101
|
Nakazawa Y, Sato H, Uchino M, Takano K. Purification, Characterization and Cloning of Phospholipase D from Peanut Seeds. Protein J 2006; 25:212-23. [PMID: 16703472 DOI: 10.1007/s10930-006-9004-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We purified phospholipase D (PLD) enzyme from peanut seeds, and the PLD enzyme eluted as two distinct peak fractions on Mono-Q chromatography, the first of which was characterized. N-terminal sequencing indicated that the N-terminus was blocked. The molecular mass of the purified enzyme was estimated to be 92 kDa by SDS-PAGE. The pH optimum of the enzyme was 5.0, and the Km value against its substrate phosphatidylcholine (PC), in the presence of 10 mM CaCl2 and 4 mM deoxycholate, was estimated to be 0.072 mM. The enzyme catalyzed two reactions, i.e., hydrolysis of PC generating phosphatidic acid (PA) and choline, and transphosphatidylation of the PA-moiety in the PC molecule to the acceptor glycerol, generating phosphatidylglycerol. Furthermore, we cloned two types of full-length cDNA, Ahpld1 and Ahpld2, each encoding distinct PLD molecules having 794 and 807 residues, respectively. The partial amino acid sequence of the purified PLD was consistent with the deduced sequence of AhPLD2.
Collapse
Affiliation(s)
- Yozo Nakazawa
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | | | | | | |
Collapse
|
102
|
Lee CS, Kim IS, Park JB, Lee MN, Lee HY, Suh PG, Ryu SH. The phox homology domain of phospholipase D activates dynamin GTPase activity and accelerates EGFR endocytosis. Nat Cell Biol 2006; 8:477-84. [PMID: 16622417 DOI: 10.1038/ncb1401] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/14/2006] [Indexed: 11/08/2022]
Abstract
Dynamin is a large GTP-binding protein that mediates endocytosis by hydrolyzing GTP. Previously, we reported that phospholipase D2 (PLD2) interacts with dynamin in a GTP-dependent manner. This implies that PLD may regulate the GTPase cycle of dynamin. Here, we show that PLD functions as a GTPase activating protein (GAP) through its phox homology domain (PX), which directly activates the GTPase domain of dynamin, and that the arginine residues in the PLD-PX are vital for this GAP function. Moreover, wild-type PLD-PX, but not mutated PLD-PXs defective for GAP function in vitro, increased epidermal growth factor receptor (EGFR) endocytosis at physiological EGF concentrations. In addition, the silencing of PLDs was shown to retard EGFR endocytosis and the addition of wild-type PLDs or lipase-inactive PLDs, but not PLD1 mutants with defective GAP activity for dynamin in vitro, resulted in the recovery of EGFR endocytosis. These findings suggest that PLD, functioning as an intermolecular GAP for dynamin, accelerates EGFR endocytosis. Moreover, we determined that the phox homology domain itself had GAP activity - a novel function in addition to its role as a binding motif for proteins or lipids.
Collapse
Affiliation(s)
- Chang S Lee
- Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | | | | | | | | | | | | |
Collapse
|
103
|
Kim JH, Kim HW, Jeon H, Suh PG, Ryu SH. Phospholipase D1 regulates cell migration in a lipase activity-independent manner. J Biol Chem 2006; 281:15747-56. [PMID: 16608858 DOI: 10.1074/jbc.m509844200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell migration, a complex biological process, requires dynamic cytoskeletal remodeling. Phospholipase D (PLD) generates phosphatidic acid, a lipid second messenger. Although PLD activity has been proposed to play a role in cytoskeletal rearrangement, the manner in which PLD participates in the rearrangement process remains obscure. In this study, by silencing endogenous PLD isozymes using small interfering RNA in HeLa cells, we demonstrate that endogenous PLD1 is required for the normal organization of the actin cytoskeleton, and, more importantly, for cell motility. PLD1 silencing in HeLa cells resulted in dramatic changes in cellular morphology, including the accumulation of stress fibers, as well as cell elongation and flattening, which appeared to be caused by an increased number of focal adhesions, which ultimately culminated in enhanced cell-substratum interactions. Accordingly, serum-induced cell migration was profoundly inhibited by PLD1-silencing. Moreover, the augmented cell substratum interaction and retarded cell migration induced by PLD1-silencing could be restored by the adding back not only of wild type, but also of lipase-inactive PLD1 into knockdown cells. Taken together, our results strongly suggest that endogenous PLD1 is a critical factor in the organization of the actin-based cytoskeleton, with regard to cell adhesion and migration. These effects of PLD1 appear to operate in a lipase activity-independent manner. We also discuss the regulation of Src family kinases by PLD1, as related to the modulation of Pyk2 and cell migration.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | | | | | | | | |
Collapse
|
104
|
Parmentier JH, Pavicevic Z, Malik KU. ANG II stimulates phospholipase D through PKCζ activation in VSMC: implications in adhesion, spreading, and hypertrophy. Am J Physiol Heart Circ Physiol 2006; 290:H46-54. [PMID: 16113073 DOI: 10.1152/ajpheart.00769.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ANG II stimulates phospholipase D (PLD) activity and growth of vascular smooth muscle cells (VSMC). The atypical protein kinase C-ζ (PKCζ) plays a central role in the regulation of cell survival and proliferation. This study was conducted to determine the relationship between ANG II-induced activation of PKCζ and PLD and their implication in VSMC adhesion, spreading, and hypertrophy. ANG II stimulated PKCζ activity with maximal activation at 30 s followed by a decline in its activity to 45% above basal at 5 min. Inhibition of PKCζ activity with a myristoylated pseudosubstrate peptide or overexpression of a kinase-inactive form of PKCζ decreased ANG II-induced PLD activity. Moreover, depletion of PKCζ with selective antisense oligonucleotides also decreased ANG II-induced PLD activity. Interaction between PLD2 and PKCζ in VSMC was detected by coimmunoprecipitation. ANG II-induced PLD activity was inhibited by the primary alcohol n-butanol but not the tertiary alcohol t-butanol. The functional significance of PKCζ and PLD2 in VSMC adhesion, spreading, and hypertrophy was investigated. Inhibition of PKCζ and PLD2 activity or expression attenuated VSMC adhesion to collagen I and ANG II-induced cell spreading and hypertrophy. These results demonstrate that ANG II-induced PLD activation is regulated by PKCζ and suggest a crucial role of PKCζ-dependent PLD2 in VSMC functions such as adhesion, spreading, and hypertrophy, which are associated with the pathogenesis of atherosclerosis and malignant hypertension.
Collapse
Affiliation(s)
- Jean-Hugues Parmentier
- Dept. of Pharmacology, Crowe Bldg., The Univ. of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
105
|
Padrón D, Tall RD, Roth MG. Phospholipase D2 is required for efficient endocytic recycling of transferrin receptors. Mol Biol Cell 2005; 17:598-606. [PMID: 16291863 PMCID: PMC1356572 DOI: 10.1091/mbc.e05-05-0389] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
RNA interference-mediated depletion of phospholipase D2 (PLD2), but not PLD1, inhibited recycling of transferrin receptors in HeLa cells, whereas the internalization rate was unaffected by depletion of either PLD. Although reduction of both PLD isoforms inhibits PLD activity stimulated by phorbol 12-myristic 13-acetate, only depletion of PLD2 decreased nonstimulated activity. Cells with reduced PLD2 accumulated a greater fraction of transferrin receptors in a perinuclear compartment that was positive for Rab11, a marker of recycling endosomes. EFA6, an exchange factor for Arf6, has been proposed to stimulate the recycling of transferrin receptors. Thus, one consequence of EFA6 overexpression would be a reduction of the internal pool of receptors. We confirmed this observation in control HeLa cells; however, overexpression of EFA6 failed to decrease the internal pool of transferrin receptors that accumulate in cells previously depleted of PLD2. These observations suggest that either PLD2 is required for a constitutive Arf6-mediated recycling pathway or in the absence of PLD2 transferrin receptors accumulate in recycling endosomes that are not responsive to overexpression of EFA6.
Collapse
Affiliation(s)
- David Padrón
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9038
| | | | | |
Collapse
|
106
|
Taylor MM, Macdonald K, Morris AJ, McMaster CR. Enhanced apoptosis through farnesol inhibition of phospholipase D signal transduction. FEBS J 2005; 272:5056-63. [PMID: 16176276 DOI: 10.1111/j.1742-4658.2005.04914.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Farnesol is a catabolite of the cholesterol biosynthetic pathway that preferentially causes apoptosis in tumorigenic cells. Phosphatidylcholine (PC), phosphatidic acid (PA), and diacylglycerol (DAG) were able to prevent induction of apoptosis by farnesol. Primary alcohol inhibition of PC catabolism by phospholipase D augmented farnesol-induced apoptosis. Exogenous PC was unable to prevent the increase in farnesol-induced apoptosis by primary alcohols, whereas DAG was protective. Farnesol-mediated apoptosis was prevented by transformation with a plasmid coding for the PA phosphatase LPP3, but not by an inactive LPP3 point mutant. Farnesol did not directly inhibit LPP3 PA phosphatase enzyme activity in an in vitro mixed micelle assay. We propose that farnesol inhibits the action of a DAG pool generated by phospholipase D signal transduction that normally activates an antiapoptotic/pro-proliferative target.
Collapse
Affiliation(s)
- Marcia M Taylor
- Atlantic Research Centre, Dalhousie University, Halifax, Canada
| | | | | | | |
Collapse
|
107
|
Uhm TB, Li T, Bao J, Chung G, Ryu DD. Analysis of phospholipase D gene from Streptoverticillium reticulum and the effect of biochemical properties of substrates on phospholipase D activity. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2005.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
108
|
Zhang Y, Kanaho Y, Frohman MA, Tsirka SE. Phospholipase D1-promoted release of tissue plasminogen activator facilitates neurite outgrowth. J Neurosci 2005; 25:1797-805. [PMID: 15716416 PMCID: PMC6725938 DOI: 10.1523/jneurosci.4850-04.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy, affecting approximately 1-2% of the population. Seizure events resulting from TLE are characterized by aberrant hippocampal mossy fiber sprouting and plastic responses that affect brain function. Seizure susceptibility is modulated by the enzyme tissue plasminogen activator (tPA), the normal physiological role of which includes promotion of synaptic reorganization in the mossy fiber pathway by initiating a proteolytic cascade that cleaves extracellular matrix components and influences neurite extension. tPA is concentrated at and selectively secreted from growth cones during excitatory events. However, the mechanisms underlying tPA release during seizure-induced synaptogenesis are not well understood. We examine here potential roles for the signaling enzyme phospholipase D1 (PLD1), which promotes regulated exocytosis in non-CNS cell types, and which we previously demonstrated increases in expression in hippocampal neurons during seizure-induced mossy fiber sprouting. We now show that overexpression of wild-type PLD1 in cultured neurons promotes tPA release and tPA-dependent neurite extension, whereas overexpression of an inactive PLD1 allele or pharmacological inhibition of PLD1 inhibits tPA release. Similarly, viral delivery of wild-type PLD1 into the hippocampus facilitates tPA secretion and mossy fiber sprouting in a seizure-inducing model, whereas the inactive PLD1 allele inhibits tPA release and elicits blunted and abnormal mossy fiber extension similar to that observed for tPA-/- mice. Together, these findings secretion and thus mossy fiber extension in the setting of elevated suggest that PLD1 functions endogenously to regulate tPA-/- neuronal stimulation, such as that seen in TLE.
Collapse
Affiliation(s)
- Yan Zhang
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
109
|
Lee JS, Kim JH, Jang IH, Kim HS, Han JM, Kazlauskas A, Yagisawa H, Suh PG, Ryu SH. Phosphatidylinositol (3,4,5)-trisphosphate specifically interacts with the phox homology domain of phospholipase D1 and stimulates its activity. J Cell Sci 2005; 118:4405-13. [PMID: 16179605 DOI: 10.1242/jcs.02564] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Phospholipase D (PLD), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays key roles in cellular signal transduction by mediating extracellular stimuli including hormones, growth factors, neurotransmitters, cytokines and extracellular matrix molecules. The molecular mechanisms by which domains regulate the activity of PLD - especially the phox homology (PX) domain - have not been fully elucidated. In this study, we have examined the properties of the PX domains of PLD1 and PLD2 in terms of phosphoinositide binding and PLD activity regulation. Interestingly, the PX domain of PLD1, but not that of PLD2, was found to specifically interact with phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3). We found that mutation of the conserved arginine at position 179 of the PLD1 PX domain to lysine or to alanine (R179A or R179K, respectively) disrupts PtdIns(3,4,5)P3 binding. In NIH-3T3 cells, the EGFP-PLD1 PX wild-type domain, but not the two mutants, localized to the plasma membrane after 5-minute treatment with platelet-derived growth factor (PDGF). The enzymatic activity of PLD1 was stimulated by adding PtdIns(3,4,5)P3 in vitro. Treatment with PDGF resulted in the significant increase of PLD1 activity and phosphorylation of the downstream extracellular signal-regulated kinases (ERKs), which was blocked by pre-treatment of HEK 293 cells with phosphoinositide 3-kinase (PI3K) inhibitor after the endogenous PLD2 had been depleted by siRNA specific for PLD2. Nevertheless, both PLD1 mutants (which cannot interact with PtdIns(3,4,5)P3) did not respond to treatment with PDGF. Moreover, PLD1 was activated in HepG2 cells stably expressing the Y40/51 mutant of PDGF receptor that is required for the binding with PI3K. Our results suggest that the PLD1 PX domain enables PLD1 to mediate signal transduction via ERK1/2 by providing a direct binding site for PtdIns(3,4,5)P3 and by activating PLD1.
Collapse
Affiliation(s)
- Jun Sung Lee
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Chen Y, Rodrick V, Yan Y, Brazill D. PldB, a putative phospholipase D homologue in Dictyostelium discoideum mediates quorum sensing during development. EUKARYOTIC CELL 2005; 4:694-702. [PMID: 15821129 PMCID: PMC1087817 DOI: 10.1128/ec.4.4.694-702.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Quorum sensing, also known as cell-density sensing in the unicellular eukaryote Dictyostelium discoideum, is required for efficient entry into the differentiation and development segment of its life cycle. Quorum sensing is accomplished by simultaneously secreting and sensing the glycoprotein Conditioned Medium Factor, or CMF. When the density of starving cells is high, CMF levels are high, which leads to aggregation followed by development. Here, we describe the role of pldB, a gene coding for a putative phospholipase D (PLD) homologue, in quorum sensing. We find that in submerged culture, adding butanol, an inhibitor of PLD-catalyzed phosphatidic acid production, allows cells to bypass the requirement for CMF mediated quorum sensing and aggregate at low cell density. Deletion of pldB mimics the presence of butanol, allowing cells to aggregate at low cell density. pldB- cells also initiate and finish aggregation rapidly. Analysis of early developmental gene expression in pldB- cells reveals that the cyclic AMP receptor cAR1 is expressed at higher levels earlier than in wild-type cells, which could explain the rapid aggregation phenotype. As would be predicted, cells overexpressing pldB are unable to aggregate even at high cell density. Adding CMF to these pldB- overexpressing cells does not rescue aggregation. Both of these phenotypes are cell autonomous, as mixing a small number of pldB- cells with wild-type cells does not cause the wild-type cells to behave like pldB- cells.
Collapse
Affiliation(s)
- Yi Chen
- Department of Biological Sciences, Hunter College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
111
|
Abdel-Raheem IT, Hide I, Yanase Y, Shigemoto-Mogami Y, Sakai N, Shirai Y, Saito N, Hamada FM, El-Mahdy NA, Elsisy AEDE, Sokar SS, Nakata Y. Protein kinase C-alpha mediates TNF release process in RBL-2H3 mast cells. Br J Pharmacol 2005; 145:415-23. [PMID: 15806111 PMCID: PMC1576159 DOI: 10.1038/sj.bjp.0706207] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
1 To clarify the mechanism of mast cell TNF secretion, especially its release process after being produced, we utilized an antiallergic drug, azelastine (4-(p-chlorobenzyl)-2-(hexahydro-1-methyl-1H-azepin-4-yl)-1-(2H)- phthalazinone), which has been reported to inhibit TNF release without affecting its production in ionomycin-stimulated RBL-2H3 cells. 2 Such inhibition was associated with the suppression of an ionomycin-induced increase in membrane-associated PKC activity rather than the suppression of Ca2+ influx, suggesting that PKC might be involved in TNF release process. 3 To see whether conventional PKC family (cPKCs) are involved, we investigated the effects of a selective cPKC inhibitor (Gö6976) and an activator (thymeleatoxin) on TNF release by adding them 1 h after cell stimulation. By this time, TNF mRNA expression had reached its maximum. Gö6976 markedly inhibited TNF release, whereas thymeleatoxin enhanced it, showing a key role of cPKC in TNF post-transcriptional process, possibly its releasing step. 4 To determine which subtype of cPKCs could be affected by azelastine, Western blotting and live imaging by confocal microscopy were conducted to detect the translocation of endogenous cPKC (alpha, betaI and betaII) and transfected GFP-tagged cPKC, respectively. Both methods clearly demonstrated that 1 microM azelastine selectively inhibits ionomycin-triggered translocation of (alpha)PKC without acting on betaI or betaIIPKC. 5 In antigen-stimulated cells, such a low concentration of azelastine did not affect either (alpha)PKC translocation or TNF release, suggesting a functional link between (alpha)PKC and the TNF-releasing step. 6 These results suggest that (alpha)PKC mediates the TNF release process and azelastine inhibits TNF release by selectively interfering with the recruitment of (alpha)PKC in the pathway activated by ionomycin in RBL-2H3 cells.
Collapse
Affiliation(s)
- Ihab T Abdel-Raheem
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut 71511, Egypt
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Author for correspondence:
| | - Yuhki Yanase
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yukari Shigemoto-Mogami
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yasuhito Shirai
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Farid M Hamada
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Cairo 12573, Egypt
| | - Nagh A El-Mahdy
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta 31512, Egypt
| | - Alaa El-Din E Elsisy
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta 31512, Egypt
| | - Samya S Sokar
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta 31512, Egypt
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
112
|
Newton PM, Messing RO. Intracellular signaling pathways that regulate behavioral responses to ethanol. Pharmacol Ther 2005; 109:227-37. [PMID: 16102840 DOI: 10.1016/j.pharmthera.2005.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Recent evidence indicates that ethanol modulates the function of specific intracellular signaling cascades, including those that contain cyclic adenosine 3', 5'-monophosphate (cAMP)-dependent protein kinase A (PKA), protein kinase C (PKC), the tyrosine kinase Fyn, and phospholipase D (PLD). In some cases, the specific components of these cascades appear to mediate the effects of ethanol, whereas other components indirectly modify responses to ethanol. Studies utilizing selective inhibitors and genetically modified mice have identified specific isoforms of proteins involved in responses to ethanol. The effects of ethanol on neuronal signaling appear restricted to certain brain regions, partly due to the restricted distribution of these proteins. This likely contributes specificity to ethanol's actions on behavior. This review summarizes recent work on ethanol and intracellular signal transduction, emphasizing studies that have identified specific molecular events that underlie behavioral responses to ethanol.
Collapse
Affiliation(s)
- P M Newton
- The Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, United States
| | | |
Collapse
|
113
|
Abstract
Ten years after the isoforms of mammalian phospholipase D (PLD), PLD1 and 2, were cloned, their roles in the brain remain speculative but several lines of evidence now implicate these enzymes in basic cell functions such as vesicular trafficking as well as in brain development. Many mitogenic factors, including neurotransmitters and growth factors, activate PLD in neurons and astrocytes. Activation of PLD downstream of protein kinase C seems to be a required step for astroglial proliferation. The characteristic disruption of the PLD signaling pathway by ethanol probably contributes to the delay of brain growth in fetal alcohol syndrome. The post-natal increase of PLD activities concurs with synapto- and myelinogenesis in the brain and PLD is apparently involved in neurite formation. In the adult and aging brain, PLD activity has antiapoptotic properties suppressing ceramide formation. Increased PLD activities in acute and chronic neurodegeneration as well as in inflammatory processes are evidently due to astrogliosis and may be associated with protective responses of tissue repair and remodeling. ARF-regulated PLD participates in receptor endocytosis as well as in exocytosis of neurotransmitters where PLD seems to favor vesicle fusion by modifications of the shape and charge of lipid membranes. Finally, PLD activities contribute free choline for the synthesis of acetylcholine in the brain. Novel tools such as RNA interference should help to further elucidate the roles of PLD isoforms in brain physiology and pathology.
Collapse
Affiliation(s)
- Jochen Klein
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, USA.
| |
Collapse
|
114
|
Chauhan V, Sheikh AM, Chauhan A, Spivack WD, Fenko MD, Malik MN. Regulation of high molecular weight bovine brain neutral protease by phospholipids in vitro. Mol Cell Biochem 2005; 272:145-9. [PMID: 16010981 DOI: 10.1007/s11010-005-6915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The activity of the heat stable, glycosylated high molecular weight bovine brain neutral protease (HMW protease) is differentially regulated by phospholipids. While phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidic acid (PA) had only marginal stimulatory effect (40-75%) on the activity of HMW protease, lysophoshatidylcholine (lysoPC) and lysophosphatidic acid (lysoPA) activated the enzyme by more than two-fold. Both lysoPC and lysoPA exhibited concentration-dependent saturation kinetics for the activation of HMW protease. Surprisingly, phosphoinositides (phosphatidylinositol, PI; phosphatidylinositol 4-phosphate, PIP; and phosphatidylinositol 4,5-bisphosphate, PIP2) modulated the activity of protease differently: activation of the enzyme was higher with PIP (90%) as compared to PI (21%), whereas PIP2 inhibited the enzyme (16%). The inhibition of the protease by PIP2 was concentration-dependent. During receptor-coupled cell activation, phospholipase A2 (PLA2) converts PC and PA to lysoPC and lysoPA, respectively; PI is converted to PIP2 by successive enzymatic phosphorylation by PI 4-kinase and PIP 5-kinase; and phospholipase C (PLC) degrades PIP2 to diacylglycerol and inositol 1,4,5-trisphosphate. Therefore, the data suggest that HMW protease may be coupled to cell signal transduction where PLA2, PI 4-kinase, PIP 5-kinase and PLC are involved.
Collapse
Affiliation(s)
- V Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | | | | | | | | | |
Collapse
|
115
|
Jeon ES, Kang YJ, Song HY, Im DS, Kim HS, Ryu SH, Kim YK, Kim JH. Sphingosylphosphorylcholine generates reactive oxygen species through calcium-, protein kinase Cδ- and phospholipase D-dependent pathways. Cell Signal 2005; 17:777-87. [PMID: 15722202 DOI: 10.1016/j.cellsig.2004.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Revised: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 02/07/2023]
Abstract
Sphingosylphosphorylcholine (SPC) is a bioactive lipid molecule involved in numerous biological processes. Treatment of MS1 pancreatic islet endothelial cells with SPC increased phospholipase D (PLD) activity in a time- and dose-dependent manner. In addition, treatment of the MS1 cells with 10 microM SPC induced stimulation of phospholipase C (PLC) activity and transient elevation of intracellular Ca2+. The SPC-induced PLD activation was prevented by pretreatment of the MS1 cells with a PLC inhibitor, U73122, and an intracellular Ca2+-chelating agent, BAPTA-AM. This suggests that PLC-dependent elevation of intracellular Ca2+ is involved in the SPC-induced activation of PLD. The SPC-dependent PLD activity was also almost completely prevented by pretreatment with pan-specific PKC inhibitors, GF109203X and RO-31-8220, and with a PKCdelta-specific inhibitor, rottlerin, but not by pretreatment with GO6976, a conventional PKC isozymes-specific inhibitor. Adenoviral overexpression of a kinase-deficient mutant of PKCdelta attenuated the SPC-induced PLD activity. These results suggest that PKCdelta plays a crucial role for the SPC-induced PLD activation. The SPC-induced PLD activation was preferentially potentiated in COS-7 cells transfected with PLD2 but not with PLD1, suggesting a specific implication of PLD2 in the SPC-induced PLD activation. SPC treatment induced phosphorylation of PLD2 in COS-7 cells, and overexpression of the kinase-deficient mutant of PKCdelta prevented the SPC-induced phosphorylation of PLD2. Furthermore, SPC treatment generated reactive oxygen species (ROS) in MS1 cells and the SPC induced production of ROS was inhibited by pretreatment with U73122, BAPTA-AM, and rottlerin. In addition, pretreatment with a PLD inhibitor 1-butanol and overexpression of a lipase-inactive mutant of PLD2 but not PLD1 attenuated the SPC-induced generation of ROS. These results suggest that PLC-, Ca2+-, PKCdelta-, and PLD2-dependent pathways are essentially required for the SPC induced ROS generation.
Collapse
Affiliation(s)
- Eun Su Jeon
- Department of Physiology and the Medical Research Institute, College of Medicine, Pusan National University, 1-Ga, Ami-Dong, Suh-Gu, Busan 602-739, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Kim JH, Kim JH, Ohba M, Suh PG, Ryu SH. Novel functions of the phospholipase D2-Phox homology domain in protein kinase Czeta activation. Mol Cell Biol 2005; 25:3194-208. [PMID: 15798205 PMCID: PMC1069590 DOI: 10.1128/mcb.25.8.3194-3208.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It has been established that protein kinase Czeta (PKCzeta) participates in diverse signaling pathways and cellular functions in a wide variety of cells, exhibiting properties relevant to cellular survival and proliferation. Currently, however, the regulation mechanism of PKCzeta remains elusive. Here, for the first time, we determine that phospholipase D2 (PLD2) enhances PKCzeta activity through direct interaction in a lipase activity-independent manner. This interaction of the PLD2-Phox homology (PX) domain with the PKCzeta-kinase domain also induces the activation loop phosphorylation of PKCzeta and downstream signal stimulation, as measured by p70 S6 kinase phosphorylation. Furthermore, only the PLD2-PX domain directly stimulates PKCzeta activity in vitro, and it is necessary for the formation of the ternary complex with phosphoinositide-dependent kinase 1 and PKCzeta. The mutant that substitutes the triple lysine residues (Lys101, Lys102, and Lys103) within the PLD2-PX domain with alanine abolishes interaction with the PKCzeta-kinase domain and activation of PKCzeta. Moreover, breast cancer cell viability is significantly affected by PLD2 silencing. Taken together, these results suggest that the PLD2-mediated PKCzeta activation is induced by its PX domain performing both direct activation of PKCzeta and assistance of activation loop phosphorylation. Furthermore, we find it is an important factor in the survival of breast cancer cells.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
117
|
Di Fulvio M, Gomez-Cambronero J. Phospholipase D (PLD) gene expression in human neutrophils and HL-60 differentiation. J Leukoc Biol 2005; 77:999-1007. [PMID: 15774548 DOI: 10.1189/jlb.1104684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human neutrophils exhibit a regulated phospholipase D (PLD) activity that can be measured biochemically in vitro. However, the precise expression pattern of PLD isoforms and their specific biological role(s) are not well understood. Neutrophil mRNA is intrinsically difficult to isolate as a result of the extremely high content of lytic enzymes in the cell's lysosomal granules. Reverse transcription coupled to polymerase chain reaction indicated that pure populations of human neutrophils had the CD16b(+)/CD115(-)/CD20(-)/CD3zeta(-)/interleukin-5 receptor alpha(-) phenotype. These cells expressed the following splice variants of the PLD1 isoform: PLD1a, PLD1b, PLD1a2, and PLD1b2. As for the PLD2 isoform, neutrophils expressed the PLD2a but not the PLD2b mRNA variant. The relative amount of PLD1/PLD2 transcripts exists in an approximate 4:1 ratio. The expression of PLD isoforms varies during granulocytic differentiation, as demonstrated in the promyelocytic leukemia HL-60 cell line. Further, the pattern of mRNA expression is dependent on the differentiation-inducing agent, 1.25% dimethyl sulfoxide causes a dramatic increase in PLD2a and PLD1b transcripts, and 300 nM all-trans-retinoic acid induced PLD1a expression. These results demonstrate for the first time that human neutrophils express five PLD transcripts and that the PLD genes undergo qualitative changes in transcription regulation during granulocytic differentiation.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Department of Physiology and Biophysics, Wright State University, Dayton, OH 45435, USA
| | | |
Collapse
|
118
|
Chae YC, Lee S, Lee HY, Heo K, Kim JH, Kim JH, Suh PG, Ryu SH. Inhibition of Muscarinic Receptor-linked Phospholipase D Activation by Association with Tubulin. J Biol Chem 2005; 280:3723-30. [PMID: 15548524 DOI: 10.1074/jbc.m406987200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phospholipase D (PLD) is considered a key enzyme in the transmission signals from various receptors including muscarinic receptors. PLD activation is a rapid and transient process, but a negative regulator has not been found that inhibits signal-dependent PLD activation. Here, for the first time, we report that tubulin binding to PLD2 is an inhibition mechanism for muscarinic receptor-linked PLD2 activation. Tubulin was identified in an immunoprecipitated PLD2 complex from COS-7 cells by peptide mass fingerprinting. The direct interaction between PLD2 and tubulin was found to be mediated by a specific region of PLD2 (amino acids 476-612). PLD2 was potently inhibited (IC50 <10 nM) by tubulin binding in vitro. In cells, the interaction between PLD2 and tubulin was increased by the microtubule disrupting agent nocodazole and reduced by the microtubule stabilizing agent Taxol. Moreover, PLD2 activity was found to be inversely correlated with the level of monomeric tubulin. In addition, we found that interaction with and the inhibition of PLD2 by monomeric tubulin is important for the muscarinic receptor-linked PLD signaling pathway. Interaction between PLD2 and tubulin was increased only after 1-2 min of carbachol stimulation when carbachol-stimulated PLD2 activity was decreased. The expression of the tubulin binding region of PLD2 blocked the later decrease in carbachol-induced PLD activity by masking tubulin binding. Taken together, these results indicate that an increase in local membrane monomeric tubulin concentration inhibits PLD2 activity, and provides a novel mechanism for the inhibition of muscarinic receptor-induced PLD2 activation by interaction with tubulin.
Collapse
Affiliation(s)
- Young Chan Chae
- Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Jin JK, Kim NH, Min DS, Kim JI, Choi JK, Jeong BH, Choi SI, Choi EK, Carp RI, Kim YS. Increased expression of phospholipase D1 in the brains of scrapie-infected mice. J Neurochem 2005; 92:452-61. [PMID: 15659216 DOI: 10.1111/j.1471-4159.2004.02881.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction and free radical-induced oxidative damage are critical factors in the pathogenesis of neurodegenerative diseases. Recently, phospholipid breakdown by phospholipase D (PLD) has been recognized as an important signalling pathway in the nervous system. Here, we examined the expression of PLD and alteration of membrane phospholipid in scrapie brain. We have found that protein expression and enzyme activity of PLD1 were increased in scrapie brains compared with controls; in particular, there was an increase in the mitochondrial fraction. PLD1 in mitochondrial membranes from scrapie brains, but not from control brains, was tyrosine phosphorylated. Furthermore, the concentration of mitochondrial phospholipids such as phosphatidylcholine and phosphatidylethanolamine was increased and the content of phosphatidic acid, a product of PLD activity, was up-regulated in the mitochondrial membrane fractions. Immunohistochemically, PLD1 immunoreactivity was significantly increased in activated astrocytes in both cerebral cortex and hippocampus of scrapie brains. Taken together, these results suggest that PLD activation might induce alterations in mitochondrial lipids and, in turn, mediate mitochondrial dysfunction in the brains of scrapie-infected mice.
Collapse
Affiliation(s)
- Jae-Kwang Jin
- Ilsong Institute of Life Science, Hallym University, Ilsong Building, Kwanyang-dong, 1605-4 Dongan-gu, Anyang, Kyonggi-do 431-060, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Cristea IM, Degli Esposti M. Membrane lipids and cell death: an overview. Chem Phys Lipids 2004; 129:133-60. [PMID: 15081856 DOI: 10.1016/j.chemphyslip.2004.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 02/05/2004] [Accepted: 02/05/2004] [Indexed: 01/17/2023]
Abstract
In this article we overview major aspects of membrane lipids in the complex area of cell death, comprising apoptosis and various forms of programmed cell death. We have focused here on glycerophospholipids, the major components of cellular membranes. In particular, we present a detailed appraisal of mitochondrial lipids that attract increasing interest in the field of cell death, while the knowledge of their re-modelling and traffic remains limited. It is hoped that this review will stimulate further studies by lipid experts to fully elucidate various aspects of membrane lipid homeostasis that are discussed here. These studies will undoubtedly reveal new and important connections with the established players of cell death and their action in promoting or blocking membrane alteration of mitochondria and other organelles. We conclude that the new dynamic era of cell death research will pave the way for a better understanding of the 'chemistry of apoptosis'.
Collapse
Affiliation(s)
- Ileana M Cristea
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
121
|
Stahelin RV, Ananthanarayanan B, Blatner NR, Singh S, Bruzik KS, Murray D, Cho W. Mechanism of Membrane Binding of the Phospholipase D1 PX Domain. J Biol Chem 2004; 279:54918-26. [PMID: 15475361 DOI: 10.1074/jbc.m407798200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phospholipases D (PLD), which catalyze the hydrolysis of phosphatidylcholine to phosphatidic acid (PA), have been implicated in various cell signaling and vesicle trafficking processes. Mammalian PLD1 contains two different membrane-targeting domains, pleckstrin homology and Phox homology (PX) domains, but the precise roles of these domains in the membrane binding and activation of PLD1 are still unclear. To elucidate the role of the PX domain in PLD1 activation, we constructed a structural model of the PX domain by homology modeling and measured the membrane binding of this domain and selected mutants by surface plasmon resonance analysis. The PLD1 PX domain was found to have high phosphoinositide specificity, i.e. phosphatidylinositol 3,4,5-trisphosphate (PtdIns-(3,4,5)P(3)) >> phosphatidylinositol 3-phosphate > phosphatidylinositol 5-phosphate >> other phosphoinositides. The PtdIns(3,4,5)P(3) binding was facilitated by the cationic residues (Lys(119), Lys(121), and Arg(179)) in the putative binding pocket. Consistent with the model structure that suggests the presence of a second lipid-binding pocket, vesicle binding studies indicated that the PLD1 PX domain could also bind with moderate affinity to PA, phosphatidylserine, and other anionic lipids, which were mediated by a cluster of cationic residues in the secondary binding site. Simultaneous occupancy of both binding pockets synergistically increases membrane affinity of the PX domain. Electrostatic potential calculations suggest that a highly positive potential near the secondary binding site may facilitate the initial adsorption of the domain to the anionic membrane, which is followed by the binding of PtdIns(3,4,5)P(3) to its binding pocket. Collectively, our results suggest that the interaction of the PLD1 PX domain with PtdIns(3,4,5)P(3) and/or PA (or phosphatidylserine) may be an important factor in the spatiotemporal regulation and activation of PLD1.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Chemistry, University of Illinois at Chicago, Illinois 60607. USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Bader MF, Doussau F, Chasserot-Golaz S, Vitale N, Gasman S. Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:37-49. [PMID: 15590054 DOI: 10.1016/j.bbamcr.2004.09.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 09/22/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Release of neurotransmitters and hormones occurs by calcium-regulated exocytosis, a process that shares many similarities in neurons and neuroendocrine cells. Exocytosis is confined to specific regions in the plasma membrane, where actin remodelling, lipid modifications and protein-protein interactions take place to mediate vesicle/granule docking, priming and fusion. The spatial and temporal coordination of the various players to form a "fast and furious" machinery for secretion remain poorly understood. ARF and Rho GTPases play a central role in coupling actin dynamics to membrane trafficking events in eukaryotic cells. Here, we review the role of Rho and ARF GTPases in supplying actin and lipid structures required for synaptic vesicle and secretory granule exocytosis. Their possible functional interplay may provide the molecular cues for efficient and localized exocytotic fusion.
Collapse
Affiliation(s)
- Marie-France Bader
- CNRS UPR-2356 Neurotransmission and Sécrétion Neuroendocrine INSERM, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | | | | | |
Collapse
|
123
|
Riebeling C, Müller C, Geilen CC. Expression and regulation of phospholipase D isoenzymes in human melanoma cells and primary melanocytes. Melanoma Res 2004; 13:555-62. [PMID: 14646617 DOI: 10.1097/00008390-200312000-00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phospholipase D (PLD) is a highly regulated enzyme involved in lipid-mediated signal transduction processes affecting vesicular trafficking and cytoskeletal reorganization. It is regulated by protein kinase C, adenosine diphosphate (ADP)-ribosylation factors and Rho family proteins, and both protein kinase C and Rho family proteins have been implicated in the metastatic potential of melanoma. We analysed PLD in four human melanoma cell lines and in primary human melanocytes. Melanoma cell lines showed phosphatidylcholine-hydrolysing, phosphatidylinositol 4,5-bisphosphate-dependent PLD activity, which was activated by phorbol ester and a non-hydrolysable guanosine triphosphate (GTP) analogue in a dose-dependent and synergistic manner, whereas primary melanocytes exhibited only low PLD activity compared with the melanoma cell lines. As determined by reverse transcription polymerase chain reaction, both splicing variants of PLD1, PLD1a and PLD1b, and the isoenzyme PLD2, are expressed in melanoma cells and melanocytes. Western blot analysis showed that PLD1 expression was low in primary melanocytes in contrast to melanoma cells, which is in agreement with our finding of low activity. Interestingly, Rho protein mRNA was elevated in all melanoma cell lines. We conclude that in human melanoma cells, the PLD activity that is stimulated by phorbol ester requires ADP-ribosylation factor, protein kinase C and Rho proteins for full activity, and most probably represents the isoenzyme PLD1.
Collapse
Affiliation(s)
- Christian Riebeling
- Department of Dermatology, University Medical Center Benjamin Franklin, The Free University of Berlin, Germany
| | | | | |
Collapse
|
124
|
Sundaram M, Cook HW, Byers DM. The MARCKS family of phospholipid binding proteins: regulation of phospholipase D and other cellular components. Biochem Cell Biol 2004; 82:191-200. [PMID: 15052337 DOI: 10.1139/o03-087] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP) are essential proteins that are implicated in coordination of membrane-cytoskeletal signalling events, such as cell adhesion, migration, secretion, and phagocytosis in a variety of cell types. The most prominent structural feature of MARCKS and MRP is a central basic effector domain (ED) that binds F-actin, Ca2+-calmodulin, and acidic phospholipids; phosphorylation of key serine residues within the ED by protein kinase C (PKC) prevents the above interactions. While the precise roles of MARCKS and MRP have not been established, recent attention has focussed on the high affinity of the MARCKS ED for phosphatidylinositol 4,5-bisphosphate (PIP2), and a model has emerged in which calmodulin- or PKC-mediated regulation of these proteins at specific membrane sites could in turn control spatial availability of PIP2. The present review summarizes recent progress in this area and discusses how the above model might explain a role for MARCKS and MRP in activation of phospholipase D and other PIP2-dependent cellular processes.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
125
|
Abstract
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.
Collapse
Affiliation(s)
- Mark McDermott
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7090, USA
| | | | | |
Collapse
|
126
|
Aradóttir S, Seidl S, Wurst FM, Jönsson BAG, Alling C. Phosphatidylethanol in Human Organs and Blood: A Study on Autopsy Material and Influences by Storage Conditions. Alcohol Clin Exp Res 2004; 28:1718-23. [PMID: 15547459 DOI: 10.1097/01.alc.0000145687.41646.e5] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Phosphatidylethanol (PEth) is an abnormal phospholipid that is formed and accumulated in mammalian cells that have been exposed to ethanol. PEth has been proposed as a marker of ethanol abuse. This study was conducted to investigate the concentration of PEth in blood and organs obtained during the autopsy of alcoholics. In addition, we performed experiments on rat tissues and human blood to evaluate the effect of various storage conditions on PEth concentrations. METHODS Human tissues and blood from alcoholics and controls were obtained at autopsy and frozen at -20 degrees C until extraction. Blood from healthy donors was incubated with ethanol for 24 hr and thereafter either extracted directly or stored at room temperature, stored at 4 degrees C, frozen at -20 degrees C, or frozen in liquid nitrogen and stored at -80 degrees C before extraction. Rats were given intraperitoneal injections of ethanol and then killed, either while still intoxicated or when sober. Rat organs were homogenized and extracted directly, after a period of storage, and/or after freezing at -20 degrees C. PEth concentration was analyzed using HPLC and verified by mass spectrometry. RESULTS In all rat organs studied, PEth was formed during freezing at -20 degrees C with ethanol present. PEth concentrations of 9 to 205 mumol/liter were observed in the blood obtained at autopsy. The highest value was found in the case with the highest blood alcohol concentration (114 mmol/liter) at the time of death. In the experiments on human blood stored with ethanol present, PEth concentrations were not affected after 72 hr at 4 degrees C or after freezing in liquid nitrogen and storage at -80 degrees C for up to 144 hr but were slightly elevated after 24 hr at room temperature and at -20 degrees C. PEth was found in all organs obtained from the cadavers of alcoholics. Storage of organs at 4 degrees C for 24 hr with ethanol present had no effect on the PEth concentration. The PEth concentration was unaffected when no ethanol was present at the time of freezing. CONCLUSIONS The rat experiments indicated that the very high PEth concentrations found in the organs of the alcoholics were probably largely formed while the organs were frozen at -20 degrees C. Our data suggest that tissue material from bodies that were exposed to ethanol must be stored properly to obtain reliable results from subsequent analysis for PEth. Tissue should not be frozen at -20 degrees C but instead stored refrigerated until extraction, preferably within hours of autopsy, or frozen in liquid nitrogen and stored at -80 degrees C. Blood samples that contain ethanol can be stored refrigerated for up to 72 hr or frozen in liquid nitrogen and stored at -80 degrees C without affecting PEth levels.
Collapse
Affiliation(s)
- Steina Aradóttir
- Department of Medical Neurochemistry, Institute of Laboratory Medicine, Lund University, S-221 85 Lund, Sweden.
| | | | | | | | | |
Collapse
|
127
|
Choi WS, Hiragun T, Lee JH, Kim YM, Kim HP, Chahdi A, Her E, Han JW, Beaven MA. Activation of RBL-2H3 mast cells is dependent on tyrosine phosphorylation of phospholipase D2 by Fyn and Fgr. Mol Cell Biol 2004; 24:6980-92. [PMID: 15282299 PMCID: PMC479740 DOI: 10.1128/mcb.24.16.6980-6992.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both phospholipase D1 (PLD1) and PLD2 regulate degranulation when RBL-2H3 cells are stimulated via the immunoglobulin E receptor, Fc epsilon RI. However, the activation mechanism for PLD2 is unclear. As reported here, PLD2 but not PLD1 is phosphorylated through the Src kinases, Fyn and Fgr, and this phosphorylation appears to regulate PLD2 activation and degranulation. For example, only hemagglutinin-tagged PLD2 was tyrosine phosphorylated in antigen-stimulated cells that had been made to express HA-PLD1 and HA-PLD2. This phosphorylation was blocked by a Src kinase inhibitor or by small interfering RNAs directed against Fyn and Fgr and was enhanced by overexpression of Fyn and Fgr but not by other Src kinases. The phosphorylation and activity of PLD2 were further enhanced by the tyrosine phosphatase inhibitor, Na(3)VO(4). Mutation of PLD2 at tyrosines 11, 14, 165, or 470 partially impaired, and mutation of all tyrosines blocked, PLD2 phosphorylation and activation, although two of these mutations were detrimental to PLD2 function. PLD2 phosphorylation preceded degranulation, both events were equally sensitive to inhibition of Src kinase activity, and both were enhanced by coexpression of PLD2 and the Src kinases. The findings provide the first description of a mechanism for activation of PLD2 in a physiological setting and of a role for Fgr in Fc epsilon RI-mediated signaling.
Collapse
Affiliation(s)
- Wahn Soo Choi
- Laboratory of Molecular Immunology, National, Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Hitomi T, Zhang J, Nicoletti LM, Grodzki ACG, Jamur MC, Oliver C, Siraganian RP. Phospholipase D1 regulates high-affinity IgE receptor-induced mast cell degranulation. Blood 2004; 104:4122-8. [PMID: 15339843 DOI: 10.1182/blood-2004-06-2091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of phospholipase D (PLD) in FcepsilonRI signaling, the wild-type or the catalytically inactive forms of PLD1 or PLD2 were stably overexpressed in RBL-2H3 mast cells. FcepsilonRI stimulation resulted in the activation of both PLD1 and PLD2. However, PLD1 was the source of most of the receptor-induced PLD activity. There was enhanced FcepsilonRI-induced degranulation only in cells that overexpressed the catalytically inactive PLD1. This dominant-negative PLD1 enhanced FcepsilonRI-induced tyrosine phosphorylations of early signaling molecules such as the receptor subunits, Syk and phospholipase C-gamma which resulted in faster release of Ca(2+) from intracellular sources. Therefore, PLD1 negatively regulates signals upstream of the Ca(2+) response. However, FcepsilonRI-induced PLD activation required Syk and was downstream of the Ca(2+)response, suggesting that basal PLD1 activity rather than that activated by cell stimulation controlled these early signaling events. Dominant-negative PLD1 reduced the basal phosphatidic acid formation in unstimulated cells, which was accompanied by an increase in FcepsilonRI within the lipid rafts. These results indicate that constitutive basal PLD1 activity by regulating phosphatidic acid formation controls the early signals initiated by FcepsilonRI aggregation that lead to mast cell degranulation.
Collapse
Affiliation(s)
- Tomohiro Hitomi
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
Burelout C, Thibault N, Levasseur S, Simard S, Naccache PH, Bourgoin SG. Prostaglandin E2 inhibits the phospholipase D pathway stimulated by formyl-methionyl-leucyl-phenylalanine in human neutrophils. Involvement of EP2 receptors and phosphatidylinositol 3-kinase gamma. Mol Pharmacol 2004; 66:293-301. [PMID: 15266020 DOI: 10.1124/mol.66.2.293] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)), originally discovered as a pro-inflammatory mediator, also inhibits several chemoattractant-elicited neutrophil functions, including adhesion, secretion of cytotoxic enzymes, production of superoxide anions, and chemotaxis. In this study, we have examined the effects of PGE(2) and prostaglandin E (EP) receptor-selective agonists/antagonists on several steps of the formyl-methionyl-leucyl-phenylalanine (fMLP)-induced phospholipase D (PLD) activation pathway in human neutrophils to elucidate the PGE(2) inhibitory mechanism. PGE(2) and EP(2) receptor agonists inhibited the stimulation of the activity of PLD induced by fMLP in a concentration-dependent manner. The fMLP-stimulated translocation to membranes of protein kinase C alpha, Rho, and Arf GTPases was diminished in the presence of PGE(2) or EP(2) agonists. Moreover, PGE(2) and EP(2) agonists decreased the activation of phosphatidylinositol 3-kinase gamma (PI3Kgamma) and Tec kinases as well as the tyrosine phosphorylation of proteins stimulated by fMLP. These data provide strong evidence that 1) the inhibitory effects of PGE(2) on the fMLP-induced PLD activation pathway were mediated via EP(2) receptors and that 2) the suppression of PI3Kgamma activity was the crucial step in the EP(2)-mediated inhibition of the fMLP-induced signaling cascade.
Collapse
Affiliation(s)
- Chantal Burelout
- Centre de Recherche en Rhumatologie-Immunologie, Pavillon CHUL, Canada
| | | | | | | | | | | |
Collapse
|
130
|
Kim SY, Min DS, Choi JS, Choi YS, Park HJ, Sung KW, Kim J, Lee MY. Differential Expression of Phospholipase D Isozymes in the Hippocampus Following Kainic Acid-Induced Seizures. J Neuropathol Exp Neurol 2004; 63:812-20. [PMID: 15330336 DOI: 10.1093/jnen/63.8.812] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the pathophysiological role of phospholipase D (PLD)-mediated signaling, changes in the expression of the PLD isozymes PLD1 and PLD2 were investigated in the rat kainic acid (KA) model of human temporal lobe epilepsy. Western blot analysis showed a significant increase in the expression of PLD1 and PLD2 in the postictal hippocampus. PLD1 immunoreactivity increased preferentially in the CA3 and CA1 regions, where pyramidal neurons are susceptible to temporal lobe epilepsy. Experiments employing double immunofluorescence revealed that the cells expressing PLD1 were GFAP-expressing reactive astrocytes. By contrast, PLD2 immunoreactivity increased strikingly in infrapyramidal, but not in suprapyramidal granule cells of the postictal dentate gyrus, fitting well with results of the PLD activity assay. Considering that PLD belongs to a key signaling pathway, this result suggests that changes in granule cell activity in the dentate gyrus after seizures occurs specifically between the supra- and infrapyramidal blades. In addition, enhanced immunoreactivity of PLD2 was observed in the reactive astrocytes of the CA1, CA3, and hilar subregions, but its temporal pattern is different from that of PLD1. Taken together, our results suggest that PLD1 and PLD2 exercise their unique pathophysiological functions in the rat hippocampus after KA-induced seizures.
Collapse
Affiliation(s)
- Seong Yun Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Rábano M, Peña A, Brizuela L, Macarulla JM, Gómez-Muñoz A, Trueba M. Angiotensin II-stimulated cortisol secretion is mediated by phospholipase D. Mol Cell Endocrinol 2004; 222:9-20. [PMID: 15249121 DOI: 10.1016/j.mce.2004.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
Angiotensin II (Ang-II) regulates a variety of cellular functions including cortisol secretion. In the present report, we demonstrate that Ang-II activates phospholipase D (PLD) in zona fasciculata (ZF) cells of bovine adrenal glands, and that this effect is associated to the stimulation of cortisol secretion by this hormone. PLD activation was dependent upon extracellular Ca2+, and was blocked by inhibition of protein kinase C (PKC). Using the reverse transcription-polymerase chain reaction technique, we demonstrated that ZF cells express both PLD-1 and PLD-2 isozymes. Primary alcohols, which attenuate the formation of phosphatidate (the product of PLD), and cell-permeable ceramides, which inhibit PLD potently, blocked Ang-II-stimulated cortisol secretion. Furthermore, propranolol or chlorpromazine, which are potent inhibitors of phosphatidate phosphohydrolase (PAP) (the enzyme that produces diacylglycerol from phosphatidate), also blocked cortisol secretion. These data suggest that the PLD/PAP pathway plays an important role in the regulation of cortisol secretion by Ang-II in ZF cells.
Collapse
Affiliation(s)
- Miriam Rábano
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
132
|
Tomassen SFB, van der Wijk T, de Jonge HR, Tilly BC. Activation of phospholipase D by osmotic cell swelling. FEBS Lett 2004; 566:287-90. [PMID: 15147910 DOI: 10.1016/j.febslet.2004.04.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 03/31/2004] [Accepted: 04/20/2004] [Indexed: 11/22/2022]
Abstract
In response to osmotic cell swelling, Intestine 407 cells react with a rapid and transient activation of phospholipase D (PLD). To investigate the role of PLD during the regulatory volume decrease, cells were treated with 1-butanol resulting in a depletion of PLD substrates. Activation of volume-regulated anion channels, but not the cell swelling-induced release of taurine, was largely inhibited in the presence of low concentrations of 1-butanol. In addition, hypotonicity-induced exocytosis, ATP release and subsequent endocytosis were found to be largely abrogated. The results support a model of cell volume regulation in which PLD plays an essential role in the cell swelling-induced vesicle cycling and in the activation of volume-sensitive anion channels.
Collapse
Affiliation(s)
- Sebastian F B Tomassen
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
133
|
Becker KP, Hannun YA. Isoenzyme-specific Translocation of Protein Kinase C (PKC)βII and not PKCβI to a Juxtanuclear Subset of Recycling Endosomes. J Biol Chem 2004; 279:28251-6. [PMID: 15067001 DOI: 10.1074/jbc.m400770200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elucidation of isoenzyme-specific functions of individual protein kinase C (PKC) isoenzymes has emerged as an important goal in the study of this family of kinases, but this task has been complicated by modest substrate specificity and high homology among the individual members of each PKC subfamily. The classical PKCbetaI and PKCbetaII isoenzymes provide a unique opportunity because they are the alternatively spliced products of the beta gene and are 100% identical except for the last 50 of 52 amino acids. In this study, it is shown that green fluorescent protein-tagged PKCbetaII and not PKCbetaI translocates to a recently described juxtanuclear site of localization for PKCalpha and PKCbetaII isoenzymes that arises with sustained stimulation of PKC. Mechanistically, translocation of PKCbetaII to the juxtanuclear region required kinase activity. PKCbetaII, but not PKCbetaI, was found to activate phospholipase D within this time frame. Inhibitors of phospholipase D (1-butanol and a dominant negative construct) prevented the translocation of PKCbetaII to the juxtanuclear region but not to the plasma membrane, thus demonstrating a role for phospholipase D in the juxtanuclear translocation of PKCbetaII. Taken together, these results define specific biochemical and cellular actions of PKCbetaII when compared with PKCbetaI.
Collapse
Affiliation(s)
- Kevin P Becker
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
134
|
Abstract
Proteins that make, consume, and bind to phosphoinositides are important for constitutive membrane traffic. Different phosphoinositides are concentrated in different parts of the central vacuolar pathway, with phosphatidylinositol 4-phosphate predominate on Golgi, phosphatidylinositol 4,5-bisphosphate predominate at the plasma membrane, phosphatidylinositol 3-phosphate the major phosphoinositide on early endosomes, and phosphatidylinositol 3,5-bisphosphate found on late endocytic organelles. This spatial segregation may be the mechanism by which the direction of membrane traffic is controlled. Phosphoinositides increase the affinity of membranes for peripheral membrane proteins that function for sorting protein cargo or for the docking and fusion of transport vesicles. This implies that constitutive membrane traffic may be regulated by the mechanisms that control the activity of the enzymes that produce and consume phosphoinositides. Although the lipid kinases and phosphatases that function in constitutive membrane traffic are beginning to be identified, their regulation is poorly understood.
Collapse
Affiliation(s)
- Michael G Roth
- Dept. of Biochemistry, Univ. of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA.
| |
Collapse
|
135
|
Hughes WE, Elgundi Z, Huang P, Frohman MA, Biden TJ. Phospholipase D1 Regulates Secretagogue-stimulated Insulin Release in Pancreatic β-Cells. J Biol Chem 2004; 279:27534-41. [PMID: 15087463 DOI: 10.1074/jbc.m403012200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) has been strongly implicated in the regulation of Golgi trafficking as well as endocytosis and exocytosis. Our aim was to investigate the role of PLD in regulating the biphasic exocytosis of insulin from pancreatic beta-cells that is essential for mammalian glucose homeostasis. We observed that PLD activity in MIN6 pancreatic beta-cells is closely coupled to secretion. Cellular PLD activity was increased in response to a variety of secretagogues including the nutrient glucose and the cholinergic receptor agonist carbamoylcholine. Conversely, pharmacological or hormonal inhibition of stimulated secretion reduced PLD activity. Most importantly, blockade of PLD-catalyzed phosphatidic acid formation using butan-1-ol inhibited insulin secretion in both MIN6 cells and isolated pancreatic islets. It was further established that PLD activity was required for both the first and the second phase of glucose-stimulated insulin release, suggesting a role in the very distal steps of exocytosis, beyond granule recruitment into a readily releasable pool. Visualization of granules using green fluorescent protein-phogrin confirmed a requirement for PLD prior to granule fusion with the plasma membrane. PLD1 was shown to be the predominant isoform in MIN6 cells, and it was located at least partially on insulin granules. Overexpression of wild-type or a dominant negative catalytically inactive mutant of PLD1 augmented or inhibited secretagogue-stimulated secretion, respectively. The results suggest that phosphatidic acid formation on the granule membrane by PLD1 is essential for the regulated secretion of insulin from pancreatic beta-cells.
Collapse
Affiliation(s)
- William E Hughes
- Cell Signalling Group, The Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.
| | | | | | | | | |
Collapse
|
136
|
Rujano MA, Pina P, Servitja JM, Ahumada AM, Picatoste F, Farrés J, Sabrià J. Retinoic acid-induced differentiation into astrocytes and glutamatergic neurons is associated with expression of functional and activable phospholipase D. Biochem Biophys Res Commun 2004; 316:387-92. [PMID: 15020229 DOI: 10.1016/j.bbrc.2004.02.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activity in mammalian cells has been associated with cell proliferation and differentiation. Here, we investigated the expression of PLD during differentiation of pluripotent embryonal carcinoma cells (P19) into astrocytes and neurons. Retinoic acid (RA)-induced differentiation increased PLD1 and PLD2 mRNA levels and PLD activity that was responsive to phorbol myristate acetate. Various agonists of membrane receptors activated PLD in RA-differentiated cells. Glutamate was a potent activator of PLD in neurons but not in astrocytes, whereas noradrenaline and carbachol increased PLD activity only in astrocytes. P19 neurons but not astrocytes released glutamate in response to a depolarizing stimulus, confirming the glutamatergic phenotype of these neurons. These results indicate upregulation of PLD gene expression associated with RA-induced neural differentiation.
Collapse
Affiliation(s)
- María A Rujano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | | | | | | | | | | | | |
Collapse
|
137
|
Kageyama A, Oka M, Okada T, Nakamura SI, Ueyama T, Saito N, Hearing VJ, Ichihashi M, Nishigori C. Down-regulation of melanogenesis by phospholipase D2 through ubiquitin proteasome-mediated degradation of tyrosinase. J Biol Chem 2004; 279:27774-80. [PMID: 15067002 DOI: 10.1074/jbc.m401786200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of phospholipase D (PLD) in the regulation of melanogenesis was examined. Treatment of B16 mouse melanoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in the activation of PLD and a decrease in melanin content. 1-Butanol, but not 2-butanol, completely blocked the TPA-induced inhibition of melanogenesis, suggesting the involvement of PLD in this event. Reverse transcription-PCR and immunoblot analyses revealed the existence of both PLD isozymes, PLD1 and PLD2, in B16 cells. When PLD1 or PLD2 was introduced into those cells by an adenoviral gene-transfer technique, both PLD1 and PLD2 were activated by TPA. When PLD1 and PLD2 were overexpressed, PLD2 potently caused a decrease in melanin content, whereas the effect of PLD1 expression on melanin content was minimal. Over-expression of PLD2 itself did not affect protein kinase C activity, as assessed by the intracellular distribution and levels of expression of each isoform expressed in B16 cells. The effects of TPA on the down-regulation of basal or alpha-melanocyte-stimulating hormone-enhanced melanogenesis were almost completely blocked by expressing a lipase activity-negative mutant, LN-PLD2, but not by LN-PLD1. Further, the PLD2-induced decrease in melanin content was accompanied by a decrease in the amount and activity of tyrosinase, a key enzyme in melanogenesis, whereas the mRNA level of tyrosinase was unchanged by the over-expression of PLD2. Moreover, treatment with proteasome inhibitors completely blocked the PLD2-induced down-regulation of melanogenesis. Taken together, the present results indicate that the TPA-induced down-regulation of melanogenesis is mediated by PLD2 but not by PLD1 through the ubiquitin proteasome-mediated degradation of tyrosinase. This suggests that PLD2 may play an important role in regulating pigmentation in vivo.
Collapse
Affiliation(s)
- Akiko Kageyama
- Division of Dermatology, Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Lee HY, Park JB, Jang IH, Chae YC, Kim JH, Kim IS, Suh PG, Ryu SH. Munc-18-1 Inhibits Phospholipase D Activity by Direct Interaction in an Epidermal Growth Factor-reversible Manner. J Biol Chem 2004; 279:16339-48. [PMID: 14744865 DOI: 10.1074/jbc.m310976200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phospholipase D (PLD) has been reported to be a key enzyme for epidermal growth factor (EGF)-induced cellular signaling, however, the regulatory mechanism of PLD is still unclear. In this report, we found that Munc-18-1 is a potent negative regulator of PLD in the basal state and that its inhibition is abolished by EGF stimulation. We investigated PLD-binding proteins obtained from rat brain extract, and identified a 67-kDa protein as Munc-18-1 by peptide-mass finger-printing. The direct association between PLD and Munc-18-1 was confirmed by in vitro binding analysis using the purified proteins, and their binding sites were identified as the phox homology domain of PLD and multiple sites of Munc-18-1. PLD activity was potently inhibited by Munc-18-1 in vitro (IC50 = 2-5 nm), and the cotransfection of COS-7 cells with Munc-18-1 and PLD inhibited basal PLD activity in vivo. In the basal state, Munc-18-1 coprecipitated with PLD and colocalized with PLD2 at the plasma membrane of COS-7 cells. EGF treatment triggered the dissociation of Munc-18-1 from PLD when PLD was activated by EGF. The dissociation of the endogenous interaction between Munc-18-1 and PLD, and the activation of PLD by EGF were also observed in primary cultured chromaffin cells. These results suggest that Munc-18-1 is a potent negative regulator of basal PLD activity and that EGF stimulation abolishes this interaction.
Collapse
Affiliation(s)
- Hye Young Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784 Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Cohen G, Rubinstein S, Gur Y, Breitbart H. Crosstalk between protein kinase A and C regulates phospholipase D and F-actin formation during sperm capacitation. Dev Biol 2004; 267:230-41. [PMID: 14975729 DOI: 10.1016/j.ydbio.2003.10.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2003] [Revised: 10/01/2003] [Accepted: 10/22/2003] [Indexed: 11/18/2022]
Abstract
Mammalian spermatozoa should reside in the female reproductive tract for a certain time before gaining the ability to fertilize. During this time, the spermatozoa undergo a series of biochemical processes collectively called capacitation. We recently demonstrated that actin polymerization is a necessary step in the cascade leading to capacitation. We demonstrate here for the first time a role for phospholipase D (PLD) in the induction of actin polymerization and capacitation in spermatozoa. The involvement of PLD is supported by specific inhibition of F-actin formation during sperm capacitation by PLD inhibitors and the stimulation of fast F-actin formation by exogenous PLD or phosphatidic acid (PA). Moreover, PLD activity is enhanced during capacitation before actin polymerization. Protein kinase A (PKA), known to be active in sperm capacitation, and protein kinase C (PKC), involved in the acrosome reaction, can both activate PLD and actin polymerization. We suggest that PKA- and PKC-dependent signal transduction pathways can potentially lead to PLD activation; however, under physiological conditions, actin polymerization depends primarily on PKA activity. Activation of PKA during capacitation causes inactivation of phospholipase C, and as a result, PKC activation is prevented. It appears that PKA activation promotes sperm capacitation whereas early activation of PKC during capacitation would jeopardize this process.
Collapse
Affiliation(s)
- G Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
140
|
Zheng Q, McFadden SC, Bobich JA. Phosphatidylinositol 4,5-bisphosphate promotes both [3H]-noradrenaline and [14C]-glutamate exocytosis from nerve endings. Neurochem Int 2004; 44:243-50. [PMID: 14602087 DOI: 10.1016/s0197-0186(03)00149-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) synthesis by phenylarsine oxide (PAO) inhibits both [3H]-noradrenaline ([3H]-NA) and [14C]-glutamate ([14C]-glu) exocytosis from streptolysin-O (SLO)-perforated synaptosomes. When PI4,5P(2) is blocked by an antibody or chelated by neomycin, neurotransmitter exocytosis again is inhibited. Also, when phosphoinositide (PI) synthesis is indirectly decreased by shunting phosphatidic acid (PA) synthesis into phosphatidylbutanol production, both [14C]-glutamate and [3H]-noradrenaline exocytosis are inhibited. All of these results indicate that PI4,5P(2) is necessary for exocytosis of both synaptic vesicles (SVs) and dense core vesicles (DCVs).
Collapse
Affiliation(s)
- Qian Zheng
- Department of Chemistry, Texas Christian University, Forth Worth, TX 76129, USA
| | | | | |
Collapse
|
141
|
Le Stunff H, Auger R, Kanellopoulos J, Raymond MN. The Pro-451 to Leu polymorphism within the C-terminal tail of P2X7 receptor impairs cell death but not phospholipase D activation in murine thymocytes. J Biol Chem 2004; 279:16918-26. [PMID: 14761980 DOI: 10.1074/jbc.m313064200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The P2X family of ATP receptors (P2XR) are ligandgated channels that have been proposed to regulate cell death of immature thymocytes. However, the nature of the P2XR subtype involved has been controversial until recently. In agreement with previous studies, we found that extracellular ATP (ATPe) induces a caspase-dependent apoptosis of BALB/c thymocytes, as observed by DNA fragmentation. Additionally, ATPe induces a predominant caspase-independent thymocytes lysis characterized by plasma membrane disruption. Both responses to ATPe can be induced by a potent P2X7R agonist, benzoylbenzoyl-ATP, whereas P2X7R antagonists, oxidized ATP and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, inhibited the effect of ATPe. These results are further supported by observations where disruption of the P2X7R gene (P2X7R(-/-) mice) completely abolishes thymocytes death induced by ATPe. Interestingly, the natural P451L mutation in the C-terminal tail of P2X7R present in C57BL/6 mice, which impairs ATPe-dependent pore formation in T lymphocytes, significantly reduces thymocytes death triggered by ATPe. Furthermore, we found that P2X7R from BW5147 thymoma cells also harbors this point mutation, accounting for their insensitivity to ATPe-induced cell death. Concentrations of ATPe effective in inducing cell death also increase phosphatidylcholine-hydrolyzing phospholipase D (PC-PLD) activity in BALB/c thymocytes through the stimulation of P2X7R. However, in contrast to ATPe-induced cell death, PC-PLD activation is totally Ca(2+)-dependent. Moreover, the stimulation of PC-PLD by ATPe is not affected by the P451L mutation present in C57BL/6 thymocytes and BW5147 cells, suggesting that cell death and PC-PLD activity are regulated through distinct domains of the P2X7R. Finally, the inhibition of ATPe-induced PC-PLD stimulation does not affect thymocytes death. Altogether, these data suggest that P2X7R-induced thymocytes death is independent of the stimulation of PC-PLD activity.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Laboratoire d'activation Cellulaire et Transduction des Signaux, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Bâtiment 430, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
142
|
Abstract
As a master regulator of cellular processes ranging from cell growth and proliferation to differentiation, the mammalian target of rapamycin (mTOR) is critically involved in a complex signaling network. mTOR appears to govern an amino acid sensing pathway that integrates with a phosphatidylinositol 3-kinase-dependent mitogenic pathway to activate the downstream effectors. Recent findings have revealed some unexpected regulatory mechanisms of mTOR signaling. A direct link between mTOR and mitogenic signals is found to be mediated by the lipid second messenger phosphatidic acid. In addition, cytoplasmic-nuclear shuttling of mTOR appears to be required for the cytoplasmic functions of this protein. A new picture of the rapamycin-sensitive signaling network is emerging, with implications in putative upstream regulators and additional downstream targets for mTOR.
Collapse
Affiliation(s)
- J Chen
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. B107, Urbana, IL 61801, USA.
| |
Collapse
|
143
|
Abstract
The lipid matrix of biological membranes is composed of a complex mixture of polar lipids. It has been estimated that more than 600 distinct molecular species of lipid are constituents of biological membranes. This rather remarkable feature raises the questions of why such complexity is required when barrier properties and many protein functions can be reconstituted with relatively simple lipid systems. Secondly, the molecular species composition of morphologically distinct membranes appears to be preserved within fairly narrow limits. The biochemical mechanism(s) responsible for this homeostasis are not fully understood. This review examines the origin of membrane lipid complexity, the methods that are currently employed to measure and detect lipid molecular species and the biochemical reactions associated with the turnover of membrane lipids in resting and stimulated cells.
Collapse
Affiliation(s)
- Claude Wolf
- Biochemistry Department, Mass Spectrometry Laboratory, INSERM U 538, Faculté de Médecine Saint Antoine, Paris 75012, France
| | | |
Collapse
|
144
|
Zheng XL, Gui Y, Du G, Frohman MA, Peng DQ. Calphostin-C induction of vascular smooth muscle cell apoptosis proceeds through phospholipase D and microtubule inhibition. J Biol Chem 2003; 279:7112-8. [PMID: 14660552 DOI: 10.1074/jbc.m310721200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calphostin-C, a protein kinase C inhibitor, induces apoptosis of cultured vascular smooth muscle cells. However, the mechanisms are not completely defined. Because apoptosis of vascular smooth muscle cells is critical in several proliferating vascular diseases such as atherosclerosis and restenosis after angioplasty, we decided to investigate the mechanisms underlying the calphostin-C-induced apoptotic pathway. We show here that apoptosis is inhibited by the addition of exogenous phosphatidic acid, a metabolite of phospholipase D (PLD), and that calphostin-C inhibits completely the activities of both isoforms of PLD, PLD1 and PLD2. Overexpression of either PLD1 or PLD2 prevented the vascular smooth muscle cell apoptosis induced by serum withdrawal but not the calphostin-C-elicited apoptosis. These data suggest that PLDs have anti-apoptotic effects and that complete inhibition of PLD activity by calphostin-C induces smooth muscle cell apoptosis. We also report that calphostin-C induced microtubule disruption and that the addition of exogenous phosphatidic acid inhibits calphostin-C effects on microtubules, suggesting a role for PLD in stabilizing the microtubule network. Overexpressing PLD2 in Chinese hamster ovary cells phenocopies this result, providing strong support for the hypothesis. Finally, taxol, a microtubule stabilizer, not only inhibited the calphostin-C-induced microtubule disruption but also inhibited apoptosis. We therefore conclude that calphostin-C induces apoptosis of cultured vascular smooth muscle cells through inhibiting PLD activity and subsequent microtubule polymerization.
Collapse
Affiliation(s)
- Xi-Long Zheng
- Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, The University of Calgary, Calgary, Alberta T2N 4N1,Canada.
| | | | | | | | | |
Collapse
|
145
|
Fang Y, Park IH, Wu AL, Du G, Huang P, Frohman MA, Walker SJ, Brown HA, Chen J. PLD1 Regulates mTOR Signaling and Mediates Cdc42 Activation of S6K1. Curr Biol 2003; 13:2037-44. [PMID: 14653992 DOI: 10.1016/j.cub.2003.11.021] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) regulates cell growth and proliferation via the downstream targets ribosomal S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). We have identified phosphatidic acid (PA) as a mediator of mitogenic activation of mTOR signaling. In this study, we set out to test the hypotheses that phospholipase D 1 (PLD1) is an upstream regulator of mTOR and that the previously reported S6K1 activation by Cdc42 is mediated by PLD1. RESULTS Overexpression of wild-type PLD1 increased S6K1 activity in serum-stimulated cells, whereas a catalytically inactive PLD1 exerted a dominant-negative effect on S6K1. More importantly, eliminating endogenous PLD1 by RNAi led to drastic inhibition of serum-stimulated S6K1 activation and 4E-BP1 hyperphosphorylation in both HEK293 and COS-7 cells. Knockdown of PLD1 also resulted in reduced cell size, suggesting a critical role for PLD1 in cell growth control. Using a rapamycin-resistant S6K1 mutant, Cdc42's action was demonstrated to be through the mTOR pathway. When Cdc42 was mutated in a region specifically required for PLD1 activation, its ability to activate S6K1 in the presence of serum was hindered. However, when exogenous PA was used as a stimulus, the PLD1-inactive Cdc42 mutant behaved similarly to the wild-type protein. CONCLUSIONS Our observations reveal the involvement of PLD1 in mTOR signaling and cell size control, and provide a molecular mechanism for Cdc42 activation of S6K1. A new cascade is proposed to connect mitogenic signals to mTOR through Cdc42, PLD1, and PA.
Collapse
Affiliation(s)
- Yimin Fang
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Avenue B107, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Mansfield PJ, Carey SS, Hinkovska-Galcheva V, Shayman JA, Boxer LA. Ceramide inhibition of phospholipase D and its relationship to RhoA and ARF1 translocation in GTP gamma S-stimulated polymorphonuclear leukocytes. Blood 2003; 103:2363-8. [PMID: 14615385 DOI: 10.1182/blood-2002-11-3341] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase D (PLD) regulates the polymorphonuclear leukocyte (PMN) functions of phagocytosis, degranulation, and oxidant production. Ceramide inhibition of PLD suppresses PMN function. In streptolysin O-permeabilized PMNs, PLD was directly activated by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) stimulation of adenosine diphosphate (ADP)-ribosylation factor (ARF) and Rho, stimulating release of lactoferrin from specific granules of permeabilized PMNs; PLD activation and degranulation were inhibited by C2-ceramide but not dihydro-C2-ceramide. To investigate the mechanism of ceramide's inhibitory effect on PLD, we used a cell-free system to examine PLD activity and translocation from cytosol to plasma membrane of ARF, protein kinase C (PKC)alpha and beta, and RhoA, all of which can activate PLD. GTP gamma S-activated cytosol stimulated PLD activity and translocation of ARF, PKC alpha and beta, and RhoA when recombined with cell membranes. Prior incubation of PMNs with 10 microM C2-ceramide inhibited PLD activity and RhoA translocation, but not ARF1, ARF6, PKC alpha, or PKC beta translocation. However, in intact PMNs stimulated with N-formyl-1-methionyl-1-leucyl-1-phenylalamine (FMLP) or permeabilized PMNs stimulated with GTP gamma S, C2-ceramide did not inhibit RhoA translocation. Exogenous RhoA did not restore ceramide-inhibited PLD activity but bound to membranes despite ceramide treatment. These observations suggest that, although ceramide may affect RhoA in some systems, ceramide inhibits PLD through another mechanism, perhaps related to the ability of ceramide to inhibit phosphatidylinositol-bisphosphate (PIP2) interaction with PLD.
Collapse
Affiliation(s)
- Pamela J Mansfield
- Department of Pediatrics, Division of Hematology/Oncology, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | |
Collapse
|
147
|
Abstract
Insulin-stimulated Glut-4 translocation is regulated through a complex pathway. Increasing attention is being paid to the role undertaken in this process by Phospholipase D, a signal transduction-activated enzyme that generates the lipid second-messenger phosphatidic acid. Phospholipase D facilitates Glut-4 translocation at potentially multiple steps in its outward movement. Current investigation is centered on Phospholipase D promotion of Glut-4-containing membrane vesicle trafficking and vesicle fusion into the plasma membrane, in part through activation of atypical protein kinase C isoforms.
Collapse
Affiliation(s)
- Ping Huang
- Department of Pharmacology and the Center for Developmental Genetics, University Medical Center at Stony Brook, Stony Brook, NY 11794-5140, USA
| | | |
Collapse
|
148
|
Oka M, Okada T, Nakamura SI, Ohba M, Kuroki T, Kikkawa U, Nagai H, Ichihashi M, Nishigori C. PKCδ inhibits PKCα-mediated activation of phospholipase D1 in a manner independent of its protein kinase activity. FEBS Lett 2003; 554:179-83. [PMID: 14596936 DOI: 10.1016/s0014-5793(03)01158-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The regulation of phospholipase D1 (PLD1) by protein kinase C (PKC) isoforms was analyzed in human melanoma cell lines. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced PLD1 activation was suppressed by the introduction of PKCdelta as well as its kinase-negative mutant in MeWo cells, which contain PKCalpha but lack PKCbeta. PLD activity was not affected by PKCdelta in G361 cells, which have PKCbeta but are deficient in PKCalpha. In MeWo cells introduced by PKCalpha and PLD1, the association of these proteins was observed, which was enhanced by the TPA treatment. In cells overexpressing PKCdelta in addition to PKCalpha and PLD1, TPA treatment increased the association of PKCdelta and PLD1, while it attenuated the association of PKCalpha and PLD1. These results indicate that PKCdelta inhibits TPA-induced PLD1 activation mediated by PKCalpha through the association with PLD1.
Collapse
Affiliation(s)
- Masahiro Oka
- Department of Dermatology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Pochet S, Gómez-Muñoz A, Marino A, Dehaye JP. Regulation of phospholipase D by P2X7 receptors in submandibular ductal cells. Cell Signal 2003; 15:927-35. [PMID: 12873706 DOI: 10.1016/s0898-6568(03)00053-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ATP (1 mM) increased the phospholipase D (PLD) activity of rat submandibular gland (RSMG) ductal cells in a concentration-dependent and calcium-sensitive manner. The response to ATP was reproduced by benzoylbenzoyl-ATP (Bz-ATP, 100 microM) and also partly by adenosine 5'-(gamma-thio)triphosphate (ATPgammaS, 1 mM). A similar stimulation was observed in control mice (P2X7R+/+ mice) but not in mice lacking the P2X7 receptors (P2X7R-/- mice). Oxidized ATP and Coomassie blue or the addition of magnesium or nickel to the incubation medium inhibited the response to ATP. The stimulation of PLD by purinergic agonist was inhibited by about 50% by calphostin C and chelerythrine, two protein kinase C (PKC) inhibitors. The stimulation of PLD by Bz-ATP and by o-tetradecanoylphorbol 13-acetate (TPA), a phorbol ester which activates PKC, were not additive. From these results we can conclude that the activation of P2X7 receptors in RSMG ductal cells is coupled to the activation of a PLD. This activation is partly mediated by protein kinase C.
Collapse
Affiliation(s)
- Stéphanie Pochet
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie C.P. 205/3, Campus Plaine, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels B 1050, Belgium.
| | | | | | | |
Collapse
|
150
|
Abstract
In this report we demonstrate that in human adrenocortical carcinoma NCI H295R cells, a model for adrenal glomerulosa cells, PLD was activated both by AngII and protein kinase C (PKC)-activating phorbol 12-myristate 13-acetate (PMA). However, while PMA triggered sustained PLD activation, AngII induced transient PLD activation, in contrast to results in bovine glomerulosa cells in primary culture. Despite the transient effect of AngII on PLD activity, PLD-derived lipid signals were required for maximal AngII-elicited aldosterone secretion. AngII-induced PLD activation was inhibited by PKC inhibitors, but not by tyrosine kinase or calcium/calmodulin-dependent kinase inhibitors or a calmodulin antagonist. Both AngII- and PMA-stimulated PLD activity was enhanced by phosphoinositide 3-kinase (PI3K) inhibitors. Akt, a downstream protein kinase activated by the products of PI3K, was constitutively active in H295R cells, and this activity was blocked by PI3K inhibitors. These results suggested that in H295R adrenocortical carcinoma cells, AngII-induced PLD activation was promoted by PKC and inhibited by the constitutively active PI3K pathway.
Collapse
Affiliation(s)
- Xiangjian Zheng
- Institute of Molecular Medicine and Genetics/CB-2803, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2630, USA
| | | |
Collapse
|