101
|
A network representation approach for COVID-19 drug recommendation. Methods 2021; 198:3-10. [PMID: 34562584 PMCID: PMC8458160 DOI: 10.1016/j.ymeth.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has outbreak since early December 2019, and COVID-19 has caused over 100 million cases and 2 million deaths around the world. After one year of the COVID-19 outbreak, there is no certain and approve medicine against it. Drug repositioning has become one line of scientific research that is being pursued to develop an effective drug. However, due to the lack of COVID-19 data, there is still no specific drug repositioning targeting the COVID-19. In this paper, we propose a framework for COVID-19 drug repositioning. This framework has several advantages that can be exploited: one is that a local graph aggregating representation is used across a heterogeneous network to address the data sparsity problem; another is the multi-hop neighbors of the heterogeneous graph are aggregated to recall as many COVID-19 potential drugs as possible. Our experimental results show that our COVDR framework performs significantly better than baseline methods, and the docking simulation verifies that our three potential drugs have the ability to against COVID-19 disease.
Collapse
|
102
|
Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet 2021; 22:553-571. [PMID: 34083778 PMCID: PMC8364890 DOI: 10.1038/s41576-021-00363-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
All organisms produce specialized organic molecules, ranging from small volatile chemicals to large gene-encoded peptides, that have evolved to provide them with diverse cellular and ecological functions. As natural products, they are broadly applied in medicine, agriculture and nutrition. The rapid accumulation of genomic information has revealed that the metabolic capacity of virtually all organisms is vastly underappreciated. Pioneered mainly in bacteria and fungi, genome mining technologies are accelerating metabolite discovery. Recent efforts are now being expanded to all life forms, including protists, plants and animals, and new integrative omics technologies are enabling the increasingly effective mining of this molecular diversity.
Collapse
Affiliation(s)
- Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
103
|
Aggarwal P, Alkhouri N. Artificial Intelligence in Nonalcoholic Fatty Liver Disease: A New Frontier in Diagnosis and Treatment. Clin Liver Dis (Hoboken) 2021; 17:392-397. [PMID: 34386201 PMCID: PMC8340349 DOI: 10.1002/cld.1071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/15/2020] [Accepted: 11/07/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Pankaj Aggarwal
- Texas Liver InstituteUniversity of Texas Health San AntonioSan AntonioTX
| | - Naim Alkhouri
- Texas Liver InstituteUniversity of Texas Health San AntonioSan AntonioTX
| |
Collapse
|
104
|
Sengupta K, Srivastava PR. Quantum algorithm for quicker clinical prognostic analysis: an application and experimental study using CT scan images of COVID-19 patients. BMC Med Inform Decis Mak 2021; 21:227. [PMID: 34330278 PMCID: PMC8323083 DOI: 10.1186/s12911-021-01588-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In medical diagnosis and clinical practice, diagnosing a disease early is crucial for accurate treatment, lessening the stress on the healthcare system. In medical imaging research, image processing techniques tend to be vital in analyzing and resolving diseases with a high degree of accuracy. This paper establishes a new image classification and segmentation method through simulation techniques, conducted over images of COVID-19 patients in India, introducing the use of Quantum Machine Learning (QML) in medical practice. METHODS This study establishes a prototype model for classifying COVID-19, comparing it with non-COVID pneumonia signals in Computed tomography (CT) images. The simulation work evaluates the usage of quantum machine learning algorithms, while assessing the efficacy for deep learning models for image classification problems, and thereby establishes performance quality that is required for improved prediction rate when dealing with complex clinical image data exhibiting high biases. RESULTS The study considers a novel algorithmic implementation leveraging quantum neural network (QNN). The proposed model outperformed the conventional deep learning models for specific classification task. The performance was evident because of the efficiency of quantum simulation and faster convergence property solving for an optimization problem for network training particularly for large-scale biased image classification task. The model run-time observed on quantum optimized hardware was 52 min, while on K80 GPU hardware it was 1 h 30 min for similar sample size. The simulation shows that QNN outperforms DNN, CNN, 2D CNN by more than 2.92% in gain in accuracy measure with an average recall of around 97.7%. CONCLUSION The results suggest that quantum neural networks outperform in COVID-19 traits' classification task, comparing to deep learning w.r.t model efficacy and training time. However, a further study needs to be conducted to evaluate implementation scenarios by integrating the model within medical devices.
Collapse
Affiliation(s)
- Kinshuk Sengupta
- Microsoft Corporation, New Delhi
, India
- Department of Information System, Indian Institute of Management, Rohtak, India
- City Southern Bypass, Sunaria, Rohtak, Haryana 124010 India
| | - Praveen Ranjan Srivastava
- Department of Information System, Indian Institute of Management, Rohtak, India
- City Southern Bypass, Sunaria, Rohtak, Haryana 124010 India
| |
Collapse
|
105
|
Current Status of Baricitinib as a Repurposed Therapy for COVID-19. Pharmaceuticals (Basel) 2021; 14:ph14070680. [PMID: 34358107 PMCID: PMC8308612 DOI: 10.3390/ph14070680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of the COVID-19 pandemic has mandated the instant (re)search for potential drug candidates. In response to the unprecedented situation, it was recognized early that repurposing of available drugs in the market could timely save lives, by skipping the lengthy phases of preclinical and initial safety studies. BenevolentAI’s large knowledge graph repository of structured medical information suggested baricitinib, a Janus-associated kinase inhibitor, as a potential repurposed medicine with a dual mechanism; hindering SARS-CoV2 entry and combatting the cytokine storm; the leading cause of mortality in COVID-19. However, the recently-published Adaptive COVID-19 Treatment Trial-2 (ACTT-2) positioned baricitinib only in combination with remdesivir for treatment of a specific category of COVID-19 patients, whereas the drug is not recommended to be used alone except in clinical trials. The increased pace of data output in all life sciences fields has changed our understanding of data processing and manipulation. For the purpose of drug design, development, or repurposing, the integration of different disciplines of life sciences is highly recommended to achieve the ultimate benefit of using new technologies to mine BIG data, however, the final say remains to be concluded after the drug is used in clinical practice. This review demonstrates different bioinformatics, chemical, pharmacological, and clinical aspects of baricitinib to highlight the repurposing journey of the drug and evaluates its placement in the current guidelines for COVID-19 treatment.
Collapse
|
106
|
Rafique R, Islam SR, Kazi JU. Machine learning in the prediction of cancer therapy. Comput Struct Biotechnol J 2021; 19:4003-4017. [PMID: 34377366 PMCID: PMC8321893 DOI: 10.1016/j.csbj.2021.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Resistance to therapy remains a major cause of cancer treatment failures, resulting in many cancer-related deaths. Resistance can occur at any time during the treatment, even at the beginning. The current treatment plan is dependent mainly on cancer subtypes and the presence of genetic mutations. Evidently, the presence of a genetic mutation does not always predict the therapeutic response and can vary for different cancer subtypes. Therefore, there is an unmet need for predictive models to match a cancer patient with a specific drug or drug combination. Recent advancements in predictive models using artificial intelligence have shown great promise in preclinical settings. However, despite massive improvements in computational power, building clinically useable models remains challenging due to a lack of clinically meaningful pharmacogenomic data. In this review, we provide an overview of recent advancements in therapeutic response prediction using machine learning, which is the most widely used branch of artificial intelligence. We describe the basics of machine learning algorithms, illustrate their use, and highlight the current challenges in therapy response prediction for clinical practice.
Collapse
Affiliation(s)
| | - S.M. Riazul Islam
- Department of Computer Science and Engineering, Sejong University, Seoul, South Korea
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Corresponding author at: Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon village Building 404:C3, Scheelevägen 8, 22363 Lund, Sweden.
| |
Collapse
|
107
|
Piroozmand F, Mohammadipanah F, Sajedi H. Spectrum of deep learning algorithms in drug discovery. Chem Biol Drug Des 2021; 96:886-901. [PMID: 33058458 DOI: 10.1111/cbdd.13674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
Deep learning (DL) algorithms are a subset of machine learning algorithms with the aim of modeling complex mapping between a set of elements and their classes. In parallel to the advance in revealing the molecular bases of diseases, a notable innovation has been undertaken to apply DL in data/libraries management, reaction optimizations, differentiating uncertainties, molecule constructions, creating metrics from qualitative results, and prediction of structures or interactions. From source identification to lead discovery and medicinal chemistry of the drug candidate, drug delivery, and modification, the challenges can be subjected to artificial intelligence algorithms to aid in the generation and interpretation of data. Discovery and design approach, both demand automation, large data management and data fusion by the advance in high-throughput mode. The application of DL can accelerate the exploration of drug mechanisms, finding novel indications for existing drugs (drug repositioning), drug development, and preclinical and clinical studies. The impact of DL in the workflow of drug discovery, design, and their complementary tools are highlighted in this review. Additionally, the type of DL algorithms used for this purpose, and their pros and cons along with the dominant directions of future research are presented.
Collapse
Affiliation(s)
- Firoozeh Piroozmand
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hedieh Sajedi
- Department of Computer Science, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
108
|
Daley SK, Cordell GA. Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules 2021; 26:molecules26133800. [PMID: 34206470 PMCID: PMC8270272 DOI: 10.3390/molecules26133800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA;
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
109
|
Luo Q, Mo S, Xue Y, Zhang X, Gu Y, Wu L, Zhang J, Sun L, Liu M, Hu Y. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes. BMC Bioinformatics 2021; 22:318. [PMID: 34116627 PMCID: PMC8194123 DOI: 10.1186/s12859-021-04241-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
Background Drug-drug interaction (DDI) is a serious public health issue. The L1000 database of the LINCS project has collected millions of genome-wide expressions induced by 20,000 small molecular compounds on 72 cell lines. Whether this unified and comprehensive transcriptome data resource can be used to build a better DDI prediction model is still unclear. Therefore, we developed and validated a novel deep learning model for predicting DDI using 89,970 known DDIs extracted from the DrugBank database (version 5.1.4). Results The proposed model consists of a graph convolutional autoencoder network (GCAN) for embedding drug-induced transcriptome data from the L1000 database of the LINCS project; and a long short-term memory (LSTM) for DDI prediction. Comparative evaluation of various machine learning methods demonstrated the superior performance of our proposed model for DDI prediction. Many of our predicted DDIs were revealed in the latest DrugBank database (version 5.1.7). In the case study, we predicted drugs interacting with sulfonylureas to cause hypoglycemia and drugs interacting with metformin to cause lactic acidosis, and showed both to induce effects on the proteins involved in the metabolic mechanism in vivo. Conclusions The proposed deep learning model can accelerate the discovery of new DDIs. It can support future clinical research for safer and more effective drug co-prescription. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04241-1.
Collapse
Affiliation(s)
- Qichao Luo
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China.,School of Management, Jinan University, Guangzhou, 510632, China
| | - Shenglong Mo
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Yunfei Xue
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Xiangzhou Zhang
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Yuliang Gu
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Lijuan Wu
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Jia Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Linyan Sun
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Mei Liu
- Division of Medical Informatics, Department of Internal Medicine, Medical Center, University of Kansas, Kansas City, KS, 66160, USA.
| | - Yong Hu
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
110
|
Boniolo F, Dorigatti E, Ohnmacht AJ, Saur D, Schubert B, Menden MP. Artificial intelligence in early drug discovery enabling precision medicine. Expert Opin Drug Discov 2021; 16:991-1007. [PMID: 34075855 DOI: 10.1080/17460441.2021.1918096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Precision medicine is the concept of treating diseases based on environmental factors, lifestyles, and molecular profiles of patients. This approach has been found to increase success rates of clinical trials and accelerate drug approvals. However, current precision medicine applications in early drug discovery use only a handful of molecular biomarkers to make decisions, whilst clinics gear up to capture the full molecular landscape of patients in the near future. This deep multi-omics characterization demands new analysis strategies to identify appropriate treatment regimens, which we envision will be pioneered by artificial intelligence.Areas covered: In this review, the authors discuss the current state of drug discovery in precision medicine and present our vision of how artificial intelligence will impact biomarker discovery and drug design.Expert opinion: Precision medicine is expected to revolutionize modern medicine; however, its traditional form is focusing on a few biomarkers, thus not equipped to leverage the full power of molecular landscapes. For learning how the development of drugs can be tailored to the heterogeneity of patients across their molecular profiles, artificial intelligence algorithms are the next frontier in precision medicine and will enable a fully personalized approach in drug design, and thus ultimately impacting clinical practice.
Collapse
Affiliation(s)
- Fabio Boniolo
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,School of Medicine, Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Emilio Dorigatti
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Statistical Learning and Data Science, Department of Statistics, Ludwig Maximilian Universität München, Munich, Germany
| | - Alexander J Ohnmacht
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Dieter Saur
- School of Medicine, Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Michael P Menden
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany.,German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
111
|
Lang Q, Zhong C, Liang Z, Zhang Y, Wu B, Xu F, Cong L, Wu S, Tian Y. Six application scenarios of artificial intelligence in the precise diagnosis and treatment of liver cancer. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-10023-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
112
|
Jeon J, Kang S, Kim HU. Predicting biochemical and physiological effects of natural products from molecular structures using machine learning. Nat Prod Rep 2021; 38:1954-1966. [PMID: 34047331 DOI: 10.1039/d1np00016k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2016 to 2021Discovery of novel natural products has been greatly facilitated by advances in genome sequencing, genome mining and analytical techniques. As a result, the volume of data for natural products has increased over the years, which started to serve as ingredients for developing machine learning models. In the past few years, a number of machine learning models have been developed to examine various aspects of a molecule by effectively processing its molecular structure. Understanding of the biological effects of natural products can benefit from such machine learning approaches. In this context, this Highlight reviews recent studies on machine learning models developed to infer various biological effects of molecules. A particular attention is paid to molecular featurization, or computational representation of a molecular structure, which is an essential process during the development of a machine learning model. Technical challenges associated with the use of machine learning for natural products are further discussed.
Collapse
Affiliation(s)
- Junhyeok Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Seongmo Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea and BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
113
|
Pastuszak K, Supernat A, Best MG, In 't Veld SGJG, Łapińska-Szumczyk S, Łojkowska A, Różański R, Żaczek AJ, Jassem J, Würdinger T, Stokowy T. imPlatelet classifier: image-converted RNA biomarker profiles enable blood-based cancer diagnostics. Mol Oncol 2021; 15:2688-2701. [PMID: 34013585 PMCID: PMC8486571 DOI: 10.1002/1878-0261.13014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor‐educated platelets. Here, we developed the imPlatelet classifier, which converts RNA‐sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia of Genes and Genomes was also implemented to improve accuracy. Images obtained from samples can then be compared against standard images for specific cancers to determine a diagnosis. We tested imPlatelet on a cohort of 401 non‐small cell lung cancer patients, 62 sarcoma patients, and 28 ovarian cancer patients. imPlatelet provided excellent discrimination between lung cancer cases and healthy controls, with accuracy equal to 1 in the independent dataset. When discriminating between noncancer cases and sarcoma or ovarian cancer patients, accuracy equaled 0.91 or 0.95, respectively, in the independent datasets. According to our knowledge, this is the first study implementing an image‐based deep‐learning approach combined with biological knowledge to classify human samples. The performance of imPlatelet considerably exceeds previously published methods and our own alternative attempts of sample discrimination. We show that the deep‐learning image‐based classifier accurately identifies cancer, even when a limited number of samples are available.
Collapse
Affiliation(s)
- Krzysztof Pastuszak
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Poland.,Department of Algorithms and Systems Modelling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Poland
| | - Anna Supernat
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Poland
| | - Myron G Best
- Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, The Netherlands.,Department of Pathology, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Sjors G J G In 't Veld
- Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Sylwia Łapińska-Szumczyk
- Department of Gynecology, Gynecological Oncology and Gynecological Endocrinology, Medical University of Gdańsk, Poland
| | - Anna Łojkowska
- Department of Gynecology, Gynecological Oncology and Gynecological Endocrinology, Medical University of Gdańsk, Poland
| | - Robert Różański
- Department of Gynecology, Gynecological Oncology and Gynecological Endocrinology, Medical University of Gdańsk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Poland
| | - Thomas Würdinger
- Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Norway
| |
Collapse
|
114
|
PharmSD: A novel AI-based computational platform for solid dispersion formulation design. Int J Pharm 2021; 604:120705. [PMID: 33991595 DOI: 10.1016/j.ijpharm.2021.120705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Solid dispersion is an effective way to improve the dissolution and oral bioavailability of water-insoluble drugs. To obtain an effective solid dispersion formulation, researchers need to evaluate a series of important properties of the designed formulation, including in vitro dissolution and physical stability of solid dispersion. It is usually time-consuming and labor-intensive to explore these properties by traditional experimental methods. However, the development of machine learning technology provides a powerful way to solve such problems. By using advanced machine learning algorithms, we established a series of robust models and finally formed a systematic strategy to assist the formulation design. Based on these works, we developed a new formulation prediction platform of solid dispersion: PharmSD. This platform provides efficient functionalities for the prediction of physical stability, dissolution type and dissolution rate of solid dispersion independently. Then, a virtual screening pipeline can be produced by considering those prediction results as a whole, which enables users to filter different kinds of drug-polymer combinations in various experimental situations and figure out which combination could form the best formulation. Moreover, it also provides two tools that enable researchers to evaluate the application domain of models and calculate the similarity of dissolution curves. PharmSD is expected to be the first freely available web-based platform that is fully designed for the formulation design of solid dispersion driven by machine learning. We hope this platform could provide a powerful solution to assist the formulation design in the related research area. It is available at: http://pharmsd.computpharm.org.
Collapse
|
115
|
Serafim MSM, Dos Santos Júnior VS, Gertrudes JC, Maltarollo VG, Honorio KM. Machine learning techniques applied to the drug design and discovery of new antivirals: a brief look over the past decade. Expert Opin Drug Discov 2021; 16:961-975. [PMID: 33957833 DOI: 10.1080/17460441.2021.1918098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Drug design and discovery of new antivirals will always be extremely important in medicinal chemistry, taking into account known and new viral diseases that are yet to come. Although machine learning (ML) have shown to improve predictions on the biological potential of chemicals and accelerate the discovery of drugs over the past decade, new methods and their combinations have improved their performance and established promising perspectives regarding ML in the search for new antivirals.Areas covered: The authors consider some interesting areas that deal with different ML techniques applied to antivirals. Recent innovative studies on ML and antivirals were selected and analyzed in detail. Also, the authors provide a brief look at the past to the present to detect advances and bottlenecks in the area.Expert opinion: From classical ML techniques, it was possible to boost the searches for antivirals. However, from the emergence of new algorithms and the improvement in old approaches, promising results will be achieved every day, as we have observed in the case of SARS-CoV-2. Recent experience has shown that it is possible to use ML to discover new antiviral candidates from virtual screening and drug repurposing.
Collapse
Affiliation(s)
- Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Jadson Castro Gertrudes
- Departamento de Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kathia Maria Honorio
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Brazil
| |
Collapse
|
116
|
Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou M, Zhang B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 2021; 41:1427-1473. [PMID: 33295676 PMCID: PMC8043990 DOI: 10.1002/med.21764] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 01/11/2023]
Abstract
Neurological disorders significantly outnumber diseases in other therapeutic areas. However, developing drugs for central nervous system (CNS) disorders remains the most challenging area in drug discovery, accompanied with the long timelines and high attrition rates. With the rapid growth of biomedical data enabled by advanced experimental technologies, artificial intelligence (AI) and machine learning (ML) have emerged as an indispensable tool to draw meaningful insights and improve decision making in drug discovery. Thanks to the advancements in AI and ML algorithms, now the AI/ML-driven solutions have an unprecedented potential to accelerate the process of CNS drug discovery with better success rate. In this review, we comprehensively summarize AI/ML-powered pharmaceutical discovery efforts and their implementations in the CNS area. After introducing the AI/ML models as well as the conceptualization and data preparation, we outline the applications of AI/ML technologies to several key procedures in drug discovery, including target identification, compound screening, hit/lead generation and optimization, drug response and synergy prediction, de novo drug design, and drug repurposing. We review the current state-of-the-art of AI/ML-guided CNS drug discovery, focusing on blood-brain barrier permeability prediction and implementation into therapeutic discovery for neurological diseases. Finally, we discuss the major challenges and limitations of current approaches and possible future directions that may provide resolutions to these difficulties.
Collapse
Affiliation(s)
- Sezen Vatansever
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Avner Schlessinger
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Daniel Wacker
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - H. Ümit Kaniskan
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jian Jin
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ming‐Ming Zhou
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
117
|
Elkhader J, Elemento O. Artificial intelligence in oncology: From bench to clinic. Semin Cancer Biol 2021; 84:113-128. [PMID: 33915289 DOI: 10.1016/j.semcancer.2021.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
In the past few years, Artificial Intelligence (AI) techniques have been applied to almost every facet of oncology, from basic research to drug development and clinical care. In the clinical arena where AI has perhaps received the most attention, AI is showing promise in enhancing and automating image-based diagnostic approaches in fields such as radiology and pathology. Robust AI applications, which retain high performance and reproducibility over multiple datasets, extend from predicting indications for drug development to improving clinical decision support using electronic health record data. In this article, we review some of these advances. We also introduce common concepts and fundamentals of AI and its various uses, along with its caveats, to provide an overview of the opportunities and challenges in the field of oncology. Leveraging AI techniques productively to provide better care throughout a patient's medical journey can fuel the predictive promise of precision medicine.
Collapse
Affiliation(s)
- Jamal Elkhader
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, 10065, USA
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, 10065, USA.
| |
Collapse
|
118
|
Yang S, Zhu F, Ling X, Liu Q, Zhao P. Intelligent Health Care: Applications of Deep Learning in Computational Medicine. Front Genet 2021; 12:607471. [PMID: 33912213 PMCID: PMC8075004 DOI: 10.3389/fgene.2021.607471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
With the progress of medical technology, biomedical field ushered in the era of big data, based on which and driven by artificial intelligence technology, computational medicine has emerged. People need to extract the effective information contained in these big biomedical data to promote the development of precision medicine. Traditionally, the machine learning methods are used to dig out biomedical data to find the features from data, which generally rely on feature engineering and domain knowledge of experts, requiring tremendous time and human resources. Different from traditional approaches, deep learning, as a cutting-edge machine learning branch, can automatically learn complex and robust feature from raw data without the need for feature engineering. The applications of deep learning in medical image, electronic health record, genomics, and drug development are studied, where the suggestion is that deep learning has obvious advantage in making full use of biomedical data and improving medical health level. Deep learning plays an increasingly important role in the field of medical health and has a broad prospect of application. However, the problems and challenges of deep learning in computational medical health still exist, including insufficient data, interpretability, data privacy, and heterogeneity. Analysis and discussion on these problems provide a reference to improve the application of deep learning in medical health.
Collapse
Affiliation(s)
- Sijie Yang
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Fei Zhu
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Xinghong Ling
- School of Computer Science and Technology, Soochow University, Suzhou, China
- WenZheng College of Soochow University, Suzhou, China
| | - Quan Liu
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Peiyao Zhao
- School of Computer Science and Technology, Soochow University, Suzhou, China
| |
Collapse
|
119
|
Wang Y, Yang Y, Chen S, Wang J. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Brief Bioinform 2021; 22:6210072. [PMID: 33822890 DOI: 10.1093/bib/bbab048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/16/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Recent pharmacogenomic studies that generate sequencing data coupled with pharmacological characteristics for patient-derived cancer cell lines led to large amounts of multi-omics data for precision cancer medicine. Among various obstacles hindering clinical translation, lacking effective methods for multimodal and multisource data integration is becoming a bottleneck. Here we proposed DeepDRK, a machine learning framework for deciphering drug response through kernel-based data integration. To transfer information among different drugs and cancer types, we trained deep neural networks on more than 20 000 pan-cancer cell line-anticancer drug pairs. These pairs were characterized by kernel-based similarity matrices integrating multisource and multi-omics data including genomics, transcriptomics, epigenomics, chemical properties of compounds and known drug-target interactions. Applied to benchmark cancer cell line datasets, our model surpassed previous approaches with higher accuracy and better robustness. Then we applied our model on newly established patient-derived cancer cell lines and achieved satisfactory performance with AUC of 0.84 and AUPRC of 0.77. Moreover, DeepDRK was used to predict clinical response of cancer patients. Notably, the prediction of DeepDRK correlated well with clinical outcome of patients and revealed multiple drug repurposing candidates. In sum, DeepDRK provided a computational method to predict drug response of cancer cells from integrating pharmacogenomic datasets, offering an alternative way to prioritize repurposing drugs in precision cancer treatment. The DeepDRK is freely available via https://github.com/wangyc82/DeepDRK.
Collapse
Affiliation(s)
- Yongcui Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota at Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering at The Hong Kong University of Science and Technology, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota at Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, China
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience at The Hong Kong University of Science and Technology, China
| |
Collapse
|
120
|
Quantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia. Int J Mol Sci 2021; 22:ijms22073378. [PMID: 33806075 PMCID: PMC8036653 DOI: 10.3390/ijms22073378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.
Collapse
|
121
|
Ji B, He X, Zhai J, Zhang Y, Man VH, Wang J. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction. Brief Bioinform 2021; 22:6184410. [PMID: 33758923 DOI: 10.1093/bib/bbab054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
Structure-based virtual screenings (SBVSs) play an important role in drug discovery projects. However, it is still a challenge to accurately predict the binding affinity of an arbitrary molecule binds to a drug target and prioritize top ligands from an SBVS. In this study, we developed a novel method, using ligand-residue interaction profiles (IPs) to construct machine learning (ML)-based prediction models, to significantly improve the screening performance in SBVSs. Such a kind of the prediction model is called an IP scoring function (IP-SF). We systematically investigated how to improve the performance of IP-SFs from many perspectives, including the sampling methods before interaction energy calculation and different ML algorithms. Using six drug targets with each having hundreds of known ligands, we conducted a critical evaluation on the developed IP-SFs. The IP-SFs employing a gradient boosting decision tree (GBDT) algorithm in conjunction with the MIN + GB simulation protocol achieved the best overall performance. Its scoring power, ranking power and screening power significantly outperformed the Glide SF. First, compared with Glide, the average values of mean absolute error and root mean square error of GBDT/MIN + GB decreased about 38 and 36%, respectively. Second, the mean values of squared correlation coefficient and predictive index increased about 225 and 73%, respectively. Third, more encouragingly, the average value of the areas under the curve of receiver operating characteristic for six targets by GBDT, 0.87, is significantly better than that by Glide, which is only 0.71. Thus, we expected IP-SFs to have broad and promising applications in SBVSs.
Collapse
Affiliation(s)
- Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingchen Zhai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuzhao Zhang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
122
|
Yee NS. Machine intelligence for precision oncology. World J Transl Med 2021; 9:1-10. [DOI: 10.5528/wjtm.v9.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Despite various advances in cancer research, the incidence and mortality rates of malignant diseases have remained high. Accurate risk assessment, prevention, detection, and treatment of cancer tailored to the individual are major challenges in clinical oncology. Artificial intelligence (AI), a field of applied computer science, has shown promising potential of accelerating evolution of healthcare towards precision oncology. This article focuses on highlights of the application of data-driven machine learning (ML) and deep learning (DL) in translational research for cancer diagnosis, prognosis, treatment, and clinical outcomes. ML-based algorithms in radiological and histological images have been demonstrated to improve detection and diagnosis of cancer. DL-based prediction models in molecular or multi-omics datasets of cancer for biomarkers and targets enable drug discovery and treatment. ML approaches combining radiomics with genomics and other omics data enhance the power of AI in improving diagnosis, prognostication, and treatment of cancer. Ethical and regulatory issues involving patient confidentiality and data security impose certain limitations on practical implementation of ML in clinical oncology. However, the ultimate goal of application of AI in cancer research is to develop and implement multi-modal machine intelligence for improving clinical decision on individualized management of patients.
Collapse
Affiliation(s)
- Nelson S Yee
- Department of Medicine, The Pennsylvania State University College of Medicine, Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033-0850, United States
| |
Collapse
|
123
|
Costamagna G, Comi GP, Corti S. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. Int J Mol Sci 2021; 22:ijms22052659. [PMID: 33800815 PMCID: PMC7961877 DOI: 10.3390/ijms22052659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decade, different research groups in the academic setting have developed induced pluripotent stem cell-based protocols to generate three-dimensional, multicellular, neural organoids. Their use to model brain biology, early neural development, and human diseases has provided new insights into the pathophysiology of neuropsychiatric and neurological disorders, including microcephaly, autism, Parkinson’s disease, and Alzheimer’s disease. However, the adoption of organoid technology for large-scale drug screening in the industry has been hampered by challenges with reproducibility, scalability, and translatability to human disease. Potential technical solutions to expand their use in drug discovery pipelines include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to create isogenic models, single-cell RNA sequencing to characterize the model at a cellular level, and machine learning to analyze complex data sets. In addition, high-content imaging, automated liquid handling, and standardized assays represent other valuable tools toward this goal. Though several open issues still hamper the full implementation of the organoid technology outside academia, rapid progress in this field will help to prompt its translation toward large-scale drug screening for neurological disorders.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
124
|
Sadeghi SS, Keyvanpour MR. An Analytical Review of Computational Drug Repurposing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:472-488. [PMID: 31403439 DOI: 10.1109/tcbb.2019.2933825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug repurposing is a vital function in pharmaceutical fields and has gained popularity in recent years in both the pharmaceutical industry and research community. It refers to the process of discovering new uses and indications for existing or failed drugs. It is cost-effective and reliable in contrast to experimental drug discovery, which is a costly, time-consuming, and risky process and limited to a relatively small number of targets. Accordingly, a plethora of computational methodologies have been propounded to repurpose drugs on a large scale by utilizing available high throughput data. The available literature, however, lacks a contemporary and comprehensive analysis of the current computational drug repurposing methodologies. In this paper, we presented a systematic analysis of computational drug repurposing which consists of three main sections: Initially, we categorize the computational drug repurposing methods based on their technical approach and artificial intelligence perspective and discuss the strengths and weaknesses of various methods. Secondly, some general criteria are recommended to analyze our proposed categorization. In the third and final section, a qualitative comparison is made between each approach which is a guide to understanding their preference to one another. Further, this systematic analysis can help in the efficient selection and improvement of drug repurposing techniques based on the nature of computational methods implemented on biological resources.
Collapse
|
125
|
Vanhaelen Q. Web-based Tools for Drug Repurposing: Successful Examples of Collaborative Research. Curr Med Chem 2021; 28:181-195. [PMID: 32003659 DOI: 10.2174/0929867327666200128111925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/23/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
Computational approaches have been proven to be complementary tools of interest in identifying potential candidates for drug repurposing. However, although the methods developed so far offer interesting opportunities and could contribute to solving issues faced by the pharmaceutical sector, they also come with their constraints. Indeed, specific challenges ranging from data access, standardization and integration to the implementation of reliable and coherent validation methods must be addressed to allow systematic use at a larger scale. In this mini-review, we cover computational tools recently developed for addressing some of these challenges. This includes specific databases providing accessibility to a large set of curated data with standardized annotations, web-based tools integrating flexible user interfaces to perform fast computational repurposing experiments and standardized datasets specifically annotated and balanced for validating new computational drug repurposing methods. Interestingly, these new databases combined with the increasing number of information about the outcomes of drug repurposing studies can be used to perform a meta-analysis to identify key properties associated with successful drug repurposing cases. This information could further be used to design estimation methods to compute a priori assessment of the repurposing possibilities.
Collapse
Affiliation(s)
- Quentin Vanhaelen
- Insilico Medicine, 307A, Core Building 1, 1 Science Park East Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| |
Collapse
|
126
|
Efficient Prediction of In Vitro Piroxicam Release and Diffusion From Topical Films Based on Biopolymers Using Deep Learning Models and Generative Adversarial Networks. J Pharm Sci 2021; 110:2531-2543. [PMID: 33548245 DOI: 10.1016/j.xphs.2021.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to simultaneously predict the drug release and skin permeation of Piroxicam (PX) topical films based on Chitosan (CTS), Xanthan gum (XG) and its Carboxymethyl derivatives (CMXs) as matrix systems. These films were prepared by the solvent casting method, using Tween 80 (T80) as a permeation enhancer. All of the prepared films were assessed for their physicochemical parameters, their in vitro drug release and ex vivo skin permeation studies. Moreover, deep learning models and machine learning models were applied to predict the drug release and permeation rates. The results indicated that all of the films exhibited good consistency and physicochemical properties. Furthermore, it was noticed that when T80 was used in the optimal formulation (F8) based on CTS-CMX3, a satisfactory drug release pattern was found where 99.97% of PX was released and an amount of 1.18 mg/cm2 was permeated after 48 h. Moreover, Generative Adversarial Network (GAN) efficiently enhanced the performance of deep learning models and DNN was chosen as the best predictive approach with MSE values equal to 0.00098 and 0.00182 for the drug release and permeation kinetics, respectively. DNN precisely predicted PX dissolution profiles with f2 values equal to 99.99 for all the formulations.
Collapse
|
127
|
Zanin M, Aitya NA, Basilio J, Baumbach J, Benis A, Behera CK, Bucholc M, Castiglione F, Chouvarda I, Comte B, Dao TT, Ding X, Pujos-Guillot E, Filipovic N, Finn DP, Glass DH, Harel N, Iesmantas T, Ivanoska I, Joshi A, Boudjeltia KZ, Kaoui B, Kaur D, Maguire LP, McClean PL, McCombe N, de Miranda JL, Moisescu MA, Pappalardo F, Polster A, Prasad G, Rozman D, Sacala I, Sanchez-Bornot JM, Schmid JA, Sharp T, Solé-Casals J, Spiwok V, Spyrou GM, Stalidzans E, Stres B, Sustersic T, Symeonidis I, Tieri P, Todd S, Van Steen K, Veneva M, Wang DH, Wang H, Wang H, Watterson S, Wong-Lin K, Yang S, Zou X, Schmidt HH. An Early Stage Researcher's Primer on Systems Medicine Terminology. NETWORK AND SYSTEMS MEDICINE 2021; 4:2-50. [PMID: 33659919 PMCID: PMC7919422 DOI: 10.1089/nsm.2020.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nadim A.A. Aitya
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - José Basilio
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Jan Baumbach
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Arriel Benis
- Faculty of Technology Management, Holon Institute of Technology (HIT), Holon, Israel
| | - Chandan K. Behera
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Magda Bucholc
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Filippo Castiglione
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics, and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Blandine Comte
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Tien-Tuan Dao
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Xuemei Ding
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland, Galway, Republic of Ireland
| | - David H. Glass
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Nissim Harel
- Faculty of Sciences, Holon Institute of Technology (HIT), Holon, Israel
| | - Tomas Iesmantas
- Department of Mathematics and Natural Sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilinka Ivanoska
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Alok Joshi
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222), Medicine Faculty, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Badr Kaoui
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Daman Kaur
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Liam P. Maguire
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Paula L. McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Niamh McCombe
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - João Luís de Miranda
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Portalegre, Portalegre, Portugal
- Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Annikka Polster
- Centre for Molecular Medicine Norway (NCMM), Forskningparken, Oslo, Norway
| | - Girijesh Prasad
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ioan Sacala
- Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania
| | - Jose M. Sanchez-Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic–Central University of Catalonia, Vic, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - George M. Spyrou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Egils Stalidzans
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tijana Sustersic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - Ioannis Symeonidis
- Center for Research and Technology Hellas, Hellenic Institute of Transport, Thessaloniki, Greece
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Stephen Todd
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Altnagelvin, United Kingdom
| | - Kristel Van Steen
- BIO3-Systems Genetics, GIGA-R, University of Liege, Liege, Belgium
- BIO3-Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and School of Systems Science, Beijing Normal University, Beijing, China
| | - Haiying Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Hui Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Su Yang
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Xin Zou
- Shanghai Centre for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Harald H.H.W. Schmidt
- Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
128
|
MutagenPred-GCNNs: A Graph Convolutional Neural Network-Based Classification Model for Mutagenicity Prediction with Data-Driven Molecular Fingerprints. Interdiscip Sci 2021; 13:25-33. [PMID: 33506363 DOI: 10.1007/s12539-020-00407-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
An important task in the early stage of drug discovery is the identification of mutagenic compounds. Mutagenicity prediction models that can interpret relationships between toxicological endpoints and compound structures are especially favorable. In this research, we used an advanced graph convolutional neural network (GCNN) architecture to identify the molecular representation and develop predictive models based on these representations. The predictive model based on features extracted by GCNNs can not only predict the mutagenicity of compounds but also identify the structure alerts in compounds. In fivefold cross-validation and external validation, the highest area under the curve was 0.8782 and 0.8382, respectively; the highest accuracy (Q) was 80.98% and 76.63%, respectively; the highest sensitivity was 83.27% and 78.92%, respectively; and the highest specificity was 78.83% and 76.32%, respectively. Additionally, our model also identified some toxicophores, such as aromatic nitro, three-membered heterocycles, quinones, and nitrogen and sulfur mustard. These results indicate that GCNNs could learn the features of mutagens effectively. In summary, we developed a mutagenicity classification model with high predictive performance and interpretability based on a data-driven molecular representation trained through GCNNs.
Collapse
|
129
|
Hernández-Lemus E, Martínez-García M. Pathway-Based Drug-Repurposing Schemes in Cancer: The Role of Translational Bioinformatics. Front Oncol 2021; 10:605680. [PMID: 33520715 PMCID: PMC7841291 DOI: 10.3389/fonc.2020.605680] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a set of complex pathologies that has been recognized as a major public health problem worldwide for decades. A myriad of therapeutic strategies is indeed available. However, the wide variability in tumor physiology, response to therapy, added to multi-drug resistance poses enormous challenges in clinical oncology. The last years have witnessed a fast-paced development of novel experimental and translational approaches to therapeutics, that supplemented with computational and theoretical advances are opening promising avenues to cope with cancer defiances. At the core of these advances, there is a strong conceptual shift from gene-centric emphasis on driver mutations in specific oncogenes and tumor suppressors-let us call that the silver bullet approach to cancer therapeutics-to a systemic, semi-mechanistic approach based on pathway perturbations and global molecular and physiological regulatory patterns-we will call this the shrapnel approach. The silver bullet approach is still the best one to follow when clonal mutations in driver genes are present in the patient, and when there are targeted therapies to tackle those. Unfortunately, due to the heterogeneous nature of tumors this is not the common case. The wide molecular variability in the mutational level often is reduced to a much smaller set of pathway-based dysfunctions as evidenced by the well-known hallmarks of cancer. In such cases "shrapnel gunshots" may become more effective than "silver bullets". Here, we will briefly present both approaches and will abound on the discussion on the state of the art of pathway-based therapeutic designs from a translational bioinformatics and computational oncology perspective. Further development of these approaches depends on building collaborative, multidisciplinary teams to resort to the expertise of clinical oncologists, oncological surgeons, and molecular oncologists, but also of cancer cell biologists and pharmacologists, as well as bioinformaticians, computational biologists and data scientists. These teams will be capable of engaging on a cycle of analyzing high-throughput experiments, mining databases, researching on clinical data, validating the findings, and improving clinical outcomes for the benefits of the oncological patients.
Collapse
Affiliation(s)
- Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
130
|
Kim H, Kim E, Lee I, Bae B, Park M, Nam H. Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches. BIOTECHNOL BIOPROC E 2021; 25:895-930. [PMID: 33437151 PMCID: PMC7790479 DOI: 10.1007/s12257-020-0049-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
As expenditure on drug development increases exponentially, the overall drug discovery process requires a sustainable revolution. Since artificial intelligence (AI) is leading the fourth industrial revolution, AI can be considered as a viable solution for unstable drug research and development. Generally, AI is applied to fields with sufficient data such as computer vision and natural language processing, but there are many efforts to revolutionize the existing drug discovery process by applying AI. This review provides a comprehensive, organized summary of the recent research trends in AI-guided drug discovery process including target identification, hit identification, ADMET prediction, lead optimization, and drug repositioning. The main data sources in each field are also summarized in this review. In addition, an in-depth analysis of the remaining challenges and limitations will be provided, and proposals for promising future directions in each of the aforementioned areas.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Eunyoung Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Ingoo Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Bongsung Bae
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Minsu Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| |
Collapse
|
131
|
Gao S, Han L, Luo D, Liu G, Xiao Z, Shan G, Zhang Y, Zhou W. Modeling drug mechanism of action with large scale gene-expression profiles using GPAR, an artificial intelligence platform. BMC Bioinformatics 2021; 22:17. [PMID: 33413089 PMCID: PMC7788535 DOI: 10.1186/s12859-020-03915-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/30/2020] [Indexed: 01/03/2023] Open
Abstract
Background Querying drug-induced gene expression profiles with machine learning method is an effective way for revealing drug mechanism of actions (MOAs), which is strongly supported by the growth of large scale and high-throughput gene expression databases. However, due to the lack of code-free and user friendly applications, it is not easy for biologists and pharmacologists to model MOAs with state-of-art deep learning approach. Results In this work, a newly developed online collaborative tool, Genetic profile-activity relationship (GPAR) was built to help modeling and predicting MOAs easily via deep learning. The users can use GPAR to customize their training sets to train self-defined MOA prediction models, to evaluate the model performances and to make further predictions automatically. Cross-validation tests show GPAR outperforms Gene set enrichment analysis in predicting MOAs. Conclusion GPAR can serve as a better approach in MOAs prediction, which may facilitate researchers to generate more reliable MOA hypothesis.
Collapse
Affiliation(s)
- Shengqiao Gao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Dan Luo
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Gang Liu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Guangcun Shan
- School of Instrumentation Science and Opto-Electronics Engineering and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100083, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China.
| |
Collapse
|
132
|
Elgart M, Redline S, Sofer T. Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research. Neurotherapeutics 2021; 18:228-243. [PMID: 33829409 PMCID: PMC8116376 DOI: 10.1007/s13311-021-01014-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.
Collapse
Affiliation(s)
- Michael Elgart
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
133
|
Issa NT, Stathias V, Schürer S, Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol 2021; 68:132-142. [PMID: 31904426 PMCID: PMC7723306 DOI: 10.1016/j.semcancer.2019.12.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
Abstract
Knowledge of the underpinnings of cancer initiation, progression and metastasis has increased exponentially in recent years. Advanced "omics" coupled with machine learning and artificial intelligence (deep learning) methods have helped elucidate targets and pathways critical to those processes that may be amenable to pharmacologic modulation. However, the current anti-cancer therapeutic armamentarium continues to lag behind. As the cost of developing a new drug remains prohibitively expensive, repurposing of existing approved and investigational drugs is sought after given known safety profiles and reduction in the cost barrier. Notably, successes in oncologic drug repurposing have been infrequent. Computational in-silico strategies have been developed to aid in modeling biological processes to find new disease-relevant targets and discovering novel drug-target and drug-phenotype associations. Machine and deep learning methods have especially enabled leaps in those successes. This review will discuss these methods as they pertain to cancer biology as well as immunomodulation for drug repurposing opportunities in oncologic diseases.
Collapse
Affiliation(s)
- Naiem T Issa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, USA
| | - Stephan Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
134
|
Artificial Intelligence for Autism Spectrum Disorders. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
135
|
Hudson IL. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology. Methods Mol Biol 2021; 2190:167-184. [PMID: 32804365 DOI: 10.1007/978-1-0716-0826-5_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While the term artificial intelligence and the concept of deep learning are not new, recent advances in high-performance computing, the availability of large annotated data sets required for training, and novel frameworks for implementing deep neural networks have led to an unprecedented acceleration of the field of molecular (network) biology and pharmacogenomics. The need to align biological data to innovative machine learning has stimulated developments in both data integration (fusion) and knowledge representation, in the form of heterogeneous, multiplex, and biological networks or graphs. In this chapter we briefly introduce several popular neural network architectures used in deep learning, namely, the fully connected deep neural network, recurrent neural network, convolutional neural network, and the autoencoder. Deep learning predictors, classifiers, and generators utilized in modern feature extraction may well assist interpretability and thus imbue AI tools with increased explication, potentially adding insights and advancements in novel chemistry and biology discovery.The capability of learning representations from structures directly without using any predefined structure descriptor is an important feature distinguishing deep learning from other machine learning methods and makes the traditional feature selection and reduction procedures unnecessary. In this chapter we briefly show how these technologies are applied for data integration (fusion) and analysis in drug discovery research covering these areas: (1) application of convolutional neural networks to predict ligand-protein interactions; (2) application of deep learning in compound property and activity prediction; (3) de novo design through deep learning. We also: (1) discuss some aspects of future development of deep learning in drug discovery/chemistry; (2) provide references to published information; (3) provide recently advocated recommendations on using artificial intelligence and deep learning in -omics research and drug discovery.
Collapse
Affiliation(s)
- Irene Lena Hudson
- Mathematical Sciences, School of Science, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
136
|
Artificial intelligence in the early stages of drug discovery. Arch Biochem Biophys 2020; 698:108730. [PMID: 33347838 DOI: 10.1016/j.abb.2020.108730] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Although the use of computational methods within the pharmaceutical industry is well established, there is an urgent need for new approaches that can improve and optimize the pipeline of drug discovery and development. In spite of the fact that there is no unique solution for this need for innovation, there has recently been a strong interest in the use of Artificial Intelligence for this purpose. As a matter of fact, not only there have been major contributions from the scientific community in this respect, but there has also been a growing partnership between the pharmaceutical industry and Artificial Intelligence companies. Beyond these contributions and efforts there is an underlying question, which we intend to discuss in this review: can the intrinsic difficulties within the drug discovery process be overcome with the implementation of Artificial Intelligence? While this is an open question, in this work we will focus on the advantages that these algorithms provide over the traditional methods in the context of early drug discovery.
Collapse
|
137
|
Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov O, Belyaev S, Kurbanov R, Artamonov A, Aladinskiy V, Veselov M, Kadurin A, Johansson S, Chen H, Nikolenko S, Aspuru-Guzik A, Zhavoronkov A. Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models. Front Pharmacol 2020; 11:565644. [PMID: 33390943 PMCID: PMC7775580 DOI: 10.3389/fphar.2020.565644] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023] Open
Abstract
Generative models are becoming a tool of choice for exploring the molecular space. These models learn on a large training dataset and produce novel molecular structures with similar properties. Generated structures can be utilized for virtual screening or training semi-supervized predictive models in the downstream tasks. While there are plenty of generative models, it is unclear how to compare and rank them. In this work, we introduce a benchmarking platform called Molecular Sets (MOSES) to standardize training and comparison of molecular generative models. MOSES provides training and testing datasets, and a set of metrics to evaluate the quality and diversity of generated structures. We have implemented and compared several molecular generation models and suggest to use our results as reference points for further advancements in generative chemistry research. The platform and source code are available at https://github.com/molecularsets/moses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mark Veselov
- Insilico Medicine Hong Kong Ltd., Pak Shek Kok, Hong Kong
| | - Artur Kadurin
- Insilico Medicine Hong Kong Ltd., Pak Shek Kok, Hong Kong
| | - Simon Johansson
- Molecular AI, DiscoverySciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hongming Chen
- Molecular AI, DiscoverySciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sergey Nikolenko
- Insilico Medicine Hong Kong Ltd., Pak Shek Kok, Hong Kong
- Neuromation OU, Tallinn, Estonia
- Computer Science Department, National Research University Higher School of Economics, St. Petersburg, Russia
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- CIFAR AI Chair, Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| | | |
Collapse
|
138
|
Yang M, Huang L, Xu Y, Lu C, Wang J. Heterogeneous graph inference with matrix completion for computational drug repositioning. Bioinformatics 2020; 36:5456-5464. [PMID: 33331887 DOI: 10.1093/bioinformatics/btaa1024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Emerging evidence presents that traditional drug discovery experiment is time-consuming and high costs. Computational drug repositioning plays a critical role in saving time and resources for drug research and discovery. Therefore, developing more accurate and efficient approaches is imperative. Heterogeneous graph inference is a classical method in computational drug repositioning, which not only has high convergence precision, but also has fast convergence speed. However, the method has not fully considered the sparsity of heterogeneous association network. In addition, rough similarity measure can reduce the performance in identifying drug-associated indications. RESULTS In this article, we propose a heterogeneous graph inference with matrix completion (HGIMC) method to predict potential indications for approved and novel drugs. First, we use a bounded matrix completion (BMC) model to prefill a part of the missing entries in original drug-disease association matrix. This step can add more positive and formative drug-disease edges between drug network and disease network. Second, Gaussian radial basis function (GRB) is employed to improve the drug and disease similarities since the performance of heterogeneous graph inference more relies on similarity measures. Next, based on the updated drug-disease associations and new similarity measures of drug and disease, we construct a novel heterogeneous drug-disease network. Finally, HGIMC utilizes the heterogeneous network to infer the scores of unknown association pairs, and then recommend the promising indications for drugs. To evaluate the performance of our method, HGIMC is compared with five state-of-the-art approaches of drug repositioning in the 10-fold cross-validation and de novo tests. As the numerical results shown, HGIMC not only achieves a better prediction performance, but also has an excellent computation efficiency. In addition, cases studies also confirm the effectiveness of our method in practical application. AVAILABILITY The HGIMC software is freely available at https://github.com/BioinformaticsCSU/HGIMC, https://hub.docker.com/repository/docker/yangmy84/hgimc, and http://doi.org/10.5281/zenodo.4285640. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mengyun Yang
- The Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, P.R.China.,School of Science, Shaoyang University, Shaoyang, P.R.China
| | - Lan Huang
- The Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, P.R.China
| | - Yunpei Xu
- The Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, P.R.China
| | - Chengqian Lu
- The Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, P.R.China
| | - Jianxin Wang
- The Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, P.R.China
| |
Collapse
|
139
|
Chiu YC, Chen HIH, Gorthi A, Mostavi M, Zheng S, Huang Y, Chen Y. Deep learning of pharmacogenomics resources: moving towards precision oncology. Brief Bioinform 2020; 21:2066-2083. [PMID: 31813953 PMCID: PMC7711267 DOI: 10.1093/bib/bbz144] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The recent accumulation of cancer genomic data provides an opportunity to understand how a tumor's genomic characteristics can affect its responses to drugs. This field, called pharmacogenomics, is a key area in the development of precision oncology. Deep learning (DL) methodology has emerged as a powerful technique to characterize and learn from rapidly accumulating pharmacogenomics data. We introduce the fundamentals and typical model architectures of DL. We review the use of DL in classification of cancers and cancer subtypes (diagnosis and treatment stratification of patients), prediction of drug response and drug synergy for individual tumors (treatment prioritization for a patient), drug repositioning and discovery and the study of mechanism/mode of action of treatments. For each topic, we summarize current genomics and pharmacogenomics data resources such as pan-cancer genomics data for cancer cell lines (CCLs) and tumors, and systematic pharmacologic screens of CCLs. By revisiting the published literature, including our in-house analyses, we demonstrate the unprecedented capability of DL enabled by rapid accumulation of data resources to decipher complex drug response patterns, thus potentially improving cancer medicine. Overall, this review provides an in-depth summary of state-of-the-art DL methods and up-to-date pharmacogenomics resources and future opportunities and challenges to realize the goal of precision oncology.
Collapse
Affiliation(s)
- Yu-Chiao Chiu
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Hung-I Harry Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Milad Mostavi
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
140
|
Wu Z, Lawrence PJ, Ma A, Zhu J, Xu D, Ma Q. Single-Cell Techniques and Deep Learning in Predicting Drug Response. Trends Pharmacol Sci 2020; 41:1050-1065. [PMID: 33153777 PMCID: PMC7669610 DOI: 10.1016/j.tips.2020.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
Rapidly developing single-cell sequencing analyses produce more comprehensive profiles of the genomic, transcriptomic, and epigenomic heterogeneity of tumor subpopulations than do traditional bulk sequencing analyses. Moreover, single-cell techniques allow the response of a tumor to drug exposure to be more thoroughlyinvestigated. Deep learning (DL) models have successfully extracted features from complex bulk sequence data to predict drug responses. We review recent innovations in single-cell technologies and DL-based approaches related to drug sensitivity predictions. We believe that, by using insights from bulk sequencedata, deep transfer learning (DTL) can facilitate the use of single-cell data for training superior DL-based drug prediction models.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Patrick J Lawrence
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
141
|
Abstract
Drug repurposing or repositioning is a technique whereby existing drugs are used to treat emerging and challenging diseases, including COVID-19. Drug repurposing has become a promising approach because of the opportunity for reduced development timelines and overall costs. In the big data era, artificial intelligence (AI) and network medicine offer cutting-edge application of information science to defining disease, medicine, therapeutics, and identifying targets with the least error. In this Review, we introduce guidelines on how to use AI for accelerating drug repurposing or repositioning, for which AI approaches are not just formidable but are also necessary. We discuss how to use AI models in precision medicine, and as an example, how AI models can accelerate COVID-19 drug repurposing. Rapidly developing, powerful, and innovative AI and network medicine technologies can expedite therapeutic development. This Review provides a strong rationale for using AI-based assistive tools for drug repurposing medications for human disease, including during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Jian Tang
- Mila-Quebec Institute for Learning Algorithms and CIFAR AI Research Chair, HEC Montreal, Montréal, QC, Canada
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
142
|
Ao S, Han D, Sun L, Wu Y, Liu S, Huang Y. Identification of Potential Key Agents for Targeting RNA-Dependent RNA Polymerase of SARS-CoV-2 by Integrated Analysis and Virtual Drug Screening. Front Genet 2020; 11:581668. [PMID: 33281876 PMCID: PMC7705243 DOI: 10.3389/fgene.2020.581668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND RNA-dependent RNA polymerase (RdRp) is the key enzyme responsible for the SARS-CoV-2 replication process and catalyzes the synthesis of complementary minus strand RNA and genomic plus strand RNA, often recognized as good targets for antiviral drugs. MATERIALS AND METHODS A systematic screening of existing antiviral compounds, family analysis, conserved domain analysis, three-dimensional structure modeling, drug virtual screening, and bioassays were performed to identify agents that potentially targeted RNA-dependent RNA polymerase of SARS-CoV-2. RESULTS Four thousand nine hundred and forty seven antiviral lead compounds were selected and evaluated by systematic screening. Of these, 359 agents were screened by family analysis and conserved domain analysis. They were further analyzed by three-dimensional structure modeling, virtual drug screening, and bioassays. The results identified 102 agents with potential for repurposing to target the RNA-dependent RNA polymerase of SARS-CoV-2. CONCLUSION This study identified 102 key agents with potential anti-SARS-CoV-2 RNA-dependent RNA polymerase function and prospects of rapid clinical application for the treatment of COVID-19.
Collapse
Affiliation(s)
- Shuang Ao
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
| | - Dan Han
- College of Medicine, Minzu University of China, Beijing, China
| | - Lei Sun
- Beijing Wildlife Conservation and Natural Reserve Management Station, Beijing Gardening and Greening Bureau, Beijing, China
| | - Yanhong Wu
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shuang Liu
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yaojiang Huang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
143
|
Sahoo P, Roy I, Wang Z, Mi F, Yu L, Balasubramani P, Khan L, Stoddart JF. MultiCon: A Semi-Supervised Approach for Predicting Drug Function from Chemical Structure Analysis. J Chem Inf Model 2020; 60:5995-6006. [DOI: 10.1021/acs.jcim.0c00801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pracheta Sahoo
- Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Zhuoyi Wang
- Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Feng Mi
- Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Lin Yu
- Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Pradeep Balasubramani
- Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Latifur Khan
- Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute of Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
144
|
McDermott MBA, Wang J, Zhao WN, Sheridan SD, Szolovits P, Kohane I, Haggarty SJ, Perlis RH. Deep Learning Benchmarks on L1000 Gene Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1846-1857. [PMID: 30990190 PMCID: PMC6980363 DOI: 10.1109/tcbb.2019.2910061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene expression data can offer deep, physiological insights beyond the static coding of the genome alone. We believe that realizing this potential requires specialized, high-capacity machine learning methods capable of using underlying biological structure, but the development of such models is hampered by the lack of published benchmark tasks and well characterized baselines. In this work, we establish such benchmarks and baselines by profiling many classifiers against biologically motivated tasks on two curated views of a large, public gene expression dataset (the LINCS corpus) and one privately produced dataset. We provide these two curated views of the public LINCS dataset and our benchmark tasks to enable direct comparisons to future methodological work and help spur deep learning method development on this modality. In addition to profiling a battery of traditional classifiers, including linear models, random forests, decision trees, K nearest neighbor (KNN) classifiers, and feed-forward artificial neural networks (FF-ANNs), we also test a method novel to this data modality: graph convolugtional neural networks (GCNNs), which allow us to incorporate prior biological domain knowledge. We find that GCNNs can be highly performant, with large datasets, whereas FF-ANNs consistently perform well. Non-neural classifiers are dominated by linear models and KNN classifiers.
Collapse
|
145
|
Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci Rep 2020; 10:16771. [PMID: 33033310 PMCID: PMC7545175 DOI: 10.1038/s41598-020-73681-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
Machine learning is a well-known approach for virtual screening. Recently, deep learning, a machine learning algorithm in artificial neural networks, has been applied to the advancement of precision medicine and drug discovery. In this study, we performed comparative studies between deep neural networks (DNN) and other ligand-based virtual screening (LBVS) methods to demonstrate that DNN and random forest (RF) were superior in hit prediction efficiency. By using DNN, several triple-negative breast cancer (TNBC) inhibitors were identified as potent hits from a screening of an in-house database of 165,000 compounds. In broadening the application of this method, we harnessed the predictive properties of trained model in the discovery of G protein-coupled receptor (GPCR) agonist, by which computational structure-based design of molecules could be greatly hindered by lack of structural information. Notably, a potent (~ 500 nM) mu-opioid receptor (MOR) agonist was identified as a hit from a small-size training set of 63 compounds. Our results show that DNN could be an efficient module in hit prediction and provide experimental evidence that machine learning could identify potent hits in silico from a limited training set.
Collapse
|
146
|
Austin D, Shivji A, Offei D. Analysis of a novel enrichment strategy for an integrated medicinal chemistry and pharmacology course. CURRENTS IN PHARMACY TEACHING & LEARNING 2020; 12:1201-1207. [PMID: 32739057 DOI: 10.1016/j.cptl.2020.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/17/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Study and application of integrated medicinal chemistry and pharmacology content affords opportunities for students to discuss and develop life-long learning skills. METHODS Five thematic enrichment activities were developed (problem solving, metacognition, reading comprehension, case-based problem solving, and structure-based therapeutic evaluation), each containing a self-study and live session featuring unit-specific content. Voluntary, longitudinal sessions were administered to 139 s professional year pharmacy students at the end of each unit of the first course of an integrated pharmacology and medicinal chemistry sequence (academic quarter system). Students provided five-point Likert-item feedback at the beginning of the course, after the first activity, and at course conclusion. Survey questions were linked to self-assessment domains of metacognition, content relevance, confidence, and affective response to content. RESULTS Survey responses indicated significant improvement in initial confidence (3.7 [1.1] to 4.2 [1.1]) and metacognition (3.2 [1] to 3.8 [1.1]) domains at course conclusion and significant, sustained improvement in affective domain following the first session (3.5 [1.1] to 4.1 [1.2] to 4.2 [1.2]). Perceived relevance of content did not change significantly (4.3 [1] to 4 [1.1] to 4.1 [1.2]). CONCLUSIONS Survey results were consistent with the notion that targeted learning interventions have a significant impact on content perception, which may be especially important for disciplines perceived by students as challenging. Introduction of learning topics with concurrent application may positively influence affective response to learning, which may beneficially impact latent student confidence and self-awareness.
Collapse
Affiliation(s)
- Daniel Austin
- Lake Erie College of Osteopathic Medicine School of Pharmacy, 1858 West Grandview Boulevard Erie, PA 16509, United States.
| | - Adil Shivji
- Lake Erie College of Osteopathic Medicine School of Pharmacy, 1858 West Grandview Boulevard Erie, PA 16509, United States
| | - Daniel Offei
- Lake Erie College of Osteopathic Medicine School of Pharmacy, 1858 West Grandview Boulevard Erie, PA 16509, United States
| |
Collapse
|
147
|
Hendrickx JO, van Gastel J, Leysen H, Martin B, Maudsley S. High-dimensionality Data Analysis of Pharmacological Systems Associated with Complex Diseases. Pharmacol Rev 2020; 72:191-217. [PMID: 31843941 DOI: 10.1124/pr.119.017921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is widely accepted that molecular reductionist views of highly complex human physiologic activity, e.g., the aging process, as well as therapeutic drug efficacy are largely oversimplifications. Currently some of the most effective appreciation of biologic disease and drug response complexity is achieved using high-dimensionality (H-D) data streams from transcriptomic, proteomic, metabolomics, or epigenomic pipelines. Multiple H-D data sets are now common and freely accessible for complex diseases such as metabolic syndrome, cardiovascular disease, and neurodegenerative conditions such as Alzheimer's disease. Over the last decade our ability to interrogate these high-dimensionality data streams has been profoundly enhanced through the development and implementation of highly effective bioinformatic platforms. Employing these computational approaches to understand the complexity of age-related diseases provides a facile mechanism to then synergize this pathologic appreciation with a similar level of understanding of therapeutic-mediated signaling. For informative pathology and drug-based analytics that are able to generate meaningful therapeutic insight across diverse data streams, novel informatics processes such as latent semantic indexing and topological data analyses will likely be important. Elucidation of H-D molecular disease signatures from diverse data streams will likely generate and refine new therapeutic strategies that will be designed with a cognizance of a realistic appreciation of the complexity of human age-related disease and drug effects. We contend that informatic platforms should be synergistic with more advanced chemical/drug and phenotypic cellular/tissue-based analytical predictive models to assist in either de novo drug prioritization or effective repurposing for the intervention of aging-related diseases. SIGNIFICANCE STATEMENT: All diseases, as well as pharmacological mechanisms, are far more complex than previously thought a decade ago. With the advent of commonplace access to technologies that produce large volumes of high-dimensionality data (e.g., transcriptomics, proteomics, metabolomics), it is now imperative that effective tools to appreciate this highly nuanced data are developed. Being able to appreciate the subtleties of high-dimensionality data will allow molecular pharmacologists to develop the most effective multidimensional therapeutics with effectively engineered efficacy profiles.
Collapse
Affiliation(s)
- Jhana O Hendrickx
- Receptor Biology Laboratory, Department of Biomedical Research (J.O.H., J.v.G., H.L., S.M.) and Faculty of Pharmacy, Biomedical and Veterinary Sciences (J.O.H., J.v.G., H.L., B.M., S.M.), University of Antwerp, Antwerp, Belgium
| | - Jaana van Gastel
- Receptor Biology Laboratory, Department of Biomedical Research (J.O.H., J.v.G., H.L., S.M.) and Faculty of Pharmacy, Biomedical and Veterinary Sciences (J.O.H., J.v.G., H.L., B.M., S.M.), University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Laboratory, Department of Biomedical Research (J.O.H., J.v.G., H.L., S.M.) and Faculty of Pharmacy, Biomedical and Veterinary Sciences (J.O.H., J.v.G., H.L., B.M., S.M.), University of Antwerp, Antwerp, Belgium
| | - Bronwen Martin
- Receptor Biology Laboratory, Department of Biomedical Research (J.O.H., J.v.G., H.L., S.M.) and Faculty of Pharmacy, Biomedical and Veterinary Sciences (J.O.H., J.v.G., H.L., B.M., S.M.), University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Laboratory, Department of Biomedical Research (J.O.H., J.v.G., H.L., S.M.) and Faculty of Pharmacy, Biomedical and Veterinary Sciences (J.O.H., J.v.G., H.L., B.M., S.M.), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
148
|
Zhou R, Lu Z, Luo H, Xiang J, Zeng M, Li M. NEDD: a network embedding based method for predicting drug-disease associations. BMC Bioinformatics 2020; 21:387. [PMID: 32938396 PMCID: PMC7495830 DOI: 10.1186/s12859-020-03682-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Drug discovery is known for the large amount of money and time it consumes and the high risk it takes. Drug repositioning has, therefore, become a popular approach to save time and cost by finding novel indications for approved drugs. In order to distinguish these novel indications accurately in a great many of latent associations between drugs and diseases, it is necessary to exploit abundant heterogeneous information about drugs and diseases. RESULTS In this article, we propose a meta-path-based computational method called NEDD to predict novel associations between drugs and diseases using heterogeneous information. First, we construct a heterogeneous network as an undirected graph by integrating drug-drug similarity, disease-disease similarity, and known drug-disease associations. NEDD uses meta paths of different lengths to explicitly capture the indirect relationships, or high order proximity, within drugs and diseases, by which the low dimensional representation vectors of drugs and diseases are obtained. NEDD then uses a random forest classifier to predict novel associations between drugs and diseases. CONCLUSIONS The experiments on a gold standard dataset which contains 1933 validated drug-disease associations show that NEDD produces superior prediction results compared with the state-of-the-art approaches.
Collapse
Affiliation(s)
- Renyi Zhou
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhangli Lu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Huimin Luo
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
- School of Computer and Information Engineering, Henan University, Kaifeng, 475001, China
| | - Ju Xiang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
- Neuroscience Research Center & School of Basic Medical Sciences, Changsha Medical University, Changsha, China
| | - Min Zeng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China.
| |
Collapse
|
149
|
Levin JM, Oprea TI, Davidovich S, Clozel T, Overington JP, Vanhaelen Q, Cantor CR, Bischof E, Zhavoronkov A. Artificial intelligence, drug repurposing and peer review. Nat Biotechnol 2020; 38:1127-1131. [DOI: 10.1038/s41587-020-0686-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
150
|
Deng L, Cai Y, Zhang W, Yang W, Gao B, Liu H. Pathway-Guided Deep Neural Network toward Interpretable and Predictive Modeling of Drug Sensitivity. J Chem Inf Model 2020; 60:4497-4505. [PMID: 32804489 DOI: 10.1021/acs.jcim.0c00331] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To efficiently save cost and reduce risk in drug research and development, there is a pressing demand to develop in silico methods to predict drug sensitivity to cancer cells. With the exponentially increasing number of multi-omics data derived from high-throughput techniques, machine learning-based methods have been applied to the prediction of drug sensitivities. However, these methods have drawbacks either in the interpretability of the mechanism of drug action or limited performance in modeling drug sensitivity. In this paper, we presented a pathway-guided deep neural network (DNN) model to predict the drug sensitivity in cancer cells. Biological pathways describe a group of molecules in a cell that collaborates to control various biological functions like cell proliferation and death, thereby abnormal function of pathways can result in disease. To take advantage of the excellent predictive ability of DNN and the biological knowledge of pathways, we reshaped the canonical DNN structure by incorporating a layer of pathway nodes and their connections to input gene nodes, which makes the DNN model more interpretable and predictive compared to canonical DNN. We have conducted extensive performance evaluations on multiple independent drug sensitivity data sets and demonstrated that our model significantly outperformed the canonical DNN model and eight other classical regression models. Most importantly, we observed a remarkable activity decrease in disease-related pathway nodes during forward propagation upon inputs of drug targets, which implicitly corresponds to the inhibition effect of disease-related pathways induced by drug treatment on cancer cells. Our empirical experiments showed that our method achieves pharmacological interpretability and predictive ability in modeling drug sensitivity in cancer cells. The web server, the processed data sets, and source codes for reproducing our work are available at http://pathdnn.denglab.org.
Collapse
Affiliation(s)
- Lei Deng
- School of Computer Science and Engineering, Central South University, 410075 Changsha, China
| | - Yideng Cai
- School of Computer Science and Engineering, Central South University, 410075 Changsha, China
| | - Wenhao Zhang
- Aliyun School of Big Data, Changzhou University, 213164 Changzhou, China
| | - Wenyi Yang
- School of Computer Science and Engineering, Central South University, 410075 Changsha, China
| | - Bo Gao
- Department of Rheumatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 213164 Changzhou, China
| | - Hui Liu
- Aliyun School of Big Data, Changzhou University, 213164 Changzhou, China
| |
Collapse
|