101
|
PVA/gelatin/β-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124769] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
102
|
Nguyen NT, Jennings J, Milani AH, Martino CDS, Nguyen LTB, Wu S, Mokhtar MZ, Saunders JM, Gautrot JE, Armes SP, Saunders BR. Highly Stretchable Conductive Covalent Coacervate Gels for Electronic Skin. Biomacromolecules 2022; 23:1423-1432. [PMID: 35188757 PMCID: PMC9098112 DOI: 10.1021/acs.biomac.1c01660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Indexed: 01/29/2023]
Abstract
Highly stretchable electrically conductive hydrogels have been extensively researched in recent years, especially for applications in strain and pressure sensing, electronic skin, and implantable bioelectronic devices. Herein, we present a new cross-linked complex coacervate approach to prepare conductive hydrogels that are both highly stretchable and compressive. The gels involve a complex coacervate between carboxylated nanogels and branched poly(ethylene imine), whereby the latter is covalently cross-linked by poly(ethylene glycol) diglycidyl ether (PEGDGE). Inclusion of graphene nanoplatelets (Gnp) provides electrical conductivity as well as tensile and compressive strain-sensing capability to the hydrogels. We demonstrate that judicious selection of the molecular weight of the PEGDGE cross-linker enables the mechanical properties of these hydrogels to be tuned. Indeed, the gels prepared with a PEGDGE molecular weight of 6000 g/mol defy the general rule that toughness decreases as strength increases. The conductive hydrogels achieve a compressive strength of 25 MPa and a stretchability of up to 1500%. These new gels are both adhesive and conformal. They provide a self-healable electronic circuit, respond rapidly to human motion, and can act as strain-dependent sensors while exhibiting low cytotoxicity. Our new approach to conductive gel preparation is efficient, involves only preformed components, and is scalable.
Collapse
Affiliation(s)
- Nam T. Nguyen
- Department
of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K.
| | - James Jennings
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Amir H. Milani
- Department
of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K.
| | - Chiara D. S. Martino
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Linh T. B. Nguyen
- Eastman
Dental Institute, University College London, London WC1X 8LD, U.K.
| | - Shanglin Wu
- Department
of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K.
| | - Muhamad Z. Mokhtar
- Department
of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K.
| | - Jennifer M. Saunders
- Department
of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K.
| | - Julien E. Gautrot
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Brian R. Saunders
- Department
of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K.
| |
Collapse
|
103
|
Xu H, Jiang X, Yang K, Ren J, Zhai Y, Han X, Cai H, Gao F. Conductive and eco-friendly gluten/MXene composite organohydrogels for flexible, adhesive, and low-temperature tolerant epidermal strain sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
104
|
Zhang J, Zhang Q, Liu X, Xia S, Gao Y, Gao G. Flexible and wearable strain sensors based on conductive hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiawei Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Shan Xia
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| |
Collapse
|
105
|
Park K, Choi H, Kang K, Shin M, Son D. Soft Stretchable Conductive Carboxymethylcellulose Hydrogels for Wearable Sensors. Gels 2022; 8:92. [PMID: 35200473 PMCID: PMC8871095 DOI: 10.3390/gels8020092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels that have a capability to provide mechanical modulus matching between time-dynamic curvilinear tissues and bioelectronic devices have been considered tissue-interfacing ionic materials for stably sensing physiological signals and delivering feedback actuation in skin-inspired healthcare systems. These functionalities are totally different from those of elastomers with low ionic conductivity and higher stiffness. Despite such remarkable progress, their low conductivity remains limited in transporting electrical charges to internal or external terminals without undesired information loss, potentially leading to an unstable biotic-abiotic interfaces in the wearable electronics. Here, we report a soft stretchable conductive hydrogel composite consisting of alginate, carboxymethyl cellulose, polyacrylamide, and silver flakes. This composite was fabricated via sol-gel transition. In particular, the phase stability and low dynamic modulus rates of the conductive hydrogel were confirmed through an oscillatory rheological characterization. In addition, our conductive hydrogel showed maximal tensile strain (≈400%), a low deformations of cyclic loading (over 100 times), low resistance (≈8.4 Ω), and a high gauge factor (≈241). These stable electrical and mechanical properties allowed our composite hydrogel to fully support the operation of a light-emitting diode demonstration under mechanical deformation. Based on such durable performance, we successfully measured the electromyogram signals without electrical malfunction even in various motions.
Collapse
Affiliation(s)
- Kyuha Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (K.P.); (H.C.); (K.K.)
| | - Heewon Choi
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (K.P.); (H.C.); (K.K.)
| | - Kyumin Kang
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (K.P.); (H.C.); (K.K.)
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (K.P.); (H.C.); (K.K.)
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
106
|
Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
107
|
Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
108
|
Wang J, Dai T, Zhou Y, Mohamed A, Yuan G, Jia H. Adhesive and high-sensitivity modified Ti 3C 2T X (MXene)-based organohydrogels with wide work temperature range for wearable sensors. J Colloid Interface Sci 2022; 613:94-102. [PMID: 35032780 DOI: 10.1016/j.jcis.2022.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Hydrogel-based wearable sensors have gained great interest on account of their huge application in human-machine interfaces, electronic skin, and healthcare monitoring. However, there are still challenges in designing hydrogel-based sensors with high stability in a wide temperature range, superior adhesion, and excellent sensitivity. Herein, sensors based on oxidized sodium alginate (OSA)/polyacrylamide (PAm)/polydopamine-Ti3C2TX (PMXene) /glycerol/water (Gly/H2O) organohydrogels were designed. The organohydrogels exhibited excellent mechanical properties (elongation at break of 1037%, tensile strength of 0.17 MPa), predominant self-healing ability (self-healing efficiency of 91%), as well as high sensing stability in a wide temperature range (from -20 to 60°C). The introduction of PDA (polydopamine) and viscous glycerin (Gly) provide organohydrogels with superior adhesion. Organohydrogels sensors demonstrated high sensitivity (Gauge Factor, GF = 2.2) due to the combination of ionic and electron conduction. Sensors could stably detect human movement under different strain levels at high and low temperatures, providing a new solution for wearable sensors in extreme conditions.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianyi Dai
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuchen Zhou
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Amel Mohamed
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
109
|
Yang Y, Zhou M, Peng J, Wang X, Liu Y, Wang W, Wu D. Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic. Carbohydr Polym 2022; 276:118753. [PMID: 34823782 DOI: 10.1016/j.carbpol.2021.118753] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Unstable hydrogel-substrate interfaces and defunctionalization at low temperature severely restrict versatile applications of hydrogel-based systems. Herein, various chitosan-polyacrylamide double-network (CS-PAM DN) ionic hydrogels were chemically linked with diverse substrates to construct robust and anti-freezing hydrogel-substrate combination, wherein the destructible CS physical network rendered effective energy dissipation mechanism to significantly enhanced the cohesion of hydrogels and the covalent linkage between PAM network with substrate surface strongly improved the interfacial adhesion. The synergistic effects enabled the CS-PAM DN hydrogels to be tightly bonded on diverse metals and inorganics. Impressively, the hydrogel-substrate combinations were freezing tolerant to well-maintain high interfacial toughness at low temperature. Notably, due to the high toughness and conductivity of hydrogel-metal interface, the hydrogel-metal combination can be utilized as a multi-model flexible sensor to detect strain and pressure within broad temperature range. This work may provide a platform for construction and emerging application of robust, anti-freezing and stable-performance hydrogel-based systems.
Collapse
Affiliation(s)
- Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Manhua Zhou
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junbo Peng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yang Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China; Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Wanjie Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
110
|
Huang C, Suzuki T, Minami H. Synthesis of micrometer-sized poly(vinyl acetate) particles through microsuspension iodine transfer polymerization: effect of iodine species in a water medium. Polym Chem 2022. [DOI: 10.1039/d1py01341f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of the behaviors of iodine species in the microsuspension polymerization of vinyl acetate (VAc) in an aqueous medium.
Collapse
Affiliation(s)
- Chujuan Huang
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Toyoko Suzuki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hideto Minami
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
111
|
Hydrophobic association and ionic coordination dual crossed‐linked conductive hydrogels with self‐adhesive and self‐healing virtues for conformal strain sensors. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
112
|
Ling Q, Ke T, Liu W, Ren Z, Zhao L, Gu H. Tough, Repeatedly Adhesive, Cyclic Compression-Stable, and Conductive Dual-Network Hydrogel Sensors for Human Health Monitoring. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03358] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Tao Ke
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Wentao Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Zhijun Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
113
|
Ren Z, Ke T, Ling Q, Zhao L, Gu H. Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydr Polym 2021; 273:118533. [PMID: 34560946 DOI: 10.1016/j.carbpol.2021.118533] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/01/2023]
Abstract
A sensor used to monitor tissue deformation requires good flexibility, stretchability, self-adhesion, cyto-compatibility, and antibacterial property. Here, we prepared hydrogel sensor based on O-carboxymethyl chitosan (O-CMCS) and poly(vinyl alcohol) (PVA) for monitoring human and organ motions. Based on the host-guest complexing of poly(β-cyclodextrin) with diamantane, a cross-linker containing multiple aldehyde groups was prepared for cross-linking with O-CMCS through Schiff base linkages. Borax was used as the second cross-linker to cross-link PVA through dynamic borate ester bonds. Carbon nanotubes (CNTs) were added into the hydrogels to improve their electrical conductivity and mechanical properties. The obtained hydrogel exhibited rapid self-healing ability with healing efficiency as high as 97%-103% (in 15 s), good adhesion to human skin and wet organ, good antibacterial property, cyto-compatibility, and stretchability. Furthermore, the hydrogel sensor can monitor the respiratory movement of porcine lungs and the beating of rat hearts.
Collapse
Affiliation(s)
- Zhijun Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Tao Ke
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
114
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
115
|
Mesoporous nanomaterial-assisted hydrogel double network composite for mixed-mode liquid chromatography. Mikrochim Acta 2021; 188:433. [PMID: 34825998 DOI: 10.1007/s00604-021-05094-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
By introducing functional groups such as quaternary amine groups, sulfonic acid groups, triazine groups, and other mespore nanomaterials into the hydrogel, better separation effect of some organic framework materials has been obtained. Due to a reasonable design and preparation strategy, the hydrogel composite-modified silica can be used in the selective separation of various analytes such as pesticides, alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides/bases, benzoic acids, antibiotics, and carbohydrates. Through the exploration of chromatographic retention behavior, it is proved that the column can be used in mixed-mode liquid chromatography. The intra-day relative standard deviation for retention time of this new stationary phase is 0.12-0.16% (n = 10), and the inter-day relative standard deviation is less than 0.39% (n = 5). This new stationary phase can also be used for separation in complex samples. The limit of detection (LOD) for chlorotoluron in farm irrigation water is 0.21 µg/L and the linear range is 2-250 µg/L. After optimizing the chromatographic conditions, the highest efficiency of the hydrogel column in RPLC and HILIC modes has reached 32,400 plates/m (chlorobenzuron) and 41,300 plates/m (galactose). This new type of hydrogel composite is a porous network material with flexible functional design and simple preparation method and its application has been expanded in liquid chromatography separation successfully. The hydrogel composed of triallyl cyanate cross-linking agent and 3-(2-(methacryloyloxy) ethyl) dimethylamine) propane-1-sulfonate (SBMA) monomer which were co-modified on the surface of mesoporous silica with MOF-919 for separation in mixed-mode liquid chromatography.
Collapse
|
116
|
Zhang Y, Xu J, Wang H. Bio-based, self-adhesive, and self-healing ionogel with excellent mechanical properties for flexible strain sensor. RSC Adv 2021; 11:37661-37666. [PMID: 35496444 PMCID: PMC9043983 DOI: 10.1039/d1ra06686b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Bio-based ionogels with versatile properties are highly desired for practical applications. Herein, we designed a novel self-healing, anti-freezing, and self-adhesive ionogel with excellent sensor capability. The ionogel was obtained by cross-linking amino groups (chitosan) and aldehyde groups (dextran oxide) to form Schiff-base bonds in the ionic liquids (EMIMOAc) with TA. Ionogels inherited the superior electrical conductivity of ionic liquids (IG2, 1.1 mS cm-1). Due to the dynamic reaction of Schiff-base bonds, the obtained IG2 possessed self-healing properties (self-healing efficiency = 89%). The presence of TA also provided the ionogel with excellent self-adhesive properties (IG2/TA, adhesive strength to hogskin = 8.05 kPa). Owing to the low freezing point and low vapor pressure of ionic liquids, ionogels were endowed with anti-freeze properties and resistance to solvent volatility. Moreover, the ionogel can act as a strain sensor, and exhibited excellent sensitivity and sensing performance. Our work provided a green and effective method in preparation of the high performance ionogel sensor, which could accommodate future practical industrial applications.
Collapse
Affiliation(s)
- Yipeng Zhang
- West China Hospital of Sichuan University Chengdu 610041 China
| | - Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 P. R. China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
117
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
118
|
Zhang Z, Lin T, Li S, Chen X, Que X, Sheng L, Hu Y, Peng J, Ma H, Li J, Zhang W, Zhai M. Polyacrylamide/Copper-Alginate Double Network Hydrogel Electrolyte with Excellent Mechanical Properties and Strain-Sensitivity. Macromol Biosci 2021; 22:e2100361. [PMID: 34761522 DOI: 10.1002/mabi.202100361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/06/2021] [Indexed: 12/13/2022]
Abstract
The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper-alginate double network (PAM/Cu-alg DN) hydrogel electrolyte is successfully synthesized by radiation-induced polymerization and cross-linking process of acrylamide with N, N'-methylene-bis-acrylamide and subsequent cupric ion (Cu2+ ) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu-alg DN hydrogel electrolyte. The PAM/Cu-alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm-1 . PAM/Cu-alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu-alg DN hydrogel electrolyte exhibits excellent strain-sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties.
Collapse
Affiliation(s)
- Zeyu Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China
| | - Tingrui Lin
- Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., 518 North Liyuan Avenue, Licheng District Putian, Fujian, 351100, P. R. China
| | - Shuangxiao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibang Chen
- Institute of Chemical Defense, Beijing, 100191, P. R. China
| | - Xueyan Que
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lang Sheng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yang Hu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huiling Ma
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenjuan Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
119
|
Zhan TY, Wang S, Guo ZY, Hu YF. Preparation and application of a stretchable, conductive and temperature-sensitive dual-network nanocomposite hydrogel. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1984848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tian Yu Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Zhi Yong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Yu Fang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
120
|
Zheng H, Lin N, He Y, Zuo B. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40013-40031. [PMID: 34375080 DOI: 10.1021/acsami.1c08395] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Flexible and wearable hydrogel strain sensors have attracted tremendous attention for applications in human motion and physiological signal monitoring. However, it is still a great challenge to develop a hydrogel strain sensor with certain mechanical properties and tensile deformation capabilities, which can be in conformal contact with the target organ and also have self-healing properties, self-adhesive capability, biocompatibility, antibacterial properties, high strain sensitivity, and stable electrical performance. In this paper, an ionic conductive hydrogel (named PBST) is rationally designed by proportionally mixing polyvinyl alcohol (PVA), borax, silk fibroin (SF), and tannic acid (TA). SF can not only be a reinforcement to introduce an energy dissipation mechanism into the dynamically cross-linked hydrogel network to stabilize the non-Newtonian behavior of PVA and borax but it can also act as a cross-linking agent to combine with TA to reduce the dissociation of TA on the hydrogel network, improving the mechanical properties and viscoelasticity of the hydrogel. The combination of SF and TA can improve the self-healing ability of the hydrogel and realize the adjustable viscoelasticity of the hydrogel without sacrificing other properties. The obtained hydrogel has excellent stretchability (strain > 1000%) and shows good conformal contact with human skin. When the hydrogel is damaged by external strain, it can rapidly self-repair (mechanical and electrical properties) without external stimuli. It shows adhesiveness and repeatable adhesiveness to different materials (steel, wood, PTFE, glass, iron, and cotton fabric) and biological tissues (pigskin) and is easy to peel off without residue. The obtained PBST conductive hydrogel also has a wide strain-sensing range (>650%) and reliable stability. The hydrogel adhered to the skin surface can monitor large strain movements such as in finger joints, wrist joints, knee joints, and so on and detect swallowing, smiling, facial bulging and calming, and other micro-deformation behaviors. It can also distinguish physical signals such as light smile, big laugh, fast and slow breathing, and deep and shallow breathing. Therefore, the PBST conductive hydrogel material with multiple synergistic functions has great potential as a flexible wearable strain sensor. The PBST hydrogel has antibacterial properties and good biocompatibility at the same time, which provides a safety guarantee for it as a flexible wearable strain sensor. This work is expected to provide a new way for people to develop ideal wearable strain sensors.
Collapse
Affiliation(s)
- Haiyan Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Nan Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Yanyi He
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Baoqi Zuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
121
|
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021; 21:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Hydrogel is a kind of 3D polymer network with strong swelling ability in water and appropriate mechanical and biological properties, which make it feasible to maintain bioactive substances and has promising applications in the fields of biomaterials, soft machines, and artificial tissues. Unfortunately, traditional hydrogels prepared by chemical crosslinking have poor mechanical properties and limited functions, which limit their further application. In recent years, with the continuous development of nanoparticle research, more and more studies have combined nanoparticles with hydrogels to make up for the shortcomings of traditional hydrogels. In this article, the types and functions of hydrogels and nanomaterials are introduced first, as well as the functions and applications of injectable nanocomposite hydrogels (INHs), then the latest progress of INHs for cancer treatment is reviewed, some existing problems are summarized, and the application prospect of NHs is prospected.
Collapse
Affiliation(s)
- Wenzhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qida Zong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
122
|
Fan Q, Wang G, Tian D, Ma A, Wang W, Bai L, Chen H, Yang L, Yang H, Wei D, Yang Z. Self-healing nanocomposite hydrogels via Janus nanosheets: Multiple effects of metal–coordination and host–guest interactions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
123
|
Qi XN, Zhang YM, Yao H, Lin Q, Wei TB. Fabrication of a solid sensor based on a phenazine derivative film for enhancing the sensing properties of biogenic amine and applying for monitoring shrimp freshness. NEW J CHEM 2021. [DOI: 10.1039/d1nj01670a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In practical applications, fixing a fluorescent sensor on a solid composite film matrix can settle the boundaries of keeping the sensor in the solution state.
Collapse
Affiliation(s)
- Xiao-Ni Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|