101
|
Dompe N, Klijn C, Watson SA, Leng K, Port J, Cuellar T, Watanabe C, Haley B, Neve R, Evangelista M, Stokoe D. A CRISPR screen identifies MAPK7 as a target for combination with MEK inhibition in KRAS mutant NSCLC. PLoS One 2018; 13:e0199264. [PMID: 29912950 PMCID: PMC6005515 DOI: 10.1371/journal.pone.0199264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022] Open
Abstract
Mutant KRAS represents one of the most frequently observed oncogenes in NSCLC, yet no therapies are approved for tumors that express activated KRAS variants. While there is strong rationale for the use of MEK inhibitors to treat tumors with activated RAS/MAPK signaling, these have proven ineffective clinically. We therefore implemented a CRISPR screening approach to identify novel agents to sensitize KRAS mutant NSCLC cells to MEK inhibitor treatment. This approach identified multiple components of the canonical RAS/MAPK pathway consistent with previous studies. In addition, we identified MAPK7 as a novel, strong hit and validated this finding using multiple orthogonal approaches including knockdown and pharmacological inhibition. We show that MAPK7 inhibition attenuates the re-activation of MAPK signaling occurring following long-term MEK inhibition, thereby illustrating that MAPK7 mediates pathway reactivation in the face of MEK inhibition. Finally, genetic knockdown of MAPK7 combined with the MEK inhibitor cobimetinib in a mutant KRAS NSCLC xenograft model to mediate improved tumor growth inhibition. These data highlight that MAPK7 represents a promising target for combination treatment with MEK inhibition in KRAS mutant NSCLC.
Collapse
Affiliation(s)
- Nicholas Dompe
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Christiaan Klijn
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, United States of America
| | - Sara A. Watson
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Katherine Leng
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Jenna Port
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, United States of America
| | - Colin Watanabe
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, United States of America
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, United States of America
| | - Richard Neve
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Marie Evangelista
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - David Stokoe
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
102
|
Schirripa M, Cohen SA, Battaglin F, Lenz HJ. Biomarker-driven and molecular targeted therapies for colorectal cancers. Semin Oncol 2018; 45:124-132. [PMID: 30262397 PMCID: PMC7496213 DOI: 10.1053/j.seminoncol.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
Improved clinical selection and identification of new molecules and innovative strategies have widened treatment options and increased overall survival in metastatic colorectal cancer patients in recent years. Biomarker-driven therapies represent an emerging issue in this field and new targeted treatments are under investigation and probably will be soon adopted into daily clinical practice. In the present review, the role RAS, BRAF mutations, Her2 amplification, microsatellite instability, and CpG island methylator phenotype are discussed according to their possible roles as prognostic, predictive markers, as well as possible biomarker-driven treatment options.
Collapse
Affiliation(s)
- Marta Schirripa
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Stacey A Cohen
- Division of Medical Oncology, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Francesca Battaglin
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
103
|
Donadon M, Lleo A, Di Tommaso L, Soldani C, Franceschini B, Roncalli M, Torzilli G. The Shifting Paradigm of Prognostic Factors of Colorectal Liver Metastases: From Tumor-Centered to Host Immune-Centered Factors. Front Oncol 2018; 8:181. [PMID: 29892573 PMCID: PMC5985314 DOI: 10.3389/fonc.2018.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
The determinants of prognosis in patients with colorectal liver metastases (CLM) have been traditionally searched among the tumoral factors, either of the primary colorectal tumor or of the CLM. While many different scoring systems have been developed based on those clinic-pathological factors with disparate results, there has been the introduction of genetic biological markers that added a theranostic perspective. More recently, other important elements, such as those factors related to the host immune system, have been proposed as determinants of prognosis of CLM patients. In the present work, we review the current prognostic factors of CLM patients as well as the burgeoning shifting paradigm of prognostication that relies on the host immune system.
Collapse
Affiliation(s)
- Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Ana Lleo
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.,Department of Internal Medicine, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Luca Di Tommaso
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.,Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Barbara Franceschini
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Massimo Roncalli
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.,Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, Rozzano, Italy
| |
Collapse
|
104
|
Markóczy Z, Sárosi V, Kudaba I, Gálffy G, Turay ÜY, Demirkazik A, Purkalne G, Somfay A, Pápai-Székely Z, Rásó E, Ostoros G. Erlotinib as single agent first line treatment in locally advanced or metastatic activating EGFR mutation-positive lung adenocarcinoma (CEETAC): an open-label, non-randomized, multicenter, phase IV clinical trial. BMC Cancer 2018; 18:598. [PMID: 29801465 PMCID: PMC5970529 DOI: 10.1186/s12885-018-4283-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background Erlotinib is approved for the first line treatment of epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer. Since the number of prospective studies in Caucasian patients treated in routine clinical setting is limited we conducted a multicenter, phase IV clinical trial to determine the efficacy and safety of erlotinib and to demonstrate the feasibility of the validated standardized companion diagnostic method of EGFR mutation detection. Methods 651 chemonaive, cytologically or histologically verified advanced stage lung adenocarcinoma patients from Hungary, Turkey and Latvia were screened for exon19 microdeletions and exon21 L858R EGFR mutations using the companion diagnostic EGFR test. EGFR mutation-positive, locally advanced or metastatic lung adenocarcinoma patients received as first line treatment erlotinib at 150 mg/day. The primary endpoint was progression-free survival (PFS). Results 62 EGFR mutation-positive patients (9.5% of screened) were included in the safety/intent-to-treat cohort. Median PFS was 12.8 months (95%CI, 9.9–15.8), objective response rate and one-year survival was 66.1% and 82.5%, respectively. Most frequent treatment related adverse events were diarrhoea and rash. Eastern Oncology Cooperative Group Performance Status (ECOG PS), smoking status and M1a/M1b disease stage were significant prognosticators of PFS (p = 0.017, p = 0.045 and p = 0.002, respectively). There was no significant difference in PFS between the subgroups stratified by gender, age or exon19 vs exon21 mutation. Conclusions Our study confirmed the efficacy and safety of first line erlotinib monotherapy in Caucasian patients with locally advanced or metastatic lung adenocarcinoma carrying activating EGFR mutations based on the screening with the approved companion diagnostic procedure. Trial registration ClinicalTrials.gov Identifier: NCT01609543.
Collapse
Affiliation(s)
- Zsolt Markóczy
- National Koranyi Institute of TB and Pulmonology, Piheno ut 1, Budapest, H-1122, Hungary
| | | | - Iveta Kudaba
- Riga East University Hospital Oncology Center, Riga, Latvia
| | - Gabriella Gálffy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Ülkü Yilmaz Turay
- Clinic of Chest Diseases, Ataturk Chest Diseases and Chest Surgery Training and Research Hospital, Ankara, Turkey
| | - Ahmet Demirkazik
- Department of Medical Oncology, Ibn-i Sina Hospital, Ankara University Medical Faculty, Ankara, Turkey
| | - Gunta Purkalne
- Oncology Institute, Riga Stradins University, Riga, Latvia
| | - Attila Somfay
- Department of Pulmonology, University of Szeged, Szeged, Hungary
| | | | - Erzsébet Rásó
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Gyula Ostoros
- National Koranyi Institute of TB and Pulmonology, Piheno ut 1, Budapest, H-1122, Hungary.
| |
Collapse
|
105
|
Meng S, Wang G, Lu Y, Fan Z. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Lung Cancer 2018; 121:82-90. [PMID: 29858032 DOI: 10.1016/j.lungcan.2018.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. MATERIALS AND METHODS Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. RESULTS Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. CONCLUSIONS HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI treatment of NSCLC cells with activating mutation of EGFR deserves further investigation.
Collapse
Affiliation(s)
- Shuyan Meng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Guorui Wang
- Department of Surgery, Jiangyuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Jiangsu Province, 214063, People's Republic of China
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
106
|
Li J, Song P, Zhu L, Aziz N, Zhou Q, Zhang Y, Xu W, Feng L, Chen D, Wang X, Jin H. Synthetic lethality of glutaminolysis inhibition, autophagy inactivation and asparagine depletion in colon cancer. Oncotarget 2018; 8:42664-42672. [PMID: 28424408 PMCID: PMC5522096 DOI: 10.18632/oncotarget.16844] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer cells reprogram metabolism to coordinate their rapid growth. They addict on glutamine metabolism for adenosine triphosphate generation and macromolecule biosynthesis. In this study, we report that glutamine deprivation retarded cell growth and induced prosurvival autophagy. Autophagy inhibition by chloroquine significantly enhanced glutamine starvation induced growth inhibition and apoptosis activation. Asparagine deprivation by L-asparaginase exacerbated growth inhibition induced by glutamine starvation and autophagy blockage. Similar to glutamine starvation, inhibition of glutamine metabolism with a chemical inhibitor currently under clinical evaluation was synthetically lethal with chloroquine and L-asparaginase, drugs approved for the treatment of malaria and leukemia, respectively. In conclusion, inhibiting glutaminolysis was synthetically lethal with autophagy inhibition and asparagine depletion. Therefore, targeting glutaminolysis could be a promising approach for colorectal cancer treatment.
Collapse
Affiliation(s)
- Jiaqiu Li
- Department of Medical Oncology, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ping Song
- Department of Medical Oncology, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Neelum Aziz
- Department of Medical Oncology, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Qiyin Zhou
- Department of Medical Oncology, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yulong Zhang
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Dingwei Chen
- Department of Surgery, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
107
|
Koundinya M, Sudhalter J, Courjaud A, Lionne B, Touyer G, Bonnet L, Menguy I, Schreiber I, Perrault C, Vougier S, Benhamou B, Zhang B, He T, Gao Q, Gee P, Simard D, Castaldi MP, Tomlinson R, Reiling S, Barrague M, Newcombe R, Cao H, Wang Y, Sun F, Murtie J, Munson M, Yang E, Harper D, Bouaboula M, Pollard J, Grepin C, Garcia-Echeverria C, Cheng H, Adrian F, Winter C, Licht S, Cornella-Taracido I, Arrebola R, Morris A. Dependence on the Pyrimidine Biosynthetic Enzyme DHODH Is a Synthetic Lethal Vulnerability in Mutant KRAS-Driven Cancers. Cell Chem Biol 2018; 25:705-717.e11. [PMID: 29628435 DOI: 10.1016/j.chembiol.2018.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/29/2017] [Accepted: 03/08/2018] [Indexed: 12/13/2022]
Abstract
Activating KRAS mutations are major oncogenic drivers in multiple tumor types. Synthetic lethal screens have previously been used to identify targets critical for the survival of KRAS mutant cells, but their application to drug discovery has proven challenging, possibly due in part to a failure of monolayer cultures to model tumor biology. Here, we report the results of a high-throughput synthetic lethal screen for small molecules that selectively inhibit the growth of KRAS mutant cell lines in soft agar. Chemoproteomic profiling identifies the target of the most KRAS-selective chemical series as dihydroorotate dehydrogenase (DHODH). DHODH inhibition is shown to perturb multiple metabolic pathways. In vivo preclinical studies demonstrate strong antitumor activity upon DHODH inhibition in a pancreatic tumor xenograft model.
Collapse
Affiliation(s)
| | - Judith Sudhalter
- Cancer Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | | | | | | | - Luc Bonnet
- LGCR-LIT, Sanofi, Vitry-Sur-Seine 94400, France
| | | | | | | | | | | | - Bailin Zhang
- Biochemistry, Bioanalytics, and Chemical Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Timothy He
- Biochemistry, Bioanalytics, and Chemical Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Qiang Gao
- Biochemistry, Bioanalytics, and Chemical Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Patricia Gee
- Biochemistry, Bioanalytics, and Chemical Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Daniel Simard
- Biochemistry, Bioanalytics, and Chemical Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA; Chemistry, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | | | | | - Stephan Reiling
- LGCR-SDI, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | | | - Richard Newcombe
- Cancer Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Hui Cao
- TEM-BioInformatics, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Yanjun Wang
- In Vivo Pharmacology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Fangxian Sun
- In Vivo Pharmacology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Joshua Murtie
- In Vivo Pharmacology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Mark Munson
- LGCR, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Eric Yang
- TEM-BioInformatics, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - David Harper
- Cancer Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Monsif Bouaboula
- Cancer Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Jack Pollard
- TEM-BioInformatics, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | | | - Carlos Garcia-Echeverria
- Biochemistry, Bioanalytics, and Chemical Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Hong Cheng
- Biochemistry, Bioanalytics, and Chemical Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | - Francisco Adrian
- Cancer Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA
| | | | - Stuart Licht
- Biochemistry, Bioanalytics, and Chemical Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA.
| | | | | | - Aaron Morris
- Cancer Biology, Oncology Division, Sanofi, Cambridge, MA 02138, USA.
| |
Collapse
|
108
|
Zhang T, Li Q, Chen S, Luo Y, Fan Y, Xu B. Phase I study of QLNC120, a novel EGFR and HER2 kinase inhibitor, in pre-treated patients with HER2-overexpressing advanced breast cancer. Oncotarget 2018; 8:36750-36760. [PMID: 27902470 PMCID: PMC5482694 DOI: 10.18632/oncotarget.13581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022] Open
Abstract
This study evaluated the dose-limiting toxicities (DLT), maximum tolerated dose (MTD), pharmacokinetic profile, and preliminary antitumor activity of QLNC120, an inhibitor of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), in HER2 overexpressing advanced breast cancer patients. In addition, the prognostic biomarkers of QLNC120 were investigated. QLNC120 was administered as a single dose, followed by 7 days observation, and then once daily consecutively. Scheduled dose escalation was 450mg, 750mg, 1000mg and 1250mg. For pharmacokinetic analysis, blood samples were collected after the single dose and after the first 7 days of continuous administration. Tissue samples were collected for biomarker analysis. Twenty-four heavily treated HER2 overexpressing advanced breast cancer patients were enrolled. No DLT was observed. MTD was not found. QLNC120 and its active metabolite-lapatinib exposure did not increase in a dose-dependent manner ranging from 450 to 1250mg QLNC120. From 450 to 1250mg QLNC120, the exposure of combination of QLNC120 and its active metabolite-lapatinib was equal to or greater than the exposure of 1250mg lapatinib. Common QLNC120-related toxicities included rash, diarrhea, oral mucositis, hematuria and white blood cell decrease. Seven of twenty-two evaluable patients achieved partial response (PR) or stable disease (SD)≥24 weeks. In biomarker analysis, nine of fifteen patients (60%) had a mutation in HRAS exon 1. Patients with HRAS mutation achieved longer progression free survival(PFS) (24.9 vs 12.9 weeks, p=0.023, HR=0.291). QLNC120 is well-tolerated and safe with encouraging antitumor activity in HER2 overexpressing advanced breast cancer. HRAS mutation was associated with the anti-tumor activity of QLNC120. (Trial registration: NCT01931943, http://ClinicalTrials.gov/show/NCT01931943)
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shanshan Chen
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
109
|
Loubière S, Drezet A, Beau-Faller M, Moro-Sibilot D, Friard S, Wislez M, Blons H, Daniel C, Westeel V, Madroszyk A, Léna H, Merle P, Mazières J, Zalcman G, Lacave R, Antoine M, Morin F, Missy P, Barlesi F, Auquier P, Cadranel J. Cost-effectiveness of KRAS, EGFR and ALK testing for decision making in advanced nonsmall cell lung carcinoma: the French IFCT-PREDICT.amm study. Eur Respir J 2018; 51:13993003.01467-2017. [DOI: 10.1183/13993003.01467-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/31/2018] [Indexed: 11/05/2022]
Abstract
ALK rearrangement and EGFR/KRAS mutations constitute the primary biomarkers tested to provide targeted or nontargeted therapies in advanced nonsmall cell lung cancer (NSCLC) patients. Our objective was to assess the cost-effectiveness of biomarker testing for NSCLC.Between 2013 and 2014, 843 treatment-naive patients were prospectively recruited at 19 French hospitals into a longitudinal observational cohort study. Two testing strategies were compared, i.e. with “at least one biomarker status known” and “at least KRAS status known”, in addition to “no biomarker testing” as the reference strategy. The Kaplan–Meier approach was employed to assess restricted mean survival time. Direct medical costs incurred by hospitals were estimated with regard to treatment, inpatient care and biomarker testing.Compared with “no biomarker testing”, the “at least one biomarker status known” strategy yielded an incremental cost-effectiveness ratio of EUR13 230 per life-year saved, which decreased to EUR7444 per life-year saved with the “at least KRAS status known” testing strategy. In sensitivity analyses, biomarker testing strategies were less costly and more effective in 41% of iterations.In summary, molecular testing prior to treatment initiation proves to be cost-effective in advanced NSCLC management and may assist decision makers in defining conditions for further implementation of these innovations in general practice.
Collapse
|
110
|
Battaglin F, Puccini A, Naseem M, Schirripa M, Berger MD, Tokunaga R, McSkane M, Khoukaz T, Soni S, Zhang W, Lenz HJ. Pharmacogenomics in colorectal cancer: current role in clinical practice and future perspectives. JOURNAL OF CANCER METASTASIS AND TREATMENT 2018; 4:12. [PMID: 34532592 PMCID: PMC8442855 DOI: 10.20517/2394-4722.2018.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The treatment scenario of colorectal cancer (CRC) has been evolving in recent years with the introduction of novel targeted agents and new therapeutic strategies for the metastatic disease. An extensive effort has been directed to the identification of predictive biomarkers to aid patients selection and guide therapeutic choices. Pharmacogenomics represents an irreplaceable tool to individualize patients treatment based on germline and tumor acquired somatic genetic variations able to predict drugs response and risk of toxicities. The growing knowledge of CRC molecular characteristics and complex genomic makeup has played a crucial role in identifying predictive pharmacogenomic biomarkers, while supporting the rationale for the development of new drugs and treatment combinations. Clinical validation of promising biomarkers, however, is often an issue. More recently, a deeper understanding of resistance mechanisms and tumor escape dynamics under treatment pressure and the availability of novel technologies are opening new perspectives in this field. This review aims to present an overview of current pharmacogenomic biomarkers and future perspectives of pharmacogenomics in CRC, in an evolving scenario moving from a single drug-gene interactions approach to a more comprehensive genome-wide approach, comprising genomics and epigenetics.
Collapse
Affiliation(s)
- Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV - IRCCS, Padua 35128, Italy
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marta Schirripa
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV - IRCCS, Padua 35128, Italy
| | - Martin D. Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Medical Oncology, University Hospital of Bern, Bern 3010, Switzerland
| | - Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Taline Khoukaz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
111
|
Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC. Oncotarget 2018; 8:179-190. [PMID: 27329725 PMCID: PMC5352098 DOI: 10.18632/oncotarget.10162] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 06/06/2016] [Indexed: 01/14/2023] Open
Abstract
As shortened telomeres inhibit tumor formation and prolong life span in a KrasG12D mouse lung cancer model, we investigated the implications of telomerase in Kras-mutant NSCLC. We found that Kras mutations increased TERT (telomerase reverse transcriptase) mRNA expression and telomerase activity and telomere length in both immortalized bronchial epithelial cells (BEAS-2B) and lung adenocarcinoma cells (Calu-3). MEK inhibition led to reduced TERT expression and telomerase activity. Furthermore, telomerase inhibitor BIBR1532 shortened telomere length and inhibited mutant Kras-induced long-term proliferation, colony formation and migration capabilities of BEAS-2B and Calu-3 cells. Importantly, BIBR1532 sensitized oncogenic Kras expressing Calu-3 cells to chemotherapeutic agents. The Calu-3-KrasG12D xenograft mouse model confirmed that BIBR1532 enhanced the antitumor efficacy of paclitaxel in vivo. In addition, higher TERT expression was seen in Kras-mutant NSCLC than that with wild-type Kras. Our data suggest that Kras mutations increase telomerase activity and telomere length by activating the RAS/MEK pathway, which contributes to an aggressive phenotype of NSCLC. Kras mutations-induced lung tumorigenesis and chemoresistance are attenuated by telomerase inhibition. Targeting telomerase/telomere may be a promising therapeutic strategy for patients with Kras-mutant NSCLC.
Collapse
|
112
|
Schmidt S, Schumacher N, Schwarz J, Tangermann S, Kenner L, Schlederer M, Sibilia M, Linder M, Altendorf-Hofmann A, Knösel T, Gruber ES, Oberhuber G, Bolik J, Rehman A, Sinha A, Lokau J, Arnold P, Cabron AS, Zunke F, Becker-Pauly C, Preaudet A, Nguyen P, Huynh J, Afshar-Sterle S, Chand AL, Westermann J, Dempsey PJ, Garbers C, Schmidt-Arras D, Rosenstiel P, Putoczki T, Ernst M, Rose-John S. ADAM17 is required for EGF-R-induced intestinal tumors via IL-6 trans-signaling. J Exp Med 2018; 215:1205-1225. [PMID: 29472497 PMCID: PMC5881468 DOI: 10.1084/jem.20171696] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
Abstract
Schmidt et al. show that loss of the membrane-bound metalloprotease ADAM17 led to impaired intestinal cancer development in the murine APCmin/+ model, which also depended on IL-6 trans-signaling via the soluble IL-6R and could be blocked by the specific IL-6 trans-signaling inhibitor sgp130Fc. Colorectal cancer is treated with antibodies blocking epidermal growth factor receptor (EGF-R), but therapeutic success is limited. EGF-R is stimulated by soluble ligands, which are derived from transmembrane precursors by ADAM17-mediated proteolytic cleavage. In mouse intestinal cancer models in the absence of ADAM17, tumorigenesis was almost completely inhibited, and the few remaining tumors were of low-grade dysplasia. RNA sequencing analysis demonstrated down-regulation of STAT3 and Wnt pathway components. Because EGF-R on myeloid cells, but not on intestinal epithelial cells, is required for intestinal cancer and because IL-6 is induced via EGF-R stimulation, we analyzed the role of IL-6 signaling. Tumor formation was equally impaired in IL-6−/− mice and sgp130Fc transgenic mice, in which only trans-signaling via soluble IL-6R is abrogated. ADAM17 is needed for EGF-R–mediated induction of IL-6 synthesis, which via IL-6 trans-signaling induces β-catenin–dependent tumorigenesis. Our data reveal the possibility of a novel strategy for treatment of colorectal cancer that could circumvent intrinsic and acquired resistance to EGF-R blockade.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Neele Schumacher
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Jeanette Schwarz
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Experimental and Laboratory Animal Pathology, Medical University Vienna, Vienna, Austria
| | - Michaela Schlederer
- Department of Experimental and Laboratory Animal Pathology, Medical University Vienna, Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Markus Linder
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | | | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Elisabeth S Gruber
- Department of General Surgery, Division of Surgery and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Georg Oberhuber
- Department of Experimental and Laboratory Animal Pathology, Medical University Vienna, Vienna, Austria
| | - Julia Bolik
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Anupam Sinha
- Institute of Clinical Molecular Biology, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Juliane Lokau
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Philipp Arnold
- Anatomisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Anne-Sophie Cabron
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Friederike Zunke
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | | | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | | | - Peter J Dempsey
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Christoph Garbers
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Tracy Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Stefan Rose-John
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| |
Collapse
|
113
|
Román M, Baraibar I, López I, Nadal E, Rolfo C, Vicent S, Gil-Bazo I. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer 2018; 17:33. [PMID: 29455666 PMCID: PMC5817724 DOI: 10.1186/s12943-018-0789-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Lung neoplasms are the leading cause of death by cancer worldwide. Non-small cell lung cancer (NSCLC) constitutes more than 80% of all lung malignancies and the majority of patients present advanced disease at onset. However, in the last decade, multiple oncogenic driver alterations have been discovered and each of them represents a potential therapeutic target. Although KRAS mutations are the most frequently oncogene aberrations in lung adenocarcinoma patients, effective therapies targeting KRAS have yet to be developed. Moreover, the role of KRAS oncogene in NSCLC remains unclear and its predictive and prognostic impact remains controversial. The study of the underlying biology of KRAS in NSCLC patients could help to determine potential candidates to evaluate novel targeted agents and combinations that may allow a tailored treatment for these patients. The aim of this review is to update the current knowledge about KRAS-mutated lung adenocarcinoma, including a historical overview, the biology of the molecular pathways involved, the clinical relevance of KRAS mutations as a prognostic and predictive marker and the potential therapeutic approaches for a personalized treatment of KRAS-mutated NSCLC patients.
Collapse
Affiliation(s)
- Marta Román
- Department of Oncology, Clínica Universidad de Navarra, 31008, Pamplona, Spain.,Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, 31008, Pamplona, Spain.,Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Inés López
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Ernest Nadal
- Thoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Christian Rolfo
- Phase I-Early Clinical Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Edegem, Belgium
| | - Silvestre Vicent
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, 31008, Pamplona, Spain. .,Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain. .,Navarra Health Research Institute (IDISNA), Pamplona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
114
|
Metabolic flux-driven sialylation alters internalization, recycling, and drug sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells. Oncotarget 2018; 7:66491-66511. [PMID: 27613843 PMCID: PMC5341816 DOI: 10.18632/oncotarget.11582] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
In prior work we reported that advanced stage, drug-resistant pancreatic cancer cells (the SW1990 line) can be sensitized to the EGFR-targeting tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib by treatment with 1,3,4-O-Bu3ManNAc (Bioorg. Med. Chem. Lett. (2015) 25(6):1223-7). Here we provide mechanistic insights into how this compound inhibits EGFR activity and provides synergy with TKI drugs. First, we showed that the sialylation of the EGFR receptor was at most only modestly enhanced (by ∼20 to 30%) compared to overall ∼2-fold increase in cell surface levels of this sugar. Second, flux-driven sialylation did not alter EGFR dimerization as has been reported for cancer cell lines that experience increased sialylation due to spontaneous mutations. Instead, we present evidence that 1,3,4-O-Bu3ManNAc treatment weakens the galectin lattice, increases the internalization of EGFR, and shifts endosomal trafficking towards non-clathrin mediated (NCM) endocytosis. Finally, by evaluating downstream targets of EGFR signaling, we linked synergy between 1,3,4-O-Bu3ManNAc and existing TKI drugs to a shift from clathrin-coated endocytosis (which allows EGFR signaling to continue after internalization) towards NCM endocytosis, which targets internalized moieties for degradation and thereby rapidly diminishes signaling.
Collapse
|
115
|
Lu X, Yu L, Zhang Z, Ren X, Smaill JB, Ding K. Targeting EGFRL858R/T790Mand EGFRL858R/T790M/C797Sresistance mutations in NSCLC: Current developments in medicinal chemistry. Med Res Rev 2018; 38:1550-1581. [DOI: 10.1002/med.21488] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy; Jinan University; Guangzhou China
| | - Lei Yu
- Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; Guangzhou China
| | - Zhang Zhang
- School of Pharmacy; Jinan University; Guangzhou China
| | - Xiaomei Ren
- School of Pharmacy; Jinan University; Guangzhou China
| | - Jeff B. Smaill
- Maurice Wilkins Centre for Molecular Biodiscovery; University of Auckland; Auckland New Zealand
- Auckland Cancer Society Research Centre; University of Auckland; Auckland New Zealand
| | - Ke Ding
- School of Pharmacy; Jinan University; Guangzhou China
| |
Collapse
|
116
|
Toulany M, Iida M, Keinath S, Iyi FF, Mueck K, Fehrenbacher B, Mansour WY, Schaller M, Wheeler DL, Rodemann HP. Dual targeting of PI3K and MEK enhances the radiation response of K-RAS mutated non-small cell lung cancer. Oncotarget 2018; 7:43746-43761. [PMID: 27248324 PMCID: PMC5190057 DOI: 10.18632/oncotarget.9670] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
Despite the significant contribution of radiotherapy to non-small lung cancer (NSCLC), radioresistance still occurs. One of the major radioresistance mechanisms is the hyperactivation of the PI3K/Akt pathway in which Akt facilitates the repair of DNA double-strand breaks (DSBs) through the stimulation of DNA-PKcs. We investigated if targeting PI3K would be a potential approach for enhancing the radiosensitivity of K-RAS mutated (K-RASmut) NSCLC cell lines A549 and H460. Short-term (1-2 h) pre-treatment of cells with the PI3K inhibitor PI-103 (1 μM) inhibited Akt/DNA-PKcs activity, blocked DSBs repair and induced radiosensitivity, while long-term (24 h) pre-treatment did not. Lack of an effect after 24 h of PI-103 pre-treatment was due to reactivation of K-Ras/MEK/ERK-dependent Akt. However, long-term treatment with the combination of PI-103 and MEK inhibitor PD98059 completely blocked reactivation of Akt and impaired DSBs repair through non-homologous end joining (NHEJ) leading to radiosensitization. The effect of PI3K inhibition on Akt signaling was also tested in A549 mouse xenografts. P-Akt and P-DNA-PKcs were inhibited 30 min post-irradiation in xenografts, which were pretreated by PI-103 30 min before irradiation. However, Akt was reactivated 30 min post-irradiation in tumors, which were pre-treated for 3 h with PI-103 before irradiation. After a 24 h pretreatment with PI-103, a significant reactivation of Akt was achieved 24 h after irradiation. Thus, due to MEK/ERK-dependent reactivation of Akt, targeting PI3K alone is not a suitable approach for radiosensitizing K-RASmut NSCLC cells, indicating that dual targeting of PI3K and MEK is an efficient approach to improve radiotherapy outcome.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI, USA
| | - Simone Keinath
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Firdevs F Iyi
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Katharina Mueck
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | | | - Wael Y Mansour
- Tumor Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI, USA
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
117
|
Zhang T, Cai X, Li Q, Xue P, Chen Z, Dong X, Xue Y. Hsa-miR-875-5p exerts tumor suppressor function through down-regulation of EGFR in colorectal carcinoma (CRC). Oncotarget 2018; 7:42225-42240. [PMID: 27302926 PMCID: PMC5173130 DOI: 10.18632/oncotarget.9944] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/09/2016] [Indexed: 12/29/2022] Open
Abstract
Hsa-miRNA-875-5p (miR-875-5p) has recently been discovered to have anticancer efficacy in different organs. However, the role of miR-875-5p on colorectal carcinoma (CRC) is still ambiguous. In this study, we investigated the role of miR-875-5p on the development of CRC. The results indicated that miR-875-5p was significantly down-regulated in primary tumor tissues and very low levels were found in CRC cell lines. Ectopic expression of miR-875-5p in CRC cell lines significantly suppressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibition of cyclin D1, cyclin D2, CDK4 and up-regulation of p57(Kip2) and p21(Waf1/Cip1). In addition, miR-875-5p induced apoptosis, as indicated by concomitantly with up-regulation of key apoptosis protein cleaved caspase-3, and down-regulation of anti-apoptosis protein Bcl2. Moreover, miR-875-5p inhibited cellular migration and invasiveness through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene EGFR was revealed to be a putative target of miR-875-5p, which was inversely correlated with miR-875-5p expression in CRC. Taken together, our results demonstrated that miR-875-5p played a pivotal role on CRC through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic EGFR.
Collapse
Affiliation(s)
- Tiening Zhang
- Oncology Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, P. R. China
| | - Xun Cai
- Oncology Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, P. R. China
| | - Qi Li
- Oncology Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, P. R. China
| | - Peng Xue
- Oncology Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, P. R. China
| | - Zhixiao Chen
- Oncology Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, P. R. China
| | - Xiao Dong
- Oncology Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, P. R. China
| | - Ying Xue
- Oncology Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, P. R. China
| |
Collapse
|
118
|
Pilotto S, Rossi A, Vavalà T, Follador A, Tiseo M, Galetta D, Morabito A, Di Maio M, Martelli O, Caffo O, Piovano PL, Cortinovis D, Zilembo N, Casartelli C, Banna GL, Ardizzoia A, Barzelloni ML, Bearz A, Genestreti G, Mucciarini C, Filipazzi V, Menis J, Rizzo E, Barbieri F, Rijavec E, Cecere F, Spitaleri G, Bria E, Novello S. Outcomes of First-Generation EGFR-TKIs Against Non-Small-Cell Lung Cancer Harboring Uncommon EGFR Mutations: A Post Hoc Analysis of the BE-POSITIVE Study. Clin Lung Cancer 2018. [DOI: 10.1016/j.cllc.2017.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
119
|
Martins M, Mansinho A, Cruz-Duarte R, Martins SL, Costa L. Anti-EGFR Therapy to Treat Metastatic Colorectal Cancer: Not for All. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:113-131. [PMID: 30623369 DOI: 10.1007/978-3-030-02771-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of monoclonal antibodies (mAbs) cetuximab and panitumumab, which target the transmembrane protein epidermal growth factor receptor (EGFR), mark a major step forward in the treatment of metastatic colorectal cancer (mCRC). However, this therapeutic progress proved to be effective only in a very restricted subset of patients. Although several mechanisms of resistance, both primary and acquired, have been identified, the only established predictive tumour biomarker for the treatment of mCRC patients is the RAS mutational status. RAS activating mutations predict a lack of response to these therapies while low levels of primary resistance characterize RAS wild type (WT) patients (only about 15%). However, even WT patients that initially respond to anti-EGFR therapy, eventually undergo tumour progression. In this context, there is still more to be done in the search for effective predictive markers with therapeutic applicability. In this chapter, we provide an overview on the mechanisms that contribute to resistance to EGFR-targeted therapy and highlight what is still missing in our understanding of these molecular mechanisms and approaches to overcome them.
Collapse
Affiliation(s)
- Marta Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | - André Mansinho
- Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Raquel Cruz-Duarte
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Soraia Lobo Martins
- Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Luís Costa
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
120
|
Frattini M, Molinari F, Epistolio S. The role of Piccolo in cancer treatment: relationship with EGFR and related therapies, and a marker for new targeted therapies. J Thorac Dis 2017; 9:4240-4243. [PMID: 29268482 DOI: 10.21037/jtd.2017.10.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Milo Frattini
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Francesca Molinari
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Samantha Epistolio
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| |
Collapse
|
121
|
Arbour KC, Jordan E, Kim HR, Dienstag J, Yu HA, Sanchez-Vega F, Lito P, Berger M, Solit DB, Hellmann M, Kris MG, Rudin CM, Ni A, Arcila M, Ladanyi M, Riely GJ. Effects of Co-occurring Genomic Alterations on Outcomes in Patients with KRAS-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2017; 24:334-340. [PMID: 29089357 DOI: 10.1158/1078-0432.ccr-17-1841] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022]
Abstract
Purpose:KRAS mutations occur in approximately 25% of patients with non-small cell lung cancer (NSCLC). Despite the uniform presence of KRAS mutations, patients with KRAS-mutant NSCLC can have a heterogeneous clinical course. As the pattern of co-occurring mutations may describe different biological subsets of patients with KRAS-mutant lung adenocarcinoma, we explored the effects of co-occurring mutations on patient outcomes and response to therapy.Experimental Design: We identified patients with advanced KRAS-mutant NSCLC and evaluated the most common co-occurring genomic alterations. Multivariate analyses were performed incorporating the most frequent co-mutations and clinical characteristics to evaluate association with overall survival as well as response to platinum-pemetrexed chemotherapy and immune checkpoint inhibitors.Results: Among 330 patients with advanced KRAS-mutant lung cancers, the most frequent co-mutations were found in TP53 (42%), STK11 (29%), and KEAP1/NFE2L2 (27%). In a multivariate analysis, there was a significantly shorter survival in patients with co-mutations in KEAP1/NFE2L2 [HR, 1.96; 95% confidence interval (CI), 1.33-2.92; P ≤ 0.001]. STK11 (HR, 1.3; P = 0.22) and TP53 (HR 1.11, P = 0.58) co-mutation statuses were not associated with survival. Co-mutation in KEAP1/NFE2L2 was also associated with shorter duration of initial chemotherapy (HR, 1.64; 95% CI, 1.04-2.59; P = 0.03) and shorter overall survival from initiation of immune therapy (HR, 3.54; 95% CI, 1.55-8.11; P = 0.003).Conclusions: Among people with KRAS-mutant advanced NSCLC, TP53, STK11, and KEAP1/NFE2L2 are the most commonly co-occurring somatic genomic alterations. Co-mutation of KRAS and KEAP1/ NFE2L2 is an independent prognostic factor, predicting shorter survival, duration of response to initial platinum-based chemotherapy, and survival from the start of immune therapy. Clin Cancer Res; 24(2); 334-40. ©2017 AACR.
Collapse
Affiliation(s)
- Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emmett Jordan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyunjae Ryan Kim
- Department of Pathology, Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jordan Dienstag
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helena A Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Francisco Sanchez-Vega
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark G Kris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ai Ni
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Arcila
- Department of Pathology, Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
122
|
Rare RAS Mutations in Metastatic Colorectal Cancer Detected During Routine RAS Genotyping Using Next Generation Sequencing. Target Oncol 2017; 11:363-70. [PMID: 26661077 DOI: 10.1007/s11523-015-0404-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Overall survival of metastatic colorectal cancer (mCRC) patients has been improved with the addition of targeted therapy such as anti-epithelial growth factor receptor monoclonal antibodies (anti-EGFR mAbs) to standard chemotherapy. Retrospective studies and randomized trials showed that the presence of RAS mutations was linked to the absence of clinical response to anti-EGFR mAbs. Patients harboring KRAS and NRAS mutations on exons 2, 3 or 4 have little or no benefit from anti-EGFR therapies. Polymerase chain reaction (PCR)-based assays are routinely used to assess KRAS and NRAS status, whereas deep sequencing with next generation sequencing (NGS) currently represents an alternative method. OBJECTIVE The objective of our study was to identify KRAS and NRAS non-hotspot mutations using NGS of mCRC tumor samples. METHOD DNA was extracted from 188 consecutive formalin-fixed paraffin embedded samples of histologically proven colorectal cancer tumor tissue from patients with mCRC. Following amplification, DNA was sequenced by ultra-deep pyrosequencing. Non-hotspot mutations identified by NGS (frequency of mutated allele range [1.8-70.6 %]) were confirmed by Sanger direct-sequencing when possible. RESULTS NGS procedure was applicable in 94 % of the cases and detected mutations in 62 % of the samples. Nine uncommon mutational profiles were found with a frequency of mutated allele > 1 %. Silent mutations were found in 3.6 % of the samples. Mutations at or near functional domains of RAS proteins, other than defined hotspots, were found in 3.6 %. NGS proved to be accurate, sensitive and suitable for routine RAS genotyping. CONCLUSION Clinical responses to anti-EGFR mAbs are potentially impaired in the presence of these uncommon RAS mutations.
Collapse
|
123
|
Du L, Kim JJ, Shen J, Chen B, Dai N. KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: a meta-analysis. Oncotarget 2017; 8:22175-22186. [PMID: 28077799 PMCID: PMC5400656 DOI: 10.18632/oncotarget.14549] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022] Open
Abstract
Although KRAS and TP53 mutations are common in both inflammatory bowel disease-associated colorectal cancer (IBD-CRC) and sporadic colorectal cancer (S-CRC), molecular events leading to carcinogenesis may be different. Previous studies comparing the frequency of KRAS and TP53 mutations in IBD-CRC and S-CRC were inconsistent. We performed a meta-analysis to compare the presence of KRAS and TP53 mutations among patients with IBD-CRC, S-CRC, and IBD without dysplasia. A total of 19 publications (482 patients with IBD-CRC, 4,222 with S-CRC, 281 with IBD without dysplasia) met the study inclusion criteria. KRAS mutation was less frequent (RR=0.71, 95%CI 0.56-0.90; P=0.004) while TP53 mutation was more common (RR=1.24, 95%CI 1.10-1.39; P<0.001) in patients with IBD-CRC compared to S-CRC. Both KRAS (RR=3.09, 95%CI 1.47-6.51; P=0.003) and TP53 (RR=2.15, 95%CI 1.07-4.31 P=0.03) mutations were more prevalent in patients with IBD-CRC compared to IBD without dysplasia. In conclusion, IBD-CRC and S-CRC appear to have biologically different molecular pathways. TP53 appears to be more important than KRAS in IBD-CRC compared to S-CRC. Our findings suggest possible roles of TP53 and KRAS as biomarkers for cancer and dysplasia screening among patients with IBD and may also provide targeted therapy in patients with IBD-CRC.
Collapse
Affiliation(s)
- Lijun Du
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John J Kim
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Division of Gastroenterology, Loma Linda University Medical Center, Loma Linda, USA
| | - Jinhua Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gastroenterology, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Binrui Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
124
|
Liang JT, Chen TC, Huang J, Jeng YM, Cheng JCH. Treatment outcomes regarding the addition of targeted agents in the therapeutic portfolio for stage II-III rectal cancer undergoing neoadjuvant chemoradiation. Oncotarget 2017; 8:101832-101846. [PMID: 29254207 PMCID: PMC5731917 DOI: 10.18632/oncotarget.21762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
Background To evaluate the impact of targeted agents in stage II-III rectal cancer undergoing neoadjuvant concurrent chemoradiation therapy (CCRT). Method A retrospective study was performed in 124 consecutive patients with clinically T3N0-2M0-staged rectal cancer incorporating targeted agents in CCRT. Results Pathologic complete response was detected in 34.2% (n=26) of bevacizumab+FOLFOX-treated patients (n=76), which was significantly higher (p=0.019, post-hoc statistical power =35.87%) than that (n=10, 20.8%) of the cetuximab+FOLFOX-treated patients (n=48). Patients receiving cetuximab+FOLFOX therapy tended to develop severe liver toxicity (91.7%, n=44 versus 17.1%, n=13, p<0.0001), as evaluated by morphologic grading of hepatic steatosis and sinusoidal dilatation in laparoscopy. In the 57 patients with morphologically severe liver toxicity, 36 (63.2%) retained a normal liver function; for the remaining 21 patients with an abnormal liver function, the abnormality was self-limited in 19 patients, whereas 2 cetuximab–treated patients progressed to hepatic failure and mortality. A subset analysis within bevacizumab+FOLFOX-treated patients with either wild-type (n=36) or mutant (n=40) K-ras status indicated K-ras status did not significantly influence the treatment outcomes. Conclusions The addition of bevacizumab instead of cetuximab to FOLFOX in the neoadjuvant settings for T3N0-2M0-staged rectal cancer could induce a promising rate of pathologic complete response and lesser hepatotoxicity.
Collapse
Affiliation(s)
- Jin-Tung Liang
- Division of Colorectal Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tzu-Chun Chen
- Division of Colorectal Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - John Huang
- Division of Colorectal Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Department of Radiation Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
125
|
Daoud A, Chu QS. Targeting Novel but Less Common Driver Mutations and Chromosomal Translocations in Advanced Non-Small Cell Lung Cancer. Front Oncol 2017; 7:222. [PMID: 29034207 PMCID: PMC5626928 DOI: 10.3389/fonc.2017.00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/01/2017] [Indexed: 01/25/2023] Open
Abstract
Discovery of the epidermal growth factor receptor gene mutation and the anaplastic lymphoma kinase chromosomal translocation in non-small cell lung cancer has prompted efforts around the world to identify many less common targetable oncogenic drivers. Such concerted efforts have been variably successful in both non-squamous and squamous cell carcinomas of the lung. Some of the targeted therapies for these oncogenic drivers have received regulatory approval for clinical use, while others have modest clinical benefit. In this mini-review, several of these targets will be reviewed.
Collapse
Affiliation(s)
- Alia Daoud
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Quincy S. Chu
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
126
|
Li W, Qiu T, Guo L, Ying J. Major challenges related to tumor biological characteristics in accurate mutation detection of colorectal cancer by next-generation sequencing. Cancer Lett 2017; 410:92-99. [PMID: 28942013 DOI: 10.1016/j.canlet.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been used in mutation detection of colorectal cancer (CRC). We here interrogated 747 CRC samples to detect mutations in 22 cancer-related genes by using NGS, and to explore some key challenges related to tumor biology. RAS mutations (KRAS or NRAS mutations), RAS/BRAF/PIK3CA mutations (mutations in KRAS, NRAS, BRAF or PIK3CA) and mutation burden (mutations in any of the 22 detected genes) were observed in 53.0% (396/747), 57.1% (431/747) and 84.2% (629/747) of specimens, respectively. Higher mutation frequencies were observed in biopsy specimens with ≥20% tumor cellularity than those with <20% tumor cellularity, but these differences were not observed in resection samples. Intratumor mutational heterogeneity was estimated by mutant allele frequency and tumor cellularity, and more likely to occur in PIK3CA mutant tumors. No significant differences of mutation frequencies were detected between primary and metastatic tumors. Additionally, specimens after chemotherapy showed lower mutation frequencies compared with specimens without chemotherapy. Together, our findings demonstrate that poor tumor cellularity, tumor heterogeneity and adjuvant therapy may confound the molecular diagnosis of CRC, and should be highlighted with prospective quality assessment during tissue process.
Collapse
Affiliation(s)
- Weihua Li
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
127
|
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017; 170:548-563.e16. [PMID: 28753429 DOI: 10.1016/j.cell.2017.07.008] [Citation(s) in RCA: 1267] [Impact Index Per Article: 181.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/11/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
Gut microbiota are linked to chronic inflammation and carcinogenesis. Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer patients. Here, we investigated the contribution of gut microbiota to chemoresistance in patients with colorectal cancer. We found that Fusobacterium (F.) nucleatum was abundant in colorectal cancer tissues in patients with recurrence post chemotherapy, and was associated with patient clinicopathological characterisitcs. Furthermore, our bioinformatic and functional studies demonstrated that F. nucleatum promoted colorectal cancer resistance to chemotherapy. Mechanistically, F. nucleatum targeted TLR4 and MYD88 innate immune signaling and specific microRNAs to activate the autophagy pathway and alter colorectal cancer chemotherapeutic response. Thus, F. nucleatum orchestrates a molecular network of the Toll-like receptor, microRNAs, and autophagy to clinically, biologically, and mechanistically control colorectal cancer chemoresistance. Measuring and targeting F. nucleatum and its associated pathway will yield valuable insight into clinical management and may ameliorate colorectal cancer patient outcomes.
Collapse
Affiliation(s)
- TaChung Yu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Fangfang Guo
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yanan Yu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Tiantian Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Dan Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jixuan Han
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yun Qian
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ilona Kryczek
- Department of Surgery, the University of Michigan Comprehensive Cancer Center, Graduate programs in Immunology and Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA, 48109
| | - Danfeng Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China; Department of Surgery, the University of Michigan Comprehensive Cancer Center, Graduate programs in Immunology and Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA, 48109
| | - Nisha Nagarsheth
- Department of Surgery, the University of Michigan Comprehensive Cancer Center, Graduate programs in Immunology and Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA, 48109
| | - Yingxuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Weiping Zou
- Department of Surgery, the University of Michigan Comprehensive Cancer Center, Graduate programs in Immunology and Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA, 48109.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
128
|
Venkatesan S, Swanton C, Taylor BS, Costello JF. Treatment-Induced Mutagenesis and Selective Pressures Sculpt Cancer Evolution. Cold Spring Harb Perspect Med 2017; 7:a026617. [PMID: 28289245 PMCID: PMC5538404 DOI: 10.1101/cshperspect.a026617] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite the great progress in our understanding of the molecular basis of human cancer, the heterogeneity of individual tumors and the evolutionary pressures imposed by therapy have hampered our ability to effectively eradicate and control this disease. How, therefore, do cancers evolve under the selective pressures of cancer therapy? Recent studies have linked both primary (or de novo) and acquired treatment resistance to intratumor heterogeneity and clonal evolution. Resistance to targeted therapies often includes mutation of the drug target itself and aberrations of pathways upstream of, downstream from, or parallel to the drug target. For systemic chemotherapies, discrete and recurrent resistance-conferring genetic aberrations have eluded the community, due in part to their wide-ranging mutagenic effects. In this review, we discuss different patterns of clonal evolution during treatment-specific selective pressures and focus on the genetic mechanisms of treatment resistance that have emerged to both targeted therapies and chemotherapies.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London WC1E 6BT, United Kingdom
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London WC1E 6BT, United Kingdom
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158
| |
Collapse
|
129
|
[Ru(pipe)(dppb)(bipy)]PF 6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells. Toxicol In Vitro 2017; 44:382-391. [PMID: 28774850 DOI: 10.1016/j.tiv.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022]
Abstract
Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.
Collapse
|
130
|
Yang B, Luo L, Luo W, Zhou Y, Yang C, Xiong T, Li X, Meng X, Li L, Zhang X, Wang Z, Wang Z. The genomic dynamics during progression of lung adenocarcinomas. J Hum Genet 2017; 62:783-788. [PMID: 28381877 PMCID: PMC5537414 DOI: 10.1038/jhg.2017.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 01/04/2023]
Abstract
Intra-tumor heterogeneity is a big barrier to precision medicine. To explore the underlying clonal diversity in lung adenocarcinomas, we selected nine individuals with whole-genome sequencing data from primary and matched metastatic tumors as a cohort for study. Similar global pattern of arm-level copy number changes and large variations of somatic single-nucleotide variant between the primary and metastasis are observed in the majority of cases. Importantly, we found breakage-fusion-bridge (BFB) cycles acting as an important mechanism for underlying cancer gene amplification, such as amplification of CDK4, CDKN3 and FGFR1 in early stage. We also identified recurrent focal amplification of gene CCNY derived from BFB in two metastatic tumors, but not in primary tumor. Clonal analysis of case 236T demonstrated that mutational processes are varying with tumor progression. Collectively, our data provide new insights into genetic diversity and potential therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Bin Yang
- Department of Breast surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | | | - Wen Luo
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | - Lin Li
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Zhixin Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
131
|
Lee WY, Chen PC, Wu WS, Wu HC, Lan CH, Huang YH, Cheng CH, Chen KC, Lin CW. Panobinostat sensitizes KRAS-mutant non-small-cell lung cancer to gefitinib by targeting TAZ. Int J Cancer 2017; 141:1921-1931. [PMID: 28710768 DOI: 10.1002/ijc.30888] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/13/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
Abstract
Mutation of KRAS in non-small-cell lung cancer (NSCLC) shows a poor response to epidermal growth factor receptor (EGFR) inhibitors and chemotherapy. Currently, there are no direct anti-KRAS therapies available. Thus, new strategies have emerged for targeting KRAS downstream signaling. Panobinostat is a clinically available histone deacetylase inhibitor for treating myelomas and also shows potentiality in NSCLC. However, the therapeutic efficacy of panobinostat against gefitinib-resistant NSCLC is unclear. In this study, we demonstrated that panobinostat overcame resistance to gefitinib in KRAS-mutant/EGFR-wild-type NSCLC. Combined panobinostat and gefitinib synergistically reduced tumor growth in vitro and in vivo. Mechanistically, we identified that panobinostat-but not gefitinib-inhibited TAZ transcription, and the combination of panobinostat and gefitinib synergistically downregulated TAZ and TAZ downstream targets, including EGFR and EGFR ligand. Inhibition of TAZ by panobinostat or short hairpin RNA sensitized KRAS-mutant/EGFR-wild-type NSCLC to gefitinib through abrogating AKT/mammalian target of rapamycin (mTOR) signaling. Clinically, TAZ was positively correlated with EGFR signaling, and coexpression of TAZ/EGFR conferred a poorer prognosis in lung cancer patients. Our findings identify that targeting TAZ-mediated compensatory mechanism is a novel therapeutic approach to overcome gefitinib resistance in KRAS-mutant/EGFR-wild-type NSCLC.
Collapse
Affiliation(s)
- Wen-Ying Lee
- Department of Cytopathology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pin-Cyuan Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shin Wu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsin Lan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
132
|
Battaglin F, Dadduzio V, Bergamo F, Manai C, Schirripa M, Lonardi S, Zagonel V, Loupakis F. Anti-EGFR monoclonal antibody panitumumab for the treatment of patients with metastatic colorectal cancer: an overview of current practice and future perspectives. Expert Opin Biol Ther 2017; 17:1297-1308. [PMID: 28752777 DOI: 10.1080/14712598.2017.1356815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Targeted agents alone or in combination with chemotherapy are current standard of treatment for metastatic colorectal cancer (mCRC). Panitumumab is a fully human monoclonal antibody which inhibits the epidermal growth factor receptor (EGFR). It is currently approved in combination with chemotherapy in first- and second-line and as a monotherapy in chemorefractory patients. RAS gene mutations confer resistance to anti-EGFR agents; thus, panitumumab is restricted to the treatment of RAS wild-type (WT) tumors. Areas covered: This review explores the available data on panitumumab and presents new perspectives on predictive markers of anti-EGFR efficacy including primary tumor sidedness and BRAF mutations. Other details covered include panitumumab's mechanism of action, pharmacokinetics, pharmacodynamics and safety aspects of the therapy as well as mechanisms of secondary resistance and future prospects of treatment in different settings. Expert opinion: Panitumumab has significantly added to the treatment armamentarium for RAS WT mCRC. The effort spent in identifying predictive biomarkers of panitumumab efficacy has been of pivotal importance to development of the molecular selection of patients with mCRC. Primary and secondary resistance, however, still represent important issues. Novel strategies to overcome those issues are currently underway with promising results which highlight the potential use of panitumumab in combination with other targeted agents in the future.
Collapse
Affiliation(s)
- Francesca Battaglin
- a Clinical and Experimental Oncology Department, Medical Oncology Unit 1 , Veneto Institute of Oncology IOV - IRCCS , Padova , Italy
| | - Vincenzo Dadduzio
- a Clinical and Experimental Oncology Department, Medical Oncology Unit 1 , Veneto Institute of Oncology IOV - IRCCS , Padova , Italy
| | - Francesca Bergamo
- a Clinical and Experimental Oncology Department, Medical Oncology Unit 1 , Veneto Institute of Oncology IOV - IRCCS , Padova , Italy
| | - Chiara Manai
- a Clinical and Experimental Oncology Department, Medical Oncology Unit 1 , Veneto Institute of Oncology IOV - IRCCS , Padova , Italy
| | - Marta Schirripa
- a Clinical and Experimental Oncology Department, Medical Oncology Unit 1 , Veneto Institute of Oncology IOV - IRCCS , Padova , Italy
| | - Sara Lonardi
- a Clinical and Experimental Oncology Department, Medical Oncology Unit 1 , Veneto Institute of Oncology IOV - IRCCS , Padova , Italy
| | - Vittorina Zagonel
- a Clinical and Experimental Oncology Department, Medical Oncology Unit 1 , Veneto Institute of Oncology IOV - IRCCS , Padova , Italy
| | - Fotios Loupakis
- a Clinical and Experimental Oncology Department, Medical Oncology Unit 1 , Veneto Institute of Oncology IOV - IRCCS , Padova , Italy
| |
Collapse
|
133
|
Wei Z, Wang W, Shu Z, Zhou X, Zhang Y. Correlation Between Circulating Tumor DNA Levels and Response to Tyrosine Kinase Inhibitors (TKI) Treatment in Non-Small Cell Lung Cancer. Med Sci Monit 2017; 23:3627-3634. [PMID: 28742791 PMCID: PMC5540003 DOI: 10.12659/msm.902265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Clinical monitoring of EGFR-positive NSCLC patients is important to gauge treatment response. The current study addresses the usage of circulating tumor DNA (ctDNA) as a prognostic marker during treatment of first-generation TKIs. MATERIAL AND METHODS Serial samplings of peripheral blood from 200 EGFR-positive NSCLC patients were taken. Baseline ctDNA quantification was conducted by digital droplet PCR before TKI treatment was administered and compared to primary biopsies. Thereafter blood sampling at different treatment cycles were measured and assessed for its prognostic and predictive value. RESULTS ctDNA was successfully detected in a number of patients and overall concordance rate was 84%. Importantly, we observed a strong correlation to ctDNA increase with disease progression using radiographic scans. In addition to survival analysis, we noted patients with the largest ctDNA variations had worst outcome. A significant number of EGFR patients during treatment developed a secondary mutation T790M and this cohort had worst survival outcome as well. CONCLUSIONS Our study demonstrated a highly associative relation of ctDNA to NSCLC patients during treatment that can be utilized to gauge treatment response. CtDNA is an attractive means compared with conventional core needle biopsies and presents new methods for accurately profiling NSCLC disease progression.
Collapse
Affiliation(s)
- Zhangjing Wei
- Department of Diagnostic Medicine, JingMen No. 1 People's Hospital, JingMen, Hubei, China (mainland)
| | - Wenyue Wang
- Department of Department of Gynecology and Obstetrics, Shayang People's Hospital, JingMen, Hubei, China (mainland)
| | - Zitan Shu
- Department of Diagnostic Medicine, JingMen No. 1 People's Hospital, JingMen, Hubei, China (mainland)
| | - Xue Zhou
- Department of Diagnostic Medicine, JingMen No. 1 People's Hospital, JingMen, Hubei, China (mainland)
| | - Yanfang Zhang
- Department of Diagnostic Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China (mainland)
| |
Collapse
|
134
|
Srivatsa S, Paul MC, Cardone C, Holcmann M, Amberg N, Pathria P, Diamanti MA, Linder M, Timelthaler G, Dienes HP, Kenner L, Wrba F, Prager GW, Rose-John S, Eferl R, Liguori G, Botti G, Martinelli E, Greten FR, Ciardiello F, Sibilia M. EGFR in Tumor-Associated Myeloid Cells Promotes Development of Colorectal Cancer in Mice and Associates With Outcomes of Patients. Gastroenterology 2017; 153:178-190.e10. [PMID: 28400195 PMCID: PMC5766132 DOI: 10.1053/j.gastro.2017.03.053] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/13/2017] [Accepted: 03/27/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Inhibitors of the epidermal growth factor receptor (EGFR) are the first-line therapy for patients with metastatic colorectal tumors without RAS mutations. However, EGFR inhibitors are ineffective in these patients, and tumor level of EGFR does not associate with response to therapy. We screened human colorectal tumors for EGFR-positive myeloid cells and investigated their association with patient outcome. We also performed studies in mice to evaluate how EGFR expression in tumor cells and myeloid cells contributes to development of colitis-associated cancer and ApcMin-dependent intestinal tumorigenesis. METHODS We performed immunohistochemical and immunofluorescent analyses of 116 colorectal tumor biopsies to determine levels of EGFR in tumor and stroma; we also collected information on tumor stage and patient features and outcomes. We used the Mann-Whitney U and Kruskal-Wallis tests to correlate tumor levels of EGFR with tumor stage, and the Kaplan-Meier method to estimate patients' median survival time. We performed experiments in mice lacking EGFR in intestinal epithelial cells (Villin-Cre; Egfrf/f and Villin-CreERT2; Egfrf/f mice) or myeloid cells (LysM-Cre; Egfrf/f mice) on a mixed background. These mice were bred with ApcMin/+ mice; colitis-associated cancer and colitis were induced by administration of dextran sodium sulfate (DSS), with or without azoxymethane (AOM), respectively. Villin-CreERT2 was activated in developed tumors by administration of tamoxifen to mice. Littermates that expressed full-length EGFR were used as controls. Intestinal tissues were collected; severity of colitis, numbers and size of tumors, and intestinal barrier integrity were assessed by histologic, immunohistochemical, quantitative reverse transcription polymerase chain reaction, and flow cytometry analyses. RESULTS We detected EGFR in myeloid cells in the stroma of human colorectal tumors; myeloid cell expression of EGFR associated with tumor metastasis and shorter patient survival time. Mice with deletion of EGFR from myeloid cells formed significantly fewer and smaller tumors than the respective EGFR-expressing controls in an ApcMin/+ background as well as after administration of AOM and DSS. Deletion of EGFR from intestinal epithelial cells did not affect tumor growth. Furthermore, tamoxifen-induced deletion of EGFR from epithelial cells of established intestinal tumors in mice given AOM and DSS did not reduce tumor size. EGFR signaling in myeloid cells promoted activation of STAT3 and expression of survivin in intestinal tumor cells. Mice with deletion of EGFR from myeloid cells developed more severe colitis after DSS administration, characterized by increased intestinal inflammation and intestinal barrier disruption, than control mice or mice with deletion of EGFR from intestinal epithelial cells. EGFR-deficient myeloid cells in the colon of DSS-treated LysM-Cre; Egfrf/f mice had reduced expression of interleukin 6 (IL6), and epithelial STAT3 activation was reduced compared with controls. Administration of recombinant IL6 to LysM-Cre; Egfrf/f mice given DSS protected them from weight loss and restored epithelial proliferation and STAT3 activation, compared with administration of DSS alone to these mice. CONCLUSIONS Increased expression of EGFR in myeloid cells from the colorectal tumor stroma associates with tumor progression and reduced survival time of patients with metastatic colorectal cancer. Deletion of EGFR from myeloid cells, but not intestinal epithelial cells, protects mice from colitis-induced intestinal cancer and ApcMin-dependent intestinal tumorigenesis. Myeloid cell expression of EGFR increases activation of STAT3 and expression of survivin in intestinal epithelial cells and expression of IL6 in colon tissues. These findings indicate that expression of EGFR by myeloid cells of the colorectal tumor stroma, rather than the cancer cells themselves, contributes to tumor development.
Collapse
Affiliation(s)
- Sriram Srivatsa
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | - Mariel C Paul
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | - Claudia Cardone
- Università degli Studi della Campania L. Vanvitelli, Department of Clinical and Experimental Medicine, Via Pansini 5, Naples, Italy
| | - Martin Holcmann
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | - Nicole Amberg
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | - Paulina Pathria
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | - Michaela A Diamanti
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Markus Linder
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | - Hans P Dienes
- Institute of Clinical Pathology, Medical University Vienna, Vienna, Austria
| | - Lukas Kenner
- Institute of Clinical Pathology, Medical University Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research LBI-CR, Vienna, Austria; Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Fritz Wrba
- Institute of Clinical Pathology, Medical University Vienna, Vienna, Austria
| | - Gerald W Prager
- Department of Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-Universität zu Kiel, Medical Faculty, Olshausenstraße 40, Kiel, Germany
| | - Robert Eferl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | - Giuseppina Liguori
- Pathology Unit, National Cancer Institute, G. Pascale Foundation, Via M Semmola, Naples, Italy
| | - Gerardo Botti
- Pathology Unit, National Cancer Institute, G. Pascale Foundation, Via M Semmola, Naples, Italy
| | - Erika Martinelli
- Università degli Studi della Campania L. Vanvitelli, Department of Clinical and Experimental Medicine, Via Pansini 5, Naples, Italy
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fortunato Ciardiello
- Università degli Studi della Campania L. Vanvitelli, Department of Clinical and Experimental Medicine, Via Pansini 5, Naples, Italy
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria.
| |
Collapse
|
135
|
Feng Y, Sun F, Wang N, Lei J, Ju H. Ru(bpy)32+ Incorporated Luminescent Polymer Dots: Double-Enhanced Electrochemiluminescence for Detection of Single-Nucleotide Polymorphism. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01603] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yaqiang Feng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Feng Sun
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ningning Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
136
|
Riva A, BØrgesen M, Guldmann-Christensen M, Hauge Kyneb M, Voogd K, Andersen C, Epistolio S, Merlo E, Yding Wolff T, Hamilton-Dutoit S, Lorenzen J, Christensen UB, Frattini M. SensiScreen®KRAS exon 2-sensitive simplex and multiplex real-time PCR-based assays for detection of KRAS exon 2 mutations. PLoS One 2017. [PMID: 28636636 PMCID: PMC5479524 DOI: 10.1371/journal.pone.0178027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activating mutations in codon 12 and codon 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) gene are implicated in the development of several human cancer types and influence their clinical evaluation, treatment and prognosis. Numerous different methods for KRAS genotyping are currently available displaying a wide range of sensitivities, time to answer and requirements for laboratory equipment and user skills. Here we present SensiScreen® KRAS exon 2 simplex and multiplex CE IVD assays, that use a novel real-time PCR-based method for KRAS mutation detection based on PentaBase's proprietary DNA analogue technology and designed to work on standard real-time PCR instruments. By means of the included BaseBlocker™ technology, we show that SensiScreen® specifically amplifies the mutated alleles of interest with no or highly subdued amplification of the wild type allele. Furthermore, serial dilutions of mutant DNA in a wild type background demonstrate that all SensiScreen® assays display a limit of detection that falls within the range of 0.25-1%. Finally, in three different colorectal cancer patient populations, SensiScreen® assays confirmed the KRAS genotype previously determined by commonly used methods for KRAS mutation testing, and notably, in two of the populations, SensiScreen® identified additional mutant positive cases not detected by common methods.
Collapse
Affiliation(s)
- Alice Riva
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | | | | | | | - Kirsten Voogd
- Laboratory of Research and Development, Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Samantha Epistolio
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Elisabetta Merlo
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Tine Yding Wolff
- Life Science Division, Danish Technological Institute, Aarhus, Denmark
| | - Stephen Hamilton-Dutoit
- Laboratory of Research and Development, Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Lorenzen
- Life Science Division, Danish Technological Institute, Aarhus, Denmark
| | | | - Milo Frattini
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
- * E-mail: (UBC); (MF)
| |
Collapse
|
137
|
Koinis F, Voutsina A, Kalikaki A, Koutsopoulos A, Lagoudaki E, Tsakalaki E, Dermitzaki EK, Kontopodis E, Pallis AG, Georgoulias V, Kotsakis A. Long-term clinical benefit from salvage EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer patients with EGFR wild-type tumors. Clin Transl Oncol 2017. [DOI: 10.1007/s12094-017-1702-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
138
|
Mariano VS, Leal LF, Pastrez PRA, Silva EM, Reis RM, Longatto-Filho A. Lung cancer samples preserved in liquid medium: One step beyond cytology. Diagn Cytopathol 2017; 45:915-921. [PMID: 28589673 DOI: 10.1002/dc.23743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the most common cancer types in men and women worldwide with a high mortality rate. World Health Organization (WHO) classification has accepted biopsy as the primary sample for lung cancer diagnosis, pathological classification and molecular testing for management of patients, yet, the use of alternative sampling procedures is highly encouraged. Bronchial cytological samples require a less invasive collection technique and may be suitable for pathological and molecular analysis and storage in liquid medium. Furthermore, the molecular analysis of bronchial cytological samples allows the detection of molecular biomarkers, which may be useful for the selection of molecular targeted therapies. Thus, the purpose of this review is to describe the usefulness of bronchial cytological samples preserved in liquid medium from lung cancer patients for pathological diagnosis and molecular investigation.
Collapse
Affiliation(s)
| | - Letícia Ferro Leal
- Barretos Cancer Hospital/Pio XII Foundation, Molecular Oncology Research Center, Brazil
| | | | - Estela Maria Silva
- Barretos Cancer Hospital/Pio XII Foundation, Molecular Oncology Research Center, Brazil
| | - Rui Manuel Reis
- Barretos Cancer Hospital/Pio XII Foundation, Molecular Oncology Research Center, Brazil.,Research Institute of Life and Health Sciences (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - Associated Laboratory to the Government of Portugal, Braga/Guimarães, Portugal
| | - Adhemar Longatto-Filho
- Barretos Cancer Hospital/Pio XII Foundation, Molecular Oncology Research Center, Brazil.,Research Institute of Life and Health Sciences (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - Associated Laboratory to the Government of Portugal, Braga/Guimarães, Portugal.,Medical Laboratory of Medical Investigation (LIM) 14, Department of Pathology, Faculty of Medicine, University of São Paulo, Brazil
| |
Collapse
|
139
|
Guibert N, Barlesi F, Descourt R, Léna H, Besse B, Beau-Faller M, Mosser J, Pichon E, Merlio JP, Ouafik L, Guichard F, Mastroianni B, Moreau L, Wdowik A, Sabourin JC, Lemoine A, Missy P, Langlais A, Moro-Sibilot D, Mazières J. Characteristics and Outcomes of Patients with Lung Cancer Harboring Multiple Molecular Alterations: Results from the IFCT Study Biomarkers France. J Thorac Oncol 2017; 12:963-973. [DOI: 10.1016/j.jtho.2017.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/14/2017] [Accepted: 02/02/2017] [Indexed: 01/24/2023]
|
140
|
Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, Kopetz SE, Lieu C, Lindor NM, Minsky BD, Monzon FA, Sargent DJ, Singh VM, Willis J, Clark J, Colasacco C, Bryan Rumble R, Temple-Smolkin R, B Ventura C, Nowak JA. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med 2017; 141:625-657. [PMID: 28165284 DOI: 10.5858/arpa.2016-0554-cp] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES - To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. METHODS - The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. RESULTS - Twenty-one guideline statements were established. CONCLUSIONS - Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented.
Collapse
Affiliation(s)
- Antonia R Sepulveda
- From the 1 Department of Pathology and Cell Biology, Columbia University, New York, NY
| | | | - Carmen J Allegra
- 5 Division of Hematology and Oncology, University of Florida Medical Center, Gainesville
| | - Wayne Grody
- 6 Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics, UCLA Medical Center, Los Angeles, CA
| | | | - William K Funkhouser
- 8 Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill
| | | | - Christopher Lieu
- 9 Division of Medical Oncology, University of Colorado Denver School of Medicine, Denver
| | | | - Bruce D Minsky
- 4 Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston
| | | | - Daniel J Sargent
- 12 Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | - Joseph Willis
- 14 Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Jennifer Clark
- 15 ASCP Institute for Science, Technology, and Policy, American Society for Clinical Pathology, Washington, DC
| | - Carol Colasacco
- 16 Laboratory and Pathology Quality Center, College of American Pathologists, Northfield, IL
| | - R Bryan Rumble
- 17 American Society of Clinical Oncology, Alexandria, VA
| | | | - Christina B Ventura
- 16 Laboratory and Pathology Quality Center, College of American Pathologists, Northfield, IL
| | - Jan A Nowak
- From the 1 Department of Pathology and Cell Biology, Columbia University, New York, NY
- 2 Department of Pathology
- 3 Department of Gastrointestinal (GI) Medical Oncology
- 4 Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston
- 5 Division of Hematology and Oncology, University of Florida Medical Center, Gainesville
- 6 Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics, UCLA Medical Center, Los Angeles, CA
- 7 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
- 8 Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill
- 9 Division of Medical Oncology, University of Colorado Denver School of Medicine, Denver
- 10 Department of Medical Genetics, Mayo Clinic, Scottsdale, AZ
- 11 Castle Biosciences, Friendswood, TX
- 12 Department of Health Sciences Research, Mayo Clinic, Rochester, MN
- 13 Biocept, San Diego, CA
- 14 Department of Pathology, Case Western Reserve University, Cleveland, OH
- 15 ASCP Institute for Science, Technology, and Policy, American Society for Clinical Pathology, Washington, DC
- 16 Laboratory and Pathology Quality Center, College of American Pathologists, Northfield, IL
- 17 American Society of Clinical Oncology, Alexandria, VA
- 18 Association for Molecular Pathology, Bethesda, MD
- 19 Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY
| |
Collapse
|
141
|
Zhang Q, Wang J, Li X, Zhang H, Nong J, Qin N, Zhang X, Wu Y, Yang X, Lv J, Zhang S. [Clinical Analysis of 107 NSCLC Patients Harboring KRAS Mutation]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 19:257-62. [PMID: 27215453 PMCID: PMC5973060 DOI: 10.3779/j.issn.1009-3419.2016.05.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Kirsten rat sarcoma viral oncogene (KRAS) mutation is one of the major driver genes of non-small cell lung cancer (NSCLC). KRAS is a resistant predictor of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which raises controversy because of its role in chemotherapy sensitivity and prognosis. The aim of this study is to accumulate clinical experience in treating NSCLC patients harboring KRAS mutation. METHODS A total of 107 NSCLC patients harboring KRAS mutation were analyzed retrospectively. The efficacy was analyzed in terms of first-line chemotherapy or EGFR-TKIs therapy. RESULTS The objective response rate (ORR) to first-line chemotherapy of 52 patients with advanced disease harboring KRAS mutation was 9.6%. The disease control rate (DCR) was 53.8%, and the median progression-free survival (PFS) was 3 months. The ORR to EGFR-TKIs therapy in 21 patients harboring KRAS mutation and EGFR/KRAS co-mutation was 9.5%; the DCR was 23.8%, and the median PFS was 1 month. The ORR and DCR to EGFR-TKIs therapy of patients with EGFR/KRAS co-mutation were significantly higher than those of patients with KRAS mutation (50% vs 0, P=0.029; 75% vs 11.8%, P=0.043); the median PFS was also significantly longer (3 months vs 1 month, P=0.004). CONCLUSIONS The efficacy to first-line chemotherapy and EGFR-TKIs therapy in NSCLC patients harboring KRAS mutation was poor; thus, new drugs should be developed. Furthermore, the existence of EGFR/KRAS co-mutation was confirmed. Hence, EGFR-TKIs therapy should be administered to patients with EGFR/KRAS co-mutation.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xi Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Hui Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jingying Nong
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Na Qin
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xinyong Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yuhua Wu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xinjie Yang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jalin Lv
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
142
|
Martin P, Leighl NB. Review of the use of pretest probability for molecular testing in non-small cell lung cancer and overview of new mutations that may affect clinical practice. Ther Adv Med Oncol 2017; 9:405-414. [PMID: 28607579 PMCID: PMC5455881 DOI: 10.1177/1758834017704329] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/14/2017] [Indexed: 11/17/2022] Open
Abstract
This article considers the use of pretest probability in non-small cell lung cancer (NSCLC) and how its use in EGFR testing has helped establish clinical guidelines on selecting patients for EGFR testing. With an ever-increasing number of molecular abnormalities being identified and often limited tissue available for testing, the use of pretest probability will need to be increasingly considered in the future for selecting investigations and treatments in patients. In addition we review new mutations that have the potential to affect clinical practice.
Collapse
Affiliation(s)
- Petra Martin
- Division of Medical Oncology, Princess Margaret Cancer Centre, 5-105 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Natasha B Leighl
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
143
|
Calvayrac O, Pradines A, Pons E, Mazières J, Guibert N. Molecular biomarkers for lung adenocarcinoma. Eur Respir J 2017; 49:49/4/1601734. [PMID: 28381431 DOI: 10.1183/13993003.01734-2016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022]
Abstract
The identification of oncogenic driver alterations that underlie sensitivity to small inhibitors has led to growing interest in identifying additional targetable oncogenes in nonsmall cell lung cancer. Although the therapeutic impact of the discovery of these alterations has now been widely demonstrated, the epidemiological data associated with each of these biomarkers remain insufficiently studied. In this review, we discuss the techniques used to discover each of these candidate oncogenes, their prevalence in nonsmall cell lung cancer, and briefly outline the epidemiological features of the major oncogenes and ways in which their identification can determine therapeutic strategies.
Collapse
Affiliation(s)
- Olivier Calvayrac
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France
| | - Anne Pradines
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France.,Institut Universitaire du Cancer, Toulouse, France.,Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France
| | - Elvire Pons
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France.,Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France
| | - Julien Mazières
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France .,Institut Universitaire du Cancer, Toulouse, France.,Hôpital Larrey, Centre Hospitalier Universitaire, Université Paul Sabatier, Toulouse, France
| | - Nicolas Guibert
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France.,Institut Universitaire du Cancer, Toulouse, France.,Hôpital Larrey, Centre Hospitalier Universitaire, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
144
|
Teng Y, Ngoka L, Cowell JK. Promotion of invasion by mutant RAS is dependent on activation of the WASF3 metastasis promoter gene. Genes Chromosomes Cancer 2017; 56:493-500. [PMID: 28233357 DOI: 10.1002/gcc.22453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis represents an end stage in the evolution of cancer progression and has been related to specific genetic pathways. Overexpression of mutant RAS in particular appears to promote invasion and metastasis, although exactly how this occurs has not been well characterized. It was previously showed that activation of the WASF3 protein regulates actin cytoskeleton dynamics that promote invasion. In this report, how WASF3 overexpression interacts with mutant RAS to increase invasion and metastasis was investigated. The ability of RAS to promote invasion and metastasis was shown to be dependent on WASF3 activation in a PI3K and AKT dependent manner. Proteomics analysis demonstrates the presence of AKT in the WASF3 immunocomplex which is enhanced by overexpression of mutant RAS. During these processes activation of ERK1/2 is not affected by loss of WASF3 expression. Analysis of the relative involvement of p85 and p110 in the WASF3 complex demonstrates that mutant RAS promotes dissociation of p85 promoting activation of p110. These studies provide a deeper understanding of the critical role for WASF3 in facilitating increased invasion potential in cancer cells expressing mutant RAS and supports the idea that targeting WASF3 in metastatic cells overexpressing RAS may be used to suppress invasion and metastasis.
Collapse
Affiliation(s)
- Yong Teng
- The Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Lambert Ngoka
- The Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - John K Cowell
- The Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
145
|
Abstract
Personalization of therapy to target specific molecular pathways has been placed in the forefront of cancer research. Initial reports from clinical trials designed to select patients for appropriate treatment on the basis of tumor characteristics not only have generated considerable excitement but also have identified several challenges. These challenges include the overcoming of regulatory and logistic difficulties, identification of the best selection biomarkers and diagnostic platforms that can be applied in the clinical setting, definition of relevant outcomes in small preselected patient populations, and the design of methods that facilitate rapid enrollment and interpretation of clinical trials by aggregating data across histologically diverse malignancies with common genetic alterations. Furthermore, because our knowledge of the functional consequences of many genetic alterations lags, investigators and sponsors struggle with choosing between ideal clinical trial designs and more practical ones. These challenges are amplified when more than one biomarker is used to select patients for a combination of targeted agents. This review summarizes the current status and challenges of clinical trials in the genomic era and proposes ways to address these challenges.
Collapse
Affiliation(s)
- Erel Joffe
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexia Iasonos
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anas Younes
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
146
|
Yamaoka T, Ohmori T, Ohba M, Arata S, Murata Y, Kusumoto S, Ando K, Ishida H, Ohnishi T, Sasaki Y. Distinct Afatinib Resistance Mechanisms Identified in Lung Adenocarcinoma Harboring an EGFR Mutation. Mol Cancer Res 2017; 15:915-928. [DOI: 10.1158/1541-7786.mcr-16-0482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 12/21/2016] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
|
147
|
Lu YQ, Lu KH. Advancements in next-generation sequencing for diagnosis and treatment of non-small-cell lung cancer. Chronic Dis Transl Med 2017; 3:1-7. [PMID: 29063051 PMCID: PMC5627693 DOI: 10.1016/j.cdtm.2017.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ying-Qiang Lu
- Department of Clinical Medicine, The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
148
|
Attri KS, Murthy D, Singh PK. Racial disparity in metabolic regulation of cancer. Front Biosci (Landmark Ed) 2017; 22:1221-1246. [PMID: 28199202 DOI: 10.2741/4543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic mutations and metabolic reprogramming are two key hallmarks of cancer, required for proliferation, invasion, and metastasis of the disease. While genetic mutations, whether inherited or acquired, are critical for the initiation of tumor development, metabolic reprogramming is an effector mechanism imperative for adaptational transition during the progression of cancer. Recent findings in the literature emphasize the significance of molecular cross-talk between these two cellular processes in regulating signaling and differentiation of cancer cells. Genome-wide sequencing analyses of cancer genomes have highlighted the association of various genic mutations in predicting cancer risk and survival. Oncogenic mutational frequency is heterogeneously distributed among various cancer types in different populations, resulting in varying susceptibility to cancer risk. In this review, we explore and discuss the role of genetic mutations in metabolic enzymes and metabolic oncoregulators to stratify cancer risk in persons of different racial backgrounds.
Collapse
Affiliation(s)
- Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA,
| |
Collapse
|
149
|
Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, Kopetz SE, Lieu C, Lindor NM, Minsky BD, Monzon FA, Sargent DJ, Singh VM, Willis J, Clark J, Colasacco C, Rumble RB, Temple-Smolkin R, Ventura CB, Nowak JA. Molecular Biomarkers for the Evaluation of Colorectal Cancer. Am J Clin Pathol 2017; 147:221-260. [PMID: 28165529 PMCID: PMC7263311 DOI: 10.1093/ajcp/aqw209] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives: To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. Methods: The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. Results: Twenty-one guideline statements were established. Conclusions: Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented.
Collapse
Affiliation(s)
- Antonia R. Sepulveda
- From theDepartment of Pathology and Cell Biology, Columbia University, New York, NY; Departments of
| | | | - Carmen J. Allegra
- Division of Hematology and Oncology, University of Florida Medical Center, Gainesville
| | - Wayne Grody
- Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics UCLA Medical Center, Los Angeles, CA
| | | | - William K. Funkhouser
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill
| | | | - Christopher Lieu
- Division of Medical Oncology, University of Colorado Denver School of Medicine, Denver
| | | | - Bruce D. Minsky
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston
| | | | | | | | - Joseph Willis
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Jennifer Clark
- ASCP Institute for Science, Technology, and Policy, American Society for Clinical Pathology, Washington, DC
| | - Carol Colasacco
- Laboratory and Pathology Quality Center, College of American Pathologists, Northfield, IL
| | | | | | - Christina B. Ventura
- Laboratory and Pathology Quality Center, College of American Pathologists, Northfield, IL
| | - Jan A. Nowak
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY
| |
Collapse
|
150
|
Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, Kopetz SE, Lieu C, Lindor NM, Minsky BD, Monzon FA, Sargent DJ, Singh VM, Willis J, Clark J, Colasacco C, Rumble RB, Temple-Smolkin R, Ventura CB, Nowak JA. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. J Mol Diagn 2017; 19:187-225. [PMID: 28185757 PMCID: PMC5971222 DOI: 10.1016/j.jmoldx.2016.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. METHODS The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. RESULTS Twenty-one guideline statements were established. CONCLUSIONS Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented. Key Words: Molecular diagnostics; Gastrointestinal; Histology; Genetics; Oncology.
Collapse
Affiliation(s)
- Antonia R Sepulveda
- Department of Pathology and Cell Biology, Columbia University, New York, NY.
| | - Stanley R Hamilton
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Carmen J Allegra
- Division of Hematology and Oncology, University of Florida Medical Center, Gainesville
| | - Wayne Grody
- Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics, UCLA Medical Center, Los Angeles, CA
| | | | - William K Funkhouser
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill
| | - Scott E Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Christopher Lieu
- Division of Medical Oncology, University of Colorado Denver School of Medicine, Denver
| | | | - Bruce D Minsky
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston
| | | | - Daniel J Sargent
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | - Joseph Willis
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Jennifer Clark
- ASCP Institute for Science, Technology, and Policy, American Society for Clinical Pathology, Washington, DC
| | - Carol Colasacco
- Laboratory and Pathology Quality Center, College of American Pathologists, Northfield, IL
| | | | | | - Christina B Ventura
- Laboratory and Pathology Quality Center, College of American Pathologists, Northfield, IL
| | - Jan A Nowak
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY
| |
Collapse
|