101
|
Chen Y, He X, Ma B, Liu K, Gao T, Niu W, Guo J. Noncanonical amino acid mutagenesis in response to recoding signal-enhanced quadruplet codons. Nucleic Acids Res 2022; 50:e94. [PMID: 35657094 PMCID: PMC9458425 DOI: 10.1093/nar/gkac474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
While amber suppression is the most common approach to introduce noncanonical amino acids into proteins in live cells, quadruplet codon decoding has potential to enable a greatly expanded genetic code with up to 256 new codons for protein biosynthesis. Since triplet codons are the predominant form of genetic code in nature, quadruplet codon decoding often displays limited efficiency. In this work, we exploited a new approach to significantly improve quadruplet UAGN and AGGN (N = A, U, G, C) codon decoding efficiency by using recoding signals imbedded in mRNA. With representative recoding signals, the expression level of mutant proteins containing UAGN and AGGN codons reached 48% and 98% of that of the wild-type protein, respectively. Furthermore, this strategy mitigates a common concern of reading-through endogenous stop codons with amber suppression-based system. Since synthetic recoding signals are rarely found near the endogenous UAGN and AGGN sequences, a low level of undesirable suppression is expected. Our strategy will greatly enhance the utility of noncanonical amino acid mutagenesis in live-cell studies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xinyuan He
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Bin Ma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kun Liu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tianyu Gao
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
102
|
Pastore AJ, Ficaretta E, Chatterjee A, Davidson VL. Substitution of the sole tryptophan of the cupredoxin, amicyanin, with 5-hydroxytryptophan alters fluorescence properties and energy transfer to the type 1 copper site. J Inorg Biochem 2022; 234:111895. [PMID: 35696758 PMCID: PMC9753554 DOI: 10.1016/j.jinorgbio.2022.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
Amicyanin is a type 1 copper protein with a single tryptophan residue. Using genetic code expansion, the tryptophan was selectively replaced with the unnatural amino acid, 5-hydroxytryptophan (5-HTP). The 5-HTP substituted amicyanin exhibited absorbance at 300-320 nm, characteristic of 5-HTP and not seen in native amicyanin. The fluorescence emission maximum in 5-HTP substituted amicyanin is redshifted from 318 nm in native amicyanin to 331 nm and to 348 nm in the unfolded protein. The fluorescence quantum yield of 5-HTP substituted amicyanin mutant was much less than that of native amicyanin. Differences in intrinsic fluorescence are explained by differences in the excited states of tryptophan versus 5-HTP and the intraprotein environment. The substitution of tryptophan with 5-HTP did not affect the visible absorbance and redox potential of the copper, which is 10 Å away. In amicyanin and other cupredoxins, an unexplained quenching of the intrinsic fluorescence by the bound copper is observed. However, the fluorescence of 5-HTP substituted amicyanin is not quenched by the copper. It is shown that the mechanism of quenching in native amicyanin is Förster, or fluorescence, resonance energy transfer (FRET). This does not occur in 5-HTP substituted amicyanin because the fluorescence quantum yield is significantly lower and the red-shift of fluorescence emission maximum decreases overlap with the near UV absorbance of copper. Characterization of the distinct fluorescence properties of 5-HTP relative to tryptophan in amicyanin provides a basis for spectroscopic interrogation of the protein microenvironment using 5-HTP, and long-distance interactions with transition metals.
Collapse
Affiliation(s)
- Anthony J Pastore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Elise Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
103
|
Li M, Wang F, Yan L, Lu M, Zhang Y, Peng T. Genetically encoded fluorescent unnatural amino acids and FRET probes for detecting deubiquitinase activities. Chem Commun (Camb) 2022; 58:10186-10189. [PMID: 36000311 DOI: 10.1039/d2cc03623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we present the genetic encoding of 7-aminocoumarin-based lysine derivatives, ACouK and AFCouK, into proteins in both bacterial and mammalian cells and the characterization of FRET pairs comprising ACouK or AFCouK as the donor and GFP as the acceptor. We further report the application of the FRET pairs to construct fully genetically encoded ratiometric probes for detecting deubiquitinases and screening for inhibitors.
Collapse
Affiliation(s)
- Manjia Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Feifei Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Long Yan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. .,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
104
|
Tir N, Heistinger L, Grünwald-Gruber C, Jakob LA, Dickgiesser S, Rasche N, Mattanovich D. From strain engineering to process development: monoclonal antibody production with an unnatural amino acid in Pichia pastoris. Microb Cell Fact 2022; 21:157. [PMID: 35953849 PMCID: PMC9367057 DOI: 10.1186/s12934-022-01882-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Expansion of the genetic code is a frequently employed approach for the modification of recombinant protein properties. It involves reassignment of a codon to another, e.g., unnatural, amino acid and requires the action of a pair of orthogonal tRNA and aminoacyl tRNA synthetase modified to recognize only the desired amino acid. This approach was applied for the production of trastuzumab IgG carrying p-azido-L-phenylalanine (pAzF) in the industrial yeast Pichia pastoris. Combining the knowledge of protein folding and secretion with bioreactor cultivations, the aim of the work was to make the production of monoclonal antibodies with an expanded genetic code cost-effective on a laboratory scale. RESULTS Co-translational transport of proteins into the endoplasmic reticulum through secretion signal prepeptide change and overexpression of lumenal chaperones Kar2p and Lhs1p improved the production of trastuzumab IgG and its Fab fragment with incorporated pAzF. In the case of Fab, a knockout of vacuolar targeting for protein degradation further increased protein yield. Fed-batch bioreactor cultivations of engineered P. pastoris strains increased IgG and IgGpAzF productivity by around 50- and 20-fold compared to screenings, yielding up to 238 mg L-1 and 15 mg L-1 of fully assembled tetrameric protein, respectively. Successful site-specific incorporation of pAzF was confirmed by mass spectrometry. CONCLUSIONS Pichia pastoris was successfully employed for cost-effective laboratory-scale production of a monoclonal antibody with an unnatural amino acid. Applying the results of this work in glycoengineered strains, and taking further steps in process development opens great possibilities for utilizing P. pastoris in the development of antibodies for subsequent conjugations with, e.g., bioactive payloads.
Collapse
Affiliation(s)
- Nora Tir
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Lina Heistinger
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093, Zurich, Switzerland
| | - Clemens Grünwald-Gruber
- University of Natural Resources and Life Sciences, Vienna Core Facility Mass Spectrometry, Muthgasse 18, 1190, Vienna, Austria
| | - Leo A Jakob
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Dickgiesser
- ADCs & Targeted NBE Therapeutics, Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Nicolas Rasche
- ADCs & Targeted NBE Therapeutics, Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
105
|
Allen GL, Grahn AK, Kourentzi K, Willson RC, Waldrop S, Guo J, Kay BK. Expanding the chemical diversity of M13 bacteriophage. Front Microbiol 2022; 13:961093. [PMID: 36003937 PMCID: PMC9393631 DOI: 10.3389/fmicb.2022.961093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Bacteriophage M13 virions are very stable nanoparticles that can be modified by chemical and genetic methods. The capsid proteins can be functionalized in a variety of chemical reactions without loss of particle integrity. In addition, Genetic Code Expansion (GCE) permits the introduction of non-canonical amino acids (ncAAs) into displayed peptides and proteins. The incorporation of ncAAs into phage libraries has led to the discovery of high-affinity binders with low nanomolar dissociation constant (K D) values that can potentially serve as inhibitors. This article reviews how bioconjugation and the incorporation of ncAAs during translation have expanded the chemistry of peptides and proteins displayed by M13 virions for a variety of purposes.
Collapse
Affiliation(s)
| | | | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Sean Waldrop
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Brian K. Kay
- Tango Biosciences, Inc., Chicago, IL, United States
| |
Collapse
|
106
|
Ji Y, Sun L, Chen Y, Qin H, Xuan W. Sirtuin‐Derived Covalent Binder for the Selective Recognition of Protein Crotonylation. Angew Chem Int Ed Engl 2022; 61:e202205522. [DOI: 10.1002/anie.202205522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yanli Ji
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Lin Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences (CAS) Dalian 116023 China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences (CAS) Dalian 116023 China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- School of Life Sciences Tianjin University Tianjin 300072 China
| |
Collapse
|
107
|
Ren C, Wu Q, Xiao R, Ji Y, Yang X, Zhang Z, Qin H, Ma JA, Xuan W. Expanding the Scope of Genetically Encoded Lysine PTMs with Lactylation, β-Hydroxybutyrylation and Lipoylation. Chembiochem 2022; 23:e202200302. [PMID: 35906721 DOI: 10.1002/cbic.202200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Post-translational modifications (PTMs) occurring on lysine residues, especially diverse forms of acylations, have seen rapid growth over the past two decades. Among them, lactylation and β-hydroxybutyrylation of lysine side-chains are newly identified histone marks and their implications in physiology and diseases have aroused broad research interest. Meanwhile, lysine lipoylation is highly conserved in diverse organisms and well known for the pivotal role in central metabolic pathways, and recent findings in the proteomic profiling of protein lipoylation have nonetheless suggested a pressing need for an extensive investigation. For both basic and applied research, it is highly necessary to prepare PTM-bearing proteins particularly in a site-specific manner. Herein, we use genetic code expansion to site-specifically generate these lysine PTMs, including lactylation, β-hydroxybutyrylation and lipoylation in proteins in E. coli and mammalian cells. Notably using strategies including activity-based selection, screening and rational design, unique pyrrolysyl-tRNA synthetase variants were successfully evolved for each of the three non-canonical amino acids and enable efficient production of recombinant proteins, thus holding promise to benefit relevant studies. Through encoding these ncAAs, we examined the deacylase activities of mammalian sirtuins to these modifications, and importantly unfold lipoamidase activity of several sirtuins.
Collapse
Affiliation(s)
- Conghui Ren
- Nankai University College of Chemistry, Chemistry, CHINA
| | - Qifan Wu
- Nankai University College of Chemistry, Chemistry, CHINA
| | - Ruotong Xiao
- Nankai University College of Chemistry, chemistry, CHINA
| | - Yanli Ji
- Nankai University College of Chemistry, chemistry, CHINA
| | - Xiaochen Yang
- Nankai University College of Chemistry, chemistry, CHINA
| | - Zhuo Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, CHINA
| | - Hongqiang Qin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, CHINA
| | - Jun-An Ma
- Tianjin University, Chemistry, CHINA
| | - Weimin Xuan
- Tianjin University, School of Life Sciences, 92 Weijing Road, 300072, Tianjin, CHINA
| |
Collapse
|
108
|
Sun Y, Chen Y, Xu Y, Zhang Y, Lu M, Li M, Zhou L, Peng T. Genetic encoding of ε- N-L-lactyllysine for detecting delactylase activity in living cells. Chem Commun (Camb) 2022; 58:8544-8547. [PMID: 35815577 DOI: 10.1039/d2cc02643k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysine ε-N-L-lactylation is a newly discovered post-translational modification. Herein we present the genetic encoding of ε-N-L-lactyllysine in bacterial and mammalian cells, allowing the preparation of site-specifically ε-N-L-lactylated recombinant proteins and the construction of fluorescent and luminescent probes for detecting delactylases in living cells. Using these probes, we demonstrate sirtuin 1 as a potential delactylase for non-histone proteins.
Collapse
Affiliation(s)
- Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yanchi Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Manjia Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Liyan Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
109
|
Engineering of enzymes using non-natural amino acids. Biosci Rep 2022; 42:231590. [PMID: 35856922 PMCID: PMC9366748 DOI: 10.1042/bsr20220168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In enzyme engineering, the main targets for enhancing properties are enzyme activity, stereoselective specificity, stability, substrate range, and the development of unique functions. With the advent of genetic code extension technology, non-natural amino acids (nnAAs) are able to be incorporated into proteins in a site-specific or residue-specific manner, which breaks the limit of 20 natural amino acids for protein engineering. Benefitting from this approach, numerous enzymes have been engineered with nnAAs for improved properties or extended functionality. In this review, we focus on applications and strategies for using nnAAs in enzyme engineering. Notably, approaches to computational modelling of enzymes with nnAAs are also addressed. Finally, we discuss the bottlenecks that currently need to be addressed in order to realise the broader prospects of this genetic code extension technique.
Collapse
|
110
|
Lin CY, Muñoz AL, Laremore TN, Silakov A, Krebs C, Boal AK, Bollinger JM. Use of Noncanonical Tyrosine Analogues to Probe Control of Radical Intermediates during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). ACS Catal 2022; 12:6968-6979. [PMID: 37744570 PMCID: PMC10516331 DOI: 10.1021/acscatal.2c01037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Important bioactive natural products, including prostaglandin H2 and artemisinin, contain reactive endoperoxides. Known enzymatic pathways for endoperoxide installation require multiple hydrogen-atom transfers (HATs). For example, iron(II)- and 2-oxoglutarate-dependent verruculogen synthase (FtmOx1; EC 1.14.11.38) mediates HAT from aliphatic C21 of fumitremorgin B, capture of O2 by the C21 radical (C21•), addition of the peroxyl radical (C21-O-O•) to olefinic C27, and HAT to the resultant C26•. Recent studies proposed conflicting roles for FtmOx1 tyrosine residues, Tyr224 and Tyr68, in the HATs from C21 and to C26•. Here, analysis of variant proteins bearing a ring-halogenated tyrosine or (amino)phenylalanine in place of either residue establishes that Tyr68 is the hydrogen donor to C26•, while Tyr224 has no essential role. The radicals that accumulate rapidly in FtmOx1 variants bearing a HAT-competent tyrosine analog at position 68 exhibit hypsochromically shifted absorption and, in cases of fluorine substitution, 19F-coupled electron-paramagnetic-resonance (EPR) spectra. By contrast, functional Tyr224-substituted variants generate radicals with unaltered light-absorption and EPR signatures as they produce verruculogen. The alternative major product of the Tyr68Phe variant, which forms competitively with verruculogen also in wild-type FtmOx1 in 2H2O and in the variant with the less readily oxidized 2,3-F2Tyr at position 68, is identified by mass spectrometry and isotopic labeling as the 26-hydroxy-21,27-endoperoxide compound formed after capture of another equivalent of O2 by the longer lived C26•. The results highlight the considerable chemical challenges the enzyme must navigate in averting both oxygen rebound and a second O2 coupling to obtain verruculogen selectively over other possible products.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
| | - Angel L. Muñoz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - Tatiana N. Laremore
- Huck Institutes of the Life Sciences, The Pennsylvania State University; University Park, PA 16802, USA
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| |
Collapse
|
111
|
Sirtuin‐Derived Covalent Binder for the Selective Recognition of Protein Crotonylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
112
|
Wang S, Osgood AO, Chatterjee A. Uncovering post-translational modification-associated protein-protein interactions. Curr Opin Struct Biol 2022; 74:102352. [PMID: 35334254 PMCID: PMC9464464 DOI: 10.1016/j.sbi.2022.102352] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023]
Abstract
In living systems, the chemical space and functional repertoire of proteins are dramatically expanded through the post-translational modification (PTM) of various amino acid residues. These modifications frequently trigger unique protein-protein interactions (PPIs) - for example with reader proteins that directly bind the modified amino acid residue - which leads to downstream functional outcomes. The modification of a protein can also perturb its PPI network indirectly, for example, through altering its conformation or subcellular localization. Uncovering the network of unique PTM-triggered PPIs is essential to fully understand the roles of an ever-expanding list of PTMs in our biology. In this review, we discuss established strategies and current challenges associated with this endeavor.
Collapse
Affiliation(s)
- Shu Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Arianna O Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
113
|
Gueta O, Sheinenzon O, Azulay R, Shalit H, Strugach DS, Hadar D, Gelkop S, Milo A, Amiram M. Tuning the Properties of Protein-Based Polymers Using High-Performance Orthogonal Translation Systems for the Incorporation of Aromatic Non-Canonical Amino Acids. Front Bioeng Biotechnol 2022; 10:913057. [PMID: 35711629 PMCID: PMC9195583 DOI: 10.3389/fbioe.2022.913057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
The incorporation of non-canonical amino acids (ncAAs) using engineered aminoacyl-tRNA synthetases (aaRSs) has emerged as a powerful methodology to expand the chemical repertoire of proteins. However, the low efficiencies of typical aaRS variants limit the incorporation of ncAAs to only one or a few sites within a protein chain, hindering the design of protein-based polymers (PBPs) in which multi-site ncAA incorporation can be used to impart new properties and functions. Here, we determined the substrate specificities of 11 recently developed high-performance aaRS variants and identified those that enable an efficient multi-site incorporation of 15 different aromatic ncAAs. We used these aaRS variants to produce libraries of two temperature-responsive PBPs-elastin- and resilin-like polypeptides (ELPs and RLPs, respectively)-that bear multiple instances of each ncAA. We show that incorporating such aromatic ncAAs into the protein structure of ELPs and RLPs can affect their temperature responsiveness, secondary structure, and self-assembly propensity, yielding new and diverse families of ELPs and RLPs, each from a single DNA template. Finally, using a molecular model, we demonstrate that the temperature-responsive behavior of RLPs is strongly affected by both the hydrophobicity and the size of the unnatural aromatic side-chain. The ability to efficiently incorporate multiple instances of diverse ncAAs alongside the 20 natural amino acids can help to elucidate the effect of ncAA incorporation on these and many other PBPs, with the aim of designing additional precise and chemically diverse polymers with new or improved properties.
Collapse
Affiliation(s)
- Osher Gueta
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ortal Sheinenzon
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rotem Azulay
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hadas Shalit
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sigal Gelkop
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
114
|
Kimoto M, Hirao I. Genetic Code Engineering by Natural and Unnatural Base Pair Systems for the Site-Specific Incorporation of Non-Standard Amino Acids Into Proteins. Front Mol Biosci 2022; 9:851646. [PMID: 35685243 PMCID: PMC9171071 DOI: 10.3389/fmolb.2022.851646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Amino acid sequences of proteins are encoded in nucleic acids composed of four letters, A, G, C, and T(U). However, this four-letter alphabet coding system limits further functionalities of proteins by the twenty letters of amino acids. If we expand the genetic code or develop alternative codes, we could create novel biological systems and biotechnologies by the site-specific incorporation of non-standard amino acids (or unnatural amino acids, unAAs) into proteins. To this end, new codons and their complementary anticodons are required for unAAs. In this review, we introduce the current status of methods to incorporate new amino acids into proteins by in vitro and in vivo translation systems, by focusing on the creation of new codon-anticodon interactions, including unnatural base pair systems for genetic alphabet expansion.
Collapse
Affiliation(s)
| | - Ichiro Hirao
- *Correspondence: Michiko Kimoto, ; Ichiro Hirao,
| |
Collapse
|
115
|
Löffler JG, Deniz E, Feid C, Franz VG, Bredenbeck J. Versatile Vibrational Energy Sensors for Proteins. Angew Chem Int Ed Engl 2022; 61:e202200648. [PMID: 35226765 PMCID: PMC9401566 DOI: 10.1002/anie.202200648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/10/2022]
Abstract
Vibrational energy transfer (VET) is emerging as key mechanism for protein functions, possibly playing an important role for energy dissipation, allosteric regulation, and enzyme catalysis. A deep understanding of VET is required to elucidate its role in such processes. Ultrafast VIS-pump/IR-probe spectroscopy can detect pathways of VET in proteins. However, the requirement of having a VET donor and a VET sensor installed simultaneously limits the possible target proteins and sites; to increase their number we compare six IR labels regarding their utility as VET sensors. We compare these labels in terms of their FTIR, and VET signature in VET donor-sensor dipeptides in different solvents. Furthermore, we incorporated four of these labels in PDZ3 to assess their capabilities in more complex systems. Our results show that different IR labels can be used interchangeably, allowing for free choice of the right label depending on the system under investigation and the methods available.
Collapse
Affiliation(s)
- Jan G. Löffler
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Erhan Deniz
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Carolin Feid
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Valentin G. Franz
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Jens Bredenbeck
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| |
Collapse
|
116
|
Abstract
Some oxidoreductase enzymes use redox-active tyrosine, tryptophan, cysteine, and/or glycine residues as one-electron, high-potential redox (radical) cofactors. Amino-acid radical cofactors typically perform one of four tasks-they work in concert with a metallocofactor to carry out a multielectron redox process, serve as storage sites for oxidizing equivalents, activate the substrate molecules, or move oxidizing equivalents over long distances. It is challenging to experimentally resolve the thermodynamic and kinetic redox properties of a single-amino-acid residue. The inherently reactive and highly oxidizing properties of amino-acid radicals increase the experimental barriers further still. This review describes a family of stable and well-structured model proteins that was made specifically to study tyrosine and tryptophan oxidation-reduction. The so-called α3X model protein system was combined with very-high-potential protein film voltammetry, transient absorption spectroscopy, and theoretical methods to gain a comprehensive description of the thermodynamic and kinetic properties of protein tyrosine and tryptophan radicals.
Collapse
Affiliation(s)
- Cecilia Tommos
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
117
|
Walker J, Hamlish N, Tytla A, Brauer DD, Francis MB, Schepartz A. Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates. ACS CENTRAL SCIENCE 2022; 8:473-482. [PMID: 35505866 PMCID: PMC9052802 DOI: 10.1021/acscentsci.1c01577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 05/04/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are peptide-derived natural products with potent antibiotic, antiviral, and anticancer properties. RiPP enzymes known as cyclodehydratases and dehydrogenases work together to catalyze intramolecular, inter-residue condensation and dehydrogenation reactions that install oxazoline/oxazole and thiazoline/thiazole heterocycles within ribosomally produced polypeptide chains. Here, we show that the previously reported enzymes MicD-F and ArtGox accept backbone-modified monomers-including aminobenzoic acid derivatives and beta-amino acids-within leader-free polypeptides, even at positions immediately preceding or following the site of cyclization/dehydrogenation. The products are sequence-defined chemical polymers with multiple, diverse non-α-amino acid subunits. We show further that MicD-F and ArtGox can install heterocyclic backbones within protein loops and linkers without disrupting the native tertiary fold. Calculations reveal the extent to which these heterocycles restrict conformational space; they also eliminate a peptide bond-both features could improve the stability or add function to linker sequences now commonplace in emerging biotherapeutics. This work represents a general strategy to expand the chemical diversity of the proteome beyond and in synergy with what can now be accomplished by expanding the genetic code.
Collapse
Affiliation(s)
- Joshua
A. Walker
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
| | - Noah Hamlish
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
| | - Avery Tytla
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel D. Brauer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
- E-mail:
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
- E-mail:
| |
Collapse
|
118
|
Grasso K, Singha Roy SJ, Osgood AO, Yeo MJR, Soni C, Hillenbrand CM, Ficaretta ED, Chatterjee A. A Facile Platform to Engineer Escherichia coli Tyrosyl-tRNA Synthetase Adds New Chemistries to the Eukaryotic Genetic Code, Including a Phosphotyrosine Mimic. ACS CENTRAL SCIENCE 2022; 8:483-492. [PMID: 35559426 PMCID: PMC9088295 DOI: 10.1021/acscentsci.1c01465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 06/03/2023]
Abstract
The Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNAEcTyr pair offers an attractive platform for genetically encoding new noncanonical amino acids (ncAA) in eukaryotes. However, challenges associated with a eukaryotic selection system, which is needed to engineer the platform, have impeded its success in the past. Recently, using a facile E. coli-based selection system, we showed that EcTyrRS could be engineered in a strain where the endogenous tyrosyl pair was substituted with an archaeal counterpart. However, significant cross-reactivity between the UAG-suppressing tRNACUA EcTyr and the bacterial glutaminyl-tRNA synthetase limited the scope of this strategy, preventing the selection of moderately active EcTyrRS mutants. Here we report an engineered tRNACUA EcTyr that overcomes this cross-reactivity. Optimized selection systems based on this tRNA enabled the efficient enrichment of both strongly and weakly active ncAA-selective EcTyrRS mutants. We also developed a wide dynamic range (WiDR) antibiotic selection to further enhance the activities of the weaker first-generation EcTyrRS mutants. We demonstrated the utility of our platform by developing several new EcTyrRS mutants that efficiently incorporated useful ncAAs in mammalian cells, including photoaffinity probes, bioconjugation handles, and a nonhydrolyzable mimic of phosphotyrosine.
Collapse
|
119
|
Veale CGL, Talukdar A, Vauzeilles B. ICBS 2021: Looking Toward the Next Decade of Chemical Biology. ACS Chem Biol 2022; 17:728-743. [PMID: 35293726 DOI: 10.1021/acschembio.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clinton G. L. Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
120
|
Löffler JG, Deniz E, Feid C, Franz VG, Bredenbeck J. Versatile Vibrational Energy Sensors for Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan G. Löffler
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| | - Erhan Deniz
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| | - Carolin Feid
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| | - Valentin G. Franz
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| | - Jens Bredenbeck
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| |
Collapse
|
121
|
Zubi YS, Seki K, Li Y, Hunt AC, Liu B, Roux B, Jewett MC, Lewis JC. Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches. Nat Commun 2022; 13:1864. [PMID: 35387988 PMCID: PMC8987029 DOI: 10.1038/s41467-022-29239-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic control over protein function is a central challenge in synthetic biology. To address this challenge, we describe the development of an integrated computational and experimental workflow to incorporate a metal-responsive chemical switch into proteins. Pairs of bipyridinylalanine (BpyAla) residues are genetically encoded into two structurally distinct enzymes, a serine protease and firefly luciferase, so that metal coordination biases the conformations of these enzymes, leading to reversible control of activity. Computational analysis and molecular dynamics simulations are used to rationally guide BpyAla placement, significantly reducing experimental workload, and cell-free protein synthesis coupled with high-throughput experimentation enable rapid prototyping of variants. Ultimately, this strategy yields enzymes with a robust 20-fold dynamic range in response to divalent metal salts over 24 on/off switches, demonstrating the potential of this approach. We envision that this strategy of genetically encoding chemical switches into enzymes will complement other protein engineering and synthetic biology efforts, enabling new opportunities for applications where precise regulation of protein function is critical.
Collapse
Affiliation(s)
- Yasmine S Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrew C Hunt
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Bingqing Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
122
|
Banwell MG, Schwartz BD, Bissember AC, Herlt T, Willis AC, Gardiner MG, Illesinghe J, Robinson AJ. Syntheses of the (±)‐, (+)‐, and (−)‐Forms of 2‐Amino‐3‐(8‐hydroxyquinolin‐3‐yl)propanoic Acid (8HQ‐3Ala) from a Common Dehydroamino Acid Methyl Ester Precursor. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin G. Banwell
- Institute for Advanced and Applied Chemical Synthesis Jinan University, Guangzhou Guangdong 510632 China
| | - Brett D. Schwartz
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra ACT 2601 Australia
| | - Alex C. Bissember
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra ACT 2601 Australia
| | - Tony Herlt
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra ACT 2601 Australia
| | - Anthony C. Willis
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra ACT 2601 Australia
| | - Michael G. Gardiner
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra ACT 2601 Australia
| | | | | |
Collapse
|
123
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
124
|
Liu Y, Ba F, Liu WQ, Wu C, Li J. Plug-and-Play Functionalization of Protein–Polymer Conjugates for Tunable Catalysis Enabled by Genetically Encoded “Click” Chemistry. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
125
|
Miura Y, Senoo A, Doura T, Kiyonaka S. Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. RSC Chem Biol 2022; 3:269-287. [PMID: 35359495 PMCID: PMC8905536 DOI: 10.1039/d1cb00195g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cell surface receptors transmit extracellular information into cells. Spatiotemporal regulation of receptor signaling is crucial for cellular functions, and dysregulation of signaling causes various diseases. Thus, it is highly desired to control receptor functions with high spatial and/or temporal resolution. Conventionally, genetic engineering or chemical ligands have been used to control receptor functions in cells. As the alternative, chemogenetics has been proposed, in which target proteins are genetically engineered to interact with a designed chemical partner with high selectivity. The engineered receptor dissects the function of one receptor member among a highly homologous receptor family in a cell-specific manner. Notably, some chemogenetic strategies have been used to reveal the receptor signaling of target cells in living animals. In this review, we summarize the developing chemogenetic methods of transmembrane receptors for cell-specific regulation of receptor signaling. We also discuss the prospects of chemogenetics for clinical applications.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Akinobu Senoo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| |
Collapse
|
126
|
Orr AA, Kuhlmann SK, Tamamis P. Computational design of a β-wrapin's N-terminal domain with canonical and non-canonical amino acid modifications mimicking curcumin's proposed inhibitory function. Biophys Chem 2022; 286:106805. [DOI: 10.1016/j.bpc.2022.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
|
127
|
Pagar AD, Jeon H, Khobragade TP, Sarak S, Giri P, Lim S, Yoo TH, Ko BJ, Yun H. Non-Canonical Amino Acid-Based Engineering of ( R)-Amine Transaminase. Front Chem 2022; 10:839636. [PMID: 35295971 PMCID: PMC8918476 DOI: 10.3389/fchem.2022.839636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (∼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
Collapse
Affiliation(s)
- Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
128
|
Shi N, Yang Q, Zhang H, Lu J, Lin H, Yang X, Abulimiti A, Cheng J, Wang Y, Tong L, Wang T, Zhang X, Chen H, Xia Q. Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nat Biomed Eng 2022; 6:195-206. [PMID: 34341535 DOI: 10.1038/s41551-021-00774-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
Approximately 11% of monogenic diseases involve nonsense mutations that are caused by premature termination codons. These codons can in principle be read-through via the site-specific incorporation of unnatural amino acids to generate full-length proteins with minimal loss of function. Here we report that aminoacyl-tRNA-synthase-tRNA pairs specific for the desired unnatural amino acids can be used to read through a nonsense mutation in the dystrophin gene. We show partial restoration of dystrophin expression in differentiated primary myoblasts (from a mdx mouse model and a patient with Duchenne muscular dystrophy), and restoration of muscle function in two mouse models: mdx mice, via viral delivery of the engineered tRNA-synthase-tRNA pair intraperitoneally or intramuscularly and of the associated unnatural amino acid intraperitoneally; and mice produced by crossing mdx mice and transgenic mice with a chromosomally integrated pair, via intraperitoneal delivery of the unnatural amino acid. The incorporation of unnatural amino acids to restore endogenous protein expression could be explored for therapeutic use.
Collapse
Affiliation(s)
- Ningning Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haoran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haishuang Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xu Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Aikedan Abulimiti
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jialu Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Le Tong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianchang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaodong Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongmin Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
129
|
Sasselli IR, Syrgiannis Z, Sather NA, Palmer LC, Stupp SI. Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments. J Phys Chem B 2022; 126:650-659. [PMID: 35029997 DOI: 10.1021/acs.jpcb.1c09258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many peptides are able to self-assemble into one-dimensional (1D) nanostructures, such as cylindrical fibers or ribbons of variable widths, but the relationship between the morphology of 1D objects and their molecular structure is not well understood. Here, we use coarse-grained molecular dynamics (CG-MD) simulations to study the nanostructures formed by self-assembly of different peptide amphiphiles (PAs). The results show that ribbons are hierarchical superstructures formed by laterally assembled cylindrical fibers. Simulations starting from bilayer structures demonstrate the formation of filaments, whereas other simulations starting from filaments indicate varying degrees of interaction among them depending on chemical structure. These interactions are verified by observations using atomic force microscopy of the various systems. The interfilament interactions are predicted to be strongest in supramolecular assemblies that display hydrophilic groups on their surfaces, while those with hydrophobic ones are predicted to interact more weakly as confirmed by viscosity measurements. The simulations also suggest that peptide amphiphiles with hydrophobic termini bend to reduce their interfacial energy with water, which may explain why these systems do not collapse into superstructures of bundled filaments. The simulations suggest that future experiments will need to address mechanistic questions about the self-assembly of these systems into hierarchical structures, namely, the preformation of interactive filaments vs equilibration of large assemblies into superstructures.
Collapse
Affiliation(s)
- Ivan R Sasselli
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas A Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 N St. Clair, Chicago, Illinois 60611, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
130
|
Structural basis for blocked excited state proton transfer in a fluorescent, photoacidic non-canonical amino acid-containing antibody fragment. J Mol Biol 2022; 434:167455. [PMID: 35033559 PMCID: PMC9018508 DOI: 10.1016/j.jmb.2022.167455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 11/20/2022]
Abstract
The fluorescent non-canonical amino acid (fNCAA) L-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) contains a photoacidic 7-hydroxycoumarin (7-HC) side chain whose fluorescence properties can be tuned by its environment. In proteins, many alterations to 7-HCAA's fluorescence spectra have been reported including increases and decreases in intensity and red- and blue-shifted emission maxima. The ability to rationally design protein environments that alter 7-HCAA's fluorescence properties in predictable ways could lead to novel protein-based sensors of biological function. However, these efforts are likely limited by a lack of structural characterization of 7-HCAA-containing proteins. Here, we report the steady-state spectroscopic and x-ray crystallographic characterization of a 7-HCAA-containing antibody fragment (in the apo and antigen-bound forms) in which a substantially blue-shifted 7-HCAA emission maximum (∼70 nm) is observed relative to the free amino acid. Our structural characterization of these proteins provides evidence that the blue shift is a consequence of the fact that excited state proton transfer (ESPT) from the 7-HC phenol has been almost completely blocked by interactions with the protein backbone. Furthermore, a direct interaction between a residue in the antigen and the fluorophore served to further block proton transfer relative to the apoprotein. The structural basis of the unprecedented blue shift in 7-HCAA emission reported here provides a framework for the development of new fluorescent protein-based sensors.
Collapse
|
131
|
Mackay AS, Payne RJ, Malins LR. Electrochemistry for the Chemoselective Modification of Peptides and Proteins. J Am Chem Soc 2022; 144:23-41. [PMID: 34968405 DOI: 10.1021/jacs.1c11185] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although electrochemical strategies for small-molecule synthesis are flourishing, this technology has yet to be fully exploited for the mild and chemoselective modification of peptides and proteins. With the growing number of diverse peptide natural products being identified and the emergence of modified proteins as therapeutic and diagnostic agents, methods for electrochemical modification stand as alluring prospects for harnessing the reactivity of polypeptides to build molecular complexity. As a mild and inherently tunable reaction platform, electrochemistry is arguably well-suited to overcome the chemo- and regioselectivity issues which limit existing bioconjugation strategies. This Perspective will showcase recently developed electrochemical approaches to peptide and protein modification. The article also highlights the wealth of untapped opportunities for the production of homogeneously modified biomolecules, with an eye toward realizing the enormous potential of electrochemistry for chemoselective bioconjugation chemistry.
Collapse
Affiliation(s)
- Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
132
|
Aphicho K, Kittipanukul N, Uttamapinant C. Visualizing the complexity of proteins in living cells with genetic code expansion. Curr Opin Chem Biol 2022; 66:102108. [PMID: 35026612 DOI: 10.1016/j.cbpa.2021.102108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Genetic code expansion has emerged as an enabling tool to provide insight into functions of understudied proteinogenic species, such as small proteins and peptides, and to probe protein biophysics in the cellular context. Here, we discuss recent technical advances and applications of genetic code expansion in cellular imaging of complex mammalian protein species, along with considerations and challenges on using the method.
Collapse
Affiliation(s)
- Kanokpol Aphicho
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Narongyot Kittipanukul
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
133
|
Radford F, Elliott SD, Schepartz A, Isaacs FJ. Targeted editing and evolution of engineered ribosomes in vivo by filtered editing. Nat Commun 2022; 13:180. [PMID: 35013328 PMCID: PMC8748908 DOI: 10.1038/s41467-021-27836-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies introduce targeted chromosomal modifications in organisms yet are constrained by the inability to selectively modify repetitive genetic elements. Here we describe filtered editing, a genome editing method that embeds group 1 self-splicing introns into repetitive genetic elements to construct unique genetic addresses that can be selectively modified. We introduce intron-containing ribosomes into the E. coli genome and perform targeted modifications of these ribosomes using CRISPR/Cas9 and multiplex automated genome engineering. Self-splicing of introns post-transcription yields scarless RNA molecules, generating a complex library of targeted combinatorial variants. We use filtered editing to co-evolve the 16S rRNA to tune the ribosome's translational efficiency and the 23S rRNA to isolate antibiotic-resistant ribosome variants without interfering with native translation. This work sets the stage to engineer mutant ribosomes that polymerize abiological monomers with diverse chemistries and expands the scope of genome engineering for precise editing and evolution of repetitive DNA sequences.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- CRISPR-Cas Systems
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Exons
- Gene Editing/methods
- Genetic Engineering
- Genome, Bacterial
- Introns
- Mutagenesis, Site-Directed/methods
- Polymers/chemistry
- Protein Biosynthesis
- RNA Splicing
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Repetitive Sequences, Nucleic Acid
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Shane D Elliott
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
134
|
Assessing Site-specific PEGylation of TEM-1 β-lactamase with Cell-free Protein Synthesis and Coarse-grained Simulation. J Biotechnol 2022; 345:55-63. [PMID: 34995558 DOI: 10.1016/j.jbiotec.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022]
Abstract
PEGylation is a broadly used strategy to enhance the pharmacokinetic properties of therapeutic proteins. It is well established that the location and extent of PEGylation have a significant impact on protein properties. However, conventional PEGylation techniques have limited control over PEGylation sites. Emerging site-specific PEGylation technology provides control of PEG placement by conjugating PEG polymers via click chemistry reaction to genetically encoded non-canonical amino acids. Unfortunately, a method to rapidly determine the optimal PEGylation location has yet to be established. Here we seek to address this challenge. In this work, coarse-grained molecular dynamic simulations are paired with high-throughput experimental screening utilizing cell-free protein synthesis to investigate the effect of site-specific PEGylation on the two-state folder protein TEM-1 β-lactamase. Specifically, the conjugation efficiency, thermal stability, and enzymatic activity are studied for the enzyme PEGylated at several different locations. The results of this analysis confirm that the physical properties of the PEGylated protein vary considerably with PEGylation site and that traditional design recommendations are insufficient to predict favorable PEGylation sites. In this study, the best predictor of the most favorable conjugation site is coarse-grained simulation. Thus, we propose a dual combinatorial screening approach in which coarse-grained molecular simulation informs site selection for high-throughput experimental verification.
Collapse
|
135
|
Zhao J, Hu H, Zhang J, Li Y, Wang L, Zhou H, Wang R. Endogenous hydrogen peroxide can efficiently regulate CRISPR-Cas9 based gene editing. NEW J CHEM 2022. [DOI: 10.1039/d1nj04203c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report controllable gene editing tools for the CRISPR-Cas9 system via genetic code expansion triggered by oxidative small molecule H2O2.
Collapse
Affiliation(s)
- Jizhong Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongmei Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jingwen Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Wang
- Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hongling Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
136
|
Photosynthetic reaction center variants made via genetic code expansion show Tyr at M210 tunes the initial electron transfer mechanism. Proc Natl Acad Sci U S A 2021; 118:2116439118. [PMID: 34907018 DOI: 10.1073/pnas.2116439118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine (M210) close to an essential electron transfer component via its replacement with site-specific, genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and X-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild type (WT). Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via a ∼4-ps and a ∼20-ps population to produce the charge-separated state P+HA - in all variants. Global analysis indicates that in the ∼4-ps population, P+HA - forms through a two-step process, P*→ P+BA -→ P+HA -, while in the ∼20-ps population, it forms via a one-step P* → P+HA - superexchange mechanism. The percentage of the P* population that decays via the superexchange route varies from ∼25 to ∼45% among variants, while in WT, this percentage is ∼15%. Increases in the P* population that decays via superexchange correlate with increases in the free energy of the P+BA - intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an ∼110-meV increase in the free energy of P+BA - along with a dramatic diminution of the 1,030-nm transient absorption band indicative of P+BA - formation. Collectively, this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.
Collapse
|
137
|
Xiao R, Zhao L, Ma H, Liu Q, Qin H, Luo X, Xuan W. Toward an Orthogonal Protein Lysine Acylation and Deacylation System. Chembiochem 2021; 23:e202100551. [PMID: 34904351 DOI: 10.1002/cbic.202100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Lysine acetylation is one of the most basic molecular mechanisms to mediate protein functions in living organisms, and its abnormal regulation has been linked to many diseases. The drug development associated to this process is of great significance but severely hindered by the complex interplay of lysine acetylation and deacetylation in thousands of proteins, and we reasoned that targeting a specific protein acetylation or deacetylation event instead of the related enzymes should be a feasible solution to this issue. Toward this goal, we devised an orthogonal lysine acylation and deacylation (OKAD) system, which potentially could precisely dissect the biological consequence of an individual acetylation or deacetylation event in living cells. The system includes a genetically encoded acylated lysine (PhOAcK) that is not a substrate of endogenous deacetylases, and an evolved sirtuin (CobB2/CobB3) that displays PhOAcK deacylase activities as well as reduced deacetylase activities. We believe the strategy introduced here holds potential for future in-depth biological applications.
Collapse
Affiliation(s)
- Ruotong Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hongpeng Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qiaoli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Xiaozhou Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
138
|
Tang H, Zhang P, Luo X. Recent Technologies for Genetic Code Expansion and their Implications on Synthetic Biology Applications. J Mol Biol 2021; 434:167382. [PMID: 34863778 DOI: 10.1016/j.jmb.2021.167382] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Genetic code expansion (GCE) enables the site-specific incorporation of non-canonical amino acids as novel building blocks for the investigation and manipulation of proteins. The advancement of genetic code expansion has been benefited from the development of synthetic biology, while genetic code expansion also helps to create more synthetic biology tools. In this review, we summarize recent advances in genetic code expansion brought by synthetic biology progresses, including engineering of the translation machinery, genome-wide codon reassignment, and the biosynthesis of non-canonical amino acids. We highlight the emerging application of this technology in construction of new synthetic biology parts, circuits, chassis, and products.
Collapse
Affiliation(s)
- Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pan Zhang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
139
|
Bednar RM, Jana S, Kuppa S, Franklin R, Beckman J, Antony E, Cooley RB, Mehl RA. Genetic Incorporation of Two Mutually Orthogonal Bioorthogonal Amino Acids That Enable Efficient Protein Dual-Labeling in Cells. ACS Chem Biol 2021; 16:2612-2622. [PMID: 34590824 DOI: 10.1021/acschembio.1c00649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to site-specifically modify proteins at multiple sites in vivo will enable the study of protein function in its native environment with unprecedented levels of detail. Here, we present a versatile two-step strategy to meet this goal involving site-specific encoding of two distinct noncanonical amino acids bearing bioorthogonal handles into proteins in vivo followed by mutually orthogonal labeling. This general approach, that we call dual encoding and labeling (DEAL), allowed us to efficiently encode tetrazine- and azide-bearing amino acids into a protein and demonstrate for the first time that the bioorthogonal labeling reactions with strained alkene and alkyne labels can function simultaneously and intracellularly with high yields when site-specifically encoded in a single protein. Using our DEAL system, we were able to perform topologically defined protein-protein cross-linking, intramolecular stapling, and site-specific installation of fluorophores all inside living Escherichia coli cells, as well as study the DNA-binding properties of yeast Replication Protein A in vitro. By enabling the efficient dual modification of proteins in vivo, this DEAL approach provides a tool for the characterization and engineering of proteins in vivo.
Collapse
Affiliation(s)
- Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Rachel Franklin
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Joseph Beckman
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, Oregon 97331-7305, United States
| |
Collapse
|
140
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
141
|
Guo J, Niu W. Genetic Code Expansion Through Quadruplet Codon Decoding. J Mol Biol 2021; 434:167346. [PMID: 34762896 PMCID: PMC9018476 DOI: 10.1016/j.jmb.2021.167346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 12/31/2022]
Abstract
Noncanonical amino acid mutagenesis has emerged as a powerful tool for the study of protein structure and function. While triplet nonsense codons, especially the amber codon, have been widely employed, quadruplet codons have attracted attention for the potential of creating additional blank codons for noncanonical amino acids mutagenesis. In this review, we discuss methodologies and applications of quadruplet codon decoding in genetic code expansion both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
142
|
Kim S, Yi H, Kim YT, Lee HS. Engineering Translation Components for Genetic Code Expansion. J Mol Biol 2021; 434:167302. [PMID: 34673113 DOI: 10.1016/j.jmb.2021.167302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The expansion of the genetic code consisting of four bases and 20 amino acids into diverse building blocks has been an exciting topic in synthetic biology. Many biochemical components are involved in gene expression; therefore, adding a new component to the genetic code requires engineering many other components that interact with it. Genetic code expansion has advanced significantly for the last two decades with the engineering of several components involved in protein synthesis. These components include tRNA/aminoacyl-tRNA synthetase, new codons, ribosomes, and elongation factor Tu. In addition, biosynthesis and enhanced uptake of non-canonical amino acids have been attempted and have made meaningful progress. This review discusses the efforts to engineer these translation components, to improve the genetic code expansion technology.
Collapse
Affiliation(s)
- Sooin Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hanbin Yi
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Yurie T Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea.
| |
Collapse
|
143
|
Ficaretta ED, Wrobel CJJ, Roy SJS, Erickson SB, Italia JS, Chatterjee A. A Robust Platform for Unnatural Amino Acid Mutagenesis in E. coli Using the Bacterial Tryptophanyl-tRNA synthetase/tRNA pair. J Mol Biol 2021; 434:167304. [PMID: 34655653 PMCID: PMC9005579 DOI: 10.1016/j.jmb.2021.167304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
We report the development of a robust user-friendly Escherichia coli (E. coli) expression system, derived from the BL21(DE3) strain, for site-specifically incorporating unnatural amino acids (UAAs) into proteins using engineered E. coli tryptophanyl-tRNA synthetase (EcTrpRS)-tRNATrp pairs. This was made possible by functionally replacing the endogenous EcTrpRS-tRNATrp pair in BL21(DE3) E. coli with an orthogonal counterpart from Saccharomyces cerevisiae, and reintroducing it into the resulting altered translational machinery tryptophanyl (ATMW-BL21) E. coli strain as an orthogonal nonsense suppressor. The resulting expression system benefits from the favorable characteristics of BL21(DE3) as an expression host, and is compatible with the broadly used T7-driven recombinant expression system. Furthermore, the vector expressing the nonsense-suppressing engineered EcTrpRS-tRNATrp pair was systematically optimized to significantly enhance the incorporation efficiency of various tryptophan analogs. Together, the improved strain and the optimized suppressor plasmids enable efficient UAA incorporation (up to 65% of wild-type levels) into several different proteins. This robust and user-friendly platform will significantly expand the scope of the genetically encoded tryptophan-derived UAAs.
Collapse
Affiliation(s)
- Elise D Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Chester J J Wrobel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Soumya J S Roy
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Sarah B Erickson
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - James S Italia
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
144
|
Zhao J, Hu H, Wang S, Wang L, Wang R. Regulation and Site-Specific Covalent Labeling of NSUN2 via Genetic Encoding Expansion. Genes (Basel) 2021; 12:1488. [PMID: 34680884 PMCID: PMC8535899 DOI: 10.3390/genes12101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
In living organisms, RNA regulates gene expression, cell migration, differentiation, and cell death. 5-Methylcytosine is a post-transcriptional RNA modification in a wide range of RNA species, including messenger RNAs. The addition of m5C to RNA cytosines is enabled by the NSUN enzyme family, a critical RNA methyltransferase. In this study, natural lysines modified with special groups were synthesized. Through two rounds of positive screening and one round of negative screening, we evaluated and identified the MbPylRS-tRNACUA unnatural lysine substitution system, which specifically recognizes lysine with a defined group. Moreover, non-natural lysine substitution at C271 of NSUN2 active site and the subsequent fluorescent labeling was realized through the click reaction. Then, the function of the NSUN2 mutant and its upregulated CDK1 gene as well as its effect on cell proliferation were evaluated. Efficient labeling and regulation of NSUN2 was achieved, laying the basis for further studies on the function and regulatory mechanism of upregulated genes.
Collapse
Affiliation(s)
- Jizhong Zhao
- The Hubei Key Laboratory of Natural Resource and Medicine, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (J.Z.); (H.H.); (S.W.)
| | - Hongmei Hu
- The Hubei Key Laboratory of Natural Resource and Medicine, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (J.Z.); (H.H.); (S.W.)
| | - Sheng Wang
- The Hubei Key Laboratory of Natural Resource and Medicine, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (J.Z.); (H.H.); (S.W.)
| | - Li Wang
- Wuhan No.1 Hospital, Huazhong University of Science and Technology, 225 Zhongshan Avenue, Wuhan 430022, China;
| | - Rui Wang
- Wuhan No.1 Hospital, Huazhong University of Science and Technology, 225 Zhongshan Avenue, Wuhan 430022, China;
| |
Collapse
|
145
|
González S, Ad O, Shah B, Zhang Z, Zhang X, Chatterjee A, Schepartz A. Genetic Code Expansion in the Engineered Organism Vmax X2: High Yield and Exceptional Fidelity. ACS CENTRAL SCIENCE 2021; 7:1500-1507. [PMID: 34584951 PMCID: PMC8461772 DOI: 10.1021/acscentsci.1c00499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 05/05/2023]
Abstract
We report that the recently introduced commercial strain of Vibrio natriegens (Vmax X2) supports robust unnatural amino acid mutagenesis, generating exceptional yields of soluble protein containing up to 5 noncanonical α-amino acids (ncAA). The isolated yields of ncAA-containing superfolder green fluorescent protein (sfGFP) expressed in Vmax X2 are up to 25-fold higher than those achieved using commercial expression strains (Top10 and BL21) and more than 10-fold higher than those achieved using two different genomically recodedEscherichia colistrains that lack endogenous UAG stop codons and release factor 1 and have been optimized for improved fitness and preferred growth temperature (C321.ΔA.opt and C321.ΔA.exp). In addition to higher yields of soluble protein, Vmax X2 cells also generate proteins with significantly lower levels of misincorporated natural α-amino acids at the UAG-programmed position, especially in cases where the ncAA is a moderate substrate for the chosen orthogonal aminoacyl tRNA synthetase (aaRS). This increase in fidelity implies that the use of Vmax X2 cells as the expression host can obviate the need for time-consuming directed evolution experiments to improve the selectivity of an aaRS toward highly desired but suboptimal ncAA substrates.
Collapse
Affiliation(s)
| | - Omer Ad
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Bhavana Shah
- Process
Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Zhongqi Zhang
- Process
Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Xizi Zhang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Abhishek Chatterjee
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| |
Collapse
|
146
|
Lee S, Kim J, Koh M. Recent Advances in Fluorescence Imaging by Genetically Encoded Non-canonical Amino Acids. J Mol Biol 2021; 434:167248. [PMID: 34547330 DOI: 10.1016/j.jmb.2021.167248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/09/2023]
Abstract
Technical innovations in protein labeling with a fluorophore at the specific residue have played a significant role in studying protein dynamics. The genetic code expansion (GCE) strategy enabled the precise installation of fluorophores at the tailored site of proteins in live cells with minimal perturbation of native functions. Considerable advances have been achieved over the past decades in fluorescent imaging using GCE strategies along with bioorthogonal chemistries. In this review, we discuss advances in the GCE-based strategies to site-specifically introduce fluorophore at a defined position of the protein and their bio-imaging applications.
Collapse
Affiliation(s)
- Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
147
|
Abstract
Radicals in biology, once thought to all be bad actors, are now known to play a central role in many enzymatic reactions. Of the known radical-based enzymes, ribonucleotide reductases (RNRs) are pre-eminent as they are essential in the biology of all organisms by providing the building blocks and controlling the fidelity of DNA replication and repair. Intense examination of RNRs has led to the development of new tools and a guiding framework for the study of radicals in biology, pointing the way to future frontiers in radical enzymology.
Collapse
Affiliation(s)
- JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 20139 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 20139 USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA
| |
Collapse
|
148
|
King EA, Peairs EM, Uthappa DM, Villa JK, Goff CM, Burrow NK, Deitch RT, Martin AK, Young DD. Photoregulation of PRMT-1 Using a Photolabile Non-Canonical Amino Acid. Molecules 2021; 26:molecules26165072. [PMID: 34443661 PMCID: PMC8398576 DOI: 10.3390/molecules26165072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Protein methyltransferases are vital to the epigenetic modification of gene expression. Thus, obtaining a better understanding of and control over the regulation of these crucial proteins has significant implications for the study and treatment of numerous diseases. One ideal mechanism of protein regulation is the specific installation of a photolabile-protecting group through the use of photocaged non-canonical amino acids. Consequently, PRMT1 was caged at a key tyrosine residue with a nitrobenzyl-protected Schultz amino acid to modulate protein function. Subsequent irradiation with UV light removes the caging group and restores normal methyltransferase activity, facilitating the spatial and temporal control of PRMT1 activity. Ultimately, this caged PRMT1 affords the ability to better understand the protein’s mechanism of action and potentially regulate the epigenetic impacts of this vital protein.
Collapse
|
149
|
von Witting E, Hober S, Kanje S. Affinity-Based Methods for Site-Specific Conjugation of Antibodies. Bioconjug Chem 2021; 32:1515-1524. [PMID: 34369763 PMCID: PMC8377709 DOI: 10.1021/acs.bioconjchem.1c00313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugation of various reagents to antibodies has long been an elegant way to combine the superior binding features of the antibody with other desired but non-natural functions. Applications range from labels for detection in different analytical assays to the creation of new drugs by conjugation to molecules which improves the pharmaceutical effect. In many of these applications, it has been proven advantageous to control both the site and the stoichiometry of the conjugation to achieve a homogeneous product with predictable, and often also improved, characteristics. For this purpose, many research groups have, during the latest decade, reported novel methods and techniques, based on small molecules, peptides, and proteins with inherent affinity for the antibody, for site-specific conjugation of antibodies. This review provides a comprehensive overview of these methods and their applications and also describes a historical perspective of the field.
Collapse
Affiliation(s)
- Emma von Witting
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| |
Collapse
|
150
|
Davis L, Radman I, Goutou A, Tynan A, Baxter K, Xi Z, O'Shea JM, Chin JW, Greiss S. Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase. eLife 2021; 10:67075. [PMID: 34350826 PMCID: PMC8448529 DOI: 10.7554/elife.67075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted. Animal behaviour and movement emerges from the stimulation of nerve cells that are connected together like a circuit. Researchers use various tools to investigate these neural networks in model organisms such as roundworms, fruit flies and zebrafish. The trick is to activate some nerve cells, but not others, so as to isolate their specific role within the neural circuit. One way to do this is to switch genes on or off in individual cells as a way to control their neuronal activity. This can be achieved by building a photocaged version of the enzyme Cre recombinase which is designed to target specific genes. The modified Cre recombinase contains an amino acid (the building blocks of proteins) that inactivates the enzyme. When the cell is illuminated with UV light, a part of the amino acid gets removed allowing Cre recombinase to turn on its target gene. However, cells do not naturally produce these photocaged amino acids. To overcome this, researchers can use a technology called genetic code expansion which provides cells with the tools they need to build proteins containing these synthetic amino acids. Although this technique has been used in live animals, its application has been limited due to the small amount of proteins it produces. Davis et al. therefore set out to improve the efficiency of genetic code expansion so that it can be used to study single nerve cells in freely moving roundworms. In the new system, named LaserTAC, individual cells are targeted with UV light that ‘uncages’ the Cre recombinase enzyme so it can switch on a gene for a protein that controls neuronal activity. Davis et al. used this approach to stimulate a pair of neurons sensitive to touch to see how this impacted the roundworm’s behaviour. This revealed that individual neurons within this pair contribute to the touch response in different ways. However, input from both neurons is required to produce a robust reaction. These findings show that the LaserTAC system can be used to manipulate gene activity in single cells, such as neurons, using light. It allows researchers to precisely control in which cells and when a given gene is switched on or off. Also, with the improved efficiency of the genetic code expansion, this technology could be used to modify proteins other than Cre recombinase and be applied to other artificial amino acids that have been developed in recent years.
Collapse
Affiliation(s)
- Lloyd Davis
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Inja Radman
- Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Angeliki Goutou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ailish Tynan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kieran Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhiyan Xi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jack M O'Shea
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sebastian Greiss
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|