101
|
Du J, Chen G, Yuan X, Yuan J, Li L. Multi-stimuli responsive Cu-MOFs@Keratin drug delivery system for chemodynamic therapy. Front Bioeng Biotechnol 2023; 11:1125348. [PMID: 36815879 PMCID: PMC9936514 DOI: 10.3389/fbioe.2023.1125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Although the potential of metal-organic framework (MOF) nanoparticles as drug delivery systems (DDS) for cancer treatment has been established by numerous studies, their clinical applications are still limited due to relatively poor biocompatibility. We fabricated a multifunctional Cu-MOFs@Keratin DDS for loaded drug and chemodynamic therapy (CDT) against tumor cells. The Cu-MOFs core was prepared using a hydrothermal method, and then loaded with the anticancer drug DOX and wrapped in human hair keratin. The Cu-MOFs@Keratin was well characterized by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray photoelectron spectroscopy (XPS). Characterization and pharmacokinetic studies of Cu-MOFs@Keratin were performed in vitro and in vivo. The keratin shell reduced the cytotoxicity and potential leakage of Cu-MOFs to normal cells, and allowed the drug-loaded nanoparticles to accumulate in the tumor tissues through enhanced permeability and retention effect (EPR). The particles entered the tumor cells via endocytosis and disintegrated under the stimulation of intracellular environment, thereby releasing DOX in a controlled manner. In addition, the Cu-MOFs produced hydroxyl radicals (·OH) by consuming presence of high intracellular levels of glutathione (GSH) and H2O2, which decreased the viability of the tumor cells.
Collapse
Affiliation(s)
- Jinsong Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China,Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Guanping Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China,*Correspondence: Jiang Yuan, ; Li Li,
| | - Li Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China,School of Clinical Medicine and The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China,*Correspondence: Jiang Yuan, ; Li Li,
| |
Collapse
|
102
|
Si P, Yu W, Li C, Chen H, Zhang E, Gu J, Wang R, Shi J. Oxygen-independent alkyl radical nanogenerator enhances breast cancer therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102630. [PMID: 36435366 DOI: 10.1016/j.nano.2022.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
Abstract
The hypoxic microenvironment of breast cancer substantially reduces oxygen-dependent free radical generation. Overexpression of glutathione (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2'-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical treatment. In vivo and in vitro assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.
Collapse
Affiliation(s)
- Pilei Si
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou 450003, Henan, China.
| | - Wenyan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chengzhen Li
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, Henan, China
| | - Haijun Chen
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou 450003, Henan, China
| | - Enzhao Zhang
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, Henan, China
| | - Jiaojiao Gu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, Henan, China
| | - Ruoyan Wang
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, Henan, China
| | - Jinjin Shi
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou 450003, Henan, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
103
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Metal-Based Nanozymes with Multienzyme-Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205870. [PMID: 36513384 DOI: 10.1002/smll.202205870] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Most nanozymes in development for medical applications only exhibit single-enzyme-like activity, and are thus limited by insufficient catalytic activity and dysfunctionality in complex pathological microenvironments. To overcome the impediments of limited substrate availabilities and concentrations, some metal-based nanozymes may mimic two or more activities of natural enzymes to catalyze cascade reactions or to catalyze multiple substrates simultaneously, thereby amplifying catalysis. Metal-based nanozymes with multienzyme-like activities (MNMs) may adapt to dissimilar catalytic conditions to exert different enzyme-like effects. These multienzyme-like activities can synergize to realize "self-provision of the substrate," in which upstream catalysts produce substrates for downstream catalytic reactions to overcome the limitation of insufficient substrates in the microenvironment. Consequently, MNMs exert more potent antitumor, antibacterial, and anti-inflammatory effects in preclinical models. This review summarizes the cellular effects and underlying mechanisms of MNMs. Their potential medical utility and optimization strategy from the perspective of clinical requirements are also discussed, with the aim to provide a theoretical reference for the design, development, and therapeutic application of their catalytic effects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
104
|
Zhang Y, Wang F, Shi L, Lu M, Lee KJ, Ditty MM, Xing Y, He HZ, Ren X, Zheng SY. Nanoscale coordination polymers enabling antioxidants inhibition for enhanced chemodynamic therapy. J Control Release 2023; 354:196-206. [PMID: 36610480 DOI: 10.1016/j.jconrel.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species (ROS) generation to induce cell death is an effective strategy for cancer therapy. In particular, chemodynamic therapy (CDT), using Fenton-type reactions to generate highly cytotoxic hydroxyl radical (•OH), is a promising treatment modality. However, the therapeutic efficacy of ROS-based cancer treatment is still limited by some critical challenges, such as overexpression of enzymatic and non-enzymatic antioxidants by tumor cells, as well as the low tumor targeting efficiency of therapeutic agents. To address those problems, biomimetic CuZn protoporphyrin IX nanoscale coordination polymers have been developed, which significantly amplify oxidative stress against tumors by simultaneously inhibiting enzymatic and non-enzymatic antioxidants and initiating the CDT. In this design, cancer cell membrane camouflaged nanoparticle exhibits an excellent homotypic targeting effect. After being endocytosed into tumor cells, the nanoparticles induce depletion of the main non-enzymatic antioxidant glutathione (GSH) by undergoing a redox reaction with GSH. Afterward, the redox reaction generated cuprous ion (Cu+) works as a CDT agent for •OH generation. Furthermore, the released Zn protoporphyrin IX strongly inhibits the activity of the typical enzymatic antioxidant heme oxygenase-1. This tetra-modal synergistic strategy endows the biomimetic nanoparticles with great capability for anticancer therapy, which has been demonstrated in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Yan Zhang
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Faming Wang
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Lai Shi
- D2M Biotherapeutics, Natick, MA 01760, United States
| | - Mengrou Lu
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Keng-Jung Lee
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | | | - Yunhui Xing
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Hong-Zhang He
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Captis Diagnostics Inc, Pittsburgh, PA 15213, United States
| | - Xi Ren
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Si-Yang Zheng
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
105
|
Zhu X, Xiong H, Yang P, Wang S, Zhou Q, Zhang P, Zhao Z, Shi S. A pH/GSH dual responsive nanoparticle with relaxivity amplification for magnetic resonance imaging and suppression of tumors and metastases. NANOSCALE 2023; 15:1583-1594. [PMID: 36594591 DOI: 10.1039/d2nr05449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Engineered magnetic nanoparticles combining diagnosis and therapy functions into one entity hold great potential to rejuvenate cancer treatment; however, they are still constrained by the "always on" signals and unsatisfactory therapeutic effect. Here, we report an intelligent theranostic probe based on Mn3O4 tetragonal bipyramids (MnTBs), which simultaneously respond to H+ and glutathione (GSH) with high sensitivity and quickly decompose to release Mn2+ in mild acidic and reductive intracellular environments. Mn2+ binds to the surrounding proteins to achieve a remarkable relaxivity amplification and selectively brighten the tumors. Particularly, this MR signal improvement is also effective in the detection of millimeter-sized liver metastases, with an ultrahigh contrast of 316%. Moreover, Mn2+ would trigger chemodynamic therapy (CDT) by exerting the Fenton-like activity to generate ˙OH from H2O2. Subsequently, a significant tumor suppression effect can be achieved by the GSH depletion-enhanced CDT. Besides, MnTBs manifest efficient urinary and hepatic excretions with biodegradability and minimal systemic toxicity. A pH/GSH dual responsive nanoprobe that integrates tumor diagnostic and therapeutic activities was developed to provide a new paradigm for precise diagnosis and treatment of tumors and metastases.
Collapse
Affiliation(s)
- Xianglong Zhu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Hehe Xiong
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Pei Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Songwei Wang
- Analysis Testing Center, Xinyang Normal University, Xinyang 464000, China
| | - Qiuju Zhou
- Analysis Testing Center, Xinyang Normal University, Xinyang 464000, China
| | - Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Zhenghuan Zhao
- College of Basic Medicine, Chongqing Medical University, Chongqing 400716, China.
| | - Saige Shi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
106
|
Naik A, Kumar K, Chatterjee N, Misra SK. Polyphenol-Based Nanoscale Iron Exchangers for Regulating Anticancer Chemotherapy by Modulating the Activity of Intracellular Glutathione. ACS APPLIED BIO MATERIALS 2023; 6:288-295. [PMID: 36562772 DOI: 10.1021/acsabm.2c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The elevated glutathione (GSH) level in cancer cells contributes to the poor response to chemotherapy and necessitates the use of maximum tolerated drug doses, leading to myriad side effects. We have developed a biocompatible and fluorescently trackable nanosystem, iron(III)-bound nanocarbonaceous polyphenol (FeNCP), to modulate the available GSH pool in cancer cells for synergistic effects in treatments with a cytotoxic anticancer drug, doxorubicin (Dox). This nanosystem was designed using a nanoscale carbon system as a platform to generate a GSH-responsive gallic acid-iron complex. The effective interaction between FeNCP and GSH was probed in PBS (pH 7.4) and cell lysates using UV-Vis, fluorescence spectrophotometry, 1H NMR, flow cytometry, and confocal and transmission electron microscopic studies. The concurrent treatment of cancer cells with subcytotoxic FeNCP and Dox leads to dose reduction indices of Dox of ∼6.1 for HepG2 (hepatocellular carcinoma) and 6.7 for B16F0 (melanoma) to kill ∼50% of the cell population, which is suggestive of the requirement of a multifold lower dose of Dox. Notably, this combination was relatively more cytotoxic toward cancer cell lines than the model normal cell line, Vero. The increased reactive oxygen species levels in combinatorial treatment reveal that FeNCP serves as a potential candidate for modulating glutathione activity and potentiating cytotoxic effects of Dox. The intelligent multifold design of this nanosystem might enable the applicability in optical detection of GSH and imaging-assisted surgery in the future, in addition to the potential to advance treatment regimens in anticancer chemotherapy.
Collapse
Affiliation(s)
- Aishwarya Naik
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Krishan Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Santosh K Misra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
107
|
Fernandes DA. Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technol Cancer Res Treat 2023; 22:15330338231191493. [PMID: 37642945 PMCID: PMC10467409 DOI: 10.1177/15330338231191493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 08/31/2023] Open
Abstract
Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.
Collapse
|
108
|
Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol 2023; 20:33-48. [PMID: 36307534 DOI: 10.1038/s41571-022-00699-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 240.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
Traditional cancer therapeutics, such as chemotherapies, are often limited by their non-specific nature, causing harm to non-malignant tissues. Over the past several decades, nanomedicine researchers have sought to address this challenge by developing nanoscale platforms capable of more precisely delivering drug payloads. Cell membrane-coated nanoparticles (CNPs) are an emerging class of nanocarriers that have demonstrated considerable promise for biomedical applications. Consisting of a synthetic nanoparticulate core camouflaged by a layer of naturally derived cell membranes, CNPs are adept at operating within complex biological environments; depending on the type of cell membrane utilized, the resulting biomimetic nanoformulation is conferred with several properties typically associated with the source cell, including improved biocompatibility, immune evasion and tumour targeting. In comparison with traditional functionalization approaches, cell membrane coating provides a streamlined method for creating multifunctional and multi-antigenic nanoparticles. In this Review, we discuss the history and development of CNPs as well as how these platforms have been used for cancer therapy. The application of CNPs for drug delivery, phototherapy and immunotherapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CNPs.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA. .,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
109
|
Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
110
|
Wang Q, Shaik F, Lu X, Zhang W, Wu Y, Qian H, Zhang W. Amorphous NiB@IrO x nanozymes trigger efficient apoptosis-ferroptosis hybrid therapy. Acta Biomater 2023; 155:575-587. [PMID: 36374661 DOI: 10.1016/j.actbio.2022.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 02/02/2023]
Abstract
The apoptosis-ferroptosis hybrid therapy opens up a new avenue for tumor eradication. Constructing efficient self-cascade platform is highly desired to enhance its therapeutic effect. Herein, we report on the synthesis of novel nanozyme consist of amorphous NiB alloy completely coated with an ultrathin layer of IrOx shell (A-NiB@C-IrOx). These core-shell nanoparticles exhibited peroxidase (POD)-, catalase (CAT)- and glutathione oxidase (GSH-OXD)-like properties for inducing self-cascade catalysis. Specifically, the amorphous IrOx shell with abundant active sites can effectively convert intratumor hydrogen peroxide (H2O2) to cytotoxic reactive oxygen species (ROS) and oxygen (O2). In presence of O2, amorphous NiB core and ultrathin IrOx shell collectively catalyze the oxidation of GSH to generate H2O2, which is subsequently converted to ROS and O2 by IrOx component. Thus, these enzymatic activities endow A-NiB@C-IrOx nanozymes with the ability of unceasing generation of ROS and O2 and depletion of GSH. In vitro and in vivo studies demonstrate a high therapeutic efficiency of A-NiB@C-IrOx nanozymes via apoptosis-ferroptosis combination therapy. STATEMENT OF SIGNIFICANCE: Apoptosis-ferroptosis hybrid therapy opens up new avenues for eradicating tumor cells. However, its actual therapeutic effect is still unsatisfied. Current efforts on this hybrid therapy focus on developing efficient self-cascade nanozymes to improve the efficiency of both ROS generation and GSH depletion. In this study, we constructed amorphous NiB alloy with a completed thin layer of IrOx shell (denoted as A-NiB@C-IrOx) for apoptosis-ferroptosis combination therapy. As expected, A-NiB@C-IrOx can trigger efficient cascade catalytic reactions to continuously generate ROS and consume GSH, finally inducing augmented apoptosis-ferroptosis combination therapy.
Collapse
Affiliation(s)
- Qin Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Firdoz Shaik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 320000, Israel
| | - Xiuxin Lu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Wenhao Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Yafei Wu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Weiqing Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of High-Incidence Tumor Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
111
|
Wu H, Li X, Liu S, Wang Q, Cao Y, Hao JN, Li Y. GSH-Responsive Organosilica Hybrid Nanosystem as a Cascade Promoter for Enhanced Starvation and Chemodynamic Therapy. Adv Healthc Mater 2023; 12:e2201262. [PMID: 36213949 DOI: 10.1002/adhm.202201262] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/18/2022] [Indexed: 01/18/2023]
Abstract
Glucose oxidase (GOD)-mediated starvation therapy (ST) that causes intratumoral glucose depletion is a promising strategy for tumor treatment. However, the ultimate efficacy is inevitably limited by tumor hypoxia, as oxygen is a key component in the consumption of glucose by GOD. In this study, a kind of glutathione (GSH)-responsive organosilica hybrid micelles loaded with Mn3 O4 and GOD (denoted as Mn3 O4 @PDOMs-GOD) is ingeniously designed for enhanced ST and chemodynamic therapy (CDT). Specifically, the internalized Mn3 O4 @PDOMs-GOD in tumor cells consumes intracellular glucose and oxygen (O2 ) under the catalysis of GOD to generate hydrogen peroxide (H2 O2 ), which is subsequently decomposed by Mn3 O4 to liberate O2 . This cyclically regenerated O2 will form a virtuous cycle of O2 and H2 O2 compensation to enhance the ST outcome. Meanwhile, Mn3 O4 can oxidize and deplete the overexpressed GSH in the tumor microenvironment (TME) to release Mn2+ , which then catalyzes H2 O2 into highly toxic hydroxyl radicals (·OH) to accomplish chemodynamic therapy (CDT). Both in vitro and in vivo experiment results demonstrate the significant antitumor efficacy of Mn3 O4 @PDOMs-GOD by the cooperatively enhanced ST and CDT, suggesting the feasibility to develop promising therapeutic platforms with higher treatment efficacies.
Collapse
Affiliation(s)
- Huan Wu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xianglong Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shi Liu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qinghua Wang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanyuan Cao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ji-Na Hao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
112
|
Jia Z, Gao Y, Ni J, Wu X, Mao Z, Sheng G, Zhu Y. A hybrid metal-organic framework nanomedicine-mediated photodynamic therapy and hypoxia-activated cancer chemotherapy. J Colloid Interface Sci 2023; 629:379-390. [PMID: 36162395 DOI: 10.1016/j.jcis.2022.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
The hypoxic tumor microenvironment and photodynamic therapy (PDT)-aggravated hypoxia compromise the anticancer efficacy of chemotherapy, immunotherapy, and PDT. Thus, sophisticated nanomedicines that can activate their anticancer capability in situ in response to specific stimuli need to be developed. This study aimed to construct a hybrid nanomedicine that activated chemotherapy by inducing hypoxia, which synergized with PDT to promote antitumor outcomes, contrary to the strategies focusing on reversing tumor hypoxia. The hybridization of a porphyrin metal-organic framework (MOF) and gold nanoparticles (AuNPs) enhanced the stability of the hybrid nanomedicine against the phosphate in blood, thereby preventing the premature drug release during blood circulation. The surface modification with polyethylene glycol (PEG) markedly increased the tumor accumulation of the hybrid MOF nanomedicine, which encapsulated a hypoxia-activated prodrug (tirapazamine, TPZ), by enhancing its colloidal stability and pharmacokinetics. The loaded TPZ was rapidly released from the nanomedicine in response to the concentrated intracellular phosphate after cellular uptake, and was then converted into a potent anticancer drug in a hypoxic microenvironment exacerbated by continuous O2 consumption during PDT. In vitro and in vivo experiments demonstrated that the synergistic PDT and hypoxia-activated chemotherapy exhibited enhanced antitumor therapeutic efficiency and superior antimetastatic effect, and effectively ablated the tumor without recurrence. Therefore, the sophisticated nanomedicine reported here, which eliminated cancer cells by inducing a hypoxic tumor microenvironment, showed translational potential in future therapeutic development.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jiali Ni
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, Zhejiang, China
| | - Xiaochang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou 313000, Zhejiang, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Guoping Sheng
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, Zhejiang, China.
| | - Yuefeng Zhu
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu 322000, Zhejiang, China.
| |
Collapse
|
113
|
Anti-cancer Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
114
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
115
|
Feng Y, Liao Z, Li M, Zhang H, Li T, Qin X, Li S, Wu C, You F, Liao X, Cai L, Yang H, Liu Y. Mesoporous Silica Nanoparticles-Based Nanoplatforms: Basic Construction, Current State, and Emerging Applications in Anticancer Therapeutics. Adv Healthc Mater 2022:e2201884. [PMID: 36529877 DOI: 10.1002/adhm.202201884] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In recent years, researchers are developing novel nanoparticles for diagnostic applications using imaging techniques and for therapeutic purposes through drug delivery techniques. The unique physical and chemical properties of mesoporous silica nanoparticles (MSNs) make it possible to integrate a variety of commonly used therapeutic and imaging agents to construct a multimodal synergistic anticancer drug delivery system. Herein, recent advances in MSNs synthesis for drug delivery and smart response applications are reviewed. First, synthetic strategies for the fabrication of ordered MSNs, hollow MSNs, core-shell structured MSNs, dendritic MSNs, and biodegradable MSNs are outlined. Then, the recent research progress in designing functional MSN materials with various controlled release mechanisms in anticancer therapy is discussed, and new properties are introduced to suggest the latest design requirements as drug delivery materials. The review also highlights significant achievements in bioimaging using MSNs and their multifunctional counterparts as delivery vehicles. Finally, personal views on key directions for future work in this area are presented.
Collapse
Affiliation(s)
- Yi Feng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhen Liao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| |
Collapse
|
116
|
Xia Y, Duan S, Han C, Jing C, Xiao Z, Li C. Hypoxia-responsive nanomaterials for tumor imaging and therapy. Front Oncol 2022; 12:1089446. [PMID: 36591450 PMCID: PMC9798000 DOI: 10.3389/fonc.2022.1089446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is an important component of tumor microenvironment and plays a pivotal role in cancer progression. With the distinctive physiochemical properties and biological effects, various nanoparticles targeting hypoxia had raised great interest in cancer imaging, drug delivery, and gene therapy during the last decade. In the current review, we provided a comprehensive view on the latest progress of novel stimuli-responsive nanomaterials targeting hypoxia-tumor microenvironment (TME), and their applications in cancer diagnosis and therapy. Future prospect and challenges of nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yifei Xia
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shao Duan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaozhe Han
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengwei Jing
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zunyu Xiao
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| | - Chao Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| |
Collapse
|
117
|
Cen J, Huang Y, Liu J, Liu Y. Thermo-responsive palladium-ruthenium nanozyme synergistic photodynamic therapy for metastatic breast cancer management. J Mater Chem B 2022; 10:10027-10041. [PMID: 36458841 DOI: 10.1039/d2tb01481e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reactive oxygen species (ROS) have become an effective "weapon" for cancer therapy due to their strong oxidation and high anti-tumor activity. Photodynamic therapy (PDT) is one of the classical methods to induce reactive oxygen species. Therefore, an ultraminiature palladium ruthenium alloy (sPdRu) and Ru(II) were combined with thermally responsive phase change materials (PCMs). Polypyridyl-complex (RCE) co-encapsulation was performed to obtain thermally responsive nanoparticles (PdRu-RCE@PCMNPs) for multimodal synergistic anti-breast cancer therapy. On the one hand, the thermosensitive PCM protective layer can realize the slow release of sPdRu, and then catalyze the production of oxygen from tumor endogenous H2O2 to perform RCE-mediated PDT. At the same time, sPdRu further increased ROS levels through peroxidase (POD) activity. On the other hand, sPdRu has high photothermal conversion efficiency and can be effectively used for photothermal therapy and photodynamic therapy. Importantly, PdRu-RCE@PCM NPs not only can effectively inhibit primary tumor growth, but also can inhibit tumor metastasis. In addition, due to the effective accumulation of sPdRu and RCE, PdRu-RCE@PCM NPs also show excellent fluorescence and photothermal imaging capabilities of tumors, which can be used for tumor tracing and evaluation of treatment. Accordingly, PdRu-RCE@PCM NPs are useful in treating primary tumors and inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Jieqiong Cen
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China. .,College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Yuqin Huang
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China. .,College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China.
| |
Collapse
|
118
|
A tumor pH-responsive autocatalytic nanoreactor as a H 2O 2 and O 2 self-supplying depot for enhanced ROS-based chemo/photodynamic therapy. Acta Biomater 2022; 154:510-522. [PMID: 36241016 DOI: 10.1016/j.actbio.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/10/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Combining the internal force-driven chemodynamic therapy (CDT) and the external energy-triggered photodynamic therapy (PDT) holds great promise to achieve an advanced anticancer effect based on reactive oxygen species (ROS). However, the insufficient oxy-substrates supply in tumor microenvironment, like hydrogen peroxide (H2O2) and oxygen (O2), is the Achilles heel that greatly restricts the efficacy of this ROS-based treatment. Herein, the construction of a copper peroxide-based tumor pH-responsive autocatalytic nanoreactor (CESAR), via an albumin-mediated biomimetic mineralization strategy is described. The decoration of human serum albumin endows the nanoreactor good hydrophilicity and biocompatibility, which is highly desired for the metal-based materials. Upon exposure to acidic tumor microenvironment, CESAR presents a pH-triggered disintegration with Cu2+, H2O2 and O2 generated instantly. The generated H2O2 complements the hyperoxide deficiency and initiates a localized Fenton-like reaction with the assistance of Cu2+ for highly toxic hydroxyl radicals (•OH) production for improving CDT. The evolved O2 gas enables hypoxia relief for enhanced Ce6-mediated PDT. This H2O2/O2 self-supplying strategy significantly amplifies the tumor oxidative damage and gains an optimal treatment outcome, which offers a new paradigm for optimizing the tumor therapeutic options limited by oxide or hyperoxide deficiency, not only for CDT/PDT, but also other oxy-substrates involved strategies. STATEMENT OF SIGNIFICANCE: The shortage of oxy-substrates in the tumor microenvironment remains a great challenge for ROS-based cancer therapy. Herein, we introduce human serum albumin as a scaffold to stabilize copper peroxide nanomaterials for constant production of H2O2 and O2 to enhance chemodynamic/photodynamic therapy. The tumor pH-triggered H2O2/O2 production and Cu2+ release are confirmed, assuring the strategy of a highly precise, effective way to destroy tumor without any side effects. This work lends new and exciting insights into the engineering design of autocatalytic oxy-substrates self-supply nanoreactor for overcoming the bottlenecks, like the oxy-substrates deficiency of CDT/PDT and the poor stability of metal peroxides, to achieve highly effective chemodynamic/photodynamic therapy.
Collapse
|
119
|
Wang Y, Jing D, Yang J, Zhu S, Shi J, Qin X, Yin W, Wang J, Ding Y, Chen T, Lu B, Yao Y. Glucose oxidase-amplified CO generation for synergistic anticancer therapy via manganese carbonyl-caged MOFs. Acta Biomater 2022; 154:467-477. [PMID: 36244597 DOI: 10.1016/j.actbio.2022.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) as one of the therapeutic gaseous molecules has been widely applied for treating various diseases, especially in cancer therapy. However, the in situ-triggered and efficient transport of CO to tumors are the primary obstacles that limit its clinical applicability. To address this obstacle, herein, a H2O2-triggered CO gas releasing nanoplatform has been designed by embedding manganese carbonyl (MnCO) into Zr (IV)-based metal-organic frameworks (MOFs). The porous structures of MOFs provide encapsulation capacity for glucose oxidase (GOx) loading, thereby catalyzing the endogenous glucose into gluconic acid and H2O2 to accelerate CO release and energy depletion. In the meantime, the Mn2+ produced by MnCO can react with intracellular H2O2 via the Fenton reaction to form cytotoxic •OH. Therefore, the synthesized gas nanogenerator demonstrated a synergistic efficacy of CO gas therapy, reactive oxygen species (ROS)-mediated therapy, and energy starvation to prevent tumor growth. Both in vitro and in vivo studies indicated that this multifunctional nanoplatform not only successfully inhibited tumors through a synergistic effect, but also provided a new technique for the creation of starvation/gas/chemodynamic combination therapy in a single material. STATEMENT OF SIGNIFICANCE: In this study, we developed a H2O2 responsive CO gas nanogenerator to augment the in-situ generation of CO gas for combined modality therapy of tumors. The nanogenerator was constructed by encapsulating glucose oxidase (GOx) and manganese carbonyl (MnCO) into UiO-67-bpy, which can catalyze the conversion of intracellular glucose to H2O2 for cutting off energy supply of cancer cells. Meanwhile, the cumulated H2O2 can trigger the release of CO for gas therapy and generation of •OH for chemodynamic therapy (CDT) via the Fenton-like reaction, thereby resulting in apoptosis of the cancer cells. Collectively, our designed nanotherapeutic agent not only displays the synergistic therapy efficacy of starvation-enhanced CO gas therapy and CDT, but also provides an efficient strategy for developing the intelligent nanocarrier for CO gas delivery and release.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China..
| | - Danni Jing
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Jiawen Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jian Shi
- Nantong University Analysis & Testing Center, Nantong, Jiangsu 226019, PR China
| | - Xiru Qin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Wujie Yin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China..
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China..
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China..
| |
Collapse
|
120
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
121
|
Pan Y, Zhu Y, Xu C, Pan C, Shi Y, Zou J, Li Y, Hu X, Zhou B, Zhao C, Gao Q, Zhang J, Wu A, Chen X, Li J. Biomimetic Yolk-Shell Nanocatalysts for Activatable Dual-Modal-Image-Guided Triple-Augmented Chemodynamic Therapy of Cancer. ACS NANO 2022; 16:19038-19052. [PMID: 36315056 DOI: 10.1021/acsnano.2c08077] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fenton reaction-based chemodynamic therapy (CDT), which applies metal ions to convert less active hydrogen peroxide (H2O2) into more harmful hydroxyl peroxide (·OH) for tumor treatment, has attracted increasing interest recently. However, the CDT is substantially hindered by glutathione (GSH) scavenging effect on ·OH, low intracellular H2O2 level, and low reaction rate, resulting in unsatisfactory efficacy. Here, a cancer cell membrane (CM)-camouflaged Au nanorod core/mesoporous MnO2 shell yolk-shell nanocatalyst embedded with glucose oxidase (GOD) and Dox (denoted as AMGDC) is constructed for synergistic triple-augmented CDT and chemotherapy of tumor under MRI/PAI guidance. Benefiting from the homologous adhesion and immune escaping property of the cancer CM, the nanocatalysts can target tumor and gradually accumulate in tumor site. For triple-augmented CDT, first, the MnO2 shell reacts with intratumoral GSH to generate Mn2+ and glutathione disulfide, which achieves Fenton-like ion delivery and weakening of GSH-mediated scavenging effect, leading to GSH depletion-enhanced CDT. Second, the intratumoral glucose can be oxidized to H2O2 and gluconic acid by GOD, achieving supplementary H2O2-enhanced CDT. Next, the AuNRs absorbing in NIR-II elevate the local tumor temperature upon NIR-II laser irradiation, achieving photothermal-enhanced CDT. Dox is rapidly released for adjuvant chemotherapy due to responsive degradation of MnO2 shell. Moreover, GSH-activated PAI/MRI can be used to monitor CDT process. This study provides a great paradigm for enhancing CDT-mediated antitumor efficacy.
Collapse
Affiliation(s)
- Yuanbo Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine and MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| | - Yang Zhu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Canxin Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Chunshu Pan
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, P. R. China
| | - Yu Shi
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueyin Hu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Zhou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Chenyang Zhao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
| | - Qianqian Gao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine and MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Juan Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China
| |
Collapse
|
122
|
Poudel K, Nam KS, Lim J, Ku SK, Hwang J, Kim JO, Byeon JH. Modified Aerotaxy for the Plug-in Manufacture of Cell-Penetrating Fenton Nanoagents for Reinforcing Chemodynamic Cancer Therapy. ACS NANO 2022; 16:19423-19438. [PMID: 36255335 DOI: 10.1021/acsnano.2c09136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The assemblies of anisotropic nanomaterials have attracted considerable interest in advanced tumor therapeutics because of the extended surfaces for loading of active molecules and the extraordinary responses to external stimuli for combinatorial therapies. These nanomaterials were usually constructed through templated or seed-mediated hydrothermal reactions, but the lack of uniformity in size and morphology, as well as the process complexities from multiple separation and purification steps, impede their practical use in cancer nanotherapy. Gas-phase epitaxy, also called aerotaxy (AT), has been introduced as an innovative method for the continuous assembly of anisotropic nanomaterials with a uniform distribution. This process does not require expensive crystal substrates and high vacuum conditions. Nevertheless, AT has been used limitedly to build high-aspect-ratio semiconductor nanomaterials. With these considerations, a modified AT was designed for the continuous in-flight assembly of the cell-penetrating Fenton nanoagents (Mn-Fe CaCO3 (AT) and Mn-Fe SiO2 (AT)) in a single-pass gas flow because cellular internalization activity is essential for cancer nanotherapeutics. The modified AT of Mn-Fe CaCO3 and Mn-Fe SiO2 to generate surface nanoroughness significantly enhanced the cellular internalization capability because of the preferential contact mode with the cancer cell membrane for Fenton reaction-induced apoptosis. In addition, it was even workable for doxorubicin (DOX)-resistant cancer cells after DOX loading on the nanoagents. After combining with immune-checkpoint blockers (antiprogrammed death-ligand 1 antibodies), the antitumor effect was improved further with no systemic toxicity as chemo-immuno-chemodynamic combination therapeutics despite the absence of targeting ligands and external stimuli.
Collapse
Affiliation(s)
- Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Wellman Center for Photomedicine, Department of Dermatology, Meassachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kang Sik Nam
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiseok Lim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
123
|
Ahmad A, Imran M, Sharma N. Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics 2022; 14:2463. [PMID: 36432653 PMCID: PMC9697541 DOI: 10.3390/pharmaceutics14112463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The dire need for the assessment of human and environmental endangerments of nanoparticulate material has motivated the formulation of novel scientific tools and techniques to detect, quantify, and characterize these nanomaterials. Several of these paradigms possess enormous possibilities for applications in many of the realms of nanotoxicology. Furthermore, in a large number of cases, the limited capabilities to assess the environmental and human toxicological outcomes of customized and tailored multifunctional nanoparticles used for drug delivery have hindered their full exploitation in preclinical and clinical settings. With the ever-compounded availability of nanoparticulate materials in commercialized settings, an ever-arising popular debate has been egressing on whether the social, human, and environmental costs associated with the risks of nanomaterials outweigh their profits. Here we briefly review the various health, pharmaceutical, and regulatory aspects of nanotoxicology of engineered multifunctional nanoparticles in vitro and in vivo. Several aspects and issues encountered during the safety and toxicity assessments of these drug-delivery nanocarriers have also been summarized. Furthermore, recent trends implicated in the nanotoxicological evaluations of nanoparticulate matter in vitro and in vivo have also been discussed. Due to the absence of robust and rigid regulatory guidelines, researchers currently frequently encounter a larger number of challenges in the toxicology assessment of nanocarriers, which have also been briefly discussed here. Nanotoxicology has an appreciable and significant part in the clinical translational development as well as commercialization potential of nanocarriers; hence these aspects have also been touched upon. Finally, a brief overview has been provided regarding some of the nanocarrier-based medicines that are currently undergoing clinical trials, and some of those which have recently been commercialized and are available for patients. It is expected that this review will instigate an appreciable interest in the research community working in the arena of pharmaceutical drug development and nanoformulation-based drug delivery.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Nisha Sharma
- Division of Nephrology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
124
|
Zhang Y, Hu H, Deng X, Song Q, Xing X, Liu W, Zhang Y. Cascade-Enhanced Catalytic Nanocomposite with Glutathione Depletion and Respiration Inhibition for Effective Starving-Chemodynamic Therapy Against Hypoxic Tumor. Int J Nanomedicine 2022; 17:5491-5510. [DOI: 10.2147/ijn.s382750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022] Open
|
125
|
Ren Z, Xie J, Li X, Guo L, Zhang Q, Wu J, Li Y, Liu W, Li P, Fu Y, Zhao K, Ma J. Rational design of graphite carbon nitride-decorated zinc oxide nanoarrays on three-dimensional nickel foam for the efficient production of reactive oxygen species through stirring-promoted piezo–photocatalysis. J Colloid Interface Sci 2022; 632:271-284. [DOI: 10.1016/j.jcis.2022.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
126
|
Xu M, Liu Y, Luo W, Tan F, Dong D, Li W, Wang L, Yu Q. A Multifunctional Nanocatalytic System Based on Chemodynamic-Starvation Therapies with Enhanced Efficacy of Cancer Treatment. J Colloid Interface Sci 2022; 630:804-816. [DOI: 10.1016/j.jcis.2022.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
127
|
|
128
|
Yuan H, Xia P, Sun X, Ma J, Xu X, Fu C, Zhou H, Guan Y, Li Z, Zhao S, Wang H, Dai L, Xu C, Dong S, Geng Q, Li Z, Wang J. Photothermal Nanozymatic Nanoparticles Induce Ferroptosis and Apoptosis through Tumor Microenvironment Manipulation for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202161. [PMID: 36089650 DOI: 10.1002/smll.202202161] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
It is highly desirable to design a single modality that can simultaneously trigger apoptosis and ferroptosis to efficiently eliminate tumor progression. Herein, a nanosystem based on the intrinsic properties of tumor microenvironment (TME) is designed to achieve tumor control through the simultaneous induction of ferroptosis and apoptosis. CuCP molecules are encapsulated in a liposome-based nanosystem to assemble into biocompatible and stable CuCP nanoparticles (CuCP Lipo NPs). This nanosystem intrinsically possesses nanozymatic activity and photothermal characteristics due to the property of Cu atoms and the structure of CuCP Lipo NPs. It is demonstrated that the synergistic strategy increases the intracellular lipid-reactive oxides species, induces the occurrence of ferroptosis and apoptosis, and completely eradicates the tumors in vivo. Proteomics analysis further discloses the key involved proteins (including Tp53, HMOX1, Ptgs2, Tfrc, Slc11a2, Mgst2, Sod1, and several GST family members) and pathways (including apoptosis, ferroptosis, and ROS synthesis). Conclusively, this work develops a strategy based on one nanosystem to synergistically induce ferroptosis and apoptosis in vivo for tumor suppression, which holds great potential in the clinical translation for tumor therapy.
Collapse
Affiliation(s)
- Haitao Yuan
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, P. R. China
| | - Peng Xia
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
- Department of Hepatobiliary& Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, P. R. China
| | - Xin Sun
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Jingbo Ma
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Xiaolong Xu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, P. R. China
| | - Chunjin Fu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Hongchao Zhou
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Yudong Guan
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province, 037009, P. R. China
| | - Shanshan Zhao
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Huifang Wang
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, P. R. China
| | - Lingyun Dai
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Chengchao Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Shaohong Dong
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Qingshan Geng
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Zhijie Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
129
|
Zhao C, Zhang Z, Jing T. A novel signature of combing cuproptosis- with ferroptosis-related genes for prediction of prognosis, immunologic therapy responses and drug sensitivity in hepatocellular carcinoma. Front Oncol 2022; 12:1000993. [PMID: 36249031 PMCID: PMC9562991 DOI: 10.3389/fonc.2022.1000993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOur study aimed to construct a novel signature (CRFs) of combing cuproptosis-related genes with ferroptosis-related genes for the prediction of the prognosis, responses of immunological therapy, and drug sensitivity of hepatocellular carcinoma (HCC) patients.MethodsThe RNA sequencing and corresponding clinical data of patients with HCC were downloaded from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), GSE76427, GSE144269, GSE140580, Cancer Cell Line Encyclopedia (CCLE), and IMvigor210 cohorts. CRFs was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm. The analyses involved in the prognosis, response to immunologic therapy, efficacy of transcatheter arterial chemoembolization (TACE) therapy, and drug sensitivity were performed. Furthermore, the molecular function, somatic mutation, and stemness analyses were further performed between the low- and high-risk groups, respectively. In this study, the statistical analyses were performed by using the diverse packages of R 4.1.3 software and Cytoscape 3.8.0.ResultsCRFs included seven genes (G6PD, NRAS, RRM2, SQSTM1, SRXN1, TXNRD1, and ZFP69B). Multivariate Cox regression analyses demonstrated that CRFs were an independent risk factor for prognosis. In addition, these patients in the high-risk group presented with worse prognoses and a significant state of immunosuppression. Moreover, patients in the high-risk group might achieve greater outcomes after receiving immunologic therapy, while patients in the low-risk group are sensitive to TACE. Furthermore, we discovered that patients in the high-risk group may benefit from the administration of sunitinib. In addition, enhanced mRANsi and tumor mutation burden (TMB) yielded in the high-risk group. Additionally, the functions enriched in the low-risk group differed from those in the other group.ConclusionIn summary, CRFs may be regarded not only as a novel biomarker of worse prognosis, but also as an excellent predictor of immunotherapy response, efficacy of TACE and drug sensitivity in HCC, which is worthy of clinical promotion.
Collapse
|
130
|
Peng T, Yao J. Development and application of bionic systems consisting of tumor-cell membranes. J Zhejiang Univ Sci B 2022; 23:770-777. [PMID: 36111573 PMCID: PMC9483606 DOI: 10.1631/jzus.b2200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Malignant tumors pose a serious threat to human health but during the past decade, great progress has been made in the treatment of tumors. The tumor-cell membrane is well constructed and can be used to solve problems in tumor therapy. Tumor-cell membranes exhibit not only high biocompatibility due to their homology but also enhanced therapeutic effects when combined with nanotechnology. Meanwhile, nanomaterials show high selectivity, sensitivity, and clinical transformation potential. Enhanced immunotherapy or tumor vaccines have potential clinical application because of tumor-membrane surface-specific antigens. Several studies have confirmed the feasibility and advantages of using tumor-cell membrane-incorporated nanosystems for tumor therapy. Considering all this, we focus in this review on the application of tumor-cell-membrane bionic platforms and, in the summary, provide ideas for new scientific developments.
Collapse
Affiliation(s)
- Tianjiao Peng
- Clinical Medical College, Henan University of Science and Technology, Luoyang 471003, China.,Department of Oncology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China.,Epigenetics and Molecular Biology Laboratory, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Jun Yao
- Department of Oncology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China. .,Epigenetics and Molecular Biology Laboratory, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
131
|
Wang Z, Yang J, Qin G, Zhao C, Ren J, Qu X. An Intelligent Nanomachine Guided by DNAzyme Logic System for Precise Chemodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202204291. [DOI: 10.1002/anie.202204291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
132
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
133
|
Wang H, Cui M, Xu Y, Liu T, Gu Y, Wang P, Tang H. Multifaceted Elevation of ROS Generation for Effective Cancer Suppression. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3150. [PMID: 36144938 PMCID: PMC9502709 DOI: 10.3390/nano12183150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The in situ lactate oxidase (LOx) catalysis is highly efficient in reducing oxygen to H2O2 due to the abundant lactate substrate in the hypoxia tumor microenvironment. Dynamic therapy, including chemodynamic therapy (CDT), photodynamic therapy (PDT), and enzyme dynamic therapy (EDT), could generate reactive oxygen species (ROS) including ·OH and 1O2 through the disproportionate or cascade biocatalytic reaction of H2O2 in the tumor region. Here, we demonstrate a ROS-based tumor therapy by integrating LOx and the antiglycolytic drug Mito-LND into Fe3O4/g-C3N4 nanoparticles coated with CaCO3 (denoted as FGLMC). The LOx can catalyze endogenous lactate to produce H2O2, which decomposes cascades into ·OH and 1O2 through Fenton reaction-induced CDT and photo-triggered PDT. Meanwhile, the released Mito-LND contributes to metabolic therapy by cutting off the source of lactate and increasing ROS generation in mitochondria for further improvement in CDT and PDT. The results showed that the FGLMC nanoplatform can multifacetedly elevate ROS generation and cause fatal damage to cancer cells, leading to effective cancer suppression. This multidirectional ROS regulation strategy has therapeutic potential for different types of tumors.
Collapse
Affiliation(s)
- Huizhe Wang
- Stem Cell Clinical Research Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengyuan Cui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanqi Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Tianguang Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Tang
- Stem Cell Clinical Research Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
134
|
Makuch S, Dróżdż M, Makarec A, Ziółkowski P, Woźniak M. An Update on Photodynamic Therapy of Psoriasis—Current Strategies and Nanotechnology as a Future Perspective. Int J Mol Sci 2022; 23:ijms23179845. [PMID: 36077239 PMCID: PMC9456335 DOI: 10.3390/ijms23179845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis (PS) is an immune-mediated skin disease with substantial negative effects on patient quality of life. Despite significant progress in the development of novel treatment options over the past few decades, a high percentage of patients with psoriasis remain undertreated and require new medications with superior long-term efficacy and safety. One of the most promising treatment options against psoriatic lesions is a form of phototherapy known as photodynamic therapy (PDT), which involves either the systemic or local application of a cell-targeting photosensitizing compound, followed by selective illumination of the lesion with visible light. However, the effectiveness of clinically incorporated photosensitizers in psoriasis treatment is limited, and adverse effects such as pain or burning sensations are frequently reported. In this study, we performed a literature review and attempted to provide a pooled estimate of the efficacy and short-term safety of targeted PDT in the treatment of psoriasis. Despite some encouraging results, PDT remains clinically underutilized. This highlights the need for further studies that will aim to evaluate the efficacy of a wider spectrum of photosensitizers and the potential of nanotechnology in psoriasis treatment.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Mateusz Dróżdż
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Alicja Makarec
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
135
|
Xiong X, Wang L, He S, Guan S, Li D, Zhang M, Qu X. Vacancy defect-promoted nanomaterials for efficient phototherapy and phototherapy-based multimodal Synergistic Therapy. Front Bioeng Biotechnol 2022; 10:972837. [PMID: 36091444 PMCID: PMC9452887 DOI: 10.3389/fbioe.2022.972837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.
Collapse
Affiliation(s)
- Xinyu Xiong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan He
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Dawei Li
- Senior Orthopeadics Department, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingming Zhang
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Xiaozhong Qu
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
136
|
Li Q, Wang F, Shi L, Tang Q, Li B, Wang X, Jin Y. Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-Like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37280-37290. [PMID: 35968633 DOI: 10.1021/acsami.2c05944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many current chemodynamic therapy (CDT) strategies suffer from either low therapeutic efficiency or the deficiency of poor targeting. The low therapeutic efficiency is mainly ascribed to the intracellular antioxidant system and the inefficient Fenton reaction in the weakly acidic tumor microenvironment (TME). Herein, by exploitation of the diverse function and programmability of functional nucleic acid, aptamer-tethered nanotrains of DNA copper nanoclusters (aptNTDNA-CuNCs) were assembled to simultaneously achieve targeted recognition, loading, and delivery of CDT reagents into tumor cells without an external carrier. The intracellular hydrogen peroxide (H2O2) oxidized nanotrains of DNA-CuNCs to produce a lot of Cu2+ and Cu+ ions, which can generate reactive oxygen species (ROS) in the weakly acidic TME based on the pH-independent Fenton-like reaction of Cu+/H2O2. Meanwhile, the redox reaction between intracellular glutathione (GSH) and Cu2+ depleted GSH and generated Cu+ ions, which weakened the antioxidant ability of cancer cells and further enhanced the Fenton-like reaction of Cu+/H2O2, respectively. Thus, the cascade Fenton-like reaction and GSH depletion doubly improved the efficacy of CDT. The in vivo and in vitro study solidly confirmed that aptNTDNA-CuNCs have excellent antitumor efficacy and no cytotoxicity to healthy cells. Therefore, aptNTDNA-CuNCs can act as CDT reagents to achieve highly efficient, biocompatible, and targeted CDT.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
137
|
Luo M, Yukawa H, Sato K, Tozawa M, Tokunaga M, Kameyama T, Torimoto T, Baba Y. Multifunctional Magnetic CuS/Gd 2O 3 Nanoparticles for Fluorescence/Magnetic Resonance Bimodal Imaging-Guided Photothermal-Intensified Chemodynamic Synergetic Therapy of Targeted Tumors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34365-34376. [PMID: 35876015 PMCID: PMC9354791 DOI: 10.1021/acsami.2c06503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Chemodynamic therapy (CDT), which consumes endogenous hydrogen peroxide (H2O2) to generate reactive oxygen species (ROS) and causes oxidative damage to tumor cells, shows tremendous promise for advanced cancer treatment. However, the rate of ROS generation based on the Fenton reaction is prone to being restricted by inadequate H2O2 and unattainable acidity in the hypoxic tumor microenvironment. We herein report a multifunctional nanoprobe (BCGCR) integrating bimodal imaging and photothermal-enhanced CDT of the targeted tumor, which is produced by covalent conjugation of bovine serum albumin-stabilized CuS/Gd2O3 nanoparticles (NPs) with the Cy5.5 fluorophore and the tumor-targeting ligand RGD. BCGCR exhibits intense near-infrared (NIR) fluorescence and acceptable r1 relaxivity (∼15.3 mM-1 s-1) for both sensitive fluorescence imaging and high-spatial-resolution magnetic resonance imaging of tumors in living mice. Moreover, owing to the strong NIR absorbance from the internal CuS NPs, BCGCR can generate localized heat and displays a high photothermal conversion efficiency (30.3%) under 980 nm laser irradiation, which enables photothermal therapy and further intensifies ROS generation arising from the Cu-induced Fenton-like reaction for enhanced CDT. This synergetic effect shows such an excellent therapeutic efficacy that it can ablate xenografted tumors in vivo. We believe that this strategy will be beneficial to exploring other advanced nanomaterials for the clinical application of multimodal imaging-guided synergetic cancer therapies.
Collapse
Affiliation(s)
- Minchuan Luo
- Nanobio
Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Nanobio
Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba 263-8555, Japan
- Nagoya
University Institute for Advanced Research, Advanced Analytical and
Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Development
of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application
of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuhide Sato
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Nagoya
University Institute for Advanced Research, Advanced Analytical and
Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Nagoya
University
Institute for Advanced Research, S-YLC, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Makoto Tozawa
- Material
Design Chemistry, Department of Materials Chemistry, Graduate School
of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masato Tokunaga
- Nanobio
Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tatsuya Kameyama
- Material
Design Chemistry, Department of Materials Chemistry, Graduate School
of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tsukasa Torimoto
- Material
Design Chemistry, Department of Materials Chemistry, Graduate School
of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Nanobio
Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
138
|
Wang J, Kong W, Jin H, Li C, Luo Q, Luo Y, Yuan C, Lu J, Zhang L, Liu X. Tumor microenvironment responsive theranostic agent for enhanced chemo/chemodynamic/photothermal therapy. Colloids Surf B Biointerfaces 2022; 218:112750. [DOI: 10.1016/j.colsurfb.2022.112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
|
139
|
Wang Z, Yang J, Qin G, Zhao C, Ren J, Qu X. An Intelligent Nanomachine Guided by DNAzyme Logic System for Precise Chemodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhao Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jie Yang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Geng Qin
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Chuanqi Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jinsong Ren
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Xiaogang Qu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry 5625 Renmin Street 130022 Changchun CHINA
| |
Collapse
|
140
|
Ding F, Li F, Tang D, Wang B, Liu J, Mao X, Yin J, Xiao H, Wang J, Liu Z. Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticle‐Mediated Copper Chaperone Inhibition. Angew Chem Int Ed Engl 2022; 61:e202203546. [DOI: 10.1002/anie.202203546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Feixiang Ding
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Fei Li
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Junyan Liu
- Department of Orthopaedics Xiangya Hospital Central South University Changsha 410008 P. R. China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Jiye Yin
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jing Wang
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| |
Collapse
|
141
|
Bonet-Aleta J, Encinas-Gimenez M, Urriolabeitia E, Martin-Duque P, Hueso JL, Santamaria J. Unveiling the interplay between homogeneous and heterogeneous catalytic mechanisms in copper-iron nanoparticles working under chemically relevant tumour conditions. Chem Sci 2022; 13:8307-8320. [PMID: 35919722 PMCID: PMC9297535 DOI: 10.1039/d2sc01379g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
The present work sheds light on a generally overlooked issue in the emerging field of bio-orthogonal catalysis within tumour microenvironments (TMEs): the interplay between homogeneous and heterogeneous catalytic processes. In most cases, previous works dealing with nanoparticle-based catalysis in the TME focus on the effects obtained (e.g. tumour cell death) and attribute the results to heterogeneous processes alone. The specific mechanisms are rarely substantiated and, furthermore, the possibility of a significant contribution of homogeneous processes by leached species - and the complexes that they may form with biomolecules - is neither contemplated nor pursued. Herein, we have designed a bimetallic catalyst nanoparticle containing Cu and Fe species and we have been able to describe the whole picture in a more complex scenario where both homogeneous and heterogeneous processes are coupled and fostered under TME relevant chemical conditions. We investigate the preferential leaching of Cu ions in the presence of a TME overexpressed biomolecule such as glutathione (GSH). We demonstrate that these homogeneous processes initiated by the released by Cu-GSH interactions are in fact responsible for the greater part of the cell death effects found (GSH, a scavenger of reactive oxygen species, is depleted and highly active superoxide anions are generated in the same catalytic cycle). The remaining solid CuFe nanoparticle becomes an active catalyst to supply oxygen from oxygen reduced species, such as superoxide anions (by-product from GSH oxidation) and hydrogen peroxide, another species that is enriched in the TME. This activity is essential to sustain the homogeneous catalytic cycle in the oxygen-deprived tumour microenvironment. The combined heterogeneous-homogeneous mechanisms revealed themselves as highly efficient in selectively killing cancer cells, due to their higher GSH levels compared to healthy cell lines.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
| | - Miguel Encinas-Gimenez
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
| | - Esteban Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza) 50009 Zaragoza Spain
| | - Pilar Martin-Duque
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Instituto Aragonés de Ciencias de la Salud (IACS) Avenida San Juan Bosco, 13 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
- Fundación Araid Av. de Ranillas 1-D 50018 Zaragoza Spain
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
| |
Collapse
|
142
|
Ke L, Wei F, Xie L, Karges J, Chen Y, Ji L, Chao H. A Biodegradable Iridium(III) Coordination Polymer for Enhanced Two-Photon Photodynamic Therapy Using an Apoptosis-Ferroptosis Hybrid Pathway. Angew Chem Int Ed Engl 2022; 61:e202205429. [PMID: 35532958 DOI: 10.1002/anie.202205429] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/13/2022]
Abstract
The clinical application of photodynamic therapy is hindered by the high glutathione concentration, poor cancer-targeting properties, poor drug loading into delivery systems, and an inefficient activation of the cell death machinery in cancer cells. To overcome these limitations, herein, the formulation of a promising IrIII complex into a biodegradable coordination polymer (IrS NPs) is presented. The nanoparticles were found to remain stable under physiological conditions but deplete glutathione and disintegrate into the monomeric metal complexes in the tumor microenvironment, causing an enhanced therapeutic effect. The nanoparticles were found to selectively accumulate in the mitochondria where these trigger cell death by hybrid apoptosis and ferroptosis pathways through the photoinduced production of singlet oxygen and superoxide anion radicals. This study presents the first example of a coordination polymer that can efficiently cause cancer cell death by apoptosis and ferroptosis upon irradiation, providing an innovative approach for cancer therapy.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
143
|
Li H, Liu Y, Huang B, Zhang C, Wang Z, She W, Liu Y, Jiang P. Highly Efficient GSH-Responsive "Off-On" NIR-II Fluorescent Fenton Nanocatalyst for Multimodal Imaging-Guided Photothermal/Chemodynamic Synergistic Cancer Therapy. Anal Chem 2022; 94:10470-10478. [PMID: 35816734 DOI: 10.1021/acs.analchem.2c01738] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accurate diagnosis and effective treatment of malignant tumors under the interference of complex and diverse tumor microenvironments (TMEs) have become the focus of research. Herein, an innovative TME-activated biomimetic nanocatalyst with quad-modal imaging capabilities of second near-infrared (NIR-II) "turn-on" fluorescence imaging, magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and photothermal imaging (PTI) was designed and developed for self-enhanced photothermal/chemodynamic synergistic therapy. The catalyst was fabricated by loading glucose oxidase (GOD) and Ag2S quantum dots (QDs) on MnO2 nanosheets and coating them with a 4T1 cell membrane (AMG@CM), which enables them to successfully escape immune clearance and have appealing tumor-targeting ability and biocompatibility. The NIR-II fluorescence at 1130 nm of Ag2S QDs quenched by MnO2 could be recovered in vivo through the glutathione (GSH)-induced degradation of MnO2, enabling excellent TME-responsive tumor visualization. Simultaneously, the released Mn2+ can catalyze H2O2 to produce abundant hydroxyl radicals (•OH), achieving photothermal synergistically enhanced chemodynamic therapy (CDT) under NIR-II radiation. Moreover, the CDT could be self-enhanced by GOD due to the extra produced H2O2. This work demonstrates a novel and highly efficient multimodal imaging-guided integrated treatment strategy for dual-enhanced CDT tumor precise diagnosis and treatment.
Collapse
Affiliation(s)
- Haimei Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Caiju Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zichen Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wenyan She
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
144
|
Dong MJ, Li W, Xiang Q, Tan Y, Xing X, Wu C, Dong H, Zhang X. Engineering Metal-Organic Framework Hybrid AIEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29599-29612. [PMID: 35737456 DOI: 10.1021/acsami.2c05860] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggregation-induced emission (AIE)-active luminogens (AIEgens) have demonstrated exciting potential for the application in cancer phototheranostics. However, simultaneously achieving tumor-activated bright emission, enhanced reactive oxygen species (ROS) generation, high tumor accumulation, and minimized ROS depletion remains challenging. Here, a metal-organic framework (MOF) hybrid AIEgen theranostic platform is designed, termed A-NUiO@DCDA@ZIF-Cu, composed of an AIEgen-loaded hydrophobic UiO-66 (A-NUiO@DCDA) core and a Cu-doped hydrophilic ZIF-8 (ZIF-Cu) shell. The fluorescence emission and therapeutic ROS activity of AIEgens are restrained during delivery. After uptake by tumor tissues, ZIF-Cu decomposition occurs in response to an acidic tumor microenvironment (TME), and the hydrophobic A-NUiO@DCDA cores self-assemble into large particles, extremely increasing the tumor accumulation of AIEgens. This results in enhanced fluorescence imaging (FLI) and highly improved 1O2 generation ability during photodynamic therapy (PDT). Meanwhile, the released Cu2+ reacts to glutathione (GSH) to generate Cu+, which provides an extra chemodynamic therapy (CDT) function through Fenton-like reactions with overexpressed H2O2, resulting in the GSH depletion-enhanced ROS therapy. As a result of these characteristics, the MOF hybrid AIEgens can selectively kill tumors with excellent efficacy.
Collapse
Affiliation(s)
- Ming-Jie Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Weiqun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qin Xiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaotong Xing
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chaoxiong Wu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
145
|
Zhang Z, Wang H, Yang H, Song W, Dai L, Yu S, Liu X, Li T. Magnetic microswarm for MRI contrast enhancer. Chem Asian J 2022; 17:e202200561. [DOI: 10.1002/asia.202200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhanxiang Zhang
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Haocheng Wang
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Hua Yang
- Peking Union Medical College Hospital National Clinical Research Center for Obstetric & Gynecologic Diseases CHINA
| | - Wenping Song
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Lizhou Dai
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Shimin Yu
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Xuejia Liu
- The Fourth Affiliated Hospital of Harbin Medical University Department of Medical Imaging CHINA
| | - Tianlong Li
- Harbin Institute of Technology Mechanical Engineering 92 West Dazhi StreetMainhouse Room 125 150001 Harbin CHINA
| |
Collapse
|
146
|
Xu Q, Zhang Y, Yang Z, Jiang G, Lv M, Wang H, Liu C, Xie J, Wang C, Guo K, Gu Z, Yong Y. Tumor microenvironment-activated single-atom platinum nanozyme with H 2O 2 self-supplement and O 2-evolving for tumor-specific cascade catalysis chemodynamic and chemoradiotherapy. Theranostics 2022; 12:5155-5171. [PMID: 35836808 PMCID: PMC9274735 DOI: 10.7150/thno.73039] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Nanozyme-based tumor collaborative catalytic therapy has attracted a great deal of attention in recent years. However, their cooperative outcome remains a great challenge due to the unique characteristics of tumor microenvironment (TME), such as insufficient endogenous hydrogen peroxide (H2O2) level, hypoxia, and overexpressed intracellular glutathione (GSH). Methods: Herein, a TME-activated atomic-level engineered PtN4C single-atom nanozyme (PtN4C-SAzyme) is fabricated to induce the "butterfly effect" of reactive oxygen species (ROS) through facilitating intracellular H2O2 cycle accumulation and GSH deprivation as well as X-ray deposition for ROS-involving CDT and O2-dependent chemoradiotherapy. Results: In the paradigm, the SAzyme could boost substantial ∙OH generation by their admirable peroxidase-like activity as well as X-ray deposition capacity. Simultaneously, O2 self-sufficiency, GSH elimination and elevated Pt2+ release can be achieved through the self-cyclic valence alteration of Pt (IV) and Pt (II) for alleviating tumor hypoxia, overwhelming the anti-oxidation defense effect and overcoming drug-resistance. More importantly, the PtN4C-SAzyme could also convert O2·- into H2O2 by their superior superoxide dismutase-like activity and achieve the sustainable replenishment of endogenous H2O2, and H2O2 can further react with the PtN4C-SAzyme for realizing the cyclic accumulation of ∙OH and O2 at tumor site, thereby generating a "key" to unlock the multi enzymes-like properties of SAzymes for tumor-specific self-reinforcing CDT and chemoradiotherapy. Conclusions: This work not only provides a promising TME-activated SAzyme-based paradigm with H2O2 self-supplement and O2-evolving capacity for intensive CDT and chemoradiotherapy but also opens new horizons for the construction and tumor catalytic therapy of other SAzymes.
Collapse
Affiliation(s)
- Qiqi Xu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuetong Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zulu Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Mingzhu Lv
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Huan Wang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chenghui Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiani Xie
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100040, China
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100040, China
| | - Yuan Yong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.,✉ Corresponding author: Yuan Yong, E-mail:
| |
Collapse
|
147
|
Luo J, Zhong X, Peng Y, Hao C, Liang X, Yang Y, Shi X, Chen X, Yi X, Li X, Wu J, Li J, Xiao Q, Wu C, Lu R, Pan Y, Wang X, Fan JB, Wang Y, Wang Y. Self-anti-angiogenesis nanoparticles enhance anti-metastatic-tumor efficacy of chemotherapeutics. Bioact Mater 2022; 13:179-190. [PMID: 35224300 PMCID: PMC8843953 DOI: 10.1016/j.bioactmat.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022] Open
Abstract
Beyond traditional endothelium-dependent vessel (EDV), vascular mimicry (VM) is another critical tumor angiogenesis that further forms in many malignant metastatic tumors. However, the existing anti-angiogenesis combined chemotherapeutics strategies are only efficient for the treatment of EDV-based subcutaneous tumors, but remain a great challenge for the treatment of in situ malignant metastatic tumor associated with EDV and VM. Here, we demonstrate a self-assembled nanoparticle (VE-DDP-Pro) featuring self-anti-EDV and -VM capacity enables to significantly enhance the treatment efficacy of cisplatin (DDP) against the growth and metastasis of ovarian cancer. The VE-DDP-Pro is constructed by patching DDP loaded cRGD-folate-heparin nanoparticles (VE) onto the surface of protamine (Pro) nanoparticle. We demonstrated the self-anti-angiogenesis capacity of VE-DDP-Pro was attributed to VE, which could significantly inhibit the formation of EDV and VM by regulating signaling pathway of MMP-2/VEGF, AKT/mTOR/MMP-2/Laminin and AKT/mTOR/EMT, facilitating chemotherapeutics to effectively suppress the development and metastasis of ovarian cancer. Thus, combing with the chemotherapeutics effectiveness of DDP, the VE-DDP-Pro can significantly enhance treatment efficacy and prolong median survival of mice with metastatic ovarian cancer. We believe our self-assembled nanoparticles integrating the anti-EDV and anti-VM capacity provide a new preclinical sight to enhance the efficacy of chemotherapeutics for the treatment malignant metastasis tumor.
Collapse
Affiliation(s)
- Jiamao Luo
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xinxian Zhong
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yingming Peng
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chenyuan Hao
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Liang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yulu Yang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiubo Shi
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Yi
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaoxuan Li
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jianhua Wu
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinheng Li
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Xiao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chentian Wu
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruojing Lu
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yao Pan
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuejiao Wang
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Bing Fan
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yifeng Wang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ying Wang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
148
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
149
|
Li J, Wei J, Gao Y, Zhao Q, Sun J, Ouyang J, NaNa. Peptide-assembled siRNA nanomicelles confine MnO -loaded silicages for synergistic chemical and gene-regulated cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
150
|
Bonet-Aleta J, Sancho-Albero M, Calzada-Funes J, Irusta S, Martin-Duque P, Hueso JL, Santamaria J. Glutathione-Triggered catalytic response of Copper-Iron mixed oxide Nanoparticles. Leveraging tumor microenvironment conditions for chemodynamic therapy. J Colloid Interface Sci 2022; 617:704-717. [DOI: 10.1016/j.jcis.2022.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
|