in living cells were primarily associated with E2F binding sites in chromatin. In contrast to RB, E2F1 consistently maintained a stable association with E2F sites regardless of cell type. Together, these results elucidate the kinetic framework of RB tumor suppressor action in transcriptional repression and cell cycle regulation.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA.
| | | | | | | | | |
Collapse
|
118
|
Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 2003; 278:47853-61. [PMID: 14500729 DOI: 10.1074/jbc.m305171200] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prohibitin, a potential tumor suppressor protein, has been shown to inhibit cell proliferation and repress E2F transcriptional activity. Though prohibitin has potent transcriptional functions in the nucleus, a mitochondrial role for prohibitin has also been proposed. Here we show that prohibitin is predominantly nuclear in two breast cancer cell lines where it co-localizes with E2F1 and p53. Upon apoptotic stimulation by camptothecin, prohibitin is exported to perinuclear regions where it localizes to mitochondria. The data presented here also show that prohibitin is capable of physically interacting with p53 in vivo and in vitro. Prohibitin was found to enhance p53-mediated transcriptional activity and cotransfection of an antisense prohibitin construct reduces p53-mediated transcriptional activation. Prohibitin appears to induce p53-mediated transcription by enhancing its recruitment to promoters, as detected by chromatin immunoprecipitation assays. These results suggest that prohibitin is capable of modulating Rb/E2F as well as p53 regulatory pathways.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Binding Sites
- Blotting, Western
- Camptothecin/metabolism
- Camptothecin/pharmacology
- Cell Cycle Proteins
- Cell Division
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Cytosol/metabolism
- DNA-Binding Proteins
- E2F Transcription Factors
- E2F1 Transcription Factor
- Enzyme Inhibitors/pharmacology
- Genes, Reporter
- Glutathione Transferase/metabolism
- Humans
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Nuclear Proteins
- Oligonucleotides, Antisense/chemistry
- Precipitin Tests
- Prohibitins
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proteins/metabolism
- Proteins/physiology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2
- Repressor Proteins
- Retinoblastoma Protein/metabolism
- Signal Transduction
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Gina Fusaro
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
119
|
Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G. Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn 2003; 228:113-20. [PMID: 12950085 DOI: 10.1002/dvdy.10348] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The remarkable regeneration capacity of plant cells is based on their capability to dedifferentiate. We recently reported that cellular dedifferentiation proceeds through two distinct phases, each accompanied by chromatin decondensation: acquisition of competence for fate switch followed by a signal-dependent reentry into S phase. The purpose of this study was to (1) characterize changes in chromatin factors associated with chromatin decondensation, and (2) study the relationship between chromatin decondensation and transcriptional activation of pRb/E2F-regulated genes. We show that plant cells competent for fate switch display a disruption of nucleolar domain appearance associated with condensation of 18S ribosomal DNA, as well as modifications of histone H3 and redistribution of heterochromatin protein 1 (HP1). We further show that the pRb/E2F-target genes RNR2 and PCNA are condensed and silent in differentiated leaf cells but become decondensed, although not yet activated, as cells acquire competence for fate switch; transcriptional activation becomes evident during progression into S phase, concomitantly with pRb phosphorylation. We propose that chromatin reorganization is central for reversion of the differentiation process leading to resetting of the gene expression program and activation of silent genes.
Collapse
Affiliation(s)
- Leor Williams
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
120
|
Boccuni P, MacGrogan D, Scandura JM, Nimer SD. The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 2003; 278:15412-20. [PMID: 12588862 DOI: 10.1074/jbc.m300592200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H-L(3)MBT, the human homolog of the Drosophila lethal(3)malignant brain tumor protein, is a member of the polycomb group (PcG) of proteins, which function as transcriptional regulators in large protein complexes. Homozygous mutations in the l(3)mbt gene cause brain tumors in Drosophila, identifying l(3)mbt as a tumor suppressor gene. The h-l(3)mbt gene maps to chromosome 20q12, within a common deleted region associated with myeloid hematopoietic malignancies. H-L(3)MBT contains three repeats of 100 residues called MBT repeats, whose function is unknown, and a C-terminal alpha-helical structure, the SPM (SCM, PH, MBT domain, which is structurally similar to the SAM (sterile alpha motif) protein-protein interaction domain, found in several ETS transcription factors, including TEL (translocation Ets leukemia). We report that H-L(3)MBT is a transcriptional repressor and that its activity is largely dependent on the presence of a region containing the three MBT repeats. H-L(3)MBT acts as a histone deacetylase-independent transcriptional repressor, based on its lack of sensitivity to trichostatin A. We found that H-L(3)MBT binds in vivo to TEL, and we have mapped the region of interaction to their respective SPM/SAM domains. We show that the ability of TEL to repress TEL-responsive promoters is enhanced by the presence of H-L(3)MBT, an effect dependent on the H-L(3)MBT and the TEL interacting domains. These experiments suggest that histone deacetylase-independent transcriptional repression by TEL depends on the recruitment of PcG proteins. We speculate that the interaction of TEL with H-L(3)MBT can direct a PcG complex to genes repressed by TEL, stabilizing their repressed state.
Collapse
Affiliation(s)
- Piernicola Boccuni
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan Kettering Institute for Cancer Research, New York, New York 10021, USA
| | | | | | | |
Collapse
|
121
|
Subramanian T, Chinnadurai G. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett 2003; 540:255-8. [PMID: 12681518 DOI: 10.1016/s0014-5793(03)00275-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The C-terminal binding protein (CtBP) family proteins are transcriptional regulators that are conserved from worm to human. They function as corepressors of a wide array of DNA-binding transcriptional repressors. The mammalian CtBPs appear to mediate transcriptional repression in a histone deacetylase (HDAC)-dependent or -independent manner, depending on the context of the promoter. To identify the components of the CtBP corepressor complex, we isolated CtBP-containing protein complexes from the nuclear extracts prepared from HeLa cells infected with adenovirus vectors that expresses hCtBP1. Western blot analysis of these complexes suggests that hCtBP1 associates with class I HDACs, HDAC-1, HDAC-2 and HDAC-3. Some of these HDACs also interact with the Drosophila CtBP homolog, dCtBP. The CtBP protein complex exhibits significant HDAC activity in vitro suggesting that association of CtBP with HDACs may be functionally relevant.
Collapse
Affiliation(s)
- T Subramanian
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, 3681 Park Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
122
|
Abstract
Retinoblastoma gene (Rb) is the prototype of tumor suppressors. Germline mutation in the retinoblastoma gene is susceptible to cancer and reintroduction of wild-type Rb is able to suppress neoplastic phenotypes. The fundamental cellular functions of Rb in the control of cell growth and differentiation are important for its tumor suppression. In general, cancer susceptibility caused by inactivation of a tumor suppressor gene results from genome instability. Accordingly, Rb may function in the maintenance of chromosome stability by influencing mitotic progression, faithful chromosome segregation, and structural remodeling of mitotic chromosomes. Rb is also implicated in the regulation of replication machinery and in the control of cell cycle checkpoints in response to DNA damage, further supporting such a role for Rb. Moreover, the mechanistic basis for Rb-mediated transcriptional repression has revealed its connection to global chromatin remodeling. It is likely that Rb suppresses tumor formation by virtue of its multiple biological activities, and a theme throughout its multiple cellular functions is its central role in controlling activities that involve chromatin remodeling. A model in which Rb controls global genome fluidity is thus proposed. Finally, a recent study provides direct evidence indicating that loss of Rb function leads to genome instability. Therefore, tumor suppressors have a common role in the maintenance of genome stability, and such a role may be pivotal for their functions in tumor suppression.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, USA
| | | |
Collapse
|
123
|
Abstract
Polycomb group (PcG) proteins form large multimeric complexes (PcG bodies) which are involved in the stable repression of gene expression. The human PcG protein, Pc2, has been shown to recruit the transcriptional corepressor, CtBP, to PcG bodies. We show that CtBP is sumoylated at a single lysine. In vitro, CtBP sumoylation minimally requires the SUMO E1 and E2 (Ubc9) and SUMO-1. However, Pc2 dramatically enhances CtBP sumoylation. In vivo, this is likely due to the ability of Pc2 to recruit both CtBP and Ubc9 to PcG bodies, thereby bringing together substrate and E2, and stimulating the transfer of SUMO to CtBP. These results demonstrate that Pc2 is a SUMO E3, and suggest that PcG bodies may be sumoylation centers.
Collapse
Affiliation(s)
- Michael H Kagey
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
124
|
Abstract
E2F activity is crucial for the G1/S transition and DNA replication in mammalian cells. The retinoblastoma (pRB) family of proteins is the primary negative regulator of E2F. Recent findings have begun to clarify distinct roles for E2F family members during cell cycle progression and have considerably broadened our understanding of E2F transcriptional control beyond S phase. In this review, we examine the relative contribution of two distinct subclasses of E2F to repression and activation and how this division of labor could explain the role of E2F in DNA damage and repair checkpoints as well as tumorigenesis.
Collapse
Affiliation(s)
- Hugh Cam
- Department of Pathology, MSB 504A, New York University School of Medicine and NYU Cancer Institute, New York, NY 1001, USA
| | | |
Collapse
|
125
|
Abstract
In development, cell identity is maintained by epigenetic functions that prevent changes in cell type-specific transcription programs. Recent insights into gene silencing mechanisms by Polycomb group (PcG) and trithorax group (trxG) proteins reveal that the memory system involves a concerted process of chromatin modification, blocking of RNA polymerase II, and synthesis of noncoding RNA. Remarkably, cell memory is regulated by a balance between repressors and activators that maintains both transcription status and at the same time the possibility of switching to a different state.
Collapse
Affiliation(s)
- Valerio Orlando
- Dulbecco Telethon Institute, Institute of Genetics & Biophysics CNR, Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
126
|
Voncken JW, Roelen BAJ, Roefs M, de Vries S, Verhoeven E, Marino S, Deschamps J, van Lohuizen M. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci U S A 2003; 100:2468-73. [PMID: 12589020 PMCID: PMC151364 DOI: 10.1073/pnas.0434312100] [Citation(s) in RCA: 272] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly homologous Rnf2 (Ring1b) and Ring1 (Ring1a) proteins were identified as in vivo interactors of the Polycomb Group (PcG) protein Bmi1. Functional ablation of Rnf2 results in gastrulation arrest, in contrast to relatively mild phenotypes in most other PcG gene null mutants belonging to the same functional group, among which is Ring1. Developmental defects occur in both embryonic and extraembryonic tissues during gastrulation. The early lethal phenotype is reminiscent of that of the PcG-gene knockouts Eed and Ezh2, which belong to a separate functional PcG group and PcG protein complex. This finding indicates that these biochemically distinct PcG complexes are both required during early mouse development. In contrast to the strong skeletal transformation in Ring1 hemizygous mice, hemizygocity for Rnf2 does not affect vertebral identity. However, it does aggravate the cerebellar phenotype in a Bmi1 null-mutant background. Together, these results suggest that Rnf2 or Ring1-containing PcG complexes have minimal functional redundancy in specific tissues, despite overlap in expression patterns. We show that the early developmental arrest in Rnf2-null embryos is partially bypassed by genetic inactivation of the Cdkn2a (Ink4aARF) locus. Importantly, this finding implicates Polycomb-mediated repression of the Cdkn2a locus in early murine development.
Collapse
Affiliation(s)
- Jan Willem Voncken
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Oma Y, Nishimori K, Harata M. The brain-specific actin-related protein ArpN alpha interacts with the transcriptional co-repressor CtBP. Biochem Biophys Res Commun 2003; 301:521-8. [PMID: 12565893 DOI: 10.1016/s0006-291x(02)03073-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Actin-related protein (Arp) is found in many chromatin remodeling and histone acetyltransferase complexes. We previously identified ArpN alpha as an isoform of ArpN beta/BAF53, which is included in mammalian SWI/SNF chromatin remodeling complex, and showed that ArpN alpha is a potential component of the complex. Although it has a structure highly similar to ArpN beta/BAF53, ArpN alpha is expressed exclusively in brain and in neural differentiated embryonal carcinoma cells. Since ArpN alpha possesses a region that shows low similarity to ArpN beta/BAF53, we hypothesized that proteins interacting with this region contribute to the ArpN alpha-specific function in brain. Here we showed that ArpN alpha, but not ArpN beta/BAF53, interacts with the transcriptional co-repressor CtBP (C-terminal binding protein). Transactivation by the SWI/SNF complex and glucocorticoid receptor was repressed by the CtBP in the presence of ArpN alpha. These findings suggest that SWI/SNF complex containing ArpN alpha might regulate certain genes involved in brain development and/or its function differently from SWI/SNF complex containing ArpN beta/BAF53.
Collapse
Affiliation(s)
- Yukako Oma
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | |
Collapse
|
128
|
Kadam S, Emerson BM. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell 2003; 11:377-89. [PMID: 12620226 DOI: 10.1016/s1097-2765(03)00034-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mammalian SWI/SNF chromatin remodeling complexes are involved in critical aspects of cellular growth and genomic stability. Each complex contains one of two highly homologous ATPases, BRG1 and BRM, yet little is known about their specialized functions. We show that BRG1and BRM associate with different promoters during cellular proliferation and differentiation, and in response to specific signaling pathways by preferential interaction with certain classes of transcription factors. BRG1 binds to zinc finger proteins through a unique N-terminal domain that is not present in BRM. BRM interacts with two ankyrin repeat proteins that are critical components of Notch signal transduction. Thus, BRG1 and BRM complexes may direct distinct cellular processes by recruitment to specific promoters through protein-protein interactions that are unique to each ATPase.
Collapse
Affiliation(s)
- Shilpa Kadam
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
129
|
Fernandes I, Bastien Y, Wai T, Nygard K, Lin R, Cormier O, Lee HS, Eng F, Bertos NR, Pelletier N, Mader S, Han VKM, Yang XJ, White JH. Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell 2003; 11:139-50. [PMID: 12535528 DOI: 10.1016/s1097-2765(03)00014-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
LCoR (ligand-dependent corepressor) is a transcriptional corepressor widely expressed in fetal and adult tissues that is recruited to agonist-bound nuclear receptors through a single LXXLL motif. LCoR binding to estrogen receptor alpha depends in part on residues in the coactivator binding pocket distinct from those bound by TIF-2. Repression by LCoR is abolished by histone deacetylase inhibitor trichostatin A in a receptor-dependent fashion, indicating HDAC-dependent and -independent modes of action. LCoR binds directly to specific HDACs in vitro and in vivo. Moreover, LCoR functions by recruiting C-terminal binding protein corepressors through two consensus binding motifs and colocalizes with CtBPs in the nucleus. LCoR represents a class of corepressor that attenuates agonist-activated nuclear receptor signaling by multiple mechanisms.
Collapse
Affiliation(s)
- Isabelle Fernandes
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Hickabottom M, Parker GA, Freemont P, Crook T, Allday MJ. Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem 2002; 277:47197-204. [PMID: 12372828 DOI: 10.1074/jbc.m208116200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CtBP (carboxyl-terminal binding protein) has been shown to be a highly conserved co-repressor of transcription that is important in development, cell cycle regulation, and transformation. Viral proteins E1A and EBNA3C and all the various Drosophila and vertebrate transcription factors to which CtBP has been reported to bind contain a conserved "PXDLS" CtBP-interaction domain. Here we show that EBNA3A binds CtBP both in vitro and in vivo but that this interaction does not require a near consensus (98)PLDLR(102) motif in the NH(2) terminus of EBNA3A. However, further deletion and mutation analysis revealed that CtBP interacts with this viral protein through a cryptic, bipartite motif located in the COOH terminus of EBNA3A. The two components of this binding domain are similar to the canonical PXDLS motif but do not include the highly conserved, and normally critical, first proline residue. These nonconsensus sites, (857)ALDLS(861) and (886)VLDLS(890), synergize to produce very efficient binding to CtBP. Interaction with CtBP was shown to be important in the repression of transcription by EBNA3A and in the ability of EBNA3A to cooperate with activated Ras to immortalize and transform primary rat embryo fibroblasts. Similar bipartite sequences can be found in other viral and cellular proteins that can interact with CtBP, including the retinoblastoma-interacting protein-methyltransferase RIZ, the oncoprotein EVI1, and Marek's disease virus transforming protein Meq.
Collapse
MESH Headings
- Alcohol Oxidoreductases
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/metabolism
- Binding Sites
- Blotting, Western
- Cell Line, Transformed
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Epstein-Barr Virus Nuclear Antigens/chemistry
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Reporter
- Glutathione Transferase/metabolism
- Humans
- Microscopy, Fluorescence
- Molecular Sequence Data
- Oncogene Proteins, Viral/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Proline/chemistry
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Mark Hickabottom
- Department of Virology and Ludwig Institute for Cancer Research, Imperial College of Science Technology and Medicine, Faculty of Medicine, Wright-Fleming Institute, Norfolk Place, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
131
|
Wang S, Fusaro G, Padmanabhan J, Chellappan SP. Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 2002; 21:8388-96. [PMID: 12466959 DOI: 10.1038/sj.onc.1205944] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 07/31/2002] [Accepted: 08/07/2002] [Indexed: 11/09/2022]
Abstract
The potential tumor suppressor protein prohibitin can prevent cell proliferation and this required its binding to the Rb protein. Prohibitin could repress the transcriptional activity of E2F family members and this required a part of the marked box region of E2F. The sub-cellular localization of prohibitin has been variously attributed to the mitochondria as well as the inner cell membrane. Here we show that a subset of prohibitin molecules are present in the nucleus where it co-localizes with the Rb protein. Deletion of a putative amino-terminal membrane-docking domain of prohibitin had no effect on its ability to suppress cell proliferation or inhibit E2F activity. Our experiments show that a 53 amino-acid stretch of E2F1 is sufficient for being targeted by prohibitin; fusion of this region to GAL4-VP16 construct could make it susceptible to prohibitin-mediated, but not Rb-mediated repression. Prohibitin, like Rb, could repress transcription from SV40 and major late promoters when recruited directly to DNA. Prohibitin mediated transcriptional repression required histone-deacetylase activity, but unlike Rb, additional co-repressors like N-CoR are also involved. Repression by prohibitin correlates with histone deacetylation on promoters and this was reversed by IgM stimulation of cells; IgM did not affect Rb-mediated repression or deacetylation of the promoters. Prohibitin thus appears to repress E2F-mediated transcription utilizing different molecular mediators and facilitate channeling of specific signaling pathways to the cell cycle machinery.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Interdisciplinary Oncology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Drive, Tampa 33612, USA
| | | | | | | |
Collapse
|
132
|
Royzman I, Hayashi-Hagihara A, Dej KJ, Bosco G, Lee JY, Orr-Weaver TL. The E2F cell cycle regulator is required for Drosophila nurse cell DNA replication and apoptosis. Mech Dev 2002; 119:225-37. [PMID: 12464435 DOI: 10.1016/s0925-4773(02)00388-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During Drosophila oogenesis nurse cells become polyploid, enabling them to provide the developing oocyte with vast amounts of maternal messages and products. The nurse cells then die by apoptosis. In nurse cells, as in many other polyploid or polytene tissues, replication is differentially controlled and the heterochromatin is underreplicated. The nurse cell chromosomes also undergo developmentally induced morphological changes from being polytene, with tightly associated sister chromatids, to polyploid, with dispersed sister chromatids. We used female-sterile dE2F1 and dDP mutants to assess the role of the E2F cell cycle regulator in oogenesis and the relative contributions of transcriptional activation versus repression during nurse cell development. We report here that E2F1 transcriptional activity in nurse cells is essential for the robust synthesis of S-phase transcripts that are deposited into the oocyte. dE2F1 and dDP are needed to limit the replication of heterochromatin in nurse cells. In dE2F1 mutants the nurse cell chromosomes do not properly undergo the transition from polyteny to polyploidy. We also find that dDP and dE2F1 are needed for nurse cell apoptosis, implicating transcriptional activation of E2F target genes in this process.
Collapse
Affiliation(s)
- Irena Royzman
- Whitehead Institute, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
The E2F transcription factors mediate the activation or repression of key cell cycle regulatory genes under the control of the retinoblastoma protein (pRB) tumor suppressor and its relatives, p107 and p130. Here we investigate how E2F4, the major "repressive" E2F, contributes to pRB's tumor-suppressive properties. Remarkably, E2F4 loss suppresses the development of both pituitary and thyroid tumors in Rb(+/-) mice. Importantly, E2F4 loss also suppresses the inappropriate gene expression and proliferation of pRB-deficient cells. Biochemical analyses suggest that this tumor suppression occurs via a novel mechanism: E2F4 loss allows p107 and p130 to regulate the pRB-specific, activator E2Fs. We also detect these novel E2F complexes in pRB-deficient cells, suggesting that they play a significant role in the regulation of tumorigenesis in vivo.
Collapse
Affiliation(s)
- Eunice Y Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
134
|
Abstract
New techniques have enhanced our picture of E2F regulation. These studies have shed light on the roles played by individual E2F and retinoblastoma family members and implicate these proteins in processes extending well beyond the G1/S transition. One thorny issue remains: do our current molecular models of E2F and retinoblastoma action explain all of the functions of these proteins in vivo?
Collapse
Affiliation(s)
- Olivier Stevaux
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, MA 02129, USA
| | | |
Collapse
|
135
|
Kuroda Y, Oma Y, Nishimori K, Ohta T, Harata M. Brain-specific expression of the nuclear actin-related protein ArpNalpha and its involvement in mammalian SWI/SNF chromatin remodeling complex. Biochem Biophys Res Commun 2002; 299:328-34. [PMID: 12437990 DOI: 10.1016/s0006-291x(02)02637-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Actin-related proteins share significant homology with conventional actins and are classified into subfamilies based on the similarity of their sequences and functions. The Arp4 subfamily of Arps is localized in the nucleus, and a mammalian isoform, ArpNbeta (also known as BAF53), is a component of the chromatin remodeling and histone acetyltransferase complexes. Another isoform identified in humans, ArpNalpha has scarcely been characterized yet. We identified mouse ArpNalpha, and showed that ArpNalpha is more similar between humans and mice than ArpNbeta. No difference was observed between ArpNalpha and beta in subcellular localization and interaction with BRM, which is an ATPase subunit of mammalian SWI/SNF chromatin remodeling complex. However, ArpNalpha was expressed exclusively in the brain and its expression was induced during neural differentiation of P19 mouse embryonic carcinoma cells. ArpNalpha is the first brain-specific component of a chromatin remodeling complex to be identified, suggesting that ArpNalpha has conserved and important roles in the differentiation of neural cells through regulation of chromatin structure.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, 981-8555, Sendai, Japan
| | | | | | | | | |
Collapse
|
136
|
Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002; 10:857-69. [PMID: 12419229 DOI: 10.1016/s1097-2765(02)00650-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptional repression is based on the selective actions of recruited corepressor complexes, including those with enzymatic activities. One well-characterized developmentally important corepressor is the C-terminal binding protein (CtBP). Although intriguingly related in sequence to D2 hydroxyacid dehydrogenases, the mechanism by which CtBP functions remains unclear. We report here biochemical and crystallographic studies which reveal that CtBP is a functional dehydrogenase. In addition, both a cofactor-dependent conformational change, with NAD(+) and NADH being equivalently effective, and the active site residues are linked to the binding of the PXDLS consensus recognition motif on repressors, such as E1A and RIP140. Together, our data suggest that CtBP is an NAD(+)-regulated component of critical complexes for specific repression events in cells.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Hamer KM, Sewalt RGAB, den Blaauwen JL, Hendrix T, Satijn DPE, Otte AP. A panel of monoclonal antibodies against human polycomb group proteins. HYBRIDOMA AND HYBRIDOMICS 2002; 21:245-52. [PMID: 12193277 DOI: 10.1089/153685902760213859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polycomb-group (PcG) proteins are chromatin-associated proteins that heritably repress gene activity in many organisms, including man. Two distinct human PcG complexes have been identified. The HPC/HPH PcG complex I contains the HPC, HPH, RING1, and BMI1 proteins, the EED/EZH2 PcG complex II contains the EED, EZH2, and YY1 proteins. Previously we found that the relative expression levels of proteins of the human PcG complexes I and II are severely deregulated in human tumors. These findings signify an important role for antibodies against human PcG proteins as diagnostic tools. To be able to produce standardized anti-human PcG antibodies, we developed a panel of five mouse monoclonal antibodies (MAbs) against the human PcG proteins HPC2, BMI1, RING1A, EED, and EZH2. All MAbs can be used for Western blot analysis and immunofluorescence labeling of tissue culture cells. With the exception of the MAb against HPC2, all MAbs can also be used in immunoprecipitation experiments and immunohistochemistry of human tissues. The novel MAbs are therefore valuable tools for the cell biological, biochemical, and pathological analysis of human PcG proteins.
Collapse
Affiliation(s)
- Karien M Hamer
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
138
|
Koipally J, Georgopoulos K. Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression. J Biol Chem 2002; 277:23143-9. [PMID: 11959865 DOI: 10.1074/jbc.m202079200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ikaros and Aiolos are Kruppel zinc finger proteins that play key roles in hemo-lymphoid development and homeostasis. We have previously shown that they can repress transcription through the recruitment of histone deacetylases (HDACs). Here, we provide the first functional evidence that these proteins can also repress gene function in a manner that does not require deacetylase activity. This functionality can be attributed in part to Ikaros interactions with the HDAC-independent corepressor, C-terminal binding protein (CtBP). However, mutations that block Ikaros-CtBP interactions do not abolish Ikaros's repression activity, implicating the involvement of additional corepressors. Consistent with this expectation, we show that Ikaros can interact with a CtBP-interacting protein (CtIP), which has also been linked to a deacetylase-independent strategy of repression. Despite being a CtBP interactor, CtIP's association with Ikaros does not require CtBP but instead relies upon its Rb interaction domain. Significantly, Ikaros can interact with Rb, which itself can repress gene function in a deacetylase-independent manner. A mutation in Ikaros that abrogates CtIP interactions significantly reduces repression, and a double mutation that prevents interaction with both CtIP and CtBP even further alleviates repression. Finally, we show that CtIP and CtBP can interact with the general transcription factors, TATA binding protein and transcription factor IIB, which suggests a possible mechanism for their deacetylase-independent mode of repression.
Collapse
Affiliation(s)
- Joseph Koipally
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
139
|
Jacobs JJL, van Lohuizen M. Polycomb repression: from cellular memory to cellular proliferation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:151-61. [PMID: 12020801 DOI: 10.1016/s0304-419x(02)00052-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The transcriptional repressors of the Polycomb group (PcG), together with the counteracting Trithorax group (TrxG) proteins, establish a form of cellular memory by regulating gene expression in a heritable fashion at the level of chromatin. This cellular memory function is required for a correct cell fate/behavior, which is not only crucial during development for the generation of a correct body plan but also later in life to prevent cellular transformation. Here, we summarize the rapidly accumulating data that implicate several mammalian PcG members in the control of cellular proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Jacqueline J L Jacobs
- Department of Molecular Genetics, The Netherlands Cancer Institute, H5, Plesmanlaan 121, Amsterdam, The Netherlands
| | | |
Collapse
|
140
|
DeGregori J. The genetics of the E2F family of transcription factors: shared functions and unique roles. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:131-50. [PMID: 12020800 DOI: 10.1016/s0304-419x(02)00051-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado, Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
141
|
Abstract
Diverse post-translational modifications of histone amino termini represent an important epigenetic mechanism for the organisation of chromatin structure and the regulation of gene activity. Within the past two years, great progress has been made in understanding the functional implications of histone methylation; in particular through the characterisation of histone methyltransferases that direct the site-specific methylation of, for example, lysine 9 and lysine 4 positions in the histone H3 amino terminus. All known histone methyltransferases of this type contain the evolutionarily conserved SET domain and appear to be able to stimulate either gene repression or gene activation. Methylation of H3 Lys9 and Lys4 has been visualised in native chromatin, indicating opposite roles in structuring repressive or accessible chromatin domains. For example, at the mating-type loci in Schizosaccharomyces pombe, at pericentric heterochromatin and at the inactive X chromosome in mammals, striking differences between these distinct marks have been observed. H3 Lys9 methylation is also important to direct additional epigenetic signals such as DNA methylation--for example, in Neurospora crassa and in Arabidopsis thaliana. Together, the available data strongly establish histone lysine methylation as a central modification for the epigenetic organisation of eukaryotic genomes.
Collapse
Affiliation(s)
- Monika Lachner
- Research Institute of Molecular Pathology, The Vienna Biocenter, Dr Bohrgasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
142
|
Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ, te Riele H, Dynlacht BD. E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 2002; 16:933-47. [PMID: 11959842 PMCID: PMC152357 DOI: 10.1101/gad.969202] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2001] [Accepted: 02/27/2002] [Indexed: 11/24/2022]
Abstract
Despite biochemical and genetic data suggesting that E2F and pRB (pocket protein) families regulate transcription via chromatin-modifying factors, the precise mechanisms underlying gene regulation by these protein families have not yet been defined in a physiological setting. In this study, we have investigated promoter occupancy in wild-type and pocket protein-deficient primary cells. We show that corepressor complexes consisting of histone deacetylase (HDAC1) and mSin3B were specifically recruited to endogenous E2F-regulated promoters in quiescent cells. These complexes dissociated from promoters once cells reached late G1, coincident with gene activation. Interestingly, recruitment of HDAC1 complexes to promoters depended absolutely on p107 and p130, and required an intact E2F-binding site. In contrast, mSin3B recruitment to certain promoters did not require p107 or p130, suggesting that recruitment of this corepressor can occur via E2F-dependent and -independent mechanisms. Remarkably, loss of pRB had no effect on HDAC1 or mSin3B recruitment. p107/p130 deficiency triggered a dramatic loss of E2F4 nuclear localization as well as transcriptional derepression, which is suggested by nucleosome mapping studies to be the result of localized hyperacetylation of nucleosomes proximal to E2F-binding sites. Taken together, these findings show that p130 escorts E2F4 into the nucleus and, together with corepressor complexes that contain mSin3B and/or HDAC1, directly represses transcription from target genes as cells withdraw from the cell cycle.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
CtBP family proteins are conserved among vertebrates and invertebrates and function as transcriptional corepressors. They repress transcription in a histone deacetylase-dependent or -independent manner. CtBPs play important roles during development and oncogenesis. In this review, their unusual properties, the mechanisms of transcriptional repression, regulation, and their biological functions are discussed.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
144
|
Abstract
The E2F transcription factor family determines whether or not a cell will divide by controlling the expression of key cell-cycle regulators. The individual E2Fs can be divided into distinct subgroups that act in direct opposition to one another to promote either cellular proliferation or cell-cycle exit and terminal differentiation. What is the underlying molecular basis of this 'push-me-pull-you' regulation, and what are its biological consequences?
Collapse
Affiliation(s)
- Jeffrey M Trimarchi
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|