101
|
Raval U, Harary J, Zeng E, Pasinetti GM. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Rev Neurother 2020; 20:673-686. [PMID: 32459513 PMCID: PMC7387222 DOI: 10.1080/14737175.2020.1775585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Age related neurodegenerative disorders affect millions of people around the world. The role of the gut microbiome (GM) in neurodegenerative disorders has been elucidated over the past few years. Dysbiosis of the gut microbiome ultimately results in neurodegeneration. However, the gut microbiome can be modulated to promote neuro-resilience. AREAS COVERED This review is focused on demonstrating the role of the gut microbiome in host physiology in Parkinson's disease (PD) and other neurodegenerative disorders. We will discuss how the microbiome will impact neurodegeneration in PD, Alzheimer's Disease (AD), Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and finally discuss how the gut microbiome can be influenced through diet and lifestyle. EXPERT OPINION Currently, much of the focus has been to study the mechanisms by which the microbiome induces neuroinflammation and neurodegeneration in PD, AD, MS, ALS. In particular, the role of certain dietary flavonoids in regulation of gut microbiome to promote neuro-resilience. Polyphenol prebiotics delivered in combination with probiotics (synbiotics) present an exciting new avenue to harness the microbiome to attenuate immune inflammatory responses which ultimately may influence brain cascades associated with promotion of neurodegeneration across the lifespan.
Collapse
Affiliation(s)
- Urdhva Raval
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Joyce Harary
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Emma Zeng
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Giulio M. Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
102
|
Li J, Hu Y, Liu L, Wang Q, Zeng J, Chen C. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137432. [PMID: 32169651 DOI: 10.1016/j.scitotenv.2020.137432] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Fine particulate matter (PM2.5) have become a major public health concern because of their adverse effects on health. Lungs are considered the primary organ affected by PM2.5. In order to understand the mechanism underlying PM2.5-induced lung injury, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis were conducted to investigate the impact of PM2.5 exposure on lung microbiome and its metabolic profile. Mice were exposed to PM2.5 through intratracheal instillation and a lung injury model was established. 16S rRNA gene sequencing indicated that PM2.5 exposure significantly altered the richness, evenness, and composition of the lung microbiome. Metabolomics profiling showed that the levels of lung metabolites were perturbed after PM2.5 exposure. The altered metabolites mainly belonged to metabolic pathways, such as the citrate cycle, glyoxylate and dicarboxylate metabolism, pyruvate metabolism, purine and pyrimidine metabolism, and valine, leucine, and isoleucine metabolism. The altered lung microbiota showed significant correlations with lung metabolites. The levels of fumaric acid negatively correlated with the relative abundance of Ruminococcaceae, Enterobacteriaceae, and Pseudomonadaceae. These results revealed that PM2.5 exposure not only significantly altered the lung microbiome composition but also perturbed a number of metabolites involved in diverse metabolic pathways. This study improves our understanding of the mechanism of lung injury after PM2.5 exposure.
Collapse
Affiliation(s)
- Jingli Li
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Yiran Hu
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Lingjing Liu
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Qiang Wang
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Jiahao Zeng
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China; The Interventional Pulmonary Key Laboratory of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
103
|
Fouladi F, Bailey MJ, Patterson WB, Sioda M, Blakley IC, Fodor AA, Jones RB, Chen Z, Kim JS, Lurmann F, Martino C, Knight R, Gilliland FD, Alderete TL. Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. ENVIRONMENT INTERNATIONAL 2020; 138:105604. [PMID: 32135388 PMCID: PMC7181344 DOI: 10.1016/j.envint.2020.105604] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 05/17/2023]
Abstract
Animal work indicates exposure to air pollutants may alter the composition of the gut microbiota. This study examined relationships between air pollutants and the gut microbiome in young adults residing in Southern California. Our results demonstrate significant associations between exposure to air pollutants and the composition of the gut microbiome using whole-genome sequencing. Higher exposure to 24-hour O3 was associated with lower Shannon diversity index, higher Bacteroides caecimuris, and multiple gene pathways, including L-ornithine de novo biosynthesis as well as pantothenate and coenzyme A biosynthesis I. Among other pollutants, higher NO2 exposure was associated with fewer taxa, including higher Firmicutes. The percent variation in gut bacterial composition that was explained by air pollution exposure was up to 11.2% for O3 concentrations, which is large compared to the effect size for many other covariates reported in healthy populations. This study provides the first evidence of significant associations between exposure to air pollutants and the compositional and functional profile of the human gut microbiome. These results identify O3 as an important pollutant that may alter the human gut microbiome.
Collapse
Affiliation(s)
- Farnaz Fouladi
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | | - Michael Sioda
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ivory C Blakley
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anthony A Fodor
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | - Zhanghua Chen
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Cameron Martino
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
104
|
Feng J, Cavallero S, Hsiai T, Li R. Impact of air pollution on intestinal redox lipidome and microbiome. Free Radic Biol Med 2020; 151:99-110. [PMID: 31904545 DOI: 10.1016/j.freeradbiomed.2019.12.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Air pollution is a rising public health issue worldwide. Cumulative epidemiological and experimental studies have shown that exposure to air pollution such as particulate matter (PM) is linked with increased hospital admissions and all-cause mortality. While previous studies on air pollution mostly focused on the respiratory and cardiovascular effects, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) system. The gut is exposed to PM as most of the inhaled particles are removed from the lungs to the GI tract via mucociliary clearance. Ingestion of contaminated food and water is another common source of GI tract exposure to pollutants. Recent studies have associated air pollution with intestinal diseases, including appendicitis, colorectal cancer, and inflammatory bowel disease. In addition to the liver and adipose tissue, intestine is an important organ system for lipid metabolism, and the intestinal redox lipids might be tightly associated with the intestinal and systematic inflammation. The gut microbiota modulates lipid metabolism and contributes to the initiation and development of intestinal disease including inflammatory bowel disease. Recent data support microbiome implication in air pollution-mediated intestinal and systematic effects. In this review, the associations between air pollution and intestinal diseases, and the alterations of intestinal lipidome and gut microbiome by air pollution are highlighted. The potential mechanistic aspects underlying air pollution-mediated intestinal pathology will also be discussed.
Collapse
Affiliation(s)
- Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Susana Cavallero
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, CA, USA; West Los Angeles Healthcare System, USA; Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China.
| |
Collapse
|
105
|
Welch BM, Branscum A, Geldhof GJ, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. Evaluating the effects between metal mixtures and serum vaccine antibody concentrations in children: a prospective birth cohort study. Environ Health 2020; 19:41. [PMID: 32276596 PMCID: PMC7146972 DOI: 10.1186/s12940-020-00592-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/27/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Many populations are exposed to arsenic, lead, and manganese. These metals influence immune function. We evaluated the association between exposure to single and multiple metals, including arsenic, lead, and manganese, to humoral immunity as measured by antibody concentrations to diphtheria and tetanus toxoid among vaccinated Bangladeshi children. Additionally, we examined if this association was potentially mediated by nutritional status. METHODS Antibody concentrations to diphtheria and tetanus were measured in children's serum at age 5 (n = 502). Household drinking water was sampled to quantify arsenic (W-As) and manganese (W-Mn), whereas lead was measured in blood (B-Pb). Exposure samples were taken during pregnancy, toddlerhood, and early childhood. Multiple linear regression models (MLRs) with single or combined metal predictors were used to determine the association with antibody outcomes. MLR results were transformed to units of percent change in outcome per doubling of exposure to improve interpretability. Structural equation models (SEMs) were used to further assess exposure to metal mixtures. SEMs regressed a latent exposure variable (Metals), informed by all measured metal variables (W-As, W-Mn, and B-Pb), on a latent outcome variable (Antibody), informed by measured antibody variables (diphtheria and tetanus). Weight-for-age z-score (WFA) at age 5 was evaluated as a mediator. RESULTS Diphtheria antibody was negatively associated with W-As during pregnancy in MLR, but associations were attenuated after adjusting for W-Mn and B-Pb (- 2.9% change in diphtheria antibody per doubling in W-As, 95% confidence interval [CI]: - 7%, 1.5%). Conversely, pregnancy levels of B-Pb were positively associated with tetanus antibody, even after adjusting for W-As and W-Mn (13.3%, 95% CI: 1.7%, 26.3%). Overall, null associations were observed between W-Mn and antibody outcomes. Analysis by SEMs showed that the latent Metals mixture was significantly associated with the latent Antibody outcome (β = - 0.16, 95% CI: - 0.26, - 0.05), but the Metals variable was characterized by positive and negative loadings of W-As and B-Pb, respectively. Sex-stratified MLR and SEM analyses showed W-As and B-Pb associations were exclusive to females. Mediation by WFA was null, indicating Metals only had direct effects on Antibody. CONCLUSIONS We observed significant modulation of vaccine antibody concentrations among children with pregnancy and early life exposures to drinking water arsenic and blood lead. We found distinct differences by child sex, as only females were susceptible to metal-related modulations in antibody levels. Weight-for-age, a nutritional status proxy, did not mediate the association between the metal mixture and vaccine antibody.
Collapse
Affiliation(s)
- Barrett M. Welch
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
- Oregon Health and Sciences University, Portland, OR USA
| | - Adam Branscum
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - G. John Geldhof
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sharia M. Ahmed
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Ellen Smit
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | | | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | | | | | - Molly L. Kile
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| |
Collapse
|
106
|
Meng Y, Chen C, Qiu N, Keast R. Modulation of gut microbiota in rats fed whole egg diets by processing duck egg to preserved egg. J Biosci Bioeng 2020; 130:54-62. [PMID: 32224011 DOI: 10.1016/j.jbiosc.2020.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/03/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Abstract
Pidan, as the preserved duck egg, is a traditional alkaline-pickled food in China. Previous studies have suggested preserved egg white has an anti-inflammatory effect, though the mechanism of action was unclear. In this work, the difference of peptides distribution in the digestive products was identified from those of duck egg. The effects of preserved egg diet on the modulation of gut microbiota as well as the alteration in fecal metabolites were further investigated. Minor variations of gut microbiota in phylum level were observed between preserved and fresh duck egg diet groups, even though, preserved egg diet intake attributed to increases in the relative abundance of Prevotella and Phascolarctobacterium (p < 0.05), while Ruminococcaceae and Allobaculum were quantitatively decreased (p < 0.05). In terms of metabolites, the contents of acetic acid (p < 0.01) and propionic acid (p < 0.05) were significantly increased in the preserved egg diet group. It was speculated that the preserved egg diet might alter the proportion of short-chain fatty acids (SCFAs) in the gut of rats by modulating specific intestinal bacteria, and subsequently play an active role in anti-inflammatory effects. Compared to the fresh egg group, the bacterial produced SCFAs of preserved egg group were increased in abundance (p < 0.05), which may have potential anti-obesity and anti-inflammatory effects. The results provide a novel insight into the relationship between preserved egg intake, gut microbiota and potential positive effects on host health.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Can Chen
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Russell Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
107
|
Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. TOXICS 2020; 8:toxics8010019. [PMID: 32178396 PMCID: PMC7151736 DOI: 10.3390/toxics8010019] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
The human gut microbiome can be easily disturbed upon exposure to a range of toxic environmental agents. Environmentally induced perturbation in the gut microbiome is strongly associated with human disease risk. Functional gut microbiome alterations that may adversely influence human health is an increasingly appreciated mechanism by which environmental chemicals exert their toxic effects. In this review, we define the functional damage driven by environmental exposure in the gut microbiome as gut microbiome toxicity. The establishment of gut microbiome toxicity links the toxic effects of various environmental agents and microbiota-associated diseases, calling for more comprehensive toxicity evaluation with extended consideration of gut microbiome toxicity.
Collapse
|
108
|
Zhai Q, Qu D, Feng S, Yu Y, Yu L, Tian F, Zhao J, Zhang H, Chen W. Oral Supplementation of Lead-Intolerant Intestinal Microbes Protects Against Lead (Pb) Toxicity in Mice. Front Microbiol 2020; 10:3161. [PMID: 32038590 PMCID: PMC6987320 DOI: 10.3389/fmicb.2019.03161] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Oral exposure to the heavy metal lead (Pb) causes various dysfunctions in animals. However, the influence of gut bacteria on Pb absorption, bioaccumulation, and excretion is largely unknown. In this study, we use a mouse model to investigate the relationship between gut microbiota, Pb-intolerant intestinal microbes and Pb toxicity. First, mice were treated with a broad-spectrum antibiotic cocktail to deplete their gut microbiota, and were then acutely and orally exposed to Pb at 1304 mg/kg for 3 days. Compared to the control mice, antibiotic-treated mice had increased Pb concentrations in the blood and primary organs and decreased Pb fecal concentrations, suggesting that gut microbiota limited the Pb burden that developed from acute oral Pb exposure. Next, three Pb-intolerant gut microbes, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Oscillibacter ruminantium, were orally administered to mice, and their effects against Pb toxicity were evaluated. F. prausnitzii treatment significantly promoted the fecal Pb excretion and reduced Pb concentrations in blood (from 152.70 ± 25.62 μg/dL to 92.20 ± 24.33 μg/dL) and primary tissues. Supplementation with O. ruminantium significantly decreased Pb concentrations in blood (from 152.70 ± 25.62 μg/dL to 104.60 ± 29.85 μg/dL) and kidney (from 7.30 ± 1.08 μg/g to 5.64 ± 0.79 μg/g). Treatment with F. prausnitzii and O. ruminantium also upregulated tight junction (TJ) protein expression and the production of short-chain fatty acids by colonic microbiota, and showed protective effects against liver and kidney toxicity. These results indicate the potential for reducing Pb toxicity by the modulation of gut microbiota.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Dingwu Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Saisai Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaqi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi, China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
109
|
Zhai Q, Wang J, Cen S, Zhao J, Zhang H, Tian F, Chen W. Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice. Food Funct 2019; 10:3768-3781. [PMID: 31180403 DOI: 10.1039/c9fo00587k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The heavy metal lead (Pb) is a toxic contaminant that induces a range of adverse effects in humans. The present study demonstrated for the first time that dietary supplementation with a galactooligosaccharide (GOS) promotes fecal Pb excretion and reduces Pb accumulation in the blood and tissues of mice. The effects against Pb exposure were also observed in mice that received the fecal microbiota from donors treated with GOS, but were diminished in gut microbiota-depleted mice that received antibiotic pre-treatment, indicating that the protection by GOS administration was dependent on the modulation of the gut microbiota. We also provide evidence that the protective mechanism of GOS supplementation was related to the enhanced abundance of intestinal bacteria with good Pb-binding ability, recovery of the gut barrier function, modulation of bile acid metabolism, and improved essential metal utilization. These results indicate that GOS can be considered a potentially protective prebiotic against Pb toxicity.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | | | |
Collapse
|
110
|
Xing SC, Huang CB, Mi JD, Wu YB, Liao XD. Bacillus coagulans R11 maintained intestinal villus health and decreased intestinal injury in lead-exposed mice by regulating the intestinal microbiota and influenced the function of faecal microRNAs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113139. [PMID: 31563774 DOI: 10.1016/j.envpol.2019.113139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Lead contamination is an environmental problem, especially in developing countries; due to the nondegradable characteristics of lead, it is easily deposited in human and animal bodies by the food chain. Probiotics are regarded as a good tool to remove lead ions in the intestine and maintain gut health conditions, but previous studies failed to elucidate the relationship among probiotics, the host and the gut microbiota. In the present study, B. coagulans R11 was employed as the "lead removal tool" in lead-exposed mouse, and the effects of B. coagulans R11 on intestinal cells, the microbiota and faecal microRNAs were tested. The results indicated that B. coagulans R11 had no negative effects on mouse intestine model cells and helped keep cells in a normal proliferation ratio and reduce the reactive oxygen species and apoptosis ratios under lead exposure conditions. An in vivo mouse experiment also showed that B. coagulans R11 feeding could reduce the intestinal villi damage caused by lead through adjusting the microbiota structure and function, such as increasing the genus abundance of Akkermansia and Alistipes, decreasing the genus abundance of Alloprevotella, Lachnospiraceae, Parabacteroides and Ruminiclostridium, and keeping the protein dltD existing. Host faecal microRNAs may be influenced by lead and B. coagulans R11, which may change the microbiota structure. Thus, B. coagulans R11 has the potential to be developed and considered as the probiotic that protects the host gut against villi damage and gut microbiota structure and function disorders during lead exposure.
Collapse
Affiliation(s)
- Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chun-Bo Huang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jian-Dui Mi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yin-Bao Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Centre for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Centre for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
111
|
Eggers S, Safdar N, Sethi AK, Suen G, Peppard PE, Kates AE, Skarlupka JH, Kanarek M, Malecki KMC. Urinary lead concentration and composition of the adult gut microbiota in a cross-sectional population-based sample. ENVIRONMENT INTERNATIONAL 2019; 133:105122. [PMID: 31518933 PMCID: PMC7230144 DOI: 10.1016/j.envint.2019.105122] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Lead (Pb) is a ubiquitous environmental contaminant with an array of detrimental health effects in children and adults, including neurological and immune dysfunction. Emerging evidence suggests that Pb exposure may alter the composition of the gut microbiota, however few studies have examined this association in human populations. The purpose of this study was to examine the association between urinary Pb concentration and the composition of the adult gut microbiota in a population-based sample of adults. METHODS Data used in this study were collected as part of the Survey of the Health of Wisconsin (SHOW) and its ancillary microbiome study. The SHOW is a household-based health examination survey of Wisconsin residents, collecting a variety of survey data on health determinants and outcomes, as well as objective measurements of body habitus, and biological specimens including urine. The ancillary microbiome study added additional questions and biological specimen collection, including stool, from participants age 18+. Pb concentration was analyzed in urine samples, and gut microbiota composition was assessed using DNA sequencing of the 16S rRNA V4 region, extracted from stool samples. Data processing and statistical analyses were performed in mothur, Python, R, and SAS. RESULTS Of 696 participants, urinary Pb concentration was highest in those age 70+, females, those with a high school diploma or lower, current and former smokers, and those without indoor pets. In adjusted models, increasing urinary Pb levels were associated with increases in microbial α-diversity (p = 0.071) and richness (p = 0.005). Differences in microbial β-diversity were significantly associated (p = 0.003) with differences in urinary Pb level. Presence of Proteobacteria, including members of the Burkholderiales, was significantly associated with increased urinary Pb. CONCLUSION These results suggest that Pb exposure is associated with differences in the composition of the adult gut microbiota in a population-based human sample. Further investigation of this association is warranted.
Collapse
Affiliation(s)
- Shoshannah Eggers
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, 610 Walnut St, WARF 707, Madison, WI 53726, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY 10029, USA.
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin - Madison, UW Med Fndtn Centennial Bldg, 1685 Highland Ave, Madison, WI 53705, USA; William S. Middleton Veterans Affairs Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA.
| | - Ajay K Sethi
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, 610 Walnut St, WARF 707, Madison, WI 53726, USA.
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Dr, Madison, WI 53706, USA.
| | - Paul E Peppard
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, 610 Walnut St, WARF 707, Madison, WI 53726, USA.
| | - Ashley E Kates
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin - Madison, UW Med Fndtn Centennial Bldg, 1685 Highland Ave, Madison, WI 53705, USA; William S. Middleton Veterans Affairs Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA.
| | - Joseph H Skarlupka
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Dr, Madison, WI 53706, USA.
| | - Marty Kanarek
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, 610 Walnut St, WARF 707, Madison, WI 53726, USA; Nelson Institute for Environmental Studies, University of Wisconsin - Madison, 122 Science Hall, 550 North Park St, Madison, WI 53706, USA.
| | - Kristen M C Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, 610 Walnut St, WARF 707, Madison, WI 53726, USA.
| |
Collapse
|
112
|
Abstract
The human gut microbiome is considered critical for establishing and maintaining intestinal function and homeostasis throughout life. Evidence for bidirectional communication with the immune and nervous systems has spawned interest in the microbiome as a key factor for human and animal health. Consequently, appreciation of the microbiome as a target of xenobiotics, including environmental pollutants such as heavy metals, has risen steadily because disruption of a healthy microbiome (dysbiosis) has been linked to unfavorable health outcomes. Thus, toxicology must consider toxicant effects on the host's microbiome as an integral part of the holobiont. We discuss current findings on the impact of toxic metals on the composition, diversity, and function of the gut microbiome as well as the modulation of metal toxicity by the microbiome. Present limitations and future needs in elucidating microbiome-metal interactions and the potential of harnessing beneficial traits of the microbiota to counteract metal toxicity are also considered.
Collapse
Affiliation(s)
- Senait Assefa
- Department of Biochemistry & Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, U.S.A
| | - Gerwald Köhler
- Department of Biochemistry & Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, U.S.A
| |
Collapse
|
113
|
King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J, Crandall KA, Fochtman BC, Gasparyan L, Gulzar N, Howell P, Issa N, Krampis K, Mishra L, Morizono H, Pisegna JR, Rao S, Ren Y, Simonyan V, Smith K, VedBrat S, Yao MD, Mazumder R. Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One 2019; 14:e0206484. [PMID: 31509535 PMCID: PMC6738582 DOI: 10.1371/journal.pone.0206484] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
A comprehensive knowledge of the types and ratios of microbes that inhabit the healthy human gut is necessary before any kind of pre-clinical or clinical study can be performed that attempts to alter the microbiome to treat a condition or improve therapy outcome. To address this need we present an innovative scalable comprehensive analysis workflow, a healthy human reference microbiome list and abundance profile (GutFeelingKB), and a novel Fecal Biome Population Report (FecalBiome) with clinical applicability. GutFeelingKB provides a list of 157 organisms (8 phyla, 18 classes, 23 orders, 38 families, 59 genera and 109 species) that forms the baseline biome and therefore can be used as healthy controls for studies related to dysbiosis. This list can be expanded to 863 organisms if closely related proteomes are considered. The incorporation of microbiome science into routine clinical practice necessitates a standard report for comparison of an individual’s microbiome to the growing knowledgebase of “normal” microbiome data. The FecalBiome and the underlying technology of GutFeelingKB address this need. The knowledgebase can be useful to regulatory agencies for the assessment of fecal transplant and other microbiome products, as it contains a list of organisms from healthy individuals. In addition to the list of organisms and their abundances, this study also generated a collection of assembled contiguous sequences (contigs) of metagenomics dark matter. In this study, metagenomic dark matter represents sequences that cannot be mapped to any known sequence but can be assembled into contigs of 10,000 nucleotides or higher. These sequences can be used to create primers to study potential novel organisms. All data is freely available from https://hive.biochemistry.gwu.edu/gfkb and NCBI’s Short Read Archive.
Collapse
Affiliation(s)
- Charles H. King
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
- McCormick Genomic and Proteomic Center, George Washington University, Washington, DC, United States of America
| | - Hiral Desai
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Allison C. Sylvetsky
- The Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Jonathan LoTempio
- The Institute for Biomedical Science, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Shant Ayanyan
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Jill Carrie
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Keith A. Crandall
- Computational Biology Institute and The Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Brian C. Fochtman
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Lusine Gasparyan
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Naila Gulzar
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Paul Howell
- KamTek Inc, Frederick, Maryland, United States of America
| | - Najy Issa
- The Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Konstantinos Krampis
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, United States of America
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC, United States of America
| | - Hiroki Morizono
- Center for Genetic Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Joseph R. Pisegna
- Division of Gastroenterology and Hepatology VA Greater Los Angeles Healthcare System and Department of Medicine and Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shuyun Rao
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC, United States of America
| | - Yao Ren
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Vahan Simonyan
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Krista Smith
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | | | - Michael D. Yao
- Washington DC VA Medical Center, Gastroenterology & Hepatology Section, Washington, DC, United States of America
- Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| | - Raja Mazumder
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
- Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
114
|
Mani MS, Kabekkodu SP, Joshi MB, Dsouza HS. Ecogenetics of lead toxicity and its influence on risk assessment. Hum Exp Toxicol 2019; 38:1031-1059. [PMID: 31117811 DOI: 10.1177/0960327119851253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Lead (Pb) toxicity is a public health problem affecting millions worldwide. Advances in 'omic' technology have paved the way to toxico-genomics which is currently revolutionizing the understanding of interindividual variations in susceptibility to Pb toxicity and its functional consequences to exposure. Our objective was to identify, comprehensively analyze, and curate all the potential genetic and epigenetic biomarkers studied to date in relation to Pb toxicity and its association with diseases. We screened a volume of research articles that focused on Pb toxicity and its association with genetic and epigenetic signatures in the perspective of occupational and environmental Pb exposure. Due to wide variations in population size, ethnicity, age-groups, and source of exposure in different studies, researchers continue to be skeptical on the topic of the influence of genetic variations in Pb toxicity. However, surface knowledge of the underlying genetic factors will aid in elucidating the mechanism of action of Pb. Moreover, in recent years, the application of epigenetics in Pb toxicity has become a promising area in toxicology to understand the influence of epigenetic mechanisms such as DNA methylation, chromatin remodeling, and small RNAs for the regulation of genes in response to Pb exposure during early life. Growing evidences of ecogenetic understanding (both genetic and epigenetic processes) in a dose-dependent manner may help uncover the mechanism of action of Pb and in the identification of susceptible groups. Such studies will further help in refining uncertainty factors and in addressing risk assessment of Pb poisoning.
Collapse
Affiliation(s)
- M S Mani
- 1 Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S P Kabekkodu
- 2 Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - M B Joshi
- 3 Department of Ageing, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - H S Dsouza
- 1 Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
115
|
Dempsey JL, Little M, Cui JY. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 2019; 75:41-69. [PMID: 31454513 DOI: 10.1016/j.neuro.2019.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
There is growing recognition that the gut microbiome is an important regulator for neurological functions. This review provides a summary on the role of gut microbiota in various neurological disorders including neurotoxicity induced by environmental stressors such as drugs, environmental contaminants, and dietary factors. We propose that the gut microbiome remotely senses and regulates CNS signaling through the following mechanisms: 1) intestinal bacteria-mediated biotransformation of neurotoxicants that alters the neuro-reactivity of the parent compounds; 2) altered production of neuro-reactive microbial metabolites following exposure to certain environmental stressors; 3) bi-directional communication within the gut-brain axis to alter the intestinal barrier integrity; and 4) regulation of mucosal immune function. Distinct microbial metabolites may enter systemic circulation and epigenetically reprogram the expression of host genes in the CNS, regulating neuroinflammation, cell survival, or cell death. We will also review the current tools for the study of the gut-brain axis and provide some suggestions to move this field forward in the future.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, United States.
| |
Collapse
|
116
|
Modeling gut-brain interactions in zebrafish. Brain Res Bull 2019; 148:55-62. [DOI: 10.1016/j.brainresbull.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
|
117
|
Tsiaoussis J, Antoniou MN, Koliarakis I, Mesnage R, Vardavas CI, Izotov BN, Psaroulaki A, Tsatsakis A. Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicol Lett 2019; 312:72-97. [PMID: 31034867 DOI: 10.1016/j.toxlet.2019.04.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Human populations are chronically exposed to mixtures of toxic chemicals. Predicting the health effects of these mixtures require a large amount of information on the mode of action of their components. Xenobiotic metabolism by bacteria inhabiting the gastrointestinal tract has a major influence on human health. Our review aims to explore the literature for studies looking to characterize the different modes of action and outcomes of major chemical pollutants, and some components of cosmetics and food additives, on gut microbial communities in order to facilitate an estimation of their potential mixture effects. We identified good evidence that exposure to heavy metals, pesticides, nanoparticles, polycyclic aromatic hydrocarbons, dioxins, furans, polychlorinated biphenyls, and non-caloric artificial sweeteners affect the gut microbiome and which is associated with the development of metabolic, malignant, inflammatory, or immune diseases. Answering the question 'Who is there?' is not sufficient to define the mode of action of a toxicant in predictive modeling of mixture effects. Therefore, we recommend that new studies focus to simulate real-life exposure to diverse chemicals (toxicants, cosmetic/food additives), including as mixtures, and which combine metagenomics, metatranscriptomics and metabolomic analytical methods achieving in that way a comprehensive evaluation of effects on human health.
Collapse
Affiliation(s)
- John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Constantine I Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Boris N Izotov
- Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia
| | - Anna Psaroulaki
- Department of Clinical Microbiology and Microbial Pathogenesis, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
118
|
Wu Y, Jansen EC, Peterson KE, Foxman B, Goodrich JM, Hu H, Solano-González M, Cantoral A, Téllez-Rojo MM, Martinez-Mier EA. The associations between lead exposure at multiple sensitive life periods and dental caries risks in permanent teeth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1048-1055. [PMID: 30841379 PMCID: PMC6407640 DOI: 10.1016/j.scitotenv.2018.11.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dental caries is an important public health problem in Mexico, a country also faced with high exposure to toxicants including lead (Pb). METHODS Participants were 386 children living in Mexico City. Prenatal (trimester 1-3), early-childhood (12, 24, 36, and 48 months of age) and peri-pubertal (10-18 years of age) blood Pb levels were quantified using graphite-furnace atomic-absorption spectroscopy. Maternal patella and tibia bone Pb at 1 month postpartum were quantified with K X-ray fluorescence instrument. Dental caries presence was evaluated using decayed, missing, and filled teeth (DMFT) scores. Peri-pubertal sugar sweetened beverage (SSB) intake was estimated using a 116-item, interview-administered semi-quantitative food frequency questionnaire (FFQ). Total energy adjusted daily SSB intake was generated using the residual approach. Zero inflated negative binomial (ZINB) Poisson regression models were used to examine the associations between Pb with D1MFT and D4MFT at adolescence. RESULTS Maternal second and third trimester and cumulative early childhood Pb exposure were positively associated with peri-pubertal D1MFT scores in unadjusted ZINB models (2nd trimester: RR = 1.17 (1.00, 1.37); 3rd trimester: RR = 1.20 (1.03, 1.40); early childhood: RR = 1.22 (1.02, 1.48)). These effect sizes were attenuated and no longer statistically significant after adjusting for covariates. When stratified by high/low SSB intake, a one unit increase of log-transformed 2nd trimester Pb exposure was associated with a 1.41 times (1.06, 1.86) higher D1MFT count, and 3rd trimester Pb exposure was associated with a 1.50 times (1.18, 1.90) higher D1MFT count among those with higher than median peri-pubertal SSB. Associations among those with lower SSB intake were roughly half those of the higher group and not statistically significant. CONCLUSIONS Pb exposure during sensitive developmental periods was not statistically significantly associated with caries risk after accounting for confounders among our cohort. However, evidence from stratified analysis suggested a Pb-caries association among children with high SSB intake.
Collapse
Affiliation(s)
- Yue Wu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Erica C Jansen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA.
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Howard Hu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada.
| | - Maritsa Solano-González
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico.
| | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico.
| | - Esperanza Angeles Martinez-Mier
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN, USA.
| |
Collapse
|
119
|
Abstract
PURPOSE OF REVIEW We review how an altered microbiome in early life impacts on immune, metabolic, and neurological development, focusing on some of the most widespread diseases related to each of these processes, namely atopic disease, obesity, and autism. RECENT FINDINGS The early development of the microbial communities that inhabit the human body is currently challenged by factors that range from reduced exposure to microbes, antibiotic use, and poor dietary choices to widespread environmental pollution. Recent work has highlighted some of the long-term consequences that early alterations in the establishment of these microbiotas can have for different aspects of human development and health. The long-term consequences of early microbiome alterations for human development and health are only beginning to be understood and will require in-depth investigation in the years to come. A solid understanding of how present day environmental conditions alter microbiome development, and of how an altered microbiome in early life impacts on life-long health, should inform both public health policies and the development of dietary and medical strategies to counteract early microbiota imbalances.
Collapse
Affiliation(s)
- Yvonne Vallès
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill campus, Cave Hill, Barbados
| | - M Pilar Francino
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes (Universitat de València), Avda. Catalunya 21, 46020, València, Spain.
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
120
|
Smith MR, Yevoo P, Sadahiro M, Austin C, Amarasiriwardena C, Awawda M, Arora M, Dudley JT, Morishita H. Integrative bioinformatics identifies postnatal lead (Pb) exposure disrupts developmental cortical plasticity. Sci Rep 2018; 8:16388. [PMID: 30401819 PMCID: PMC6219596 DOI: 10.1038/s41598-018-34592-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022] Open
Abstract
Given that thousands of chemicals released into the environment have the potential capacity to harm neurodevelopment, there is an urgent need to systematically evaluate their toxicity. Neurodevelopment is marked by critical periods of plasticity wherein neural circuits are refined by the environment to optimize behavior and function. If chemicals perturb these critical periods, neurodevelopment can be permanently altered. Focusing on 214 human neurotoxicants, we applied an integrative bioinformatics approach using publically available data to identify dozens of neurotoxicant signatures that disrupt a transcriptional signature of a critical period for brain plasticity. This identified lead (Pb) as a critical period neurotoxicant and we confirmed in vivo that Pb partially suppresses critical period plasticity at a time point analogous to exposure associated with autism. This work demonstrates the utility of a novel informatics approach to systematically identify neurotoxicants that disrupt childhood neurodevelopment and can be extended to assess other environmental chemicals.
Collapse
Affiliation(s)
- Milo R Smith
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Departmnt of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Priscilla Yevoo
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Departmnt of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Departmnt of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Christine Austin
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Mahmoud Awawda
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Manish Arora
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Dentistry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
| | - Hirofumi Morishita
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Departmnt of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
121
|
Aziz RK, Hegazy SM, Yasser R, Rizkallah MR, ElRakaiby MT. Drug pharmacomicrobiomics and toxicomicrobiomics: from scattered reports to systematic studies of drug-microbiome interactions. Expert Opin Drug Metab Toxicol 2018; 14:1043-1055. [PMID: 30269615 DOI: 10.1080/17425255.2018.1530216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Pharmacomicrobiomics and toxicomicrobiomics study how variations within the human microbiome (the combination of human-associated microbial communities and their genomes) affect drug disposition, action, and toxicity. These emerging fields, interconnecting microbiology, bioinformatics, systems pharmacology, and toxicology, complement pharmacogenomics and toxicogenomics, expanding the scope of precision medicine. Areas covered: This article reviews some of the most recently reported pharmacomicrobiomic and toxicomicrobiomic interactions. Examples include the impact of the human gut microbiota on cardiovascular drugs, natural products, and chemotherapeutic agents, including immune checkpoint inhibitors. Although the gut microbiota has been the most extensively studied, some key drug-microbiome interactions involve vaginal, intratumoral, and environmental bacteria, and are briefly discussed here. Additionally, computational resources, moving the field from cataloging to predicting interactions, are introduced. Expert opinion: The rapid pace of discovery triggered by the Human Microbiome Project is moving pharmacomicrobiomic research from scattered observations to systematic studies focusing on screening microbiome variants against different drug classes. Better representation of all human populations will improve such studies by avoiding sampling bias, and the integration of multiomic studies with designed experiments will allow establishing causation. In the near future, pharmacomicrobiomic testing is expected to be a key step in screening novel drugs and designing precision therapeutics.
Collapse
Affiliation(s)
- Ramy K Aziz
- a Department of Microbiology and Immunology, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Shaimaa M Hegazy
- b Undergraduate program, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Reem Yasser
- b Undergraduate program, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Mariam R Rizkallah
- c Department of Biometry and Data Management , Leibniz Institute for Prevention Research and Epidemiology - BIPS , Bremen , Germany
| | - Marwa T ElRakaiby
- a Department of Microbiology and Immunology, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| |
Collapse
|
122
|
Xia J, Jin C, Pan Z, Sun L, Fu Z, Jin Y. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018. [PMID: 29529432 DOI: 10.1016/j.scitotenv.2018.03.053] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
UNLABELLED Lead (Pb) is one of the most prevalent toxic, nonessential heavy metals that can contaminate food and water. In this study, effects of chronic exposure to low concentrations of Pb on metabolism and gut microbiota were evaluated in mice. It was observed that exposure of mice to 0.1mg/L Pb, supplied via drinking water, for 15weeks increased hepatic TG and TCH levels. The levels of some key genes related to lipid metabolism in the liver increased significantly in Pb-treated mice. For the gut microbiota, at the phylum level, the relative abundance of Firmicutes and Bacteroidetes changed obviously in the feces and the cecal contents of mice exposed to 0.1mg/L Pb for 15weeks. In addition, 16s rRNA gene sequencing further discovered that Pb exposure affected the structure and richness of the gut microbiota. Moreover, a 1H NMR metabolic analysis unambiguously identified 31 metabolites, and 15 metabolites were noticeably altered in 0.1mg/L Pb-treated mice. Taken together, the data indicate that chronic Pb exposure induces dysbiosis of the gut microbiota and metabolic disorder in mice. CAPSULE Chronic Pb exposure induces metabolic disorder, dysbiosis of the gut microbiota and hepatic lipid metabolism disorder in mice.
Collapse
Affiliation(s)
- Jizhou Xia
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwei Sun
- College of Environment science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
123
|
Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209:1-8. [PMID: 29574035 DOI: 10.1016/j.cbpc.2018.03.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/28/2023]
Abstract
Lead (Pb) is one of the most prevalent toxic, nonessential heavy metals that has been associated with a wide range of toxic effects in humans and environmental animals. Here, effects of short time exposure to 10 and 30 μg/L Pb on gut microbiota and hepatic metabolism were analyzed in adult male zebrafish. We observed that both 10 and 30 μg/L Pb increased the volume of mucus in the gut. At phylum level, the abundance of α-Proteobacteria decreased significantly and the abundance of Firmicutes increased significantly in the gut when treated with 30 μg/L Pb for 7 days. In addition, the 16S rRNA gene sequencing for V3-V4 region revealed a significant change in the richness and diversity of gut microbiota in 30 μg/L Pb exposed group. A more depth analysis, at the genus level, discovered that 52 gut microbes identified by operational taxonomic unit analysis were changed significantly in 30 μg/L Pb treated group. Based on GC/MS metabolomics analysis, a total of 41 metabolites were significantly altered in 30 μg/L Pb treatment group. These changed metabolites were mainly associated with the pathways of glucose and lipid metabolism, amino acid metabolism, nucleotide metabolism. In addition, we also confirmed that the transcription of some genes related to glycolysis and lipid metabolism, including Gk, Aco, Acc1, Fas, Apo and Dgat, decreased significantly in the liver of zebrafish when exposed to 30 μg/L Pb for 7 days. Our results observed that Pb could cause gut microbiota dysbiosis and hepatic metabolic disorder in zebrafish.
Collapse
Affiliation(s)
- Jizhou Xia
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liang Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jicong Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yingchun Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
124
|
Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit Rev Clin Lab Sci 2017; 54:506-528. [DOI: 10.1080/10408363.2017.1408562] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
125
|
Chi L, Mahbub R, Gao B, Bian X, Tu P, Ru H, Lu K. Nicotine Alters the Gut Microbiome and Metabolites of Gut-Brain Interactions in a Sex-Specific Manner. Chem Res Toxicol 2017; 30:2110-2119. [PMID: 29035044 DOI: 10.1021/acs.chemrestox.7b00162] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As the primary active substance in tobacco, nicotine affects the activity of the central nervous system, and its effects are sex-dependent. There are complex interactions between the gut and brain, and the gut microbiome can influence neuronal activity and host behavior, with diverse chemical signaling being involved. However, it is unclear whether nicotine can affect the normal gut microbiome and associated chemical signaling of the gut-brain axis. Sex is an important factor that shapes the gut microbiome, but the role of sex in the interaction among nicotine, gut bacteria, and related metabolites remains unknown. In this study, we applied high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS) to explore how nicotine exposure affects the gut microbiome and its metabolism in female and male C57BL/6J mice, with a focus on the chemical signaling involved in gut-brain interactions. 16S sequencing results indicated that the community composition of the gut microbiome was differentially perturbed by nicotine in females and males. Differential alterations of bacterial carbohydrate metabolic pathways are consistent with lower body weight gain in nicotine-treated males. Oxidative stress response and DNA repair genes were also specifically enriched in the nicotine-treated male gut microbiome. The fecal metabolome indicated that multiple neurotransmitters, such as glutamate, gamma-aminobutyric acid (GABA), and glycine, were differentially altered in female and male mice. Some neuroactive metabolites, including leucine and uric acid, were also changed. This study demonstrates a sex-dependent effect of nicotine on gut microbiome community composition, functional bacterial genes, and the fecal metabolome.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Ridwan Mahbub
- Department of Environmental Health Science, University of Georgia , Athens, Georgia 30602, United States
| | - Bei Gao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Xiaoming Bian
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University , Raleigh, North Carolina 27606, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
126
|
Di Ciaula A, Garruti G, Lunardi Baccetto R, Molina-Molina E, Bonfrate L, Wang DQH, Portincasa P. Bile Acid Physiology. Ann Hepatol 2017; 16:s4-s14. [PMID: 29080336 DOI: 10.5604/01.3001.0010.5493] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
The primary bile acids (BAs) are synthetized from colesterol in the liver, conjugated to glycine or taurine to increase their solubility, secreted into bile, concentrated in the gallbladder during fasting, and expelled in the intestine in response to dietary fat, as well as bio-transformed in the colon to the secondary BAs by the gut microbiota, reabsorbed in the ileum and colon back to the liver, and minimally lost in the feces. BAs in the intestine not only regulate the digestion and absorption of cholesterol, triglycerides, and fat-soluble vitamins, but also play a key role as signaling molecules in modulating epithelial cell proliferation, gene expression, and lipid and glucose metabolism by activating farnesoid X receptor (FXR) and G-protein-coupled bile acid receptor-1 (GPBAR-1, also known as TGR5) in the liver, intestine, muscle and brown adipose tissue. Recent studies have revealed the metabolic pathways of FXR and GPBAR-1 involved in the biosynthesis and enterohepatic circulation of BAs and their functions as signaling molecules on lipid and glucose metabolism.
Collapse
Affiliation(s)
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | - Raquel Lunardi Baccetto
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
127
|
Di Ciaula A, Wang DQH, Molina-Molina E, Lunardi Baccetto R, Calamita G, Palmieri VO, Portincasa P. Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Ann Hepatol 2017; 16:s87-s105. [PMID: 29080344 DOI: 10.5604/01.3001.0010.5501] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Bile acids (BAs) regulate the absorption of fat-soluble vitamins, cholesterol and lipids but have also a key role as singalling molecules and in the modulation of epithelial cell proliferation, gene expression and metabolism. These homeostatic pathways, when disrupted, are able to promote local inflammation, systemic metabolic disorders and, ultimately, cancer. The effect of hydrophobic BAs, in particular, can be linked with cancer in several digestive (mainly oesophagus, stomach, liver, pancreas, biliary tract, colon) and extra-digestive organs (i.e. prostate, breast) through a complex series of mechanisms including direct oxidative stress with DNA damage, apoptosis, epigenetic factors regulating gene expression, reduced/increased expression of nuclear receptors (mainly farnesoid X receptor, FXR) and altered composition of gut microbiota, also acting as a common interface between environmental factors (including diet, lifestyle, exposure to toxics) and the molecular events promoting cancerogenesis. Primary prevention strategies (i.e. changes in dietary habits and lifestyle, reduced exposure to environmental toxics) mainly able to modulate gut microbiota and the epigenome, and the therapeutic use of hydrophilic BAs to counterbalance the negative effects of the more hydrophobic BAs might be, in the near future, part of useful tools for cancer prevention and management.
Collapse
Affiliation(s)
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Raquel Lunardi Baccetto
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Vincenzo O Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
128
|
Rosenfeld CS. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front Cell Infect Microbiol 2017; 7:396. [PMID: 28936425 PMCID: PMC5596107 DOI: 10.3389/fcimb.2017.00396] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of MissouriColumbia, MO, United States.,Biomedical Sciences, University of MissouriColumbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of MissouriColumbia, MO, United States.,Genetics Area Program, University of MissouriColumbia, MO, United States
| |
Collapse
|