101
|
Liu X, Tang J, Song B, Zhen M, Wang L, Giesy JP. Exposure to Al2O3 nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces. Nanotoxicology 2019; 13:1422-1436. [DOI: 10.1080/17435390.2019.1669731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaomei Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin, China
- Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, China
| | - Benru Song
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Meinan Zhen
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lan Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - John P. Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
102
|
Yang F, Gu Y, Zhou J, Zhang K. Swine waste: A reservoir of high-risk bla NDM and mcr-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:308-316. [PMID: 31132710 DOI: 10.1016/j.scitotenv.2019.05.251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Multidrug resistance associated with pigs not only affects pig production but also threatens human health by influencing the farm surrounding and contaminating the food chain. This paper focused on the occurrence and prevalence of high-risk resistance genes (using blaNDM and mcr-1 as marker genes) in two Chinese swine farms, and investigated their fate and seasonal changes in piggery wastewater treatment systems (PWWTSs). Results revealed that blaNDM and mcr-1 were prevalent in both confined swine farms, and even prevailed through various processing stages of PWWTSs. Moreover, the abundance of blaNDM and mcr-1 in winter was higher than that in summer, with 0.01-1.01 logs variation in piggery wastewater. Of concern is that considerable amounts of blaNDM and mcr-1 were present in final effluent that is applied to farmland (up to 102-104copies/mL), raising the risk of propagation to indigenous bacteria. Worse still, those pig-derived isolates harboring the blaNDM/mcr-1 gene were confirmed to spread multidrug resistance to other bacteria, which further increased their dissemination potential in agricultural environment. This study highlights the prevalence of blaNDM and mcr-1 in swine farms, meanwhile, also emphasizes the necessary to mitigate the release and propagation of these high-risk genes from swine farms following land fertilization and wastewater usage.
Collapse
Affiliation(s)
- Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Yanru Gu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Jing Zhou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| |
Collapse
|
103
|
Xie S, Gu AZ, Cen T, Li D, Chen J. The effect and mechanism of urban fine particulate matter (PM 2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:116-123. [PMID: 31129322 DOI: 10.1016/j.scitotenv.2019.05.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 05/18/2023]
Abstract
Fine particulate matter (PM2.5) and antimicrobial resistance are two major threats to public health worldwide. Current air pollution studies rely heavily on the assessment of PM2.5 chemistry and toxicity. However, whether and how PM2.5 affects the proliferation and transfer of antimicrobial resistance genes (ARGs) in various environments has remained unanswered. This study investigated the effects and potential mechanisms of urban PM2.5 on the horizontal transfer of ARGs between opportunistic Escherichia coli (E. coli) strains. The results showed that urban PM2.5 samples collected from Xi'an (XA), Shanghai (SH), and Shijiazhuang (SJZ) in China induced location- and concentration-dependent promotion of conjugative transfer frequencies compared to the control group. The relevant mechanisms were also explored, including the formation of intracellular reactive oxygen species (ROS) and the subsequent induction of oxidative stress, SOS response, changes in membrane permeability, and alternations in mRNA expression of genes involved in horizontal transfer. This study highlights the effect of PM2.5 on promoting the horizontal transfer of ARGs and elucidates the mechanism of the antimicrobial-resistance risks posed by urban PM2.5. These findings are of great value in understanding the transmission of antimicrobial resistance in various environments and provide valuable information for re-evaluating air quality assessment practices.
Collapse
Affiliation(s)
- Shanshan Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Tianyu Cen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
104
|
Liao J, Huang H, Chen Y. CO 2 promotes the conjugative transfer of multiresistance genes by facilitating cellular contact and plasmid transfer. ENVIRONMENT INTERNATIONAL 2019; 129:333-342. [PMID: 31150975 DOI: 10.1016/j.envint.2019.05.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The dissemination of antibiotic resistance genes (ARGs), especially via the plasmid-mediated conjugation, is becoming a pervasive global health threat. This study reported that this issue can be worse by CO2, as increased CO2 was found to facilitate the conjugative transfer of ARGs carried on plasmid RP4 by 2.4-9.0 and 1.3-3.8 fold within and across genera, respectively. Mechanistic studies revealed that CO2 benefitted the cell-to-cell contact by increasing cell surface hydrophobicity and decreasing cell surface charge, both of which resulted in the reduced intercellular repulsion. Besides, the transcriptional expression of genes responsible for global regulator (korA, korB and trbA), plasmid transfer and replication system (trfAp), and mating pair formation system (traF and traG) were all influenced by CO2, facilitating the mobilization and channel transfer of plasmid. Furthermore, the presence of CO2 induced the release of intracellular Ca2+ and increased the transmembrane potential of recipients, which contributed to the increased proton motive force (PMF), providing more power for DNA uptake. This is the first study addressing the potential risks of increased CO2 on the propagation of ARGs, which provides a new insight into the concerns of anthropogenic CO2 emissions and CO2 storage.
Collapse
Affiliation(s)
- Junqi Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
105
|
Zhang S, Wang Y, Song H, Lu J, Yuan Z, Guo J. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. ENVIRONMENT INTERNATIONAL 2019; 129:478-487. [PMID: 31158594 DOI: 10.1016/j.envint.2019.05.054] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 05/21/2023]
Abstract
The spread of antibiotic resistance has become a major concern for public health. As emerging contaminants, various metallic nanoparticles (NPs) and ionic heavy metals have been ubiquitously detected in various environments. Although previous studies have indicated NPs and ionic heavy metals could exhibit co-selection effects for antibiotic resistance, little is known about whether and how they could promote antibiotic resistance spread via horizontal gene transfer across bacterial genera. This study, we report both CuO NPs and copper ions (Cu2+) could stimulate the conjugative transfer of multiple-drug resistance genes. When exposing bacteria to CuO NPs or Cu2+ at environmental-relevant and sub-inhibitory concentrations (e.g., 1-100 μmol/L), conjugation frequencies of plasmid-encoded antibiotic resistance genes across genera (i.e., from Escherichia coli to Pseudomonas putida) were significantly enhanced (p < 0.05). The over-production of reactive oxygen species played a crucial role in promoting conjugative transfer. Genome-wide RNA and protein sequencing suggested expressional levels of genes and proteins related to oxidative stress, cell membrane permeability, and pilus generation were significantly up-regulated under CuO NPs and Cu2+ exposure (p < 0.05). This study provides insights in the contributions of NPs and heavy metals on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Shuai Zhang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, No.219, Ningliu Road, Nanjing 210044, China
| | - Yue Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Hailiang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
106
|
Li ZH, Yuan L, Gao SX, Wang L, Sheng GP. Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. WATER RESEARCH 2019; 159:145-152. [PMID: 31085389 DOI: 10.1016/j.watres.2019.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) have been regarded as an emerging pollutant in municipal wastewater treatment plant (WWTP) effluents due to their potential risk to human health and ecological safety when reused for landscape and irrigation. Conventional wastewater treatment processes generally fail to effectively reduce ARGs, especially extracellular ARGs (eARGs), which are persistent in the environment and play an important role in horizontal gene transfer via transformation. Herein, an integrated process of pre-coagulation and microfiltration was developed for removal of ARGs, especially eARGs, from wastewater effluent. Results show that the integrated process could effectively reduce the absolute abundances of total ARGs (tARGs) (>2.9 logs) and eARGs (>5.2 logs) from the effluent. The excellent performance could be mainly attributed to the capture of antibiotic resistant bacteria (ARB) and eARGs by pre-coagulation and co-rejection during subsequent microfiltration. Moreover, the integrated process exhibited a good performance on removing common pollutants (e.g., dissolved organic carbon and phosphate) from the effluent to improve water quality. Besides, the integrated process also greatly reduced membrane fouling compared with microfiltration. These findings suggest that the integrated process of pre-coagulation and microfiltration is a promising advanced wastewater treatment technology for ARGs (especially eARGs) removal from WWTP effluents to ensure water reuse security.
Collapse
Affiliation(s)
- Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Shu-Xian Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
107
|
Huang H, Liao J, Zheng X, Chen Y, Ren H. Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus. WATER RESEARCH 2019; 158:383-391. [PMID: 31059932 DOI: 10.1016/j.watres.2019.04.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Recently, the dissemination of antibiotic resistance genes (ARGs) via plasmid-mediated conjugation has been reported to be facilitated by a series of contaminants. This has highlighted potential challenges to the effective control of this principal mode of horizontal transfer. In the present study, we found that low levels (<0.02 mgN/L) of free nitrous acid (FNA) remarkably inhibited (over 90%) the conjugative transfer of plasmid RP4, a model broad-host-range plasmid, between Escherichia coli. The antimicrobial role of FNA at the applied dosages was firstly ruled out, since no dramatic reductions in viabilities of donor or recipient were observed. Instead, FNA appeared to reduce the available intracellular free Mg2+, which was confirmed to be triggered by the liberation of intracellular Fe2+. These alterations in intracellular Mg2+ and Fe2+ concentrations were found to significantly limit the available energy for conjugative transfer through suppression of glycolysis by decreasing the activities of glycogen phosphorylase and glyceraldehyde-3-phosphate dehydrogenase and also by diverting the glycolytic flux into the pentose phosphate pathway via activation of glucose-6-phosphate dehydrogenase towards the generation of NADPH rather than ATP. Moreover, RP4-encoding genes responsible for DNA transfer and replication (traI, traJ and trfAp), coupling (traG) and mating pair formation (traF and trbBp) were all significantly down-regulated after FNA treatment, indicating that the transfer apparatus required for plasmid processing and delivery was deactivated. By validating the inhibitory effects of FNA on conjugation in real wastewater, this study highlights a promising method for controlling the dissemination of ARGs in systems such as wastewater treatment plants.
Collapse
Affiliation(s)
- Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Junqi Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, Jiangsu, PR China
| |
Collapse
|
108
|
Fan XT, Li H, Chen QL, Zhang YS, Ye J, Zhu YG, Su JQ. Fate of Antibiotic Resistant Pseudomonas putida and Broad Host Range Plasmid in Natural Soil Microcosms. Front Microbiol 2019; 10:194. [PMID: 30881351 PMCID: PMC6407330 DOI: 10.3389/fmicb.2019.00194] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/23/2019] [Indexed: 12/03/2022] Open
Abstract
Plasmid conjugation is one of the dominant mechanisms of horizontal gene transfer, playing a noticeable role in the rapid spread of antibiotic resistance genes (ARGs). Broad host range plasmids are known to transfer to diverse bacteria in extracted soil bacterial communities when evaluated by filter mating incubation. However, the persistence and dissemination of broad range plasmid in natural soil has not been well studied. In this study, Pseudomonas putida with a conjugative antibiotic resistance plasmid RP4 was inoculated into a soil microcosm, the fate and persistence of P. putida and RP4 were monitored by quantitative PCR. The concentrations of P. putida and RP4 both rapidly decreased within 15-day incubation. P. putida then decayed at a significantly lower rate during subsequent incubation, however, no further decay of RP4 was observed, resulting in an elevated RP4/P. putida ratio (up to 10) after 75-day incubation, which implied potential transfer of RP4 to soil microbiota. We further sorted RP4 recipient bacteria from the soil microcosms by fluorescence-activated cell sorting. Spread of RP4 increased during 75-day microcosm operation and was estimated at around 10-4 transconjugants per recipient at the end of incubation. Analysis of 16S rRNA gene sequences of transconjugants showed that host bacteria of RP4 were affiliated to more than 15 phyla, with increased diversity and shift in the composition of host bacteria. Proteobacteria was the most dominant phylum in the transconjugant pools. Transient transfer of RP4 to some host bacteria was observed. These results emphasize the prolonged persistence of P. putida and RP4 in natural soil microcosms, and highlight the potential risks of increased spread potential of plasmid and broader range of host bacteria in disseminating ARGs in soil.
Collapse
Affiliation(s)
- Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yu-Sen Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
109
|
Guo XP, Liu X, Niu ZS, Lu DP, Zhao S, Sun XL, Wu JY, Chen YR, Tou FY, Hou L, Liu M, Yang Y. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:576-584. [PMID: 30014935 DOI: 10.1016/j.envpol.2018.06.099] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 05/26/2023]
Abstract
Antibiotics resistance genes (ARGs) are considered as an emerging pollutant among various environments. As a sink of ARGs, a comprehensive study on the spatial and temporal distribution of ARGs in the estuarine sediments is needed. In the present study, six ARGs were determined in sediments taken along the Yangtze Estuary temporally and spatially. The sulfonamides, tetracyclines and fluoroquinolones resistance genes including sul1, sul2, tetA, tetW, aac(6')-Ib, and qnrS, were ubiquitous, and the average abundances of most ARGs showed significant seasonal differences, with relative low abundances in winter and high abundances in summer. Moreover, the relative high abundances of ARGs were found at Shidongkou (SDK) and Wusongkou (WSK), which indicated that the effluents from the wastewater treatment plant upstream and inland river discharge could influence the abundance of ARGs in sediments. The positive correlation between intI1 and sul1 implied intI1 may be related to the occurrence and propagation of sulfonamides resistance genes. Correlation analysis and redundancy discriminant analysis showed that antibiotic concentrations had no significant correlation to their corresponding ARGs, while the total extractable metal, especially the bioavailable metals, as well as other environmental factors including temperature, clay, total organic carbon and total nitrogen, could regulate the occurrence and distribution of ARGs temporally and spatially. Our findings suggested the comprehensive effects of multiple pressures on the distribution of ARGs in the sediments, providing new insight into the distribution and dissemination of ARGs in estuarine sediments, spatially and temporally.
Collapse
Affiliation(s)
- Xing-Pan Guo
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinran Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Da-Pei Lu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Sai Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao-Li Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia-Yuan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yu-Ru Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
110
|
Jin M, Lu J, Chen Z, Nguyen SH, Mao L, Li J, Yuan Z, Guo J. Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. ENVIRONMENT INTERNATIONAL 2018; 120:421-430. [PMID: 30125859 DOI: 10.1016/j.envint.2018.07.046] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/28/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Antibiotic resistance poses a great threat to global public health. Overuse of antibiotics is generally considered as the major factor contributing to it. However, little is known about whether non-antibiotic drugs could play potential roles in the emergence of antibiotic resistance. OBJECTIVE We aimed to investigate whether antidepressant fluoxetine induces multiple antibiotic resistances and reveal underlying mechanisms. METHODOLOGY Escherichia coli K12 was exposed to different concentrations of fluoxetine (0, 0.5, 5, 50 and 100 mg/L) and the resistant strains were isolated by plating on antibiotic containing plates. Resistant strains were randomly selected to determine the increase of minimum inhibition concentration (MIC) of multiple antibiotics. Genome-wide DNA sequencing was performed on cells cultured in lysogeny broth (LB) without any fluoxetine or antibiotics exposure. RNA sequencing and proteomic profiling of isolated mutants grown in LB with 100 mg/L fluoxetine were analyzed to reveal the underlying mechanisms. RESULTS Exposure of Escherichia coli to fluoxetine at 5-100 mg/L after repeated subculture in LB for 30 days promoted its mutation frequency resulting in increased resistance against the antibiotics chloramphenicol, amoxicillin and tetracycline. This increase was up to 5.0 × 107 fold in a dose-time pattern. Isolated mutants with resistance to one of these antibiotics also exhibited multiple resistances against fluoroquinolone, aminoglycoside, β-lactams, tetracycline and chloramphenicol. According to global transcriptional and proteomic analyses, the AcrAB-TolC pump together with the YadG/YadH transporter, a Tsx channel and the MdtEF-TolC pump have been triggered to export the antibiotics to the exterior of the cell. Whole-genome DNA analysis of the mutants further revealed that ROS-mediated mutagenesis (e.g., deletion, insertion, and substitution) of DNA-binding transcriptional regulators (e.g., marR, rob, sdiA, cytR and crp) to up-regulate the expression of efflux pumps, may further enhance the antibiotic efflux. CONCLUSIONS Our findings for the first time demonstrated that the exposure to antidepressant fluoxetine induces multiple antibiotic resistance in E. coli via the ROS-mediated mutagenesis.
Collapse
Affiliation(s)
- Min Jin
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Ji Lu
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhaoyu Chen
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Son Hoang Nguyen
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Likai Mao
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
111
|
Neidhardt MM, Schmitt K, Baro A, Schneider C, Bilitewski U, Laschat S. Self-assembly and biological activities of ionic liquid crystals derived from aromatic amino acids. Phys Chem Chem Phys 2018; 20:20371-20381. [PMID: 30043016 DOI: 10.1039/c8cp03404d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The self-assembly of amino acid-derived ionic liquid crystals (ILCs) into lamellar or micellar-like aggregates suggests that they might interact with biological membranes. To get some insight, guanidinium chlorides derived from the natural l-amino acids phenylalanine (Phe), tyrosine (Tyr) and 3,4-dihydroxyphenylalanine (DOPA) were synthesized and their mesomorphic properties were investigated via polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (SAXS, WAXS). Mesophase types depended on the number of alkoxy side chains. Phe- and Tyr-based ILCs with one and two side chains, respectively, self-assembled into smectic A bilayers (SmA2), while Dopa-derived ILCs with three side chains formed columnar (Colh) mesophases. The mesophase ranges for Phe ILCs increased steadily with side chain length, for Tyr- and Dopa-based ILCs, however, size matching effects were observed. To clarify whether the mesomorphic behaviour has an impact on biological properties, cytotoxic and antibacterial activities of the ILCs were studied. Phe and Tyr ILCs exhibited much higher cytotoxicities (against the L-929 mouse fibroblast cell line) and/or antibacterial activities (against Staphylococcus aureus) than Dopa ILCs, which were mostly inactive. Furthermore, within each series, the side chain length largely influenced the biological activity. Thus, the bulk mesophase behaviour appeared to correlate with the biological properties, in particular, the interactions with membranes, as shown by measuring the intracellular Ca2+ concentration in human monocytic U937 cells after treatment with the amino acid-based ILCs.
Collapse
Affiliation(s)
- Manuel M Neidhardt
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany.
| | | | | | | | | | | |
Collapse
|
112
|
Zhang Y, Gu AZ, Cen T, Li X, He M, Li D, Chen J. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:74-82. [PMID: 29477117 DOI: 10.1016/j.envpol.2018.01.032] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 05/19/2023]
Abstract
Although widespread antibiotic resistance has been mostly attributed to the selective pressure generated by overuse and misuse of antibiotics, recent growing evidence suggests that chemicals other than antibiotics, such as certain metals, can also select and stimulate antibiotic resistance via both co-resistance and cross-resistance mechanisms. For instance, tetL, merE, and oprD genes are resistant to both antibiotics and metals. However, the potential de novo resistance induced by heavy metals at environmentally-relevant low concentrations (much below theminimum inhibitory concentrations [MICs], also referred as sub-inhibitory) has hardly been explored. This study investigated and revealed that heavy metals, namely Cu(II), Ag(I), Cr(VI), and Zn(II), at environmentally-relevant and sub-inhibitory concentrations, promoted conjugative transfer of antibiotic resistance genes (ARGs) between E. coli strains. The mechanisms of this phenomenon were further explored, which involved intracellular reactive oxygen species (ROS) formation, SOS response, increased cell membrane permeability, and altered expression of conjugation-relevant genes. These findings suggest that sub-inhibitory levels of heavy metals that widely present in various environments contribute to the resistance phenomena via facilitating horizontal transfer of ARGs. This study provides evidence from multiple aspects implicating the ecological effect of low levels of heavy metals on antibiotic resistance dissemination and highlights the urgency of strengthening efficacious policy and technology to control metal pollutants in the environments.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Tianyu Cen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiangyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Miao He
- Environmental Simulation and Pollution Control (ESPC) State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
113
|
Liu SS, Qu HM, Yang D, Hu H, Liu WL, Qiu ZG, Hou AM, Guo J, Li JW, Shen ZQ, Jin M. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. WATER RESEARCH 2018; 136:131-136. [PMID: 29501757 DOI: 10.1016/j.watres.2018.02.036] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/25/2018] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
The emergence and spread of antibiotic resistance has posed a major threat to both human health and environmental ecosystem. Although the disinfection has been proved to be efficient to control the occurrence of pathogens, little effort is dedicated to revealing potential impacts of disinfection on transmission of antibiotic resistance genes (ARGs), particularly for free-living ARGs in final disinfected effluent of urban wastewater treatment plants (UWWTP). Here, we investigated the effects of chlorine disinfection on the occurrence and concentration of both extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in a full-scale UWWTP over a year. We reported that the concentrations of both eARGs and iARGs would be increased by the disinfection with chlorine dioxide (ClO2). Specifically, chlorination preferentially increased the abundances of eARGs against macrolide (ermB), tetracycline (tetA, tetB and tetC), sulfonamide (sul1, sul2 and sul3), β-lactam (ampC), aminoglycosides (aph(2')-Id), rifampicin (katG) and vancomycin (vanA) up to 3.8 folds. Similarly, the abundances of iARGs were also increased up to 7.8 folds after chlorination. In terms of correlation analyses, the abundance of Escherichia coli before chlorination showed a strong positive correlation with the total eARG concentration, while lower temperature and higher ammonium concentration were assumed to be associated with the concentration of iARGs. This study suggests the chlorine disinfection could increase the abundances of both iARGs and eARGs, thereby posing risk of the dissemination of antibiotic resistance in environments.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Hong-Mei Qu
- College of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Hui Hu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Wei-Li Liu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhi-Gang Qiu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Ai-Ming Hou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhi-Qiang Shen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
114
|
Zhang Y, Gu AZ, Cen T, Li X, Li D, Chen J. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes. ENVIRONMENT INTERNATIONAL 2018; 114:280-287. [PMID: 29524923 DOI: 10.1016/j.envint.2018.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 05/25/2023]
Abstract
Particles exhausted from petrol and diesel consumptions are major components of urban air pollution that can be exposed to human via direct inhalation or other routes due to atmospheric deposition into water and soil. Antimicrobial resistance is one of the most serious threats to modern health care. However, how the petrol and diesel exhaust particles affect the development and spread of antimicrobial resistance genes (ARGs) in various environments remain largely unknown. This study investigated the effects and potential mechanisms of four representative petrol and diesel exhaust particles, namely 97 octane petrol, 93 octane petrol, light diesel oil, and marine heavy diesel oil, on the horizontal transfer of ARGs between two opportunistic Escherichia coli (E. coli) strains, E. coli S17-1 (donor) and E. coli K12 (recipient). The results demonstrated that these four representative types of nano-scale particles induced concentration-dependent increases in conjugative transfer rates compared with the controls. The underlying mechanisms involved in the accelerated transfer of ARGs were also identified, including the generation of intracellular reactive oxygen species (ROS) and the consequent induction of oxidative stress, SOS response, changes in cell morphology, and the altered mRNA expression of membrane protein genes and those involved in the promotion of conjugative transfer. The findings provide new evidences and mechanistic insights into the antimicrobial resistance risks posed by petrol and diesel exhaust particles, and highlight the implications and need for stringent strategies on alternative fuels to mitigate air pollution and health risks.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Tianyu Cen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiangyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
115
|
Chen B, Lin L, Fang L, Yang Y, Chen E, Yuan K, Zou S, Wang X, Luan T. Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. WATER RESEARCH 2018; 134:200-208. [PMID: 29427962 DOI: 10.1016/j.watres.2018.02.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/14/2018] [Accepted: 02/01/2018] [Indexed: 05/26/2023]
Abstract
The prevalence of antibiotic resistance in the modern world has raised global concerns for public health. Establishing relationships between antibiotic use and antibiotic resistance genes (ARGs) is essential to understanding the dissemination and accumulation of ARGs in a human-impacted environment. In this study, ARG profiles in the sediments from a bullfrog farm, where penicillin and amoxicillin (beta-lactams) and gentamicin (aminoglycoside) were used for prophylactic purposes, were analyzed using metagenomic approaches. Analysis of both extracellular and intracellular DNA (eDNA and iDNA) demonstrated that use of the above-mentioned antibiotics led to complex pollution of ARGs not only related to beta-lactams and aminoglycoside but also to sulfonamides, tetracyclines, and macrolides. Most of the ARGs in the sediments from the bullfrog farm were likely carried by plasmids. A significant correlation was observed between the total abundance of ARG-related plasmids and that of plasmid-carrying ARGs. Approximately 85% of the plasmids likely present in the sediment from the bullfrog farm possessed at least 3 ARG subtypes, which conferred the resistance of bacterial hosts to different antibiotic categories. Our results suggest that antibiotics could lead to complex pollution of ARGs unrelated to those administered due to the concurrence of ARGs in the plasmids.
Collapse
Affiliation(s)
- Baowei Chen
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lan Lin
- Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Ling Fang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ying Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Enzhong Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Ke Yuan
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shichun Zou
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaowei Wang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Tiangang Luan
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
116
|
Wu Z, Xie M, Li Y, Gao G, Bartlam M, Wang Y. Biodegradation of decabromodiphenyl ether (BDE 209) by a newly isolated bacterium from an e-waste recycling area. AMB Express 2018; 8:27. [PMID: 29478232 PMCID: PMC6890894 DOI: 10.1186/s13568-018-0560-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) have become widespread environmental pollutants all over the world. A newly isolated bacterium from an e-waste recycling area, Stenotrophomonas sp. strain WZN-1, can degrade decabromodiphenyl ether (BDE 209) effectively under aerobic conditions. Orthogonal test results showed that the optimum conditions for BDE 209 biodegradation were pH 5, 25 °C, 0.5% salinity, 150 mL minimal salt medium volume. Under the optimized condition, strain WZN-1 could degrade 55.15% of 65 μg/L BDE 209 under aerobic condition within 30 day incubation. Moreover, BDE 209 degradation kinetics was fitted to a first-order kinetics model. The biodegradation mechanism of BDE 209 by strain WZN-1 were supposed to be three possible metabolic pathways: debromination, hydroxylation, and ring opening processes. Four BDE 209 degradation genes, including one hydrolase, one dioxygenase and two dehalogenases, were identified based on the complete genome sequencing of strain WZN-1. The real-time qPCR demonstrated that the expression level of four identified genes were significantly induced by BDE 209, and they played an important role in the degradation process. This study is the first to demonstrate that the newly isolated Stenotrophomonas strain has an efficient BDE 209 degradation ability and would provide new insights for the microbial degradation of PBDEs.
Collapse
|
117
|
Wang J, Wang J, Zhao Z, Chen J, Lu H, Liu G, Zhou J, Guan X. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1145-1152. [PMID: 28886881 DOI: 10.1016/j.envpol.2017.07.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 05/11/2023]
Abstract
Antibiotic resistance genes (ARGs) have been regarded as emerging contaminants and have attracted growing attention owing to their widespread presence in the environment. In addition to the well-documented selective pressure of antibiotics, ARGs have also become prevalent because of anthropogenic impacts. Coastal habitats are located between terrestrial and marine ecosystems, which are a hotspot for anthropogenic impacts. Excessive accumulation of polycyclic aromatic hydrocarbons (PAHs) has posed a serious threat to coastal habitats, but no information is available on the effect of PAHs on antibiotic resistance in the microbial community of coastal environments. In this study, the effect of two typical PAHs, naphthalene and phenanthrene, on antibiotic resistance propagation was investigated in a coastal microbial community. The results indicated that the presence of 100 mg/L of naphthalene or 10 mg/L of phenanthrene significantly enhanced the abundance of class I integrase gene (intI1), sulfanilamide resistance gene (sulI), and aminoglycosides resistance gene (aadA2) in the microbial community. Horizontal gene transfer experiment demonstrated that increased abundance of ARGs was primarily a result of conjugative transfer mediated by class I integrons. These findings provided direct evidence that coastal microbial community exposed to PAHs might have resulted in the dissemination of ARGs and implied that a more comprehensive risk assessment of PAHs to natural ecosystems and public health is necessary.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zelong Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyan Guan
- Key Lab of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| |
Collapse
|
118
|
Jiao YN, Chen H, Gao RX, Zhu YG, Rensing C. Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. CHEMOSPHERE 2017; 184:53-61. [PMID: 28578196 DOI: 10.1016/j.chemosphere.2017.05.149] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 05/26/2023]
Abstract
Domestic wastewater treatment plants as a reservoir of antibiotic resistance genes (ARGs) have received much attention, but the effect of dyes on the propagation of ARGs has rarely been investigated. In this study, we investigated the differences in distributions of ARGs and microbial communities using high-throughput qPCR and 16S rRNA gene sequencing, respectively, between mixed (dyeing and domestic) wastewater and domestic sewage. The relative abundance of ARGs in inflows of mixed wastewater (IW2 and IW3) was higher than that of domestic wastewater (IW1). The relative abundance of mobile genetic elements in the inflow of textile dyeing wastewater (IDW3) was 3- to 13-fold higher than that in other samples. Moreover, in IDW3, some distinct high abundance ARGs, particularly operons encoding efflux pumps (such as acrR-01, acrB-01 and acrF), were significantly correlated with Streptococcus of the Firmicutes. To explore why the abundance of ARGs was relatively high in mixed wastewater, six representative types of organic compounds in textile dyeing wastewater were used to test the effect on plasmid-based conjugative transfer from E. coli HB101 to E. coli NK5449. These six compounds all facilitated the transfer of resistance-carrying RP4 plasmid, and the highest transfer frequency (approximately 10-5-10-3) was over 4- to 200-fold higher than that in the control group (approximately 10-6-10-5). These results illustrated that the six common residual compounds, particularly low-dose substances in IDW3, could facilitate the dissemination of ARGs in aquatic environments. More importantly, this study revealed for the first time that dyeing contaminants influenced horizontal gene transfer (HGT) of ARGs.
Collapse
Affiliation(s)
- Ya-Nan Jiao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Rui-Xia Gao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Christopher Rensing
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
119
|
Guo MT, Zhang GS. Graphene oxide in the water environment could affect tetracycline-antibiotic resistance. CHEMOSPHERE 2017; 183:197-203. [PMID: 28549325 DOI: 10.1016/j.chemosphere.2017.04.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (<1 mg/L) led to almost no damage to the plasmid. However, all tested concentrations of GO promoted the conjugative transfer from 1to over 3 folds, with low concentrations and high concentration (1-10 and 100 mg/L) of GO samples the least promoted. The overall effect of GO on antibiotic resistance needs further investigation.
Collapse
Affiliation(s)
- Mei-Ting Guo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Guo-Sheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
120
|
Zhang Y, Gu AZ, He M, Li D, Chen J. Subinhibitory Concentrations of Disinfectants Promote the Horizontal Transfer of Multidrug Resistance Genes within and across Genera. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:570-580. [PMID: 27997135 DOI: 10.1021/acs.est.6b03132] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The greater abundances of antibiotic resistance genes (ARGs) in point-of-use tap and reclaimed water than that in freshly treated water raise the question whether residual disinfectants in distribution systems facilitate the spread of ARGs. This study investigated three widely used disinfectants (free chlorine, chloramine, and hydrogen peroxide) on promoting ARGs transfer within Escherichia coli strains and across genera from Escherichia coli to Salmonella typhimurium. The results demonstrated that subinhibitory concentrations (lower than minimum inhibitory concentrations [MICs]) of these disinfectants, namely 0.1-1 mg/L Cl2 for free chlorine, 0.1-1 mg/L Cl2 for chloramine, and 0.24-3 mg/L H2O2, led to concentration-dependent increases in intragenera conjugative transfer by 3.4-6.4, 1.9-7.5, and 1.4-5.4 folds compared with controls, respectively. By comparison, the intergenera conjugative frequencies were slightly increased by approximately 1.4-2.3 folds compared with controls. However, exposure to disinfectants concentrations higher than MICs significantly suppressed conjugative transfer. This study provided evidence and insights into possible underlying mechanisms for enhanced conjugative transfer, which involved intracellular reactive oxygen species formation, SOS response, increased cell membrane permeability, and altered expressions of conjugation-relevant genes. The results suggest that certain oxidative chemicals, such as disinfectants, accelerate ARGs transfer and therefore justify motivations in evaluating disinfection alternatives for controlling antibiotic resistance. This study also triggers questions regarding the potential role of environmental chemicals in the global spread of antibiotic resistance.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University , Boston, Massachusetts 02115, United States
| | - Miao He
- Environmental Simulation and Pollution Control (ESPC) State Key Joint Laboratory, School of Environment, Tsinghua University , Beijing 100084, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| |
Collapse
|
121
|
Chen B, He R, Yuan K, Chen E, Lin L, Chen X, Sha S, Zhong J, Lin L, Yang L, Yang Y, Wang X, Zou S, Luan T. Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1005-1013. [PMID: 27876418 DOI: 10.1016/j.envpol.2016.11.047] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in modern environment raises an emerging global health concern. In this study, soil samples were collected from three sites in petrochemical plant that represented different pollution levels of polycyclic aromatic hydrocarbons (PAHs). Metagenomic profiling of these soils demonstrated that ARGs in the PAHs-contaminated soils were approximately 15 times more abundant than those in the less-contaminated ones, with Proteobacterial being the preponderant phylum. Resistance profile of ARGs in the PAHs-polluted soils was characterized by the dominance of efflux pump-encoding ARGs associated with aromatic antibiotics (e.g., fluoroquinolones and acriflavine) that accounted for more than 70% of the total ARGs, which was significantly different from representative sources of ARG pollution due to wide use of antibiotics. Most of ARGs enriched in the PAHs-contaminated soils were not carried by plasmids, indicating the low possibilities of them being transferred between bacteria. Significant correlation was observed between the total abundance of ARGs and that of Proteobacteria in the soils. Proteobacteria selected by PAHs led to simultaneously enriching of ARGs carried by them in the soils. Our results suggested that PAHs could serve as one of selective stresses for greatly enriching of ARGs in the human-impacted environment.
Collapse
Affiliation(s)
- Baowei Chen
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rong He
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ke Yuan
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Enzhong Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Lan Lin
- Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Xin Chen
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sha Sha
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianan Zhong
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li Lin
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lihua Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ying Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaowei Wang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shichun Zou
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|