101
|
Recent Progress and Challenges on the Microfluidic Assay of Pathogenic Bacteria Using Biosensor Technology. Biomimetics (Basel) 2022; 7:biomimetics7040175. [PMID: 36412703 PMCID: PMC9680295 DOI: 10.3390/biomimetics7040175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
Microfluidic technology is one of the new technologies that has been able to take advantage of the specific properties of micro and nanoliters, and by reducing the costs and duration of tests, it has been widely used in research and treatment in biology and medicine. Different materials are often processed into miniaturized chips containing channels and chambers within the microscale range. This review (containing 117 references) demonstrates the significance and application of nanofluidic biosensing of various pathogenic bacteria. The microfluidic application devices integrated with bioreceptors and advanced nanomaterials, including hyperbranched nano-polymers, carbon-based nanomaterials, hydrogels, and noble metal, was also investigated. In the present review, microfluid methods for the sensitive and selective recognition of photogenic bacteria in various biological matrices are surveyed. Further, the advantages and limitations of recognition methods on the performance and efficiency of microfluidic-based biosensing of photogenic bacteria are critically investigated. Finally, the future perspectives, research opportunities, potential, and prospects on the diagnosis of disease related to pathogenic bacteria based on microfluidic analysis of photogenic bacteria are provided.
Collapse
|
102
|
Zhang G, Mo F, Song L, Zhang L, Kuang G, Yang Y, Li L, Fu Y. Cluster-Dominated Electrochemiluminescence of Tertiary Amines in Polyethyleneimine Nanoparticles: Mechanism Insights and Sensing Application. Anal Chem 2022; 94:14682-14690. [PMID: 36222228 DOI: 10.1021/acs.analchem.2c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing and screening highly efficient and cost-effective luminophores have always been a challenge to develop sensitive electrochemiluminescence (ECL) biosensors. Herein, polyethyleneimine nanoparticles (PEI NPs), a kind of nonconjugated polymer (NCP) NPs with tertiary amine clusters, were developed as an ECL luminophore. Specifically, PEI NPs were synthesized by a one-step hydrothermal method using PEI and formaldehyde. The properties of PEI NPs were investigated in detail using photochemical and electrochemical techniques. The results showed cluster-dominated luminescence of tertiary amines in PEI NPs via "through-space conjugation". This non-negligible ECL performance (at 631 nm) was also verified by the initiated reduction-oxidation process. With persulfate as a coreactant, PEI NPs acted as both the luminophore and coreaction accelerator to enhance the ECL intensity remarkably, which was eightfold higher than that of isolated PEI. Moreover, choosing dopamine as the model target, a highly sensitive "signal off" ternary ECL sensor was constructed utilizing PEI NPs as the luminophore. Dopamine could be oxidized to benzoquinone at the sensing interface, quenching the signal via ECL energy transfer. Free from any signal amplification, the proposed sensor achieved a low detection limit (4.3 nM) for target monitoring with good selectivity and stability. This strategy not only provides a unique perspective for designing novel efficient and facile ECL luminophores of tertiary amines but also broadens the biological application of NCP NPs.
Collapse
Affiliation(s)
- Gui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, China
| | - Li Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, China
| | - Lei Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, China
| | - Guangrong Kuang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, China
| | - Yuqin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, China
| | - Lunkai Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, China
| |
Collapse
|
103
|
Huang J, Yao Y, Chen Y, Lin T, Hou L, Tang D. Polydopamine-Functionalized Copper Peroxide/ZIF-8 Nanoparticle-Based Fluorescence-Linked Immunosorbent Assay for the Sensitive Determination of Carcinoembryonic Antigen by Self-Supplied H 2O 2 Generation. BIOSENSORS 2022; 12:830. [PMID: 36290967 PMCID: PMC9599728 DOI: 10.3390/bios12100830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Copper peroxide/zeolitic imidazolate framework/polydopamine nanoparticles (CP/ZIF-8/PDA)-based fluorescence-linked immunosorbent assay (FLISA) was designed for the sensitive and high-throughput determination of carcinoembryonic antigen (CEA) by self-supplied H2O2 generation. Specifically, the CEA aptamer was modified on the surface of CP/ZIF-8/PDA to form an immunoprobe. The structures of CP and ZIF-8 could be broken under acidic conditions, and produced the Cu2+ and H2O2 due to the dissociation the CP. A subsequent Fenton-type reaction of Cu2+ and H2O2 generated hydroxyl radical (·OH). o-phenylenediamine (OPD) was oxidized by the ·OH to form 2, 3-diaminophenazine (DPA) with a significant fluorescence signal. CP/ZIF-8/PDA could be used as an efficient Fenton-type reactant to generate a large amount of ·OH to promote OPD oxidation. The sensitive detection of CEA could be realized. Under optimal conditions, the FLISA platform displayed a linear detection range from 0.01 to 20 ng mL-1 with a detection limit of 7.6 pg mL-1 for CEA. This strategy has great application potential for sensitive and high-throughput determination for other biomarkers in the field of biomedicine.
Collapse
Affiliation(s)
- Juanjuan Huang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Yiyun Yao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Yanling Chen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Li Hou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
104
|
Huang X, Lin Q, Lu L, Li M, Tang D. In 2O 3/CdIn 2S 4 heterojunction-based photoelectrochemical immunoassay of carcinoembryonic antigen with enzymatic biocatalytic precipitation for signal amplification. Anal Chim Acta 2022; 1228:340358. [PMID: 36127005 DOI: 10.1016/j.aca.2022.340358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
This work reported a split-type photoelectrochemical (PEC) immunoassay for the detection of carcinoembryonic antigen (CEA) based on target-induced biocatalytic precipitation (BCP) by using In2O3/CdIn2S4 heterojunctions as the photosensitizers. The synthesized In2O3/CdIn2S4 heterojunctions improved the efficiency of charge separation and shortened the electron convey path to enhance the photocurrent, thus exhibiting high conductivity and low complexation rates of photogenerated electrons and holes. In the presence of CEA, horseradish peroxidase (HRP) catalyzed 4-chloro-1-naphthol (4-CN) to produce benzo-4-chloro-hexadienone (4-CD) through H2O2. Then, 4-CD was deposited onto the surface of In2O3/CdIn2S4 to reduce the photocurrent and realized the signal amplification. The PEC immunoassay revealed an excellent photocurrent toward target CEA within a wide range of 0.01-50 ng mL-1 at a low limit of detection of 2.8 pg mL-1 under the optimum conditions. Multiple switching light excitation tests demonstrated the good reliability and stability of the fabricated PEC biosensor. The accuracy was acceptable in comparison with human CEA enzyme-linked immunosorbent assay (ELISA) kit.
Collapse
Affiliation(s)
- Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
105
|
Flexible biochemical sensors for point-of-care management of diseases: a review. Mikrochim Acta 2022; 189:380. [PMID: 36094594 PMCID: PMC9465157 DOI: 10.1007/s00604-022-05469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Health problems have been widely concerned by all mankind. Real-time monitoring of disease-related biomarkers can feedback the physiological status of human body in time, which is very helpful to the diseases management of healthcare. However, conventional non-flexible/rigid biochemical sensors possess low fit and comfort with the human body, hence hindering the accurate and comfortable long-time health monitoring. Flexible and stretchable materials make it possible for sensors to be continuously attached to the human body with good fit, and more precise and higher quality results can be obtained. Thus, tremendous attention has been paid to flexible biochemical sensors in point-of-care (POC) for real-time monitoring the entire disease process. Here, recent progress on flexible biochemical sensors for management of various diseases, focusing on chronic and communicable diseases, is reviewed, and the detection principle and performance of these flexible biochemical sensors are discussed. Finally, some directions and challenges are proposed for further development of flexible biochemical sensors.
Collapse
|
106
|
Das D, Basu S, Ray S, Koppayithodi S, Hazra B, Bandyopadhyay S, Saha A, Sen K. Generation of selenium nanoparticles under γ-Irradiation for optical sensing of Carcinoembryonic antigen. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
107
|
A novel fluorescence biosensor based on double-stranded DNA branch migration-induced HCR and DNAzyme feedback circuit for sensitive detection of Pseudomonas aeruginosa (clean version). Anal Chim Acta 2022; 1232:340449. [DOI: 10.1016/j.aca.2022.340449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022]
|
108
|
Jamalipour P, Choobkar N, Abrishamkar M, Pournamdari E. Design of fluorescent method for sensing toxic diazinon in water samples using PbS quantum dots-based gelatin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:720-728. [PMID: 35899463 DOI: 10.1080/03601234.2022.2103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this current article, a chemical sensor was synthesized PbS functionalized with gelatin quantum dots for toxic diazinon. The measure of toxic diazinon was performed using concentration 0.5 µM, PbS quantum dot-gelatin nanocomposites sensor, pH 6, and time 50 s, wavelength 300 nm, in phosphate buffer solution. Under the optimum conditions, the detection limit linear range was obtained (0.01-20.0 µg L-1). The standard deviation of less than (1.0%), and detection limits (3S/m) of the method (0.01 µg L-1) and quantification (LOQ) of (0.099 µg L-1), for determination of toxic diazinon, was obtained. The observed outcomes confirmed the suitability recovery and a very low detection limit for measuring the toxic diazinon. The Chemical PbS Quantum Dot-Gelatin nanocomposites sensor as excellent sensor was applied to measure and analyze residue toxic diazinon in water samples.
Collapse
Affiliation(s)
- Parisa Jamalipour
- Department of Environment, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Nasrin Choobkar
- Department of Environment, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Maryam Abrishamkar
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Elham Pournamdari
- Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
109
|
Patra I, Kadhim MM, Mahmood Saleh M, Yasin G, Abdulhussain Fadhil A, Sabah Jabr H, Hameed NM. Aptasensor Based on Microfluidic for Foodborne Pathogenic Bacteria and Virus Detection: A Review. Crit Rev Anal Chem 2022; 54:872-881. [PMID: 35831973 DOI: 10.1080/10408347.2022.2099222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, which is entangled with numerous foodborne pathogenic bacteria and viruses, it appears to be essential to rethink detection methods of these due to the importance of food safety in our lives. The vast majority of detection methods for foodborne pathogenic bacteria and viruses have suffered from sensitivity and selectivity due to the small size of these pathogens. Besides, these types of sensing approaches can improve on-site detection platforms in the fields of food safety. In recent, microfluidics systems as new emerging types of portable sensing approaches can introduce efficient and simple biodevice by integration with several analytical methods such as electrochemical, optical and colorimetric techniques. Additionally, taking advantage of aptamer as a selective bioreceptor in the sensing of microfluidics system has provided selective, sensitive, portable and affordable sensing approaches. Furthermore, some papers use increased data transferability ability and computational power of these sensing platforms by exploiting smartphones. In this review, we attempted to provide an overview of the current state of the recent aptasensor based on microfluidic for screening of foodborne pathogenic bacteria and viruses. Working strategies, benefits and disadvantages of these sensing approaches are briefly discussed.
Collapse
Affiliation(s)
- Indrajit Patra
- An Independent Researcher, Ex Research Scholar at National Institute of Technology Durgapur, Durgapur, India
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Huda Sabah Jabr
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Babylon, Iraq
| |
Collapse
|
110
|
Lan Y, He B, Tan CS, Ming D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. BIOSENSORS 2022; 12:bios12070477. [PMID: 35884280 PMCID: PMC9312806 DOI: 10.3390/bios12070477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Aptamers are a particular class of functional recognition ligands with high specificity and affinity to their targets. As the candidate recognition layer of biosensors, aptamers can be used to sense biomolecules. Aptasensors, aptamer-based biosensors, have been demonstrated to be specific, sensitive, and cost-effective. Furthermore, smartphone-based devices have shown their advantages in binding to aptasensors for point-of-care testing (POCT), which offers an immediate or spontaneous responding time for biological testing. This review describes smartphone-based aptasensors to detect various targets such as metal ions, nucleic acids, proteins, and cells. Additionally, the focus is also on aptasensors-related technologies and configurations.
Collapse
Affiliation(s)
- Ying Lan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Baixun He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| |
Collapse
|
111
|
Margiana R, Hammid AT, Ahmad I, Alsaikhan F, Turki Jalil A, Tursunbaev F, Umar F, Romero Parra RM, Fakri Mustafa Y. Current Progress in Aptasensor for Ultra-Low Level Monitoring of Parkinson's Disease Biomarkers. Crit Rev Anal Chem 2022; 54:617-632. [PMID: 35754381 DOI: 10.1080/10408347.2022.2091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, Parkinson's disease (PD) has been introduced as a long-term degenerative disorder of the central nervous system which mainly affects approximately more than ten million people worldwide. The vast majority of diagnostic methods for PD have operated based on conventional sensing platforms, while the traditional laboratory tests are not efficient for diagnosis of PD in the early stage due to symptoms of this common neurodegenerative syndrome starting slowly. The advent of the aptasensor has revolutionized the early-stage diagnosis of PD by measuring related biomarkers due to the myriad advantages of originating from aptamers which can be able to sensitive and selective capture various types of related biomarkers. The progress of numerous sensing platforms and methodologies in terms of biosensors based on aptamer application for PD diagnosis has revealed promising results. In this review, we present the latest developments in myriad types of aptasensors for the determination of related PD biomarkers. Working strategies, advantages and limitations of these sensing approaches are also mentioned, followed by prospects and challenges.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Dr. Soetomo General Academic Hospital, Indonesia Surabaya
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Farkhod Tursunbaev
- Independent Researcher, "Medcloud" Educational Centre, Tashkent, Uzbekistan
- Research Scholar, Department of Science and Innovation, Akfa University, Tashkent, Uzbekistan
| | - Fadilah Umar
- Department of Sports Science, Faculty of Sports, Sebelas Maret University, Surakarta, Indonesia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
112
|
Liang X, Lin Z, Li L, Tang D, Kong J. Ratiometric fluorescence enzyme-linked immunosorbent assay based on carbon dots@SiO 2@CdTe quantum dots with dual functionalities for alpha-fetoprotein. Analyst 2022; 147:2851-2858. [PMID: 35621880 DOI: 10.1039/d2an00691j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular tags such as fluorophores are increasingly being replaced with nanoparticles thanks to their superior optical properties, substantial chemical stability, and stability against photobleaching. Herein, we innovatively constructed a new ratiometric fluorescence enzyme-linked immunosorbent assay (RF-ELISA) for the screening of alpha-fetoprotein (AFP) in early hepatocellular carcinoma in vitro diagnostics using carbon dots@SiO2@CdTe quantum dots (CDs@SiO2@CdTe QDs). Carbon dots with blue fluorescence were initially encapsulated into SiO2 nanospheres through the typical Stöber method. Thereafter, CdTe QDs with red fluorescence were modified onto the surface of CDs@SiO2 nanospheres. Dual-emission nanotags with blue and red fluorescent signals were utilized to design a RF-ELISA method for the determination of AFP on the anti-AFP capture antibody-coated microplate using glucose oxidase (GOx)-labeled anti-AFP secondary antibody. After the formation of the sandwiched immunocomplex, GOx catalyzed glucose to generate hydrogen peroxide (H2O2), which could quench the red fluorescence of CdTe QDs on the surface of nanotags. Meanwhile, the encapsulated carbon dots in the nanotags could still maintain the initial blue fluorescence intensity. The ratio between red fluorescence intensity and blue-emission intensity could be used for the quantitative monitoring of AFP concentration under optimum conditions. The experimental results indicated that CDs@SiO2@CdTe QDs-based RF-ELISA could exhibit a good fluorescence signal with a dynamic linear range of 0.05-60 ng mL-1 at a low detection limit of 8.7 pg mL-1. Moreover, the fluorescence color of the solution including CDs@SiO2@CdTe QDs changed from pink to purple to blue with the increasing AFP level when viewed by the naked eye. Good reproducibility, high specificity, and acceptable stability were achieved for the analysis of target AFP. Importantly, the accuracy of ratiometric fluorescence immunoassay was evaluated to determine human serum samples, giving well-matched results relative to commercially usable human AFP ELISA method.
Collapse
Affiliation(s)
- Xiuhui Liang
- Department of Operating Theatre, Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China.
| | - Zhenzhen Lin
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.,Guoguang Middle School, Nan'an, Nan'an 362321, Fujian, China
| | - Ling Li
- The First Clinical Medical College of Fujian Medical University, Fuzhou 350004, China. .,Department of Intervention, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China.,Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Dianping Tang
- Department of Operating Theatre, Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China. .,Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jinfeng Kong
- Department of Operating Theatre, Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China.
| |
Collapse
|
113
|
Afsharipour R, Haji Shabani AM, Dadfarnia S. A selective off–on fluorescent aptasensor for alpha-fetoprotein determination based on N-carbon quantum dots and oxidized nanocellulose. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
114
|
Adesina A, Adeniyi O, Mashazi P. Impedimetric detection of CRP using oriented antibodies: monoclonal as capture and magnetic nanobioprobes with polyclonal for sensing. ELECTROANAL 2022. [DOI: 10.1002/elan.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
115
|
Qiu Z, Fan D, Xue X, Zhang J, Xu J, Lyu H, Chen Y. Ti 3C 2 MXene-anchored photoelectrochemical detection of exosomes by in situ fabrication of CdS nanoparticles with enzyme-assisted hybridization chain reaction. RSC Adv 2022; 12:14260-14267. [PMID: 35558841 PMCID: PMC9092378 DOI: 10.1039/d2ra01545e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Exosomes that carry large amounts of tumor-specific molecular information have been identified as a potential non-invasive biomarker for early warning of cancer. In this work, we reported an enzyme-assisted photoelectrochemical (PEC) biosensor for quantification of exosomes based on the in situ synthesis of Ti3C2 MXene/CdS composites with magnetic separation technology and hybridization chain reaction (HCR). First, exosomes were specifically bound between aptamer-labeled magnetic beads (CD63-MBs) and a cholesterol-labeled DNA anchor. The properly designed anchor ends acted as a trigger to enrich the alkaline phosphatase (ALP) through HCR. It catalyzed more sodium thiophosphate to generate the sulfideion (S2−), which combined with Cd2+ for in situ fabrication of CdS on Ti3C2 MXene resulting in elevated photocurrent. The Ti3C2 MXene-anchored PEC method was realized for the quantitative detection of exosomes, which exhibited the dynamic working range from 7.3 × 105 particles per mL to 3.285 × 108 particles per mL with a limit of detection of 7.875 × 104 particles per mL. The strategy showed acceptable stability, high sensitivity, rapid response and excellent selectivity. Furthermore, we believe that the PEC biosensor has huge potential as a routine bioassay method for the precise quantification of exosomes from breast cancer in the future. An enzyme-assisted photoelectrochemical (PEC) biosensor was established for quantification of exosomes based on the in situ synthesis of Ti3C2 MXene/CdS composites with magnetic separation technology and hybridization chain reaction (HCR).![]()
Collapse
Affiliation(s)
- Zhenli Qiu
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China .,Fujian Engineering and Research Center of New Chinese Lacquer Materials Fuzhou 350108 China
| | - Dechun Fan
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China .,College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - XiangHang Xue
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Jiayi Zhang
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Jiaolin Xu
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Yiting Chen
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China .,Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering Fuzhou 350108 China
| |
Collapse
|
116
|
Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
117
|
Zhang Y, Li T, Zhang Y, Sun X, Liu H, Wang Y, Nie Z. Acetylcholinesterase-capped mesoporous silica gated switches for selective detection of high-toxicity organophosphate compounds. Anal Chim Acta 2022; 1207:339708. [DOI: 10.1016/j.aca.2022.339708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
|
118
|
Qin Y, Li S, Wang Y, Peng Y, Han D, Zhou H, Bai J, Ren S, Li S, Chen R, Han T, Gao Z. A highly sensitive fluorometric biosensor for Fumonisin B1 detection based on upconversion nanoparticles-graphene oxide and catalytic hairpin assembly. Anal Chim Acta 2022; 1207:339811. [DOI: 10.1016/j.aca.2022.339811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
|
119
|
Ma H, Wang P, Xie Y, Liu J, Feng W, Li S. Ratiometric electrochemical aptasensor for the sensitive detection of carcinoembryonic antigen based on a hairpin DNA probe and exonuclease I-assisted target recycling. Anal Biochem 2022; 649:114694. [PMID: 35483418 DOI: 10.1016/j.ab.2022.114694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
Abstract
A novel ratiometric electrochemical aptasensor was constructed for the detection of carcinoembryonic antigen (CEA) based on a hairpin DNA (hpDNA) probe and exonuclease Ⅰ (Exo Ⅰ)-assisted target recycling amplification strategy. A thiolated methylene blue (MB)-labeled hpDNA as the internal control element was fixed on the surface of the gold nanoparticles (AuNPs)-modified gold electrode (AuE) through Au-S bonds. A ferrocene (Fc)-modified aptamer DNA (Fc-Apt) was partially hybridized with hpDNA to form a Fc-Apt/hpDNA duplex. Due to the specific recognition of Fc-Apt to CEA, the presence of CEA caused dissociation of Fc-Apt from the duplex, and further triggered the degradation process of Exo Ⅰ and recycling of CEA. Hence, the Fc tags were released from the electrode surface and the oxidation peak current of Fc (IFc) decreased while that of MB (IMB) remained stable owing to the distance between MB tags and the electrode unchanged. A linear relationship was observed between IFc/IMB and the logarithm of CEA concentration from 10 pg mL-1 to 100 ng mL-1 with a detection limit of 1.9 pg mL-1. Moreover, the developed aptasensor had been applied to detect CEA in diluted human serum with satisfactory results, indicating its great potential in practical applications.
Collapse
Affiliation(s)
- Huikai Ma
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471000, China
| | - Ping Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Yaoyao Xie
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471000, China
| | - Jinghan Liu
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471000, China
| | - Wei Feng
- School of Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Sanqiang Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
120
|
May BM, Bambo MF, Hosseini SS, Sidwaba U, Nxumalo EN, Mishra AK. A review on I-III-VI ternary quantum dots for fluorescence detection of heavy metals ions in water: optical properties, synthesis and application. RSC Adv 2022; 12:11216-11232. [PMID: 35425084 PMCID: PMC8996947 DOI: 10.1039/d1ra08660j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Heavy metal contamination remains a major threat to the environment. Evaluating the concentrations of heavy metals in water environments is a crucial step towards a viable treatment strategy. Non-cadmium photo-luminescent I-III-VI ternary QDs have attracted increasing attention due to their low toxicity and extraordinary optical properties, which have made them popular in biological applications. Recently, ternary I-III-VI-QDs have gained growing interest as fluorescent detectors of heavy metal ions in water. Here, we review the research progress of ternary I-III-VI QDs for the fluorescence detection of heavy metal ions in water. First, we summarize the optical properties and synthesis methodologies of ternary I-III-VI QDs. Then, we present various detection mechanisms involved in the fluorescence detection of heavy metal ions, which are mostly attributed to direct interaction between these unique QDs and the metal ions, seen in the form of fluorescence quenching and fluorescence enhancement. We also display the potential applications in environmental remediation such as water treatment and associated challenges of I-III-VI QDs in the fluorescence detection of Cu2+ and other metal ions.
Collapse
Affiliation(s)
- Bambesiwe M May
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus Johannesburg South Africa
- Mintek Analytical Chemistry Division Private Bag X3015 Randburg 2125 South Africa
| | - Mokae F Bambo
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division Private Bag X3015 Randburg 2125 South Africa
| | - Seyed Saeid Hosseini
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus Johannesburg South Africa
- Department of Chemical Engineering, Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Unathi Sidwaba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus Johannesburg South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus Johannesburg South Africa
| | - Ajay K Mishra
- Department of Medicine and Chemical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Department of Chemistry, School of Applied Sciences, KIIT Deemed University Odisha India
| |
Collapse
|
121
|
Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
122
|
Drozd DD, Byzova NA, Pidenko PS, Tsyupka DV, Strokin PD, Goryacheva OA, Zherdev AV, Goryacheva IY, Dzantiev BB. Luminescent alloyed quantum dots for turn-off enzyme-based assay. Anal Bioanal Chem 2022; 414:4471-4480. [PMID: 35359179 DOI: 10.1007/s00216-022-04016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 11/01/2022]
Abstract
A new bioanalytical labeling system based on alloyed quantum dots' (QDs) photoluminescence quenching caused by an enzymatic reaction has been developed and tested for the first time. The catalytic role of the enzyme provides high sensitivity and the possibility of varying detecting time to improve assay sensitivity. Alloyed luminescent QDs were chosen in view of their small size (5-7 nm) and the high sensitivity of their optical properties to physicochemical interactions. Here, we described the synthesis of alloyed luminescent QDs and demonstrated the possibility of using them as a luminescent turn-off substrate for enzymatic assay. Synthesized alloyed QDs were found to be a sensitive turn-off substrate for glucose oxidase in homogeneous and heterogeneous assay models. CdZnSeS and CdZnSeS/ZnS QDs covered with dihydrolipoic acid and 2-mercaptoethanol were tested. A glucose oxidase limit of detection of 6.6 nM for the heterogenous high-throughput model assay was reached.
Collapse
Affiliation(s)
- Daniil D Drozd
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.
| | - Nadezhda A Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| | - Pavel S Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Daria V Tsyupka
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Pavel D Strokin
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Olga A Goryacheva
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| | - Irina Yu Goryacheva
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| |
Collapse
|
123
|
Chen S, Lin S, Han X, Han X. Handheld pH‐Meter‐Based Electrochemical Aptasensing of Carcinoembryonic Antigen on Multifuctional Magnetic Beads. ELECTROANAL 2022. [DOI: 10.1002/elan.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shaobo Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences CHINA
| | | | | | - Xianlin Han
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences CHINA
| |
Collapse
|
124
|
Paper-based aptasensor for colorimetric detection of osteopontin. Anal Chim Acta 2022; 1198:339557. [DOI: 10.1016/j.aca.2022.339557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
|
125
|
Liu N, Liu R, Zhang J. CRISPR-Cas12a-mediated label-free electrochemical aptamer-based sensor for SARS-CoV-2 antigen detection. Bioelectrochemistry 2022; 146:108105. [PMID: 35367933 PMCID: PMC8934182 DOI: 10.1016/j.bioelechem.2022.108105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
Serological antigen testing has emerged as an important diagnostic paradigm in COVID-19, but often suffers from potential cross-reactivity. To address this limitation, we herein report a label-free electrochemical aptamer-based sensor for the detection of SARS-CoV-2 antigen by integrating aptamer-based specific recognition with CRISPR-Cas12a-mediated signal amplification. The sensing principle is based on the competitive binding of antigen and the preassembled Cas12a-crRNA complex to the antigen-specific aptamer, resulting in a change in the collateral cleavage activity of Cas12a. To further generate an electrochemical signal, a DNA architecture was fabricated by in situ rolling circle amplification on a gold electrode, which serves as a novel substrate for Cas12a. Upon Cas12a-based collateral DNA cleavage, the DNA architecture was degraded, leading to a significant decrease in impedance that can be measured spectroscopically. Using SARS-CoV-2 nucleocapsid antigen as the model, the proposed CRISPR-Cas12a-based electrochemical sensor (CRISPR-E) showed excellent analytical performance for the quantitative detection of nucleocapsid antigen. Since in vitro selection can obtain aptamers selective for many SARS-CoV-2 antigens, the proposed strategy can expand this powerful CRISPR-E system significantly for quantitative monitoring of a wide range of COVID-19 biomarkers.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
126
|
A label-free ECL aptasensor for sensitive detection of carcinoembryonic antigen based on CdS QDs@MOF and TEOA@Au as bi-coreactants of Ru(bpy)32+. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
127
|
Zhao S, Jiang H, Gong C, Qi W, Hu L, Zhang Y. Highly sensitive detection of Tb 3+ and ATP based on a novel asymmetric anthracene derivative. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:306-311. [PMID: 34985467 DOI: 10.1039/d1ay01279g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel fluorescent sensor based on an asymmetric anthracene derivative (SSAPA) was designed and synthesized. Using this molecule, a rapid and sensitive assay for detecting Tb3+ and ATP in aqueous solutions was established. The SSAPA molecule had excellent aggregation-induced emission (AIE) performance and good aqueous dispersion ability. This molecule could coordinate with Tb3+ and the fluorescence quenched linearly with the increase in the concentration of Tb3+ from 0.005 to 1.2 μM. Since both Tb3+ and adenosine triphosphate (ATP) have strong binding ability, ATP can compete with Tb3+ from the SSAPA/Tb3+ complex leading to fluorescence recovery. In this way, a brand-new fluorescent "turn-on" assay for ATP in the range from 0.01 to 0.4 μM was developed using the Tb3+-based complex probe. The detection limits for Tb3+ and ATP both reached single-digit nanomole per millilitre (2.8 nM and 4.5 nM, respectively), which demonstrated that this method has high sensitivity. Besides, Tb3+ and ATP also could be well detected in other complex environments such as real water samples or serum samples. This study provides a feasible assay for detecting trace amounts of Tb3+ and ATP in aqueous solutions.
Collapse
Affiliation(s)
- Song Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China.
| | - Hongbo Jiang
- Chongqing Bashu Secondary School, Chongqing, 400013, P. R. China
| | - Chengbin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wenjing Qi
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China.
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China.
| | - Yan Zhang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China.
| |
Collapse
|
128
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
129
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
130
|
Kayani KF, Omer KM. A red luminescent europium metal organic framework (Eu-MOF) integrated with a paper strip using smartphone visual detection for determination of folic acid in pharmaceutical formulations. NEW J CHEM 2022. [DOI: 10.1039/d2nj00601d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Integration of smartphone with visual-based paper strip as a low-cost, fast, and reliable probe for semi-quantitative analysis of folic acid.
Collapse
Affiliation(s)
- Kawan F. Kayani
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| | - Khalid M. Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| |
Collapse
|
131
|
Gurudatt NG, Lee K, Heo W, Jung HI. Simple ultrasensitive electrochemical detection of the DBP plasticizer for the risk assessment of South Korean river waters. Analyst 2022; 147:3525-3533. [DOI: 10.1039/d2an00809b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a simple electrochemical strategy for the ultrasensitive quantitative analysis of DBP plasticizer in water. The proposed aptasensor is comparable to GC-MS in sensitivity and it was applied to monitor the river waters contamination.
Collapse
Affiliation(s)
- N. G. Gurudatt
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Kyungyeon Lee
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Woong Heo
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
132
|
Huang S, Yao J, Ning G, Li B, Mu P, Xiao Q. Ultrasensitive ratiometric fluorescent probes for Hg( ii) and trypsin activity based on carbon dots and metalloporphyrin via a target recycling amplification strategy. Analyst 2022; 147:1457-1466. [DOI: 10.1039/d1an02287c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ultrasensitive ratiometric fluorescent probe was developed for Hg(ii) and trypsin based on CDs and TPPS via a target recycling amplification strategy. The detection limits of Hg2+ and trypsin were 0.086 nM and 0.013 ng mL−1.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Jiandong Yao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
133
|
Yan B, Zheng X, Shi P. Electrochemical sensor propelled by exonuclease III for highly efficient microRNA-155 detection. Analyst 2022; 147:4824-4828. [DOI: 10.1039/d2an01274j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed an electrochemical sensor, propelled by exonuclease III, for highly efficient microRNA-155 detection. The detection performance of the sensor was excellent, with a detection limit as low as 0.035 fM.
Collapse
Affiliation(s)
- Bingyin Yan
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, China
| | - Xiangjiang Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Medical College, Linyi University, Linyi 276005, China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Medical College, Linyi University, Linyi 276005, China
| |
Collapse
|
134
|
Goryacheva OA, Ponomaryova TD, Drozd DD, Kokorina AA, Rusanova TY, Mishra PK, Goryacheva IY. Heart failure biomarkers BNP and NT-proBNP detection using optical labels. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
135
|
Lin X, Zou L, Lan W, Liang C, Yin Y, Liang J, Zhou Y, Wang J. Progress of metal nanoclusters in nucleic acid detection. Dalton Trans 2021; 51:27-39. [PMID: 34812463 DOI: 10.1039/d1dt03183j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development and application of metal nanoclusters (MNCs) in nucleic acid testing in the past 10 years have been summarized. Fluorescence enhancement and red shift can occur when the G-rich sequence gets close to Ag NCs or the complementary DNA strand hybridizes with Ag NCs tail strand, which can be used to identify the nucleic acid. Ag NCs with the abasic site in DNA duplex can distinguish mutant genes such as cancer suppression gene p53. Ag NCs with auxiliary DNA can be used to detect miR-21, miR-16-5p, miR-19b-3p, and miR-141. Cu NCs/Cu NPs can recognize miRNA-155, miR-21, and miR-let-7d without auxiliary DNA. Au NCs can identify H1N1 gene fragments by fluorescence quenching caused by proximity to the G-rich sequence. Besides, Au NCs can recognize miRNA-21 and let-7a. SsDNA MNCs adsorbed on the surface of GO and CNPs oxide can be used to identify HBV and HIV gene fragments. The addition of enzymes or auxiliary amplification technologies is a popular way to improve probe sensitivity. Ag NCs combined with TAIEA has the best performance and can obtain LOD as low as aM for miRNA.
Collapse
Affiliation(s)
- Xia Lin
- Medical college, Guangxi University, Nanning, 530004, China. .,College of Chemistry and Chemical engineering, Guangxi University, Nanning, 530004, China. .,Guangxi medical college, Nanning, 530023, China.
| | - Lianjia Zou
- Guangxi medical college, Nanning, 530023, China.
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | | | - Yanchun Yin
- Guangxi medical college, Nanning, 530023, China.
| | - Jian Liang
- Medical college, Guangxi University, Nanning, 530004, China.
| | | | - Jianyi Wang
- Medical college, Guangxi University, Nanning, 530004, China. .,College of Chemistry and Chemical engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
136
|
A near-infrared light triggered fluormetric biosensor for sensitive detection of acetylcholinesterase activity based on NaErF 4: 0.5 % Ho 3+@NaYF 4 upconversion nano-probe. Talanta 2021; 235:122784. [PMID: 34517642 DOI: 10.1016/j.talanta.2021.122784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Acetylcholinesterase (AChE), as an important neurotransmitter, is widely present in the peripheral and central nervous systems. The aberrant expression of AChE could cause diverse neurodegenerative diseases. Herein, we developed a facile and interference-free fluorimetric biosensing platform for highly sensitive AChE activity determination based on a NaErF4: 0.5 % Ho3+@NaYF4 nano-probe. This nano-probe exhibits a unique property of emitting bright monochromic red (650 nm) upconversion (UC) emission under multiband (~808, ~980, and ~1530 nm) near-infrared (NIR) excitations. The principle of this detection relies on the quenching of the strong monochromic red UC emission by oxidization products of 3,3',5,5'-tetramethylbenzidine generated through AChE-modulated cascade reactions. This system shows a great sensing performance with a detection limit (LOD) of 0.0019 mU mL- 1 for AChE, as well as good specificity and stability. Furthermore, we validated the potential of the nano-probe in biological samples by determination of AChE in whole blood with a LOD of 0.0027 mU mL-1, indicating the potential application of our proposed platform for monitoring the progression of AChE-related disease.
Collapse
|
137
|
Luka GS, Nowak E, Toyata QR, Tasnim N, Najjaran H, Hoorfar M. Portable on-chip colorimetric biosensing platform integrated with a smartphone for label/PCR-free detection of Cryptosporidium RNA. Sci Rep 2021; 11:23192. [PMID: 34853388 PMCID: PMC8636559 DOI: 10.1038/s41598-021-02580-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidium, a protozoan pathogen, is a leading threat to public health and the economy. Herein, we report the development of a portable, colorimetric biosensing platform for the sensitive, selective and label/PCR-free detection of Cryptosporidium RNA using oligonucleotides modified gold nanoparticles (AuNPs). A pair of specific thiolated oligonucleotides, complementary to adjacent sequences on Cryptosporidium RNA, were attached to AuNPs. The need for expensive laboratory-based equipment was eliminated by performing the colorimetric assay on a micro-fabricated chip in a 3D-printed holder assembly. A smartphone camera was used to capture an image of the color change for quantitative analysis. The detection was based on the aggregation of the gold nanoparticles due to the hybridization between the complementary Cryptosporidium RNA and the oligonucleotides immobilized on the AuNPs surface. In the complementary RNA's presence, a distinctive color change of the AuNPs (from red to blue) was observed by the naked eye. However, in the presence of non-complementary RNA, no color change was observed. The sensing platform showed wide linear responses between 5 and 100 µM with a low detection limit of 5 µM of Cryptosporidium RNA. Additionally, the sensor developed here can provide information about different Cryptosporidium species present in water resources. This cost-effective, easy-to-use, portable and smartphone integrated on-chip colorimetric biosensor has great potential to be used for real-time and portable POC pathogen monitoring and molecular diagnostics.
Collapse
Affiliation(s)
- George S Luka
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ephraim Nowak
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Quin Robert Toyata
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Nishat Tasnim
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Homayoun Najjaran
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
138
|
Li P, Li W, Xie Z, Zhan H, Deng L, Huang J. A label-free and signal-amplifiable assay method for colorimetric detection of carcinoembryonic antigen. Biotechnol Bioeng 2021; 119:504-512. [PMID: 34845724 DOI: 10.1002/bit.28003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023]
Abstract
In this work, an innovative colorimetric assay method for the determination of carcinoembryonic antigen is developed with aptamer probes utilized as recognition element. DNA hybridization chain reaction is used as signal amplification technique, and peroxidase-mimicking hemin/G-quadruplex-assisted catalytic oxidation of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) is deployed as signal reporting mechanism. The detection principle was firstly verified by using gel electrophoresis analysis and absorbance measurements. After condition optimization, a detection limit was theoretically determined as 24.8 ng/ml. Furthermore, the method exhibited good selectivity and satisfactory recovery rates (92.2%-108.6%) in serum samples. Moreover, the sensing scheme is easily extended for the detection of other analytes via similar target-aptamer recognition principle. To sum up, this is an enzyme- and label-free, cost-effective yet signal-amplifiable assay scheme for the determination of tumor markers with promising simplicity and selectivity, practical utility, and potential universality.
Collapse
Affiliation(s)
- Peng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenqin Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zhuohao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Haonan Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
139
|
Li S, Ge W, Suryoprabowo S, Liu J, Kuang H, Zhu J, Liu L, Xu C. A paper-based sensor for rapid and ultrasensitive detection of ibuprofen in water and herbal tea. Analyst 2021; 146:6874-6882. [PMID: 34633393 DOI: 10.1039/d1an01533h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As the use of non-steroidal anti-inflammatory drugs (NSAIDS) increases, their side effects have also attracted attention. Ibuprofen is one of the most widely-used NSAIDs. In this study, we screened the highly-sensitive and specific antibody 6E10, with an IC50 of 1.92 ng mL-1, and a linear range of 0.53-6.97 ng mL-1. In this study, we developed a rapid lateral flow immunochromatographic assay (ICA) strip method to detect ibuprofen in water or herbal tea. The cut-off limit of the strip is 10 ng mL-1 in water, and concentrations as low as 1 ng mL-1 can be detected in herbal tea samples, with the results obtained by the naked eye within 6 min. All the data were confirmed by high performance liquid chromatography-quadrupole time of flight-mass spectrometry (HPLC-QTOF-MS). This lateral-flow ICA strip is thus a rapid tool for on-site detection and screening of ibuprofen in water and herbal tea.
Collapse
Affiliation(s)
- Shaozhen Li
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Wenliang Ge
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China.
| | - Steven Suryoprabowo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Jie Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Jianping Zhu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
140
|
Glycoprotein-based bioimaging of HeLa cancer cells by folate receptor and folate decorated graphene quantum dots. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
141
|
Sha L, Zhu M, Lin F, Yu X, Dong L, Wu L, Ding R, Wu S, Xu J. Stable DNA Aptamer-Metal-Organic Framework as Horseradish Peroxidase Mimic for Ultra-Sensitive Detection of Carcinoembryonic Antigen in Serum. Gels 2021; 7:181. [PMID: 34842664 PMCID: PMC8628696 DOI: 10.3390/gels7040181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinoembryonic antigen (CEA) is an important broad-spectrum tumor marker. For CEA detection, a novel type of metal-organic framework (MOF) was prepared by grafting CEA aptamer-incorporated DNA tetrahedral (TDN) nanostructures into PCN-222 (Fe)-based MOF (referred as CEAapt-TDN-MOF colloid nanorods). The synthesized CEAapt-TDN-MOF is a very stable detection system due to the vertex phosphorylated TDN structure at the interface, possessing a one-year shelf-life. Moreover, it exhibits a significant horseradish peroxidase mimicking activity due to the iron porphyrin ring, which leads to a colorimetric reaction upon binding toward antibody-captured CEA. Using this method, we successfully achieved the highly specific and ultra-sensitive detection of CEA with a limit of detection as low as 3.3 pg/mL. In addition, this method can detect and analyze the target proteins in clinical serum samples, effectively identify the difference between normal individuals and patients with colon cancer, and provide a new method for the clinical diagnosis of tumors, demonstrating a great application potential.
Collapse
Affiliation(s)
- Lingjun Sha
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.S.); (X.Y.); (L.D.)
| | - Mingcong Zhu
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai 200444, China; (M.Z.); (L.W.); (R.D.)
| | - Fuqing Lin
- School of Basic Medical Sciences, Fudan University, Shanghai 200433, China;
| | - Xiaomeng Yu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.S.); (X.Y.); (L.D.)
| | - Langjian Dong
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.S.); (X.Y.); (L.D.)
| | - Licheng Wu
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai 200444, China; (M.Z.); (L.W.); (R.D.)
| | - Rong Ding
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai 200444, China; (M.Z.); (L.W.); (R.D.)
| | - Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jingjing Xu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.S.); (X.Y.); (L.D.)
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai 200444, China; (M.Z.); (L.W.); (R.D.)
| |
Collapse
|
142
|
Bimetallic organic framework Cu/UiO-66 mediated "fluorescence turn-on" method for ultrasensitive and rapid detection of carcinoembryonic antigen (CEA). Anal Chim Acta 2021; 1183:339000. [PMID: 34627512 DOI: 10.1016/j.aca.2021.339000] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
Carcinoembryonic antigen (CEA) is a key serum tumor marker which is overexpressed in all types of adenocarcinomas. Therefore, establish the ultrasensitive, accurate and rapid method for CEA detection is essential for reducing the mortality of cancer. Here, a bimetallic organic framework Cu/UiO-66 was synthesized through the simple two-step hydrothermal method and used to construct a "fluorescence turn-on" analytical method for CEA detection. Cu/UiO-66 can adsorb CEA aptamers modified with FAM (CEA/FAM-Apt) and take place photoinduced electron transfer (PET) between Cu/UiO-66 and FAM, resulting in the fluorescence of the FAM is quenched. When CEA is present, CEA and CEA/FAM-Apt are tightly combined, making CEA/FAM-Apt far away from the Cu/UiO-66 surface. As a result, the fluorescence intensity of the system was significantly restored. Under optimal conditions, the proposed "fluorescence turn-on" method can detect CEA as low as 0.01 ng mL-1 in a range of 0.01-0.3 ng mL-1. Besides, this analytical method owns good selectivity, reproducibility and serum applicability, which provides a new platform for the direct detection of clinical diagnosis-related markers.
Collapse
|
143
|
Basak M, Das G. Supramolecular self-assembly of a nitro-incorporating quinoxaline framework: insights into the origin of fluorescence turn-on response towards the benzene group of VOCs. Analyst 2021; 146:6239-6244. [PMID: 34528640 DOI: 10.1039/d1an01127h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hazardous volatile organic compounds (VOCs) can significantly impact human health and the environment. Hence, the detection of VOCs is of foremost importance. A quinoxaline-based fluorimetric probe (1) unveils a notable "turn-on" fluorescence response towards mesitylene in the presence of other VOCs and common interfering ions in aqueous media. The sensing phenomenon involves specific 1 : 1 stoichiometric binding of the probe with mesitylene with a ∼2.66 ppm detection limit. Furthermore, the probe experiences morphological transformations from a fibril-network to a stone-shaped hetero-structure upon treatment with mesitylene, indicating mesitylene induced self-assembly. The detection induced self-assembly of the probe was further corroborated by dynamic-light-scattering (DLS) and fluorescence microscopy study. Importantly, this proposed approach is applicable to detect mesitylene in natural water sources and in the vapor phase using portable, low-cost filter paper strips.
Collapse
Affiliation(s)
- Megha Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
144
|
4-Nitrophenol-Loaded Magnetic Mesoporous Silica Hybrid Materials for Spectrometric Aptasensing of Carcinoembryonic Antigen. MICROMACHINES 2021; 12:mi12101138. [PMID: 34683189 PMCID: PMC8537709 DOI: 10.3390/mi12101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/20/2022]
Abstract
Aptamer- or antibody-based sensing protocols have been reported for detecting carcinoembryonic antigen (CEA), but most exhibit complicated procedures or multiple reactions. In this work, we developed a one-step aptasensing protocol for the spectrometric determination of CEA based on 4-nitrophenol (4-NP)-loaded magnetic mesoporous silica nanohybrids (MMSNs) for bioresponsive controlled-release applications. To fabricate such a responsive–controlled sensing system, single-stranded complementary oligonucleotides relative to the CEA-specific aptamer were first modified on the aminated MMSN. Thereafter, 4-NP molecules blocked the pores with the assistance of the aptamers via a hybridization reaction. The introduced target CEA specifically reacted with the hybridized aptamer, thus detaching from the MMSN to open the gate. The loaded 4-NP molecules were released from the pores, as determined using ultraviolet–visible (UV–vis) absorption spectroscopy after magnetic separation. Under optimum conditions, the absorbance increased with an increase in the target CEA in the sample and exhibited a good linear relationship within the dynamic range of 0.1–100 ng mL−1, with a detection limit of 46 pg mL−1. Moreover, this system also displayed high specificity, good reproducibility, and acceptable accuracy for analyzing human serum specimens, in comparison with a commercialized human CEA-enzyme-linked immunosorbent assay (ELISA) kit.
Collapse
|
145
|
Zhang F, Liu Z, Han Y, Fan L, Guo Y. Sandwich electrochemical carcinoembryonic antigen aptasensor based on signal amplification of polydopamine functionalized graphene conjugate Pd-Pt nanodendrites. Bioelectrochemistry 2021; 142:107947. [PMID: 34507161 DOI: 10.1016/j.bioelechem.2021.107947] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 02/09/2023]
Abstract
Carcinoembryonic antigen (CEA) is considered as a disease biomarker, which is related to various cancers and tumors in the human bodies. Sensitive detection of CEA is significant for clinical diagnosis and treatment. Herein, we proposed an electrochemical aptasensor for CEA detection based on the amplification driven by polydopamine functional graphene and Pd-Pt nanodendrites (PDA@Gr/Pd-PtNDs), conjugated hemin/G-quadruplex (hemin/G4), which possess mimicking peroxidases activity. Firstly, PDA@Gr was modified on the electrode surface for fixing CEA aptamer 1 (Apt1). Then, PDA@Gr/Pd-PtNDs with large surface area served as matrix for immobilization of hemin/G4 to obtain the secondary aptamer. In virtue of the sandwich-type specific reaction between CEA and the corresponding aptamers, the second aptamer was captured on the sensing interface, which can catalyze the oxidation of signal probe hydroquinone (HQ) with H2O2 and amplify current signal. Furthermore, the electrochemical signals of HQ were proportional with CEA concentrations. Under the optimal conditions, a dynamic response range from 50 pg/mL to 1.0 μg/mL and a detection limit of 6.3 pg/mL for CEA were obtained. Moreover, the proposed strategy represented satisfactory sensitivity and stability, and showed a good precision in real samples application.
Collapse
Affiliation(s)
- Fenglin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yujie Han
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
146
|
Abdelrazig AO, Tran BT, Rijiravanich P, Surareungchai W. A new and high-performance microfluidic analytical device based on Fusion 5 paper for the detection of chili pepper anthracnose pathogen Colletotrichum truncatum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3764-3771. [PMID: 34346407 DOI: 10.1039/d1ay00945a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A microfluidic analytical device based on wax-patterned Fusion 5 paper was designed and fabricated to facilitate early detection and improve control of anthracnose disease. Here, a rapid, specific, on-site, and low operational cost nucleic acid biosensor (ACT-Ct-PAD) based on the actin gene (ACT) and wax-patterned Fusion 5 paper was used to detect the PCR products of Colletotrichum truncatum (Ct), the main causal agent of chili anthracnose in Asia. The sensor was developed by using DNA conjugated gold nanoparticles (AuNPs-DNA) as a detection probe, which will hybridize to a complementary target sequence. Avidin coated mesoporous silica particles were attached to biotin-tagged DNA sequences forming capture probes, which were immobilized on the test and control zones of the device. The hybridization complex (MSP-dsDNA-AuNPs) produces an intense red color, which provides a platform for colorimetric detection. By targeting an actin gene sequence, the ACT-Ct-PAD device allows the detection of Ct DNA within 15 min. The specificity of the sensor was confirmed by the absence of a positive signal for DNA from non-target Colletotrichum species and two different fungal genera. Our wax-patterned Fusion 5 sensor provides a simple tool for the rapid nucleic acid diagnosis with a detection limit down to 17.42 femtomoles. This method has the potential to be applied for protein assay as well; hence, it has a considerable impact on on-site diagnostics.
Collapse
Affiliation(s)
- Amir Osman Abdelrazig
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
| | - Bao Thai Tran
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
| | - Patsamon Rijiravanich
- BioSciences and Systems Biology Research Team, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand.
| | - Werasak Surareungchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
- Nanoscience and Nanotechnology Graduated Research Program, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand.
| |
Collapse
|
147
|
Abdollahiyan P, Hasanzadeh M, Pashazadeh-Panahi P, Seidi F. Application of Cys A@AuNPs supported amino acids towards rapid and selective identification of Hg(II) and Cu(II) ions in aqueous solution: An innovative microfluidic paper-based (μPADs) colorimetric sensing platform. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
148
|
Quartarolli LF, Silveira AT, Toma HE. Overcoming lithium analysis difficulties with a simple colorimetric/spectrophotometric method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3627-3631. [PMID: 34378548 DOI: 10.1039/d1ay00937k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The analytical determination of lithium ions is usually performed by atomic absorption and X-ray fluorescence methods. Chemical analysis based on polyfluoroporphyrin chromogenic methods is also being employed, especially for biological samples. However, all existing methods are expensive and not suitable for routine work or field assays. The alternative method proposed here is based on the formation of a LiKFe(IO6) compound which is converted into a tris(1,10-phenanthroline)iron(ii) complex and monitored by spectrophotometric or colorimetric methods, the latter using a smartphone app. Under similar conditions, these two methods proved superior to the X-ray fluorescence method. A one pot analysis of lithium ions is also described, using an Eppendorf microtube previously modified for performing reaction, filtration and detection. This method is simple and very convenient for didactic and field assays.
Collapse
|
149
|
Tan X, Yu W, Wang Y, Song P, Xu Q, Ming D, Yang Y. A switchable and signal-amplified aptasensor based on metal organic frameworks as the quencher for turn-on detection of T-2 mycotoxin. Anal Bioanal Chem 2021; 413:6595-6603. [PMID: 34430983 DOI: 10.1007/s00216-021-03625-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022]
Abstract
A simple and low-cost fluorescence aptasensor was developed for rapid and sensitive signal amplification detection of T-2 mycotoxin (T-2). Dual-terminal-fluorescein amidite (FAM)-labeled aptamer (D-aptamer) acted as a recognition element and signal indicator. The metal organic frameworks (MOFs) of N, N'-bis(2-hydroxyethyl)dithiooxamidato copper (II) (H2dtoaCu) were as the quencher. The D-aptamer was initially adsorbed to the surface of H2dtoaCu, leading to efficient quenching of the aptasensor. Upon addition of T-2, the D-aptamer underwent a conformation change to form the T-2/T-2 aptamer complex, which induced the signaling probe to be released from the H2dtoaCu surface. Thus, the fluorescence intensity (FL) of the D-aptamer was recovered. Versus the single-terminal-FAM-labeled aptamer (S-aptamer), the D-aptamer showed a lower detection limit of 0.39 ng/mL. The aptasensor was also successfully applied to detect T-2 in corn and wheat samples with good recoveries.
Collapse
Affiliation(s)
- Xinliu Tan
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing, 210023, People's Republic of China.,College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, People's Republic of China
| | - Weidao Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yuwen Wang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Ping Song
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Qing Xu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Dengming Ming
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, People's Republic of China
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
150
|
Shu H, Zhao L, Li X, Gong J, Yin G, Chen H. Silica nanoparticle-modified microcomb electrode for voltammetry detection of osteopontin with high sensitivity. Biotechnol Appl Biochem 2021; 69:1733-1740. [PMID: 34423464 DOI: 10.1002/bab.2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Osteosarcoma is a commonly occurring bone malignancy, and it is the second most common cause of cancer deaths in adolescents and children. A sensitive silica nanoparticle (Si-NP) modified current-volt sensor was introduced to identify the osteopontin antigen, a well-known biomarker for osteosarcoma. Si-NP was extracted from the rice husk ash and utilized for the surface functionalization on the interdigitated microelectrode sensing surface. Extracted Si-NP has a spherical shape with uniform distribution, and it is confirmed by field emission scanning electron microscopy and field-emission transmission electron microscopy. Si-NP was layered on the electrode surface through a (3-aminopropyl)triethoxysilane amine linker, and the antibody was immobilized on Si-NP through a glutaraldehyde linker. Osteopontin was effectively detected on the antibody-attached surface, and the determination limit was 0.6 ng/mL. The regression was determined as y = 0.9366x - 1.1113 and the R2 value was 0.9331 and the detection limit of osteopontin was 0.6 ng/mL in the range between 0.3 and 5 ng/mL. In addition, control performance with nonimmune antibodies and albumin did not change the current volt, showing the specific osteopontin identification. This research work brings out the easy and cost-effective method to diagnose osteosarcoma and its etiology.
Collapse
Affiliation(s)
- Hexi Shu
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Liangliang Zhao
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Xiaoxia Li
- Department of Respiratory Medicine, Dezhou Municipal Hospital, Dezhou City, China
| | - Jinpeng Gong
- The First Department of Trauma, Eastern Hospital, Yantaishan Hospital, Yantai City, China
| | - Guorui Yin
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Hulin Chen
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| |
Collapse
|