• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4681874)   Today's Articles (0)
For: Cheng T, Xiao H, Goddard WA. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0. J Phys Chem Lett 2015;6:4767-4773. [PMID: 26562750 DOI: 10.1021/acs.jpclett.5b02247] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Number Cited by Other Article(s)
101
Deng W, Zhang L, Li L, Chen S, Hu C, Zhao ZJ, Wang T, Gong J. Crucial Role of Surface Hydroxyls on the Activity and Stability in Electrochemical CO2 Reduction. J Am Chem Soc 2019;141:2911-2915. [DOI: 10.1021/jacs.8b13786] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
102
Liquid water is a dynamic polydisperse branched polymer. Proc Natl Acad Sci U S A 2019;116:1998-2003. [PMID: 30679278 DOI: 10.1073/pnas.1817383116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
103
Liu X, Schlexer P, Xiao J, Ji Y, Wang L, Sandberg RB, Tang M, Brown KS, Peng H, Ringe S, Hahn C, Jaramillo TF, Nørskov JK, Chan K. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat Commun 2019;10:32. [PMID: 30604776 PMCID: PMC6318338 DOI: 10.1038/s41467-018-07970-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022]  Open
104
Sugiyama K, Sumiya Y, Takagi M, Saita K, Maeda S. Understanding CO oxidation on the Pt(111) surface based on a reaction route network. Phys Chem Chem Phys 2019;21:14366-14375. [DOI: 10.1039/c8cp06856a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
105
Ou L, Chen J, Chen Y, Jin J. Mechanistic study on Cu-catalyzed CO2 electroreduction into CH4 at simulated low overpotentials based on an improved electrochemical model. Phys Chem Chem Phys 2019;21:15531-15540. [PMID: 31264673 DOI: 10.1039/c9cp02394a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
106
Xu S, Carter EA. Theoretical Insights into Heterogeneous (Photo)electrochemical CO2 Reduction. Chem Rev 2018;119:6631-6669. [DOI: 10.1021/acs.chemrev.8b00481] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
107
Gauthier JA, Ringe S, Dickens CF, Garza AJ, Bell AT, Head-Gordon M, Nørskov JK, Chan K. Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02793] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
108
Zhang H, Li J, Cheng MJ, Lu Q. CO Electroreduction: Current Development and Understanding of Cu-Based Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03780] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
109
Chang X, Wang T, Zhao Z, Yang P, Greeley J, Mu R, Zhang G, Gong Z, Luo Z, Chen J, Cui Y, Ozin GA, Gong J. Tuning Cu/Cu 2 O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805256] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
110
Tuning Cu/Cu 2 O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions. Angew Chem Int Ed Engl 2018;57:15415-15419. [DOI: 10.1002/anie.201805256] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/09/2018] [Indexed: 11/07/2022]
111
Grajciar L, Heard CJ, Bondarenko AA, Polynski MV, Meeprasert J, Pidko EA, Nachtigall P. Towards operando computational modeling in heterogeneous catalysis. Chem Soc Rev 2018;47:8307-8348. [PMID: 30204184 PMCID: PMC6240816 DOI: 10.1039/c8cs00398j] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 12/19/2022]
112
Xu S, Li L, Carter EA. Why and How Carbon Dioxide Conversion to Methanol Happens on Functionalized Semiconductor Photoelectrodes. J Am Chem Soc 2018;140:16749-16757. [DOI: 10.1021/jacs.8b09946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
113
Ou L, Chen Y, Jin J. The origin of CO2 electroreduction into C1 and C2 species: Mechanistic understanding on the product selectivity of Cu single-crystal faces. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
114
Xu W, Qiu Y, Zhang T, Li X, Zhang H. The Effect of Organic Additives on the Activity and Selectivity of CO2 Electroreduction: The Role of Functional Groups. CHEMSUSCHEM 2018;11:2904-2911. [PMID: 30015408 DOI: 10.1002/cssc.201801458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 06/08/2023]
115
Cui X, An W, Liu X, Wang H, Men Y, Wang J. C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening. NANOSCALE 2018;10:15262-15272. [PMID: 30067260 DOI: 10.1039/c8nr04961k] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
116
Zhou Y, Che F, Liu M, Zou C, Liang Z, De Luna P, Yuan H, Li J, Wang Z, Xie H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham TK, Bals S, Hofkens J, Sinton D, Chen G, Sargent EH. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem 2018;10:974-980. [PMID: 30013194 DOI: 10.1038/s41557-018-0092-x] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
117
Qian J, An Q, Fortunelli A, Nielsen RJ, Goddard WA. Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(111) Surface. J Am Chem Soc 2018;140:6288-6297. [DOI: 10.1021/jacs.7b13409] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
118
Tian Z, Priest C, Chen L. Recent Progress in the Theoretical Investigation of Electrocatalytic Reduction of CO2. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
119
Saleheen M, Heyden A. Liquid-Phase Modeling in Heterogeneous Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04367] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
120
Garza AJ, Bell AT, Head-Gordon M. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03477] [Citation(s) in RCA: 405] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
121
Zhang L, Zhao ZJ, Wang T, Gong J. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem Soc Rev 2018;47:5423-5443. [DOI: 10.1039/c8cs00016f] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
122
Maheshwari S, Li Y, Agrawal N, Janik MJ. Density functional theory models for electrocatalytic reactions. ADVANCES IN CATALYSIS 2018. [DOI: 10.1016/bs.acat.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
123
Szkaradek K, Buzar K, Pidko EA, Szyja BM. Supported Ru Metalloporphyrins for Electrocatalytic CO2 Conversion. ChemCatChem 2017. [DOI: 10.1002/cctc.201701045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
124
Cheng T, Xiao H, Goddard WA. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance. J Am Chem Soc 2017;139:11642-11645. [DOI: 10.1021/jacs.7b03300] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
125
Akhade SA, Bernstein NJ, Esopi MR, Regula MJ, Janik MJ. A simple method to approximate electrode potential-dependent activation energies using density functional theory. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.01.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
126
Sheng T, Sun SG. Identifying the significance of proton-electron transfer in CH4 production on Cu (100) in CO2 electro-reduction. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
127
Rawat KS, Mahata A, Pathak B. Thermochemical and electrochemical CO 2 reduction on octahedral Cu nanocluster: Role of solvent towards product selectivity. J Catal 2017. [DOI: 10.1016/j.jcat.2017.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
128
Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc Natl Acad Sci U S A 2017;114:1795-1800. [PMID: 28167767 DOI: 10.1073/pnas.1612106114] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
129
Liu SP, Zhao M, Gao W, Jiang Q. Mechanistic Insights into the Unique Role of Copper in CO2 Electroreduction Reactions. CHEMSUSCHEM 2017;10:387-393. [PMID: 27943655 DOI: 10.1002/cssc.201601144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/05/2016] [Indexed: 06/06/2023]
130
Sheng T, Sun SG. Electrochemical reduction of CO2 into CO on Cu(100): a new insight into the C–O bond breaking mechanism. Chem Commun (Camb) 2017;53:2594-2597. [DOI: 10.1039/c6cc08583k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
131
Xiao H, Cheng T, Goddard WA. Atomistic Mechanisms Underlying Selectivities in C(1) and C(2) Products from Electrochemical Reduction of CO on Cu(111). J Am Chem Soc 2016;139:130-136. [PMID: 28001061 DOI: 10.1021/jacs.6b06846] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
132
Cheng T, Xiao H, Goddard WA. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. J Am Chem Soc 2016;138:13802-13805. [DOI: 10.1021/jacs.6b08534] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
133
Shi C, Chan K, Yoo JS, Nørskov JK. Barriers of Electrochemical CO2 Reduction on Transition Metals. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00103] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
134
Regulating the Product Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu Electrode Surface. Electrocatalysis (N Y) 2016. [DOI: 10.1007/s12678-016-0314-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
135
Sheng T, Lin WF, Sun SG. Electrochemical interfacial influences on deoxygenation and hydrogenation reactions in CO reduction on a Cu(100) surface. Phys Chem Chem Phys 2016;18:15304-11. [PMID: 27211005 DOI: 10.1039/c6cp02198k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
136
Goodpaster JD, Bell AT, Head-Gordon M. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. J Phys Chem Lett 2016;7:1471-7. [PMID: 27045040 DOI: 10.1021/acs.jpclett.6b00358] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
137
Hussain J, Jónsson H, Skúlason E. Faraday efficiency and mechanism of electrochemical surface reactions: CO2 reduction and H2 formation on Pt(111). Faraday Discuss 2016;195:619-636. [DOI: 10.1039/c6fd00114a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 3 of 3 123Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA