101
|
Colello D, Mathew S, Ward R, Pumiglia K, LaFlamme SE. Integrins regulate microtubule nucleating activity of centrosome through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling. J Biol Chem 2011; 287:2520-30. [PMID: 22117069 DOI: 10.1074/jbc.m111.254128] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule nucleation is an essential step in the formation of the microtubule cytoskeleton. We recently showed that androgen and Src promote microtubule nucleation and γ-tubulin accumulation at the centrosome. Here, we explore the mechanisms by which androgen and Src regulate these processes and ask whether integrins play a role. We perturb integrin function by a tyrosine-to-alanine substitution in membrane-proximal NPIY motif in the integrin β1 tail and show that this mutant substantially decreases microtubule nucleation and γ-tubulin accumulation at the centrosome. Because androgen stimulation promotes the interaction of the androgen receptor with Src, resulting in PI3K/AKT and MEK/ERK signaling, we asked whether these pathways are inhibited by the mutant integrin and whether they regulate microtubule nucleation. Our results indicate that the formation of the androgen receptor-Src complex and the activation of downstream pathways are significantly suppressed when cells are adhered by the mutant integrin. Inhibitor studies indicate that microtubule nucleation requires MEK/ERK but not PI3K/AKT signaling. Importantly, the expression of activated RAF-1 is sufficient to rescue microtubule nucleation inhibited by the mutant integrin by promoting the centrosomal accumulation of γ-tubulin. Our data define a novel paradigm of integrin signaling, where integrins regulate microtubule nucleation by promoting the formation of androgen receptor-Src signaling complexes to activate the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Diane Colello
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
102
|
Liu T, Deng M, Li J, Tong X, Wei Q, Ye X. Phosphorylation of right open reading frame 2 (Rio2) protein kinase by polo-like kinase 1 regulates mitotic progression. J Biol Chem 2011; 286:36352-60. [PMID: 21880710 PMCID: PMC3196107 DOI: 10.1074/jbc.m111.250175] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/19/2011] [Indexed: 01/25/2023] Open
Abstract
Polo-like kinase 1 (Plk1) plays essential roles during multiple stages of mitosis by phosphorylating a number of substrates. Here, we report that the atypical protein kinase Rio2 is a novel substrate of Plk1 and can be phosphorylated by Plk1 at Ser-335, Ser-380, and Ser-548. Overexpression of Rio2 causes a prolonged mitotic exit whereas knockdown of Rio2 accelerates mitotic progression, suggesting that Rio2 is required for the proper mitotic progression. Overexpression of phospho-mimicking mutant Rio2 S3D but not the nonphosphorylatable mutant Rio2 S3A displays a profile similar to that of wild-type Rio2. These results indicate that the phosphorylation status of Rio2 correlates with its function in mitosis. Furthermore, time-lapse imaging data show that overexpression of Rio2 but not Rio2 S3A results in a slowed metaphase-anaphase transition. Collectively, these findings strongly indicate that the Plk1-mediated phosphorylation of Rio2 regulates metaphase-anaphase transition during mitotic progression.
Collapse
Affiliation(s)
- Ting Liu
- From the Center for Molecular Immunology, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
- the Graduate University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Min Deng
- From the Center for Molecular Immunology, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
- the Graduate University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Junhui Li
- From the Center for Molecular Immunology, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
- the Graduate University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomei Tong
- From the Center for Molecular Immunology, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Qian Wei
- From the Center for Molecular Immunology, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
- the Graduate University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Ye
- From the Center for Molecular Immunology, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
| |
Collapse
|
103
|
Leoni LM, Hartley JA. Mechanism of action: the unique pattern of bendamustine-induced cytotoxicity. Semin Hematol 2011; 48 Suppl 1:S12-23. [PMID: 21530768 DOI: 10.1053/j.seminhematol.2011.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bendamustine has demonstrated substantial efficacy in the treatment of hematologic malignancies and continues to distinguish itself from other alkylating agents with regard to its activity in tumor cells. The mechanistic and clinical differences associated with bendamustine may be directly related to its unique structural features. Although the precise mechanisms of action are still poorly understood, bendamustine is associated with extensive and durable DNA damage. The increased potency of bendamustine may be due to secondary mechanisms such as inhibition of mitotic checkpoints, inefficient DNA repair, and initiation of p53-dependent DNA-damage stress response, all of which lead to mitotic catastrophe and apoptosis. It has also been hypothesized that the presence of a benzimidazole ring in addition to the nitrogen mustard group may influence the way bendamustine interacts with DNA and/or confer antimetabolite properties. Further elucidation of the mechanisms of action for bendamustine and the signaling pathways involved in the response to bendamustine-induced DNA damage is essential to maximize its therapeutic potential, identify biomarkers for response, and understand the potential for synergy with other agents involved in DNA damage and inhibition of DNA repair. This review will discuss the current understanding and hypotheses regarding bendamustine mechanisms of action and suggest future investigations that would shed light on the many unanswered questions.
Collapse
|
104
|
Ouyang Y, Petritsch C, Wen H, Jan L, Jan YN, Lu B. Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila. Development 2011; 138:2185-96. [PMID: 21558368 DOI: 10.1242/dev.058347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphorylation at conserved sites regulates the tumor suppressor activity of Numb. Enforced expression of a phospho-mimetic form of Numb (Numb-TS4D) or genetic manipulation that boosts phospho-Numb levels, attenuates endogenous Numb activity and causes ectopic neuroblast formation (ENF). This effect on neuroblast homeostasis occurs only in the type II neuroblast lineage. We identify Dronc caspase as a novel binding partner of Numb, and demonstrate that overexpression of Dronc suppresses the effects of Numb-TS4D in a non-apoptotic and possibly non-catalytic manner. Reduction of Dronc activity facilitates ENF induced by phospho-Numb. Our findings uncover a molecular mechanism that regulates Numb activity and suggest a novel role for Dronc caspase in regulating neural stem cell homeostasis.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
105
|
Smith E, Hégarat N, Vesely C, Roseboom I, Larch C, Streicher H, Straatman K, Flynn H, Skehel M, Hirota T, Kuriyama R, Hochegger H. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J 2011; 30:2233-45. [PMID: 21522128 PMCID: PMC3117641 DOI: 10.1038/emboj.2011.120] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is thought to trigger centrosome separation in late G2 phase by phosphorylating the motor protein Eg5 at Thr927. However, the precise control mechanism of centrosome separation remains to be understood. Here, we report that in G2 phase polo-like kinase 1 (Plk1) can trigger centrosome separation independently of Cdk1. We find that Plk1 is required for both C-Nap1 displacement and for Eg5 localization on the centrosome. Moreover, Cdk2 compensates for Cdk1, and phosphorylates Eg5 at Thr927. Nevertheless, Plk1-driven centrosome separation is slow and staggering, while Cdk1 triggers fast movement of the centrosomes. We find that actin-dependent Eg5-opposing forces slow down separation in G2 phase. Strikingly, actin depolymerization, as well as destabilization of interphase microtubules (MTs), is sufficient to remove this obstruction and to speed up Plk1-dependent separation. Conversely, MT stabilization in mitosis slows down Cdk1-dependent centrosome movement. Our findings implicate the modulation of MT stability in G2 and M phase as a regulatory element in the control of centrosome separation.
Collapse
Affiliation(s)
- Ewan Smith
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Clare Vesely
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Isaac Roseboom
- Department of Physics and Astronomy, University of Sussex, Brigthon, UK
| | - Chris Larch
- Department of Chemistry and Biochemistry, University of Sussex, Brighton, UK
| | - Hansjörg Streicher
- Department of Chemistry and Biochemistry, University of Sussex, Brighton, UK
| | | | - Helen Flynn
- CRUK London Research Institutes Clare Hall, South Mimms, UK
| | - Mark Skehel
- CRUK London Research Institutes Clare Hall, South Mimms, UK
| | - Toru Hirota
- The Cancer Institute, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
106
|
Li J, Zhan Q. The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis. Br J Cancer 2011; 104:1523-8. [PMID: 21505454 PMCID: PMC3101908 DOI: 10.1038/bjc.2011.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis.
Collapse
Affiliation(s)
- J Li
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | |
Collapse
|
107
|
Rizkallah R, Alexander KE, Kassardjian A, Lüscher B, Hurt MM. The transcription factor YY1 is a substrate for Polo-like kinase 1 at the G2/M transition of the cell cycle. PLoS One 2011; 6:e15928. [PMID: 21253604 PMCID: PMC3017090 DOI: 10.1371/journal.pone.0015928] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022] Open
Abstract
Yin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle transitions, many of which are oncogenes and tumor-suppressor genes. YY1 itself has been classified as an oncogene and was found to be upregulated in many cancer types. Unfortunately, our knowledge of what regulates YY1 is very minimal. Although YY1 has been shown to be a phosphoprotein, no kinase has ever been identified for the phosphorylation of YY1. Polo-like kinase 1 (Plk1) has emerged in the past few years as a major cell cycle regulator, particularly for cell division. Plk1 has been shown to play important roles in the G/M transition into mitosis and for the proper execution of cytokinesis, processes that YY1 has been shown to regulate also. Here, we present evidence that Plk1 directly phosphorylates YY1 in vitro and in vivo at threonine 39 in the activation domain. We show that this phosphorylation is cell cycle regulated and peaks at G2/M. This is the first report identifying a kinase for which YY1 is a substrate.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Bernhard Lüscher
- Institut für Biochemie und Molekularbiologie, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
108
|
Negishi T, Kumano G, Nishida H. Polo-like kinase 1 is required for localization of Posterior End Mark protein to the centrosome-attracting body and unequal cleavages in ascidian embryos. Dev Growth Differ 2011; 53:76-87. [PMID: 21261613 DOI: 10.1111/j.1440-169x.2010.01231.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ascidian embryos, the posterior-localized maternal factor Posterior End Mark (PEM) is responsible for patterning embryos along the anterior-posterior axis with regard to both cleavage pattern involving unequal cell divisions and gene expression. Although PEM plays important roles in embryogenesis, its mechanism of action is still unclear because PEM has no known functional domain. In the present study, we explored the candidate of PEM partner proteins in Halocynthia roretzi using yeast two-hybrid screening. We isolated a homologue of Polo-like kinase 1 (Plk1), a key regulator of cell division and highly conserved in eukaryotes, as the first potential binding partner of PEM. We biochemically confirmed that interaction occurred between the Plk1 and PEM proteins. Immunostaining showed that Plk1 protein concentrates in the centrosome-attracting body (CAB) at the posterior pole, where PEM protein is also localized. The CAB is a subcellular structure that plays an important role in generating the posterior cleavage pattern. Plk1 localization to the CAB was dependent on the cell cycle phases during unequal cleavage. Inhibition of Plk1 with specific drugs resulted in failure of the nucleus to migrate towards the posterior pole and formation of a microtubule bundle between the CAB and a centrosome, similarly to inhibition of PEM function, suggesting that both proteins are involved in the same process of unequal cleavages. This interrupted nuclear migration was rescued by overexpression of PEM. In Plk1-inhibited embryos, the localization of PEM protein to the CAB was impaired, indicating that Plk1 is required for appropriate localization of PEM.
Collapse
Affiliation(s)
- Takefumi Negishi
- Department of Biological Sciences, Osaka University, Toyonaka, Japan.
| | | | | |
Collapse
|
109
|
Yan J, Jin S, Li J, Zhan Q. Aurora B interaction of centrosomal Nlp regulates cytokinesis. J Biol Chem 2010; 285:40230-9. [PMID: 20864540 PMCID: PMC3001004 DOI: 10.1074/jbc.m110.140541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/22/2010] [Indexed: 11/06/2022] Open
Abstract
Cytokinesis is a fundamental cellular process, which ensures equal abscission and fosters diploid progenies. Aberrant cytokinesis may result in genomic instability and cell transformation. However, the underlying regulatory machinery of cytokinesis is largely undefined. Here, we demonstrate that Nlp (Ninein-like protein), a recently identified BRCA1-associated centrosomal protein that is required for centrosomes maturation at interphase and spindle formation in mitosis, also contributes to the accomplishment of cytokinesis. Through immunofluorescent analysis, Nlp is found to localize at midbody during cytokinesis. Depletion of endogenous Nlp triggers aborted division and subsequently leads to multinucleated phenotypes. Nlp can be recruited by Aurora B to the midbody apparatus via their physical association at the late stage of mitosis. Disruption of their interaction induces aborted cytokinesis. Importantly, Nlp is characterized as a novel substrate of Aurora B and can be phosphorylated by Aurora B. The specific phosphorylation sites are mapped at Ser-185, Ser-448, and Ser-585. The phosphorylation at Ser-448 and Ser-585 is likely required for Nlp association with Aurora B and localization at midbody. Meanwhile, the phosphorylation at Ser-185 is vital to Nlp protein stability. Disruptions of these phosphorylation sites abolish cytokinesis and lead to chromosomal instability. Collectively, these observations demonstrate that regulation of Nlp by Aurora B is critical for the completion of cytokinesis, providing novel insights into understanding the machinery of cell cycle progression.
Collapse
Affiliation(s)
- Jie Yan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| | - Shunqian Jin
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
- the Department of Radiation Oncology, Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jia Li
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| | - Qimin Zhan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| |
Collapse
|
110
|
Lens SMA, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 2010; 10:825-41. [PMID: 21102634 DOI: 10.1038/nrc2964] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large numbers of inhibitors for polo-like kinases and aurora kinases are currently being evaluated as anticancer drugs. Interest in these drugs is fuelled by the idea that these kinases have unique functions in mitosis. Within the polo-like kinase family, the emphasis for targeted therapies has been on polo-like kinase 1 (PLK1), and in the aurora kinase family drugs have been developed to specifically target aurora kinase A (AURKA; also known as STK6) and/or aurora kinase B (AURKB; also known as STK12). Information on the selectivity of these compounds in vivo is limited, but it is likely that off-target effects within the same kinase families will affect efficacy and toxicity profiles. In addition, it is becoming clear that interplay between polo-like kinases and aurora kinases is much more extensive than initially anticipated, and that both kinase families are important factors in the response to classical chemotherapeutics that damage the genome or the mitotic spindle. In this Review we discuss the implications of these novel insights on the clinical applicability of polo-like kinase and aurora kinase inhibitors.
Collapse
Affiliation(s)
- Susanne M A Lens
- Department of Medical Oncology and Cancer Genomics Centre, UMC Utrecht, Universiteitsweg 100, Stratenum 2. 118, Utrecht 3584 CG, The Netherlands.
| | | | | |
Collapse
|
111
|
Liu XS, Song B, Liu X. The substrates of Plk1, beyond the functions in mitosis. Protein Cell 2010; 1:999-1010. [PMID: 21153517 PMCID: PMC4875153 DOI: 10.1007/s13238-010-0131-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 12/01/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. In this short review, we briefly summarized the well-established functions modulated by Plk1 during mitosis. Beyond mitosis, we focused mainly on the unexpected processes in which Plk1 emerges as a critical player, including microtubule dynamics, DNA replication, chromosome dynamics, p53 regulation, and recovery from the G2 DNA-damage checkpoint. Our discussion is mainly based on the critical substrates targeted by Plk1 during these cellular events and the functional significance associated with each phosphorylation event.
Collapse
Affiliation(s)
- X. Shawn Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 USA
| | - Bing Song
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 USA
| |
Collapse
|
112
|
Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A. Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1. EMBO J 2010; 29:3470-83. [PMID: 20823832 PMCID: PMC2964169 DOI: 10.1038/emboj.2010.221] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/06/2010] [Indexed: 12/22/2022] Open
Abstract
Wnt signalling is known to promote G1/S progression through the stimulation of gene expression, but whether this signalling regulates mitotic progression is not clear. Here, the function of dishevelled 2 (Dvl2), which transmits the Wnt signal, in mitosis was examined. Dvl2 localized to the spindles and spindle poles during mitosis. When cells were treated with nocodazole, Dvl2 was observed at the kinetochores (KTs). Dvl2 bound to and was phosphorylated at Thr206 by a mitotic kinase, Polo-like kinase 1 (Plk1), and this phosphorylation was required for spindle orientation and stable microtubule (MT)-KT attachment. Dvl2 was also found to be involved in the activation of a spindle assembly checkpoint (SAC) kinase, Mps1, and the recruitment of other SAC components, Bub1 and BubR1, to the KTs. However, the phosphorylation of Dvl2 by Plk1 was dispensable for SAC. Furthermore, Wnt receptors were involved in spindle orientation, but not in MT-KT attachment or SAC. These results suggested that Dvl2 is involved in mitotic progression by regulating the dynamics of MT plus-ends and the SAC in Plk1-dependent and -independent manners.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Autoantigens/genetics
- Autoantigens/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line
- Centromere Protein A
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Dishevelled Proteins
- Frizzled Receptors/genetics
- Frizzled Receptors/metabolism
- Humans
- Kinetochores/metabolism
- Low Density Lipoprotein Receptor-Related Protein-6
- Mitosis/physiology
- Nocodazole/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Spindle Apparatus/metabolism
- Tubulin Modulators/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yohei Niikura
- Center for Childhood Cancer, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katsumi Kitagawa
- Center for Childhood Cancer, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
113
|
Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 2010; 9:643-60. [PMID: 20671765 DOI: 10.1038/nrd3184] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The polo-like kinase 1 (PLK1) acts in concert with cyclin-dependent kinase 1-cyclin B1 and Aurora kinases to orchestrate a wide range of critical cell cycle events. Because PLK1 has been preclinically validated as a cancer target, small-molecule inhibitors of PLK1 have become attractive candidates for anticancer drug development. Although the roles of the closely related PLK2, PLK3 and PLK4 in cancer are less well understood, there is evidence showing that PLK2 and PLK3 act as tumour suppressors through their functions in the p53 signalling network, which guards the cell against various stress signals. In this article, recent insights into the biology of PLKs will be reviewed, with an emphasis on their role in malignant transformation, and progress in the development of small-molecule PLK1 inhibitors will be examined.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
114
|
Degenhardt Y, Greshock J, Laquerre S, Gilmartin AG, Jing J, Richter M, Zhang X, Bleam M, Halsey W, Hughes A, Moy C, Liu-Sullivan N, Powers S, Bachman K, Jackson J, Weber B, Wooster R. Sensitivity of cancer cells to Plk1 inhibitor GSK461364A is associated with loss of p53 function and chromosome instability. Mol Cancer Ther 2010; 9:2079-89. [PMID: 20571075 DOI: 10.1158/1535-7163.mct-10-0095] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polo-like kinases are a family of serine threonine kinases that are critical regulators of cell cycle progression and DNA damage response. Predictive biomarkers for the Plk1-selective inhibitor GSK461364A were identified by comparing the genomics and genetics of a panel of human cancer cell lines with their response to a drug washout followed by an outgrowth assay. In this assay, cell lines that have lost p53 expression or carry mutations in the TP53 gene tended to be more sensitive to GSK461364A. These more sensitive cell lines also had increased levels of chromosome instability, a characteristic associated with loss of p53 function. Further mechanistic studies showed that p53 wild-type (WT) and not mutant cells can activate a postmitotic tetraploidy checkpoint and arrest at pseudo-G(1) state after GSK461364A treatment. RNA silencing of WT p53 increased the antiproliferative activity of GSK461364A. Furthermore, silencing of p53 or p21/CDKN1A weakened the tetraploidy checkpoint in cells that survived mitotic arrest and mitotic slippage. As many cancer therapies tend to be more effective in p53 WT patients, the higher sensitivity of p53-deficient tumors toward GSK461364A could potentially offer an opportunity to treat tumors that are refractory to other chemotherapies as well as early line therapy for these genotypes.
Collapse
Affiliation(s)
- Yan Degenhardt
- Cancer Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Park JE, Soung NK, Johmura Y, Kang YH, Liao C, Lee KH, Park CH, Nicklaus MC, Lee KS. Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol Life Sci 2010; 67:1957-70. [PMID: 20148280 PMCID: PMC2877763 DOI: 10.1007/s00018-010-0279-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 12/23/2022]
Abstract
Members of the polo subfamily of protein kinases have emerged as important regulators in diverse aspects of the cell cycle and cell proliferation. A large body of evidence suggests that a highly conserved polo-box domain (PBD) present in the C-terminal non-catalytic region of polo kinases plays a pivotal role in the function of these enzymes. Recent advances in our comprehension of the mechanisms underlying mammalian polo-like kinase 1 (Plk1)-dependent protein-protein interactions revealed that the PBD serves as an essential molecular mediator that brings the kinase domain of Plk1 into proximity with its substrates, mainly through phospho-dependent interactions with its target proteins. In this review, current understanding of the structure and functions of PBD, mode of PBD-dependent interactions and substrate phosphorylation, and other phospho-independent functions of PBD are discussed.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Nak-Kyun Soung
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Yoshikazu Johmura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Young H. Kang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chenzhong Liao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung H. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chi Hoon Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| |
Collapse
|
116
|
Shi W, Alajez NM, Bastianutto C, Hui ABY, Mocanu JD, Ito E, Busson P, Lo KW, Ng R, Waldron J, O'Sullivan B, Liu FF. Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer 2010; 126:2036-48. [PMID: 19739117 DOI: 10.1002/ijc.24880] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polo-like kinase 1 (Plk1) is a critical regulator of many stages of mitosis; increasing evidence indicates that Plk1 overexpression correlates with poor clinical outcome, yet its mechanism of regulation remains unknown. Hence, a detailed evaluation was undertaken of Plk1 expression in human nasopharyngeal cancer (NPC), the cellular effects of targeting Plk1 using siRNA in combination with ionizing radiation (RT) and potential upstream microRNAs (miRs) that might regulate Plk1 expression. Using immunohistochemistry, Plk1 was observed to be overexpressed in 28 of 40 (70%) primary NPC biopsies, which in turn was associated with a higher likelihood of recurrence (p = 0.018). SiPlk1 significantly inhibited Plk1 mRNA and protein expression, and decreased Cdc25c levels in NPC cell lines. This depletion resulted in cytotoxicity of C666-1 cells, enhanced by the addition of RT, mediated by G2/M arrest, increased DNA double-strand breaks, apoptosis, and caspase activation. Immunofluorescence demonstrated that the G2/M arrest was associated with aberrant spindle formation, leading to mitotic arrest. In vivo, transfection of C666-1 cells and systemic delivery of siPlk1 decreased tumour growth. MicroRNA-100 (miR-100) was predicted to target Plk1 mRNA, which was indeed underexpressed in C666-1 cells, inversely correlating with Plk1 expression. Using luciferase constructs containing the 3'-UTR of Plk1 sequence, we document that miR-100 can directly target Plk1. Hence, our data demonstrate for the first time that underexpressed miR-100 leads to Plk1 overexpression, which in turn contributes to NPC progression. Targeting Plk1 will cause mitotic catastrophe, with significant cytotoxicity both in vitro and in vivo, underscoring the important therapeutic opportunity of Plk1 in NPC.
Collapse
Affiliation(s)
- Wei Shi
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Gerster K, Shi W, Ng B, Yue S, Ito E, Waldron J, Gilbert R, Liu FF. Targeting polo-like kinase 1 enhances radiation efficacy for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2010; 77:253-60. [PMID: 20394857 DOI: 10.1016/j.ijrobp.2009.11.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate the efficacy of targeting polo-like kinase 1 (Plk1) combined with ionizing radiotherapy (RT) for head-and-neck squamous cell carcinoma (HNSCC). METHODS AND MATERIALS Polo-like kinase 1 messenger ribonucleic acid (mRNA) was targeted by small interfering RNA (siRNA) transfection into the FaDu HNSCC cell line; reduction was confirmed using quantitative real-time polymerase chain reaction. The cellular effects were assessed using [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium], clonogenic, flow cytometric, and caspase assays. In vivo efficacy of siPlk1 was evaluated using mouse xenograft models. RESULTS Small interfering Plk1 significantly decreased Plk1 mRNA expression, while also increasing cyclin B1 and p21(Waf1/CIP1) mRNA levels after 24 h. This depletion resulted in a time-dependent increase in FaDu cytotoxicity, which was enhanced by the addition of RT. Flow cytometric and caspase assays demonstrated progressive apoptosis, DNA double-strand breaks (gamma-H2AX), G2/M arrest, and activation of caspases 3 and 7. Implantation of siPlk1-treated FaDu cells in severe combined immunodeficient mice delayed tumor formation, and systemic administration of siPlk1 inhibited tumor growth enhanced by RT. CONCLUSIONS These data demonstrate the suitability of Plk1 as a potential therapeutic target for HNSCC, because Plk1 depletion resulted in significant cytotoxicity in vitro and abrogated tumor-forming potential in vivo. The effects of Plk1 depletion were enhanced with the addition of RT, indicating that Plk1 represents an important potential radiation sensitizer for HNSCC.
Collapse
Affiliation(s)
- Kate Gerster
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Im JH, Kim SJ. Paclitaxel Induced Caspase-Independent Mitotic Catastrophe in Rabbit Articular Chondrocyte. ACTA ACUST UNITED AC 2010. [DOI: 10.5352/jls.2010.20.4.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
119
|
Astrinidis A, Kim J, Kelly CM, Olofsson BA, Torabi B, Sorokina EM, Azizkhan-Clifford J. The transcription factor SP1 regulates centriole function and chromosomal stability through a functional interaction with the mammalian target of rapamycin/raptor complex. Genes Chromosomes Cancer 2010; 49:282-97. [PMID: 20013896 DOI: 10.1002/gcc.20739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Specificity protein 1 (SP1) is an essential transcription factor implicated in the regulation of genes that control multiple cellular processes, including cell cycle, apoptosis, and DNA damage. Very few nontranscriptional roles for SP1 have been reported thus far. Using confocal microscopy and centrosome fractionation, we identified SP1 as a centrosomal protein. Sp1-deficient mouse embryonic fibroblasts and cells depleted of SP1 by RNAi have increased centrosome number associated with centriole splitting, decreased microtubule nucleation, chromosome misalignment, formation of multipolar mitotic spindles and micronuclei, and increased incidence of aneuploidy. Using mass spectrometry, we identified P70S6K, an effector of the mTOR/raptor (mTORC1) kinase complex, as a novel interacting protein of SP1. We found that SP1-deficient cells have increased phosphorylation of the P70S6K effector ribosomal protein S6, suggesting that SP1 participates in the regulation of the mTORC1/P70S6K/S6 signaling pathway. We previously reported that aberrant mTORC1 activation leads to supernumerary centrosomes, a phenotype rescued by the mTORC1 inhibitor rapamycin. Similarly, treatment with rapamycin rescued the multiple centrosome phenotype of SP1-deficient cells. Taken together, these data strongly support the hypothesis that SP1 is involved in the control of centrosome number via regulation of the mTORC1 pathway, and predict that loss of SP1 function can lead to aberrant centriole splitting, deregulated mTORC1 signaling, and aneuploidy, thereby contributing to malignant transformation.
Collapse
Affiliation(s)
- Aristotelis Astrinidis
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Shao S, Liu R, Wang Y, Song Y, Zuo L, Xue L, Lu N, Hou N, Wang M, Yang X, Zhan Q. Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice. J Clin Invest 2010; 120:498-507. [PMID: 20093778 DOI: 10.1172/jci39447] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 12/02/2009] [Indexed: 12/22/2022] Open
Abstract
Disruption of mitotic events contributes greatly to genomic instability and results in mutator phenotypes. Indeed, abnormalities of mitotic components are closely associated with malignant transformation and tumorigenesis. Here we show that ninein-like protein (Nlp), a recently identified BRCA1-associated centrosomal protein involved in microtubule nucleation and spindle formation, is an oncogenic protein. Nlp was found to be overexpressed in approximately 80% of human breast and lung carcinomas analyzed. In human lung cancers, this deregulated expression was associated with NLP gene amplification. Further analysis revealed that Nlp exhibited strong oncogenic properties; for example, it conferred to NIH3T3 rodent fibroblasts the capacity for anchorage-independent growth in vitro and tumor formation in nude mice. Consistent with these data, transgenic mice overexpressing Nlp displayed spontaneous tumorigenesis in the breast, ovary, and testicle within 60 weeks. In addition, Nlp overexpression induced more rapid onset of radiation-induced lymphoma. Furthermore, mouse embryonic fibroblasts (MEFs) derived from Nlp transgenic mice showed centrosome amplification, suggesting that Nlp overexpression mimics BRCA1 loss. These findings demonstrate that Nlp abnormalities may contribute to genomic instability and tumorigenesis and suggest that Nlp might serve as a potential biomarker for clinical diagnosis and therapeutic target.
Collapse
Affiliation(s)
- Shujuan Shao
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Polo-like kinases (Plk) function in mitosis and maintaining DNA integrity. There are four family members, of which Plk1 represents a target for anticancer therapy. Plk1 is only expressed in dividing cells with peak expression during G2/M. Plk1 functions in multiple steps of mitosis, and is overexpressed in many tumor types. Mitotic arrest and inhibition of proliferation, apoptosis, and tumor growth inhibition have been observed in preclinical studies using small interfering RNAs (siRNA) or small molecules that inhibit Plk1. Preclinical studies also show that Plk1 inhibitors may be active against tumors with RAS mutations and that tumor cells with mutations in TP53 are more sensitive to inhibition of Plk1. Several Plk inhibitors are in phase I or II clinical studies. As expected, hematologic toxicity is the primary dose-limiting toxicity. Some patients have achieved clinical response, although in some studies only at doses above the maximum tolerated dose defined in the study. Further evaluation is necessary to discern the clinical utility of Plk1 inhibitors.
Collapse
Affiliation(s)
- Yan Degenhardt
- Cancer Metabolism Drug Discovery Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | |
Collapse
|
122
|
Coxon CH, Bicknell KA, Moseley FL, Brooks G. Over expression of Plk1 does not induce cell division in rat cardiac myocytes in vitro. PLoS One 2009; 4:e6752. [PMID: 19707596 PMCID: PMC2727448 DOI: 10.1371/journal.pone.0006752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/17/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mammalian cardiac myocytes withdraw from the cell cycle during post-natal development, resulting in a non-proliferating, fully differentiated adult phenotype that is unable to repair damage to the myocardium, such as occurs following a myocardial infarction. We and others previously have shown that forced expression of certain cell cycle molecules in adult cardiac myocytes can promote cell cycle progression and division in these cells. The mitotic serine/threonine kinase, Polo-like kinase-1 (Plk1), is known to phosphorylate and activate a number of mitotic targets, including Cdc2/Cyclin B1, and to promote cell division. PRINCIPAL FINDINGS The mammalian Plk family are all differentially regulated during the development of rat cardiac myocytes, with Plk1 showing the most dramatic decrease in both mRNA, protein and activity in the adult. We determined the potential of Plk1 to induce cell cycle progression and division in cultured rat cardiac myocytes. A persistent and progressive loss of Plk1 expression was observed during myocyte development that correlated with the withdrawal of adult rat cardiac myocytes from the cell cycle. Interestingly, when Plk1 was over-expressed in cardiac myocytes by adenovirus infection, it was not able to promote cell cycle progression, as determined by cell number and percent binucleation. CONCLUSIONS We conclude that, in contrast to Cdc2/Cyclin B1 over-expression, the forced expression of Plk1 in adult cardiac myocytes is not sufficient to induce cell division and myocardial repair.
Collapse
Affiliation(s)
- Carmen H. Coxon
- School of Pharmacy, University of Reading, Reading, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Fleur L. Moseley
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, United Kingdom
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
123
|
Shakes DC, Wu JC, Sadler PL, LaPrade K, Moore LL, Noritake A, Chu DS. Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000611. [PMID: 19696886 PMCID: PMC2720455 DOI: 10.1371/journal.pgen.1000611] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/20/2009] [Indexed: 12/26/2022] Open
Abstract
In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex.
Collapse
Affiliation(s)
- Diane C. Shakes
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
- * E-mail: (DCS); (DSC)
| | - Jui-ching Wu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Penny L. Sadler
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Kristen LaPrade
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Landon L. Moore
- Department of Biology, University of Southern Indiana, Evansville, Indiana, United States of America
| | - Alana Noritake
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- * E-mail: (DCS); (DSC)
| |
Collapse
|
124
|
Zhang X, Chen Q, Feng J, Hou J, Yang F, Liu J, Jiang Q, Zhang C. Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J Cell Sci 2009; 122:2240-51. [PMID: 19509060 DOI: 10.1242/jcs.042747] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nedd1 is a new member of the gamma-tubulin ring complex (gammaTuRC) and targets the gammaTuRC to the centrosomes for microtubule nucleation and spindle assembly in mitosis. Although its role is known, its functional regulation mechanism remains unclear. Here we report that the function of Nedd1 is regulated by Cdk1 and Plk1. During mitosis, Nedd1 is firstly phosphorylated at T550 by Cdk1, which creates a binding site for the polo-box domain of Plk1. Then, Nedd1 is further phosphorylated by Plk1 at four sites: T382, S397, S637 and S426. The sequential phosphorylation of Nedd1 by Cdk1 and Plk1 promotes its interaction with gamma-tubulin for targeting the gammaTuRC to the centrosome and is important for spindle formation. Knockdown of Plk1 by RNAi decreases Nedd1 phosphorylation and attenuates Nedd1 accumulation at the spindle pole and subsequent gamma-tubulin recruitment at the spindle pole for microtubule nucleation. Taken together, we propose that the sequential phosphorylation of Nedd1 by Cdk1 and Plk1 plays a pivotal role in targeting gammaTuRC to the centrosome by promoting the interaction of Nedd1 with the gammaTuRC component gamma-tubulin, during mitosis.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Haren L, Stearns T, Lüders J. Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS One 2009; 4:e5976. [PMID: 19543530 PMCID: PMC2695007 DOI: 10.1371/journal.pone.0005976] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/25/2009] [Indexed: 11/19/2022] Open
Abstract
The nucleation of microtubules requires protein complexes containing gamma-tubulin, which are present in the cytoplasm and associate with the centrosome and with the mitotic spindle. We have previously shown that these interactions require the gamma-tubulin targeting factor GCP-WD/NEDD1, which has an essential role in spindle formation. The recruitment of additional gamma-tubulin to the centrosomes occurs during centrosome maturation at the G2/M transition and is regulated by the mitotic kinase Plk1. However, the molecular details of this important pathway are unknown and a Plk1 substrate that controls gamma-tubulin recruitment has not been identified. Here we show that Plk1 associates with GCP-WD in mitosis and Plk1 activity contributes to phosphorylation of GCP-WD. Plk1 depletion or inhibition prevents accumulation of GCP-WD at mitotic centrosomes, but GCP-WD mutants that are defective in Plk1-binding and -phosphorylation still accumulate at mitotic centrosomes and recruit gamma-tubulin. Moreover, Plk1 also controls the recruitment of other PCM proteins implicated in centrosomal gamma-tubulin attachment (Cep192/hSPD2, pericentrin, Cep215/Cdk5Rap2). Our results support a model in which Plk1-dependent recruitment of gamma-tubulin to mitotic centrosomes is regulated upstream of GCP-WD, involves multiple PCM proteins and therefore potentially multiple Plk1 substrates.
Collapse
Affiliation(s)
- Laurence Haren
- Institut de Sciences et Technologies du Médicament de Toulouse, Centre National de la Recherche Scientifique/Pierre Fabre, Toulouse, France
| | - Tim Stearns
- Department of Biology, Stanford University and Department of Genetics, Stanford University Medical School, Stanford, California, United States of America
| | - Jens Lüders
- Cell & Developmental Biology Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| |
Collapse
|
126
|
Oshimori N, Li X, Ohsugi M, Yamamoto T. Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation. EMBO J 2009; 28:2066-76. [PMID: 19536135 DOI: 10.1038/emboj.2009.161] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 05/22/2009] [Indexed: 12/21/2022] Open
Abstract
Microtubule-nucleation activity and structural integrity of the centrosome are critical for various cellular functions. The gamma-tubulin ring complexes (gammaTuRCs) localizing to the pericentriolar matrix (PCM) of the centrosome are major sites of microtubule nucleation. The PCM is thought to be created by two cognate large coiled-coil proteins, pericentrin/kendrin and CG-NAP/AKAP450, and its stabilization by Kizuna is essential for bipolar spindle formation. However, the mechanisms by which these proteins are recruited and organized into a proper structure with microtubule-organizing activity are poorly understood. Here we identify a centrosomal protein Cep72 as a Kizuna-interacting protein. Interestingly, Cep72 is essential for the localization of CG-NAP and Kizuna. Cep72 is also involved in gammaTuRC recruitment to the centrosome and CG-NAP confers the microtubule-nucleation activity on the gammaTuRCs. During mitosis, Cep72-mediated microtubule organization is important for converging spindle microtubules to the centrosomes, which is needed for chromosome alignment and tension generation between kinetochores. Our findings show that Cep72 is the key protein essential for maintaining microtubule-organizing activity and structural integrity of the centrosome.
Collapse
Affiliation(s)
- Naoki Oshimori
- Division of Oncology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
127
|
Jin S, Gao H, Mazzacurati L, Wang Y, Fan W, Chen Q, Yu W, Wang M, Zhu X, Zhang C, Zhan Q. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression. J Biol Chem 2009; 284:22970-7. [PMID: 19509300 DOI: 10.1074/jbc.m109.009134] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.
Collapse
Affiliation(s)
- Shunqian Jin
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Kishi K, van Vugt MATM, Okamoto KI, Hayashi Y, Yaffe MB. Functional dynamics of Polo-like kinase 1 at the centrosome. Mol Cell Biol 2009; 29:3134-50. [PMID: 19307309 PMCID: PMC2682011 DOI: 10.1128/mcb.01663-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/20/2008] [Accepted: 03/12/2009] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinase 1 (Plk1) functions as a key regulator of mitotic events by phosphorylating substrate proteins on centrosomes, kinetochores, the mitotic spindle, and the midbody. Through mechanisms that are incompletely understood, Plk1 is released from and relocalizes to different mitotic structures as cells proceed through mitosis. We used fluorescence recovery after photobleaching to examine the kinetics of this process in more detail. We observed that Plk1 displayed a range of different recovery rates that differ at each mitotic substructure and depend on both the Polo-box domain and a functional kinase domain. Upon mitotic entry, centrosomal Plk1 becomes more dynamic, a process that is directly enhanced by Plk1 kinase activity. In contrast, Plk1 displays little dynamic exchange at the midbody, a process that again is modulated by the kinase activity of Plk1. Our findings suggest that the intrinsic kinase activity of Plk1 triggers its release from early mitotic structures and its relocalization to late mitotic structures. To assess the importance of Plk1 dynamic relocalization, Plk1 was persistently tethered to the centrosome. This resulted in a G(2) delay, followed by a prominent prometaphase arrest, as a consequence of defective spindle formation and activation of the spindle checkpoint. The dynamic release of Plk1 from early mitotic structures is thus crucial for mid- to late-stage mitotic events and demonstrates the importance of a fully dynamic Plk1 at the centrosome for proper cell cycle progression. This dependence on dynamic Plk1 was further observed during the mitotic reentry of cells after a DNA damage G(2) checkpoint, as this process was significantly delayed upon centrosomal tethering of Plk1. These results indicate that mitotic progression and control of mitotic reentry after DNA damage resides, at least in part, on the dynamic behavior of Plk1.
Collapse
Affiliation(s)
- Kazuhiro Kishi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
129
|
Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 2009; 10:265-75. [PMID: 19305416 DOI: 10.1038/nrm2653] [Citation(s) in RCA: 492] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polo-like kinases (Plks) are potent regulators of M phase that are conserved from yeasts to humans. Their roles in mitotic entry, spindle pole functions and cytokinesis are broadly conserved despite physical and molecular differences in these processes in disparate organisms. Plks are characterized by their Polo-box domain, which mediates protein interactions. They are additionally controlled by phosphorylation, proteolysis and transcription, depending on the biological context. Plks are now recognized to link cell division to developmental processes and to function in differentiated cells. A comparison of Plk function and regulation between organisms offers insight into the rich variations of cell division.
Collapse
Affiliation(s)
- Vincent Archambault
- Cancer Research UK, Cell Cycle Genetics Research Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK.
| | | |
Collapse
|
130
|
Soung NK, Park JE, Yu LR, Lee KH, Lee JM, Bang JK, Veenstra TD, Rhee K, Lee KS. Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev Cell 2009; 16:539-50. [PMID: 19386263 PMCID: PMC2741019 DOI: 10.1016/j.devcel.2009.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/31/2008] [Accepted: 02/11/2009] [Indexed: 11/22/2022]
Abstract
Outer dense fiber 2 (ODF2) was initially identified as a major component of the sperm tail cytoskeleton, and was later suggested to be localized to somatic centrosomes and required for the formation of primary cilia. Here we show that a splice variant of hODF2 called hCenexin1, but not hODF2 itself, efficiently localizes to somatic centrosomes via a variant-specific C-terminal extension and recruits Plk1 through a Cdc2-dependent phospho-S796 motif within the extension. This interaction and Plk1 activity were important for proper recruitment of pericentrin and gamma-tubulin, and, ultimately, for formation of normal bipolar spindles. Earlier in the cell cycle, hCenexin1, but again not hODF2, also contributed to centrosomal recruitment of ninein and primary cilia formation independent of Plk1 interaction. These findings provide a striking example of how a splice-generated C-terminal extension of a sperm tail-associating protein mediates unanticipated centrosomal events at distinct stages of the somatic cell cycle.
Collapse
Affiliation(s)
- Nak-Kyun Soung
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Li-Rong Yu
- Center for Proteomics, Division of Systems Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Kyung H. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jung-Min Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jeong K. Bang
- Korea Basic Science Institute, Busan, 609-735, South Korea
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Kunsoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
131
|
Fant X, Gnadt N, Haren L, Merdes A. Stability of the small gamma-tubulin complex requires HCA66, a protein of the centrosome and the nucleolus. J Cell Sci 2009; 122:1134-44. [PMID: 19299467 DOI: 10.1242/jcs.035238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To investigate changes at the centrosome during the cell cycle, we analyzed the composition of the pericentriolar material from unsynchronized and S-phase-arrested cells by gel electrophoresis and mass spectrometry. We identified HCA66, a protein that localizes to the centrosome from S-phase to mitosis and to the nucleolus throughout interphase. Silencing of HCA66 expression resulted in failure of centrosome duplication and in the formation of monopolar spindles, reminiscent of the phenotype observed after gamma-tubulin silencing. Immunofluorescence microscopy showed that proteins of the gamma-tubulin ring complex were absent from the centrosome in these monopolar spindles. Immunoblotting revealed reduced protein levels of all components of the gamma-tubulin small complex (gamma-tubulin, GCP2, and GCP3) in HCA66-depleted cells. By contrast, the levels of gamma-tubulin ring complex proteins such as GCP4 and GCP-WD/NEDD1 were unaffected. We propose that HCA66 is a novel regulator of gamma-tubulin function that plays a role in stabilizing components of the gamma-tubulin small complex, which is in turn essential for assembling the larger gamma-tubulin ring complex.
Collapse
Affiliation(s)
- Xavier Fant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
132
|
Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W. Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer 2009; 8:8. [PMID: 19216791 PMCID: PMC2657106 DOI: 10.1186/1476-4598-8-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 02/13/2009] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, control mechanisms have developed that restrain cell-cycle transitions in response to stress. These regulatory pathways are termed cell-cycle checkpoints. The G(2)/M checkpoint prevents cells from entering mitosis when DNA is damaged in order to afford these cells an opportunity to repair the damaged DNA before propagating genetic defects to the daughter cells. If the damage is irreparable, checkpoint signaling might activate pathways that lead to apoptosis. Since alteration of cell-cycle control is a hallmark of tumorigenesis, cell-cycle regulators represent potential targets for therapy. The centrosome has recently come into focus as a critical cellular organelle that integrates G(2)/M checkpoint control and repairs signals in response to DNA damage. A growing number of G(2)/M checkpoint regulators have been found in the centrosome, suggesting that centrosome has an important role in G(2)/M checkpoint function. In this review, we discuss centrosome-associated regulators of the G(2)/M checkpoint, the dysregulation of this checkpoint in cancer, and potential candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Yingmei Wang
- Tianjin General Hospital, Tianjin Medical University, Tianjin, PR China.
| | | | | | | | | | | |
Collapse
|
133
|
Lu LY, Yu X. The balance of Polo-like kinase 1 in tumorigenesis. Cell Div 2009; 4:4. [PMID: 19161615 PMCID: PMC2642809 DOI: 10.1186/1747-1028-4-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/22/2009] [Indexed: 12/21/2022] Open
Abstract
Polo-like kinase 1 (Plk1) belongs to a family of conserved serine/threonine kinases with a polo-box domain, which have similar but non-overlapping functions in the cell cycle progression. Plk1 plays a key role to ensure the normal mitosis. Interestingly, overexpression of Plk1 is associated with tumor development and could serve as a prognostic marker for many cancers. Due to Plk1 overexpression, several Plk1 inhibitors have been developed and tested for the cancer treatment. However, in a recent study, it has been suggested that down-regulation of Plk1 could also induce aneuploidy and tumor formation in vivo. Therefore, a normal level of Plk1 is important for mitosis. And caution should be taken when Plk1 inhibitors are used in the clinical trial and their side effects including tumorigenesis should be carefully evaluated.
Collapse
Affiliation(s)
- Lin-Yu Lu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 1520, Ann Arbor, Michigan, 48109, USA.
| | | |
Collapse
|
134
|
Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev 2008; 22:2707-20. [PMID: 18832073 DOI: 10.1101/gad.486808] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The conserved Polo kinase controls multiple events in mitosis and cytokinesis. Although Polo-like kinases are regulated by phosphorylation and proteolysis, control of subcellular localization plays a major role in coordinating their mitotic functions. This is achieved largely by the Polo-Box Domain, which binds prephosphorylated targets. However, it remains unclear whether and how Polo might interact with partner proteins when priming mitotic kinases are inactive. Here we show that Polo associates with microtubules in interphase and cytokinesis, through a strong interaction with the microtubule-associated protein Map205. Surprisingly, this interaction does not require priming phosphorylation of Map205, and the Polo-Box Domain of Polo is required but not sufficient for this interaction. Moreover, phosphorylation of Map205 at a CDK site relieves this interaction. Map205 can stabilize Polo and inhibit its cellular activity in vivo. In syncytial embryos, the centrosome defects observed in polo hypomorphs are enhanced by overexpression of Map205 and suppressed by its deletion. We propose that Map205-dependent targeting of Polo to microtubules provides a stable reservoir of Polo that can be rapidly mobilized by the activity of Cdk1 at mitotic entry.
Collapse
|
135
|
van Wijk E, Kersten FFJ, Kartono A, Mans DA, Brandwijk K, Letteboer SJF, Peters TA, Märker T, Yan X, Cremers CWRJ, Cremers FPM, Wolfrum U, Roepman R, Kremer H. Usher syndrome and Leber congenital amaurosis are molecularly linked via a novel isoform of the centrosomal ninein-like protein. Hum Mol Genet 2008; 18:51-64. [PMID: 18826961 DOI: 10.1093/hmg/ddn312] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Usher syndrome (USH) and Leber congenital amaurosis (LCA) are autosomal recessive disorders resulting in syndromic and non-syndromic forms of blindness. In order to gain insight into the pathogenic mechanisms underlying retinal degeneration, we searched for interacting proteins of USH2A isoform B (USH2A(isoB)) and the LCA5-encoded protein lebercilin. We identified a novel isoform of the centrosomal ninein-like protein, hereby named Nlp isoform B (Nlp(isoB)), as a common interactor. Although we identified the capacity of this protein to bind calcium with one of its three EF-hand domains, the interacton with USH2A(isoB) did not depend on this. Upon expression in ARPE-19 cells, recombinant Nlp(isoB), lebercilin and USH2A(isoB) were all found to co-localize at the centrosomes. Staining of retinal sections with specific antibodies against all three proteins revealed their co-localization at the basal bodies of the photoreceptor-connecting cilia. Based on this subcellular localization and the nature of their previously identified binding partners, we hypothesize that the pathogenic mechanisms for LCA and USH show significant overlap and involve defects in ciliogenesis, cilia maintenance and intraflagellar and/or microtubule-based transport. The direct association of Nlp(isoB) with USH2A(isoB) and lebercilin indicates that Nlp can be considered as a novel candidate gene for USH, LCA and allied retinal ciliopathies.
Collapse
Affiliation(s)
- Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, Tindall DJ, Chen J. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 2008; 10:1076-82. [PMID: 19160488 PMCID: PMC2882053 DOI: 10.1038/ncb1767] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proper control of entry into and progression through mitosis is essential for normal cell proliferation and the maintenance of genome stability. The mammalian mitotic kinase Polo-like kinase 1 (Plk1) is involved in multiple stages of mitosis5. Here we report that Forkhead Box M1 (FoxM1), a substrate of Plk1, controls a transcriptional programme that mediates Plk1-dependent regulation of cell-cycle progression. The carboxy-terminal domain of FoxM1 binds Plk1, and phosphorylation of two key residues in this domain by Cdk1 is essential for Plk1-FoxM1 interaction. Formation of the Plk1-FoxM1 complex allows for direct phosphorylation of FoxM1 by Plk1 at G2/M and the subsequent activation of FoxM1 activity, which is required for expression of key mitotic regulators, including Plk1 itself. Thus, Plk1-dependent regulation of FoxM1 activity provides a positive-feedback loop ensuring tight regulation of transcriptional networks essential for orderly mitotic progression.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Liviu Malureanu
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Jun Huang
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | - Wei Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hao Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jan M. van Deursen
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Donald J. Tindall
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Junjie Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| |
Collapse
|
137
|
Increased expression of Nlp, a potential oncogene in ovarian cancer, and its implication in carcinogenesis. Gynecol Oncol 2008; 110:230-6. [PMID: 18538832 DOI: 10.1016/j.ygyno.2008.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Nlp (Ninein-like protein), a novel centrosome protein involved in microtubule nucleation, has been studied extensively in our laboratory, and its overexpression has been found in some human tumors. To understand the role of Nlp in human ovarian cancer development, we studied the correlation of Nlp expression with clinicopathological parameters and survival in epithelial ovarian cancer, and the impact of Nlp overexpression on ovarian cancer cells. METHODS Nlp expression in normal, borderline, benign and malignant epithelial ovarian tissues was examined by immunohistochemistry. The correlation between Nlp expression and tumor grade, FIGO stage and histological type was also evaluated. Survival was calculated using Kaplan-Meier estimates. Cell proliferation and apoptosis were assayed after stable transfection of pEGFP-C3-Nlp or empty vector in human ovarian cancer cell line SKOV3. RESULTS Nlp was positive in 1 of 10 (10%) normal ovarian tissues, 5 of 34 (14.7%) benign tumors, 9 of 26 (34.6%) borderline tumors and 73 of 131 (56.0%) ovarian tumors. Nlp immunoreactivity intensity significantly correlated with tumor grade, but not with FIGO stage or histological type. Kaplan-Meier curves showed that Nlp overexpression was marginally associated with decreased overall survival. Overexpression of Nlp enhanced proliferation and inhibited apoptosis induced by paclitaxel in the SKOV3 cell line. CONCLUSIONS Overexpression of Nlp in ovarian tumors raises the possibility that Nlp may play a role in ovarian carcinogenesis.
Collapse
|
138
|
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. New techniques, including the application of small-molecule inhibitors, have greatly expanded our knowledge of the functions, targets, and regulation of this key mitotic enzyme. In this review, we focus on how Plk1 is recruited to centrosomes, kinetochores, and the spindle midzone and what the specific tasks of Plk1 at these distinct subcellular structures might be. In particular, we highlight new work on the role of Plk1 in cytokinesis in human cells. Finally, we describe how better understanding of Plk1 functions allows critical evaluation of Plk1 as a potential drug target for cancer therapy.
Collapse
Affiliation(s)
- Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom.
| | | | | |
Collapse
|
139
|
Abstract
Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA.
| |
Collapse
|
140
|
Requirement for the budding yeast polo kinase Cdc5 in proper microtubule growth and dynamics. EUKARYOTIC CELL 2008; 7:444-53. [PMID: 18178775 DOI: 10.1128/ec.00283-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In many organisms, polo kinases appear to play multiple roles during M-phase progression. To provide new insights into the function of the budding yeast polo kinase Cdc5, we generated novel temperature-sensitive cdc5 mutants by mutagenizing the C-terminal noncatalytic polo box domain, a region that is critical for proper subcellular localization. One of these mutants, cdc5-11, exhibited a temperature-sensitive growth defect with an abnormal spindle morphology. Strikingly, provision of a moderate level of benomyl, a microtubule-depolymerizing drug, permitted cdc5-11 cells to grow significantly better than the isogenic CDC5 wild type in a FEAR (cdc Fourteen Early Anaphase Release)-independent manner. In addition, cdc5-11 required MAD2 for both cell growth and the benomyl-remedial phenotype. These results suggest that cdc5-11 is defective in proper spindle function. Consistent with this view, cdc5-11 exhibited abnormal spindle morphology, shorter spindle length, and delayed microtubule regrowth at the nonpermissive temperature. Overexpression of CDC5 moderately rescued the spc98-2 growth defect. Interestingly, both Cdc28 and Cdc5 were required for the proper modification of the spindle pole body components Nud1, Slk19, and Stu2 in vivo. They also phosphorylated these three proteins in vitro. Taken together, these observations suggest that concerted action of Cdc28 and Cdc5 on Nud1, Slk19, and Stu2 is important for proper spindle functions.
Collapse
|
141
|
Functional Significance of Aurora Kinase A in Centrosome Amplification and Genomic Instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:99-108. [DOI: 10.1007/978-0-387-69080-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
142
|
Abstract
Chromosome instability, which is equated to mitotic defects and consequential chromosome segregation errors, provides a formidable basis for the acquisition of further malignant phenotypes during tumour progression. Centrosomes have a crucial role in the formation of bipolar mitotic spindles, which are essential for accurate chromosome segregation. Mutations of certain oncogenic and tumour-suppressor proteins directly induce chromosome instability by disrupting the normal function and numeral integrity of centrosomes. How these proteins control centrosome duplication and function, and how their mutational activation and/or inactivation results in numeral and functional centrosome abnormalities, is discussed in this Review.
Collapse
Affiliation(s)
- Kenji Fukasawa
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA.
| |
Collapse
|
143
|
Archambault V, Zhao X, White-Cooper H, Carpenter ATC, Glover DM. Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLoS Genet 2007; 3:e200. [PMID: 17997611 PMCID: PMC2065886 DOI: 10.1371/journal.pgen.0030200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Polo is a conserved kinase that coordinates many events of mitosis and meiosis, but how it is regulated remains unclear. Drosophila females having only one wild-type allele of the polo kinase gene and the dominant Scant mutation produce embryos in which one of the centrosomes detaches from the nuclear envelope in late prophase. We show that Scant creates a hyperactive form of Greatwall (Gwl) with altered specificity in vitro, another protein kinase recently implicated in mitotic entry in Drosophila and Xenopus. Excess Gwl activity in embryos causes developmental failure that can be rescued by increasing maternal Polo dosage, indicating that coordination between the two mitotic kinases is crucial for mitotic progression. Revertant alleles of Scant that restore fertility to polo-Scant heterozygous females are recessive alleles or deficiencies of gwl; they show chromatin condensation defects and anaphase bridges in larval neuroblasts. One recessive mutant allele specifically disrupts a Gwl isoform strongly expressed during vitellogenesis. Females hemizygous for this allele are sterile, and their oocytes fail to arrest in metaphase I of meiosis; both homologues and sister chromatids separate on elongated meiotic spindles with little or no segregation. This allelic series of gwl mutants highlights the multiple roles of Gwl in both mitotic and meiotic progression. Our results indicate that Gwl activity antagonizes Polo and thus identify an important regulatory interaction of the cell cycle.
Collapse
Affiliation(s)
- Vincent Archambault
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Xinbei Zhao
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Helen White-Cooper
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adelaide T. C Carpenter
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David M Glover
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
144
|
Fong KW, Choi YK, Rattner JB, Qi RZ. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. Mol Biol Cell 2007; 19:115-25. [PMID: 17959831 DOI: 10.1091/mbc.e07-04-0371] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microtubule nucleation and organization by the centrosome require gamma-tubulin, a protein that exists in a macromolecular complex called the gamma-tubulin ring complex (gammaTuRC). We report characterization of CDK5RAP2, a novel centrosomal protein whose mutations have been linked to autosomal recessive primary microcephaly. In somatic cells, CDK5RAP2 localizes throughout the pericentriolar material in all stages of the cell cycle. When overexpressed, CDK5RAP2 assembled a subset of centrosomal proteins including gamma-tubulin onto the centrosomes or under the microtubule-disrupting conditions into microtubule-nucleating clusters in the cytoplasm. CDK5RAP2 associates with the gammaTuRC via a short conserved sequence present in several related proteins found in a range of organisms from fungi to mammals. The binding of CDK5RAP2 is required for gammaTuRC attachment to the centrosome but not for gammaTuRC assembly. Perturbing CDK5RAP2 function delocalized gamma-tubulin from the centrosomes and inhibited centrosomal microtubule nucleation, thus leading to disorganization of interphase microtubule arrays and formation of anastral mitotic spindles. Together, CDK5RAP2 is a pericentriolar structural component that functions in gammaTuRC attachment and therefore in the microtubule organizing function of the centrosome. Our findings suggest that centrosome malfunction due to the CDK5RAP2 mutations may underlie autosomal recessive primary microcephaly.
Collapse
Affiliation(s)
- Ka-Wing Fong
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
145
|
Sankaran S, Crone DE, Palazzo RE, Parvin JD. BRCA1 regulates gamma-tubulin binding to centrosomes. Cancer Biol Ther 2007; 6:1853-7. [PMID: 18087219 DOI: 10.4161/cbt.6.12.5164] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Centrosomes are the cellular organelles that nucleate microtubules (MTs) via the activity of gamma-tubulin ring complex(s) (gammaTuRC) bound to the pericentriolar material of the centrosomes. BRCA1, the breast and ovarian cancer specific tumor suppressor, inhibits centrosomal MT nucleation via its ubiquitin ligase activity, and one of the known BRCA1 substrates is the key gammaTuRC component, gamma-tubulin. We analyzed the mechanism by which BRCA1 regulates centrosome function using an in vitro reconstitution assay, which includes separately staged steps. Our results are most consistent with a model by which the BRCA1 ubiquitin ligase modifies both gamma-tubulin plus a second centrosomal protein that controls localization of gammaTuRC to the centrosome. We suggest that this second protein is an adapter protein or protein complex that docks gamma-TuRC to the centrosome. By controlling gamma-TuRC localization, BRCA1 appropriately inhibits centrosome function, and loss of BRCA1 would result in centrosome hyperactivity, supernumerary centrosomes and, possibly, aneuploidy.
Collapse
Affiliation(s)
- Satish Sankaran
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
146
|
Santamaria A, Neef R, Eberspächer U, Eis K, Husemann M, Mumberg D, Prechtl S, Schulze V, Siemeister G, Wortmann L, Barr FA, Nigg EA. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol Biol Cell 2007; 18:4024-36. [PMID: 17671160 PMCID: PMC1995727 DOI: 10.1091/mbc.e07-05-0517] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 02/05/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of mitotic progression and cell division in eukaryotes. It is highly expressed in tumor cells and considered a potential target for cancer therapy. Here, we report the discovery and application of a novel potent small-molecule inhibitor of mammalian Plk1, ZK-Thiazolidinone (TAL). We have extensively characterized TAL in vitro and addressed TAL specificity within cells by studying Plk1 functions in sister chromatid separation, centrosome maturation, and spindle assembly. Moreover, we have used TAL for a detailed analysis of Plk1 in relation to PICH and PRC1, two prominent interaction partners implicated in spindle assembly checkpoint function and cytokinesis, respectively. Specifically, we show that Plk1, when inactivated by TAL, spreads over the arms of chromosomes, resembling the localization of its binding partner PICH, and that both proteins are mutually dependent on each other for correct localization. Finally, we show that Plk1 activity is essential for cleavage furrow formation and ingression, leading to successful cytokinesis.
Collapse
Affiliation(s)
| | - Rüdiger Neef
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck Institute of Biochemistry, Martinsried, 82152 Germany; and
| | - Uwe Eberspächer
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Knut Eis
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Manfred Husemann
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Dominik Mumberg
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Stefan Prechtl
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Volker Schulze
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | | | - Lars Wortmann
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Francis A. Barr
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck Institute of Biochemistry, Martinsried, 82152 Germany; and
| | | |
Collapse
|
147
|
Riggs B, Fasulo B, Royou A, Mische S, Cao J, Hays TS, Sullivan W. The concentration of Nuf, a Rab11 effector, at the microtubule-organizing center is cell cycle regulated, dynein-dependent, and coincides with furrow formation. Mol Biol Cell 2007; 18:3313-22. [PMID: 17581858 PMCID: PMC1951762 DOI: 10.1091/mbc.e07-02-0146] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/30/2007] [Accepted: 06/13/2007] [Indexed: 12/29/2022] Open
Abstract
Animal cytokinesis relies on membrane addition as well as acto-myosin-based constriction. Recycling endosome (RE)-derived vesicles are a key source of this membrane. Rab11, a small GTPase associated with the RE and involved in vesicle targeting, is required for elongation of the cytokinetic furrow. In the early Drosophila embryo, Nuclear-fallout (Nuf), a Rab11 effector, promotes vesicle-mediated membrane delivery and actin organization at the invaginating furrow. Although Rab11 maintains a relatively constant localization at the microtubule-organizing center (MTOC), Nuf is present at the MTOC only during the phases of the cell cycle in which furrow invagination occurs. We demonstrate that Nuf protein levels remain relatively constant throughout the cell cycle, suggesting that Nuf is undergoing cycles of concentration and dispersion from the MTOC. Microtubules, but not microfilaments, are required for proper MTOC localization of Nuf and Rab11. The MTOC localization of Nuf also relies on Dynein. Immunoprecipitation experiments demonstrate that Nuf and Dynein physically interact. In accord with these findings, and in contrast to previous reports, we demonstrate that microtubules are required for proper metaphase furrow formation. We propose that the cell cycle-regulated, Dynein-dependent recruitment of Nuf to the MTOC influences the timing of RE-based vesicle delivery to the invaginating furrows.
Collapse
Affiliation(s)
- Blake Riggs
- *Sinsheimer Laboratories, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064; and
| | - Barbara Fasulo
- *Sinsheimer Laboratories, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064; and
| | - Anne Royou
- *Sinsheimer Laboratories, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064; and
| | - Sarah Mische
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55108-1095
| | - Jian Cao
- *Sinsheimer Laboratories, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064; and
| | - Thomas S. Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55108-1095
| | - William Sullivan
- *Sinsheimer Laboratories, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064; and
| |
Collapse
|
148
|
O'Regan L, Blot J, Fry AM. Mitotic regulation by NIMA-related kinases. Cell Div 2007; 2:25. [PMID: 17727698 PMCID: PMC2018689 DOI: 10.1186/1747-1028-2-25] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 11/22/2022] Open
Abstract
The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets.
Collapse
Affiliation(s)
- Laura O'Regan
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Joelle Blot
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Andrew M Fry
- Department of Biochemistry, University of Leicester, Leicester, UK
| |
Collapse
|
149
|
Kim S, Lee K, Rhee K. NEK7 is a centrosomal kinase critical for microtubule nucleation. Biochem Biophys Res Commun 2007; 360:56-62. [PMID: 17586473 DOI: 10.1016/j.bbrc.2007.05.206] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 01/19/2023]
Abstract
NIMA in Aspergillus nidulans is a mitotic kinase for chromosome condensation and segregation. We characterized NEK7, a human homologue of Aspergillus NIMA. NEK7 was located at the centrosome throughout the cell cycle. Temporal localization of NEK7 at midbody of the cytokinetic cell was also observed. NEK7 knockdown by RNAi caused a prometaphase arrest of the cell cycle with monopolar or disorganized spindle. We propose that such defects in spindle assembly are resulted from reduction in microtubule nucleation activity at the centrosome. In consistent to the proposal, we observed a decrease in the centrosomal gamma-tubulin levels and reduction of the microtubule re-growth activity in the NEK7-suppressed cells. In addition, it was evident that NEK7 was directly involved in cytokinesis.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Biological Sciences and Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
150
|
Wang Y, Zhan Q. Cell Cycle-dependent Expression of Centrosomal Ninein-like Protein in Human Cells Is Regulated by the Anaphase-promoting Complex. J Biol Chem 2007; 282:17712-9. [PMID: 17403670 DOI: 10.1074/jbc.m701350200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recently identified centrosome protein Nlp (ninein-like protein) is a key regulator in centrosome maturation, which contributes to chromosome segregation and cytokinesis. However, the mechanism(s) controlling Nlp expression remains largely unknown. Here we have shown that Nlp expression is cell cycle-dependent with a peak at G(2)/M transition in human cells. Nlp is a short-lived protein and degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. It interacts with the APC/c through the APC2 or Cdc27 subunits and is ubiquitinated. Following treatment with proteasome inhibitors, its protein level is elevated. Nlp binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, and overexpression of Cdh1 and Cdc20 enhances Nlp degradation. Using point mutations of the two putative degradation signals in Nlp, we have found that its degradation requires intact KEN-box and D-box. Interestingly, the Lys-Glu-Asn-D-box-mutated Nlp exhibits a much stronger capability of inducing anchorage-independent growth and multinuclearity compared with the wild type Nlp. Taken together, these findings indicate that Nlp expression is cell cycle-dependent and regulated by APC-mediated protein degradation.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|