101
|
Portella G, Pohl P, de Groot BL. Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length. Biophys J 2007; 92:3930-7. [PMID: 17369423 PMCID: PMC1868973 DOI: 10.1529/biophysj.106.102921] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the structural and energetic determinants underlying water permeation through peptidic nanopores, motivated by recent experimental findings that indicate that water mobility in single-file water channels displays nonlinear length dependence. To address the molecular mechanism determining the observed length dependence, we studied water permeability in a series of designed gramicidin-like channels of different length using atomistic molecular dynamics simulations. We found that within the studied range of length the osmotic water permeability is independent of pore length. This result is at variance with textbook models, where the relationship is assumed to be linear. Energetic analysis shows that loss of solvation rather than specific water binding sites in the pore form the main energetic barrier for water permeation, consistent with our dynamics results. For this situation, we propose a modified expression for osmotic permeability that fully takes into account water motion collectivity and does not depend on the pore length. Different schematic barrier profiles are discussed that explain both experimental and computational interpretations, and we propose a set of experiments aimed at validation of the presented results. Implications of the results for the design of peptidic channels with desired permeation characteristics are discussed.
Collapse
Affiliation(s)
- Guillem Portella
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
102
|
Baştuğ T, Kuyucak S. Free energy simulations of single and double ion occupancy in gramicidin A. J Chem Phys 2007; 126:105103. [PMID: 17362089 DOI: 10.1063/1.2710267] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simultaneous occupancy of the two binding sites in gramicidin A by monovalent cations is a well known property of this channel, but the energetic feasibility of this process in molecular dynamics simulations has not been established so far. Here the authors study the energetics of single and double ion occupancy in gramicidin A by constructing the potential of mean force for single and pair of cations. As representatives of small and large ions, they consider both Na+ and K+ ions in the calculations. Binding constants of ions are estimated from the free energy profiles. Comparisons with the experimental results indicate 3-4 kT discrepancy in the binding energies. They also study the coordination of the ions in their respective binding sites and the dynamic behavior of the channel water during the double ion binding process.
Collapse
Affiliation(s)
- Turgut Baştuğ
- School of Physics, University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
103
|
Miloshevsky GV, Jordan PC. Permeation and gating in proteins: kinetic Monte Carlo reaction path following. J Chem Phys 2007; 122:214901. [PMID: 15974784 DOI: 10.1063/1.1924501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method.
Collapse
Affiliation(s)
- Gennady V Miloshevsky
- Department of Chemistry, MS-015 Brandeis University, P.O. Box 549110, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
104
|
Andersen OS, Bruno MJ, Sun H, Koeppe RE. Single-molecule methods for monitoring changes in bilayer elastic properties. Methods Mol Biol 2007; 400:543-570. [PMID: 17951759 DOI: 10.1007/978-1-59745-519-0_37] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Membrane-spanning proteins perturb the organization and dynamics of the adjacent bilayer lipids. For example, when the hydrophobic length (l) of a bilayer-spanning protein differs from the average thickness (d0) of the host bilayer, the bilayer thickness will vary locally in the vicinity of the protein in order to "match" the length of the protein's hydrophobic exterior to the thickness of the bilayer hydrophobic core. Such bilayer deformations incur an energetic cost, the bilayer deformation energy (DeltaG0def), which will vary as a function of the protein shape, the protein-bilayer hydrophobic mismatch (d0 - l), the lipid bilayer elastic properties, and the lipid intrinsic curvature (c0). Thus, if the membrane protein conformational changes underlying protein function involve the protein/bilayer interface, the ensuing changes in DeltaG0def (DeltaDeltaG0def) will contribute to the overall free-energy change of the conformational changes (DeltaG0tot)-meaning that the host lipid bilayer will modulate protein function. For a given protein, (DeltaDeltaG0def) varies as a function of the bilayer geometric properties (thickness and intrinsic curvature) and the elastic (bending and compression) moduli, which vary as a function of changes in lipid composition or with the adsorption of amphiphiles at the bilayer/solution interface. To understand how changes in bilayer properties modulate the function of bilayer-spanning proteins, single-molecule methods have been developed to probe changes in bilayer elastic properties using gramicidins as molecular force transducers. Different approaches to measuring the deformation energy are described: (1) measurements of changes in channel lifetimes and appearance rates as the lipid bilayer thickness or channel length are varied, (2) measurements of the equilibrium distribution among channels of different lengths, formed by homo- and heterodimers between gramicidin subunits of different lengths, and (3) measurements of the ratio of the appearance rates of heterodimer channels relative to parent homodimer channels formed by gramicidin subunits of different lengths.
Collapse
Affiliation(s)
- Olaf S Andersen
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | |
Collapse
|
105
|
Miloshevsky GV, Jordan PC. The open state gating mechanism of gramicidin a requires relative opposed monomer rotation and simultaneous lateral displacement. Structure 2006; 14:1241-9. [PMID: 16905098 DOI: 10.1016/j.str.2006.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/01/2006] [Accepted: 06/09/2006] [Indexed: 11/16/2022]
Abstract
The gating mechanism of the open state of the gramicidin A (gA) channel is studied by using a new Monte Carlo Normal Mode Following (MC-NMF) technique, one applicable even without a target structure. The results demonstrate that the lowest-frequency normal mode (NM) at approximately 6.5 cm(-1) is the crucial mode that initiates dissociation. Perturbing the gA dimer in either direction along this NM leads to opposed, nearly rigid-body rotations of the gA monomers around the central pore axis. Tracking this NM by using the eigenvector-following technique reveals the channel's gating mechanism: dissociation via relative opposed monomer rotation and simultaneous lateral displacement. System evolution along the lowest-frequency eigenvector shows that the large-amplitude motions required for gating (dissociation) are not simple relative rigid-body motions of the monomers. Gating involves coupling intermonomer hydrogen bond breaking, backbone realignment, and relative monomer tilt with complex side chain reorganization at the intermonomer junction.
Collapse
Affiliation(s)
- Gennady V Miloshevsky
- Department of Chemistry, MS-015 Brandeis University, P O Box 549110, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
106
|
Nikolov V, Radisic A, Hristova K, Searson PC. Bias-dependent admittance in hybrid bilayer membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:7156-8. [PMID: 16893210 DOI: 10.1021/la061562k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Artificial bilayer membranes provide a platform for bioelectronic devices based on their structural, sensing, and transport functions. In this letter, we report on the impedance response of an engineered membrane with a lower leaflet of octadecanethiol on gold and an outer leaflet of dioleoylphosphatidylcholine with the monomeric channel protein gramicidin. This hybrid bilayer exhibits an electrical response analogous to a solid-state diode: the admittance is very low (<10(-)(7) Omega(-)(1) cm(-)(2)) over a wide potential range but increases exponentially at negative potentials.
Collapse
Affiliation(s)
- Vesselin Nikolov
- Department of Materials Science and Engineering, and Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
107
|
Durrant JD, Caywood D, Busath DD. Tryptophan contributions to the empirical free-energy profile in gramicidin A/M heterodimer channels. Biophys J 2006; 91:3230-41. [PMID: 16861266 PMCID: PMC1614506 DOI: 10.1529/biophysj.105.078782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gramicidin A/gramicidin M heterodimer conductances were measured in planar lipid bilayers and found to form two distinguishable populations about halfway between the gramicidin A and gramicidin M homodimer conductances. This implies that the principle difference in the gramicidin A and gramicidin M transport free-energy profiles occurs at the channel center, where it would produce similar effects on the rate-limiting barrier for the two heterodimers. Kinetic analysis based on this and nearly all previously published homodimer conductance data for both gramicidin A and gramicidin M channels confirms this conclusion, indicating that the translocation step is approximately 100-fold slower in gramicidin M homodimers than in gramicidin A homodimers and that first- and second-ion exit-rate constants are higher by factors of 24 and 10, respectively. Assuming that the ratios of rate constants are related to the free-energy difference between gramicidin A and gramicidin M, we construct an effective ion-Trp free-energy interaction profile that has a minimum at the channel center.
Collapse
Affiliation(s)
- Jacob Devin Durrant
- Deptartment of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA
| | | | | |
Collapse
|
108
|
Lundbæk JA. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S1305-S1344. [PMID: 21690843 DOI: 10.1088/0953-8984/18/28/s13] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA(A) receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established.
Collapse
Affiliation(s)
- Jens August Lundbæk
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
109
|
|
110
|
Baştuğ T, Patra SM, Kuyucak S. Molecular dynamics simulations of gramicidin A in a lipid bilayer: From structure–function relations to force fields. Chem Phys Lipids 2006; 141:197-204. [PMID: 16600199 DOI: 10.1016/j.chemphyslip.2006.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Molecular dynamics simulations of membrane proteins have become a popular tool for studying their dynamic features, which are not easily accessible by experiments. Whether the force fields developed for globular proteins are adequate this purpose is an important question that is often glossed over. Here we determine the permeation properties of potassium ions in the gramicidin A channel in a lipid bilayer from free energy simulations, and compare the results to experimental data. In particular, we check the dependence of the free energy barriers ions face at the channel center on the membrane size. The results indicate that there is a serious problem with the current rigid force fields independent of the membrane size, and new, possibly polarizable, force fields need to be developed to resolve this problem.
Collapse
Affiliation(s)
- Turgut Baştuğ
- School of Physics, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
111
|
Allen TW, Andersen OS, Roux B. Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. Biophys J 2006; 90:3447-68. [PMID: 16500984 PMCID: PMC1440729 DOI: 10.1529/biophysj.105.077073] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 02/06/2006] [Indexed: 11/18/2022] Open
Abstract
We investigate methods for extracting the potential of mean force (PMF) governing ion permeation from molecular dynamics simulations (MD) using gramicidin A as a prototypical narrow ion channel. It is possible to obtain well-converged meaningful PMFs using all-atom MD, which predict experimental observables within order-of-magnitude agreement with experimental results. This was possible by careful attention to issues of statistical convergence of the PMF, finite size effects, and lipid hydrocarbon chain polarizability. When comparing the modern all-atom force fields of CHARMM27 and AMBER94, we found that a fairly consistent picture emerges, and that both AMBER94 and CHARMM27 predict observables that are in semiquantitative agreement with both the experimental conductance and dissociation coefficient. Even small changes in the force field, however, result in significant changes in permeation energetics. Furthermore, the full two-dimensional free-energy surface describing permeation reveals the location and magnitude of the central barrier and the location of two binding sites for K(+) ion permeation near the channel entrance--i.e., an inner site on-axis and an outer site off-axis. We conclude that the MD-PMF approach is a powerful tool for understanding and predicting the function of narrow ion channels in a manner that is consistent with the atomic and thermally fluctuating nature of proteins.
Collapse
Affiliation(s)
- Toby W Allen
- Department of Chemistry, University of California at Davis, 95616, USA.
| | | | | |
Collapse
|
112
|
Allen TW, Andersen OS, Roux B. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. Biophys Chem 2006; 124:251-67. [PMID: 16781050 DOI: 10.1016/j.bpc.2006.04.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/26/2006] [Accepted: 04/27/2006] [Indexed: 11/29/2022]
Abstract
Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.
Collapse
Affiliation(s)
- Toby W Allen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
113
|
Kelkar DA, Chattopadhyay A. Monitoring ion channel conformations in membranes utilizing a novel dual fluorescence quenching approach. Biochem Biophys Res Commun 2006; 343:483-8. [PMID: 16546136 DOI: 10.1016/j.bbrc.2006.02.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics, and function of membrane-spanning channels. We have analyzed the localization of the functionally important tryptophan residues of the membrane-bound channel and non-channel conformations of gramicidin utilizing a novel dual fluorescence quenching approach [G.A. Caputo, E. London, Biochemistry 42 (2003) 3265-3274]. In this paper, we show for the first time that the dual quenching approach is applicable to multiple tryptophan containing functional ion channel peptides such as gramicidin. Importantly, dual quenching is found to be sensitive to the membrane-bound conformations of this important model ion channel.
Collapse
Affiliation(s)
- Devaki A Kelkar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
114
|
Faraldo-Gómez JD, Forrest LR, Baaden M, Bond PJ, Domene C, Patargias G, Cuthbertson J, Sansom MSP. Conformational sampling and dynamics of membrane proteins from 10-nanosecond computer simulations. Proteins 2006; 57:783-91. [PMID: 15317024 DOI: 10.1002/prot.20257] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the current report, we provide a quantitative analysis of the convergence of the sampling of conformational space accomplished in molecular dynamics simulations of membrane proteins of duration in the order of 10 nanoseconds. A set of proteins of diverse size and topology is considered, ranging from helical pores such as gramicidin and small beta-barrels such as OmpT, to larger and more complex structures such as rhodopsin and FepA. Principal component analysis of the C(alpha)-atom trajectories was employed to assess the convergence of the conformational sampling in both the transmembrane domains and the whole proteins, while the time-dependence of the average structure was analyzed to obtain single-domain information. The membrane-embedded regions, particularly those of small or structurally simple proteins, were found to achieve reasonable convergence. By contrast, extra-membranous domains lacking secondary structure are often markedly under-sampled, exhibiting a continuous structural drift. This drift results in a significant imprecision in the calculated B-factors, which detracts from any quantitative comparison to experimental data. In view of such limitations, we suggest that similar analyses may be valuable in simulation studies of membrane protein dynamics, in order to attach a level of confidence to any biologically relevant observations.
Collapse
Affiliation(s)
- José D Faraldo-Gómez
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
|
116
|
Baştuğ T, Kuyucak S. Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations. Biophys J 2006; 90:3941-50. [PMID: 16533834 PMCID: PMC1459526 DOI: 10.1529/biophysj.105.074633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rigid force fields currently used in molecular dynamics (MD) simulations of biomolecules are optimized for globular proteins. Whether they can also be used in MD simulations of membrane proteins is an important issue that needs to be resolved. Here we address this issue using the gramicidin A channel, which provides an ideal test case because of the simplicity of its structure and the availability of a wealth of functional data. Permeation properties of gramicidin A can be summarized as "it conducts monovalent cations, rejects anions, and binds divalent cations." Hence, a comprehensive test should consider the energetics of permeation for all three types of ions. To that end, we construct the potential of mean force for K(+), Cl(-), and Ca(2+) ions along the channel axis. For an independent check of the potential-of-mean-force results, we also calculate the free energy differences for these ions at the channel center and binding sites relative to bulk. We find that "rejection of anions" is satisfied but there are difficulties in accommodating the other two properties using the current MD force fields.
Collapse
Affiliation(s)
- Turgut Baştuğ
- School of Physics, University of Sydney, Sydney, Australia
| | | |
Collapse
|
117
|
Patel S, Brooks CL. Fluctuating charge force fields: recent developments and applications from small molecules to macromolecular biological systems. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600726708] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
118
|
Thundimadathil J, Roeske RW, Guo L. Conversion of a porin-like peptide channel into a gramicidin-like channel by glycine to D-alanine substitutions. Biophys J 2006; 90:947-55. [PMID: 16272445 PMCID: PMC1367119 DOI: 10.1529/biophysj.105.072751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/19/2005] [Indexed: 11/18/2022] Open
Abstract
The beta-barrel and beta-helix formation, as in porins and gramicidin, respectively, represent two distinct mechanisms for ion channel formation by beta-sheet proteins in membranes. The design of beta-barrel proteins is difficult due to incomplete understanding of the basic principles of folding. The design of gramicidin-like beta-helix relies on an alternating pattern of L- and D-amino acid sequences. Recently we noticed that a short beta-sheet peptide (xSxG)(6), can form porin-like channels via self-association in membranes. Here, we proposed that glycine to D-alanine substitutions of the N-formyl-(xSxG)(6) would transform the porin-like channel into a gramicidin-like beta(12)-helical channel. The requirement of an N-formyl group for channel activity, impermeability to cations with a diameter >4 A, high monovalent cation selectivity, and the absence of either voltage gating or subconductance states upon D-alanine substitution support the idea of a gramicidin-like channel. Moreover, the circular dichroism spectrum in membranes is different, indicating a change in regular beta-sheet backbone structure. The conversion of a complex porin-like channel into a gramicidin-like channel provides a link between two different mechanisms of beta-sheet channel formation in membranes and emphasizes the importance of glycine and D-amino acid residues in protein folding and function and in the engineering of ion channels.
Collapse
Affiliation(s)
- Jyothi Thundimadathil
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
119
|
Baştuğ T, Gray-Weale A, Patra SM, Kuyucak S. Role of protein flexibility in ion permeation: a case study in gramicidin A. Biophys J 2006; 90:2285-96. [PMID: 16415054 PMCID: PMC1403166 DOI: 10.1529/biophysj.105.073205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins have a flexible structure, and their atoms exhibit considerable fluctuations under normal operating conditions. However, apart from some enzyme reactions involving ligand binding, our understanding of the role of flexibility in protein function remains mostly incomplete. Here we investigate this question in the realm of membrane proteins that form ion channels. Specifically, we consider ion permeation in the gramicidin A channel, and study how the energetics of ion conduction changes as the channel structure is progressively changed from completely flexible to a fixed one. For each channel structure, the potential of mean force for a permeating potassium ion is determined from molecular dynamics (MD) simulations. Using the same molecular dynamics data for completely flexible gramicidin A, we also calculate the average densities and fluctuations of the peptide atoms and investigate the correlations between these fluctuations and the motion of a permeating ion. Our results show conclusively that peptide flexibility plays an important role in ion permeation in the gramicidin A channel, thus providing another reason--besides the well-known problem with the description of single file pore water--why this channel cannot be modeled using continuum electrostatics with a fixed structure. The new method developed here for studying the role of protein flexibility on its function clarifies the contributions of the fluctuations to energy and entropy, and places limits on the level of detail required in a coarse-grained model.
Collapse
Affiliation(s)
- Turgut Baştuğ
- School of Physics, University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
120
|
Petersen FNR, Jensen MØ, Nielsen CH. Interfacial tryptophan residues: a role for the cation-pi effect? Biophys J 2005; 89:3985-96. [PMID: 16150973 PMCID: PMC1366964 DOI: 10.1529/biophysj.105.061804] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 08/11/2005] [Indexed: 11/18/2022] Open
Abstract
Integral membrane proteins are characterized by having a preference for aromatic residues, e.g., tryptophan (W), at the interface between the lipid bilayer core and the aqueous phase. The reason for this is not clear, but it seems that the preference is related to a complex interplay between steric and electrostatic forces. The flat rigid paddle-like structure of tryptophan, associated with a quadrupolar moment (aromaticity) arising from the pi-electron cloud of the indole, interacts primarily with moieties in the lipid headgroup region hardly penetrating into the bilayer core. We have studied the interaction between the nitrogen moiety of lipid molecule headgroups and the pi-electron distribution of gramicidin (gA) tryptophan residues (W9, W11, W13, and W15) using molecular dynamics (MD) simulations of gA embedded in two hydrated lipid bilayers composed of 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoylphosphatidyl-choline (POPC), respectively. We use a force field model for tryptophan in which polarizability is only implicit, but we believe that classical molecular dynamics force fields are sufficient to capture the most prominent features of the cation-pi interaction. Our criteria for cation-pi interactions are based on distance and angular requirements, and the results from our model suggest that cation-pi interactions are relevant for W(PE)1), W(PE)13, W(PE)15, and, to some extent, W(PC)11 and W(PC)13. In our model, W9 does not seem to engage in cation-pi interactions with lipids, neither in POPE nor POPC. The criteria for the cation-pi effect are satisfied more often in POPE than in POPC, whereas the H-bonding ability between the indole donor and the carbonyl acceptor is similar in POPE and POPC. This suggests an increased affinity for lipids with ethanolamine headgroups to transmembrane proteins enriched in interfacial tryptophans.
Collapse
|
121
|
Eisenblätter J, Winter R. Pressure effects on the structure and phase behavior of DMPC-gramicidin lipid bilayers: a synchrotron SAXS and 2H-NMR spectroscopy study. Biophys J 2005; 90:956-66. [PMID: 16299078 PMCID: PMC1367120 DOI: 10.1529/biophysj.105.069799] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of Gramicidin D (GD) incorporation on the structure and phase behavior of aqueous dispersions of DMPC lipid bilayers has been studied using small-angle x-ray scattering (SAXS) and (2)H-NMR spectroscopy. The experiments covered a temperature range from -10 degrees C to 60 degrees C and a pressure range of 0.001-4 kbar. Pressure was used to be able to tune the lipid bilayer conformational order and phase state and because high pressure is an important feature of certain natural biotopes. The data show that, depending on the GD concentration, the structure of the temperature- and pressure-dependent lipid phases is significantly altered by the insertion of the polypeptide, and a p,T-phase diagram could be obtained for intermediate GD concentrations. Upon gramicidin insertion, a rather narrow fluid-gel coexistence regions is formed. Two gel phases are induced which are different from those of the pure lipid bilayer system and which separate at low temperatures/high pressures. For both the temperature- and pressure-induced fluid-to-gel transition, a similar pseudocritical transitional behavior is observed, which is even more pronounced upon incorporation of the peptide.
Collapse
Affiliation(s)
- J Eisenblätter
- Department of Chemistry, Physical Chemistry I-Biophysical Chemistry, University of Dortmund, D-44227 Dortmund, Germany
| | | |
Collapse
|
122
|
Rawat SS, Kelkar DA, Chattopadhyay A. Effect of structural transition of the host assembly on dynamics of an ion channel peptide: a fluorescence approach. Biophys J 2005; 89:3049-58. [PMID: 16100280 PMCID: PMC1366802 DOI: 10.1529/biophysj.105.060798] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Structural transition can be induced in charged micelles by increasing the ionic strength of the medium. We have monitored the organization and dynamics of the functionally important tryptophan residues of gramicidin in spherical and rod-shaped sodium dodecyl sulfate micelles utilizing a combination of wavelength-selective fluorescence and related fluorescence approaches. Our results show that tryptophans in gramicidin, present in the single-stranded beta(6.3) conformation, experience slow solvent relaxation giving rise to red edge excitation shift in spherical and rod-shaped micelles. In addition, changes in fluorescence polarization with increasing excitation or emission wavelength reinforce that the gramicidin tryptophans are localized in motionally restricted regions of these micelles. Fluorescence quenching experiments using acrylamide as a quencher of tryptophan fluorescence show that there is reduced water penetration in rod-shaped micelles. Taken together, we show that gramicidin conformation and dynamics is sensitive to the salt-induced structural transition in charged micelles. In addition, these results demonstrate that deformation of the host assembly could modulate protein conformation and dynamics.
Collapse
Affiliation(s)
- Satinder S Rawat
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | |
Collapse
|
123
|
Abstract
Gramicidin channels are mini-proteins composed of two tryptophan-rich subunits. The conducting channels are formed by the transbilayer dimerization of nonconducting subunits, which are tied to the bilayer/solution interface through hydrogen bonds between the indole NH groups and the phospholipid backbone and water. The channel structure is known at atomic resolution and the channel's permeability characteristics are particularly well defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the amount of experimental information that is available--for both the wild-type channels and for channels formed by amino acid-substituted gramicidin analogues--gramicidin channels provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For the same reason, gramicidin channels constitute the system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the complex channels formed by integral membrane proteins.
Collapse
Affiliation(s)
- Olaf S Andersen
- Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
124
|
Allen TW, Andersen OS, Roux B. On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. ACTA ACUST UNITED AC 2005; 124:679-90. [PMID: 15572347 PMCID: PMC2234034 DOI: 10.1085/jgp.200409111] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins, including ion channels, often are described in terms of some average structure and pictured as rigid entities immersed in a featureless solvent continuum. This simplified view, which provides for a convenient representation of the protein's overall structure, incurs the risk of deemphasizing important features underlying protein function, such as thermal fluctuations in the atom positions and the discreteness of the solvent molecules. These factors become particularly important in the case of ion movement through narrow pores, where the magnitude of the thermal fluctuations may be comparable to the ion pore atom separations, such that the strength of the ion channel interactions may vary dramatically as a function of the instantaneous configuration of the ion and the surrounding protein and pore water. Descriptions of ion permeation through narrow pores, which employ static protein structures and a macroscopic continuum dielectric solvent, thus face fundamental difficulties. We illustrate this using simple model calculations based on the gramicidin A and KcsA potassium channels, which show that thermal atomic fluctuations lead to energy profiles that vary by tens of kcal/mol. Consequently, within the framework of a rigid pore model, ion-channel energetics is extremely sensitive to the choice of experimental structure and how the space-dependent dielectric constant is assigned. Given these observations, the significance of any description based on a rigid structure appears limited. Creating a conducting channel model from one single structure requires substantial and arbitrary engineering of the model parameters, making it difficult for such approaches to contribute to our understanding of ion permeation at a microscopic level.
Collapse
Affiliation(s)
- Toby W Allen
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10021, USA
| | | | | |
Collapse
|
125
|
Abstract
Ion permeation through the gramicidin channel is studied using a model that circumvents two major difficulties inherent to standard simulational methods. It exploits the timescale separation between electronic and structural contributions to dielectric stabilization, accounting for the influence of electronic polarization by embedding the channel in a dielectric milieu that describes this polarization in a mean sense. The explicit mobile moieties are the ion, multipolar waters, and the carbonyls and amides of the peptide backbone. The model treats the influence of aromatic residues and the membrane dipole potential. A new electrical geometry is introduced that treats long-range electrostatics exactly and avoids problems related to periodic boundary conditions. It permits the translocating ion to make a seamless transition from nearby electrolyte to the channel interior. Other degrees of freedom (more distant bulk electrolyte and nonpolar lipid) are treated as dielectric continua. Reasonable permeation free energy profiles are obtained for potassium, rubidium, and cesium; binding wells are shallow and the central barrier is small. Estimated cationic single-channel conductances are smaller than experiment, but only by factors between 2 (rubidium) and 50 (potassium). When applied to chloride the internal barrier is large, with a corresponding miniscule single-channel conductance. The estimated relative single-channel conductances of gramicidin A, B, and C agree well with experiment.
Collapse
Affiliation(s)
- Vladimir L Dorman
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
126
|
Ash WL, Zlomislic MR, Oloo EO, Tieleman DP. Computer simulations of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:158-89. [PMID: 15519314 DOI: 10.1016/j.bbamem.2004.04.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 04/29/2004] [Indexed: 11/30/2022]
Abstract
Computer simulations are rapidly becoming a standard tool to study the structure and dynamics of lipids and membrane proteins. Increasing computer capacity allows unbiased simulations of lipid and membrane-active peptides. With the increasing number of high-resolution structures of membrane proteins, which also enables homology modelling of more structures, a wide range of membrane proteins can now be simulated over time spans that capture essential biological processes. Longer time scales are accessible by special computational methods. We review recent progress in simulations of membrane proteins.
Collapse
Affiliation(s)
- Walter L Ash
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary AB, Canada T2N 1N4
| | | | | | | |
Collapse
|
127
|
Braun-Sand S, Burykin A, Chu ZT, Warshel A. Realistic Simulations of Proton Transport along the Gramicidin Channel: Demonstrating the Importance of Solvation Effects. J Phys Chem B 2005; 109:583-92. [PMID: 16851050 DOI: 10.1021/jp0465783] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nature of proton transduction (PTR) through a file of water molecules, along the gramicidin A (gA) channel, has long been considered as being highly relevant to PTR in biological systems. Previous attempts to model this process implied that the so-called Grotthuss mechanism and the corresponding orientation of the water file plays a major role. The present work reexamines the PTR in gA by combining a fully microscopic empirical valence bond (EVB) model and a recently developed simplified EVB-based model with Langevin dynamics (LD) simulations. The full model is used first to evaluate the free energy profile for a stepwise PTR process. The corresponding results are then used to construct the effective potential of the simplified EVB. This later model is then used in Langevin dynamics simulations, taking into account the correct physics of possible concerted motions and the effect of the solvent reorganization. The simulations reproduce the observed experimental trend and lead to a picture that is quite different from that assumed previously. It is found that the PTR in gA is controlled by the change in solvation energy of the transferred proton along the channel axis. Although the time dependent electrostatic fluctuations of the channel and water dipoles play their usual role in modulating the proton-transfer process (Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 444), the PTR rate is mainly determined by the free energy profile. Furthermore, the energetics of the reorientation of the unprotonated water file do not appear to provide a consistent way of assessing the activation barrier for the PTR process. It seems to us that in the case of gA, and probably other systems with significant electrostatic barriers for the transfer of the proton charge, the PTR rate is controlled by the electrostatic barrier. This finding has clear consequences with regards to PTR processes in biological systems.
Collapse
Affiliation(s)
- Sonja Braun-Sand
- University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
128
|
Lundbaek JA, Birn P, Hansen AJ, Søgaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe RE, Andersen OS. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol. ACTA ACUST UNITED AC 2004; 123:599-621. [PMID: 15111647 PMCID: PMC2234500 DOI: 10.1085/jgp.200308996] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid–protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel–bilayer hydrophobic interactions link a “conformational” change (the monomer↔dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (β-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less “stiff”, as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer–protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.
Collapse
|
129
|
Mo Y, Cross TA, Nerdal W. Structural restraints and heterogeneous orientation of the gramicidin A channel closed state in lipid bilayers. Biophys J 2004; 86:2837-45. [PMID: 15111401 PMCID: PMC1304153 DOI: 10.1016/s0006-3495(04)74336-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although there have been several decades of literature illustrating the opening and closing of the monovalent cation selective gramicidin A channel through single channel conductance, the closed conformation has remained poorly characterized. In sharp contrast, the open-state dimer is one of the highest resolution structures yet characterized in a lipid environment. To shift the open/closed equilibrium dramatically toward the closed state, a lower peptide/lipid molar ratio and, most importantly, long-chain lipids have been used. For the first time, structural evidence for a monomeric state has been observed for the native gramicidin A peptide. Solid-state NMR spectroscopy of single-site (15)N-labeled gramicidin in uniformly aligned bilayers in the L(alpha) phase have been observed. The results suggest a kinked structure with considerable orientational heterogeneity. The C-terminal domain is well structured, has a well-defined orientation in the bilayer, and appears to be in the bilayer interfacial region. On the other hand, the N-terminal domain, although appearing to be well structured and in the hydrophobic core of the bilayer, has a broad range of orientations relative to the bilayer normal. The structure is not just half of the open-state dimer, and neither is the structure restricted to the surface of the bilayer. Consequently, the monomeric or closed state appears to be a hybrid of these two models from the literature.
Collapse
Affiliation(s)
- Y Mo
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | | | | |
Collapse
|
130
|
Corry B, Chung SH. Influence of protein flexibility on the electrostatic energy landscape in gramicidin A. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 34:208-16. [PMID: 15536565 DOI: 10.1007/s00249-004-0442-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/22/2004] [Accepted: 09/28/2004] [Indexed: 11/28/2022]
Abstract
We describe an electrostatic model of the gramicidin A channel that allows protein atoms to move in response to the presence of a permeating ion. To do this, molecular dynamics simulations are carried out with a permeating ion at various positions within the channel. Then an ensemble of atomic coordinates taken from the simulations are used to construct energy profiles using macroscopic electrostatic calculations. The energy profiles constructed are compared to experimentally-determined conductance data by inserting them into Brownian dynamics simulations. We find that the energy landscape seen by a permeating ion changes significantly when we allow the protein atoms to move rather than using a rigid protein structure. However, the model developed cannot satisfactorily reproduce all of the experimental data. Thus, even when protein atoms are allowed to move, the dielectric model used in our electrostatic calculations breaks down when modeling the gramicidin channel.
Collapse
Affiliation(s)
- Ben Corry
- Chemistry, School of Biomedical and Chemical Sciences, The University of Western Australia Crawley, WA 6009, Australia.
| | | |
Collapse
|
131
|
Jordan JB, Easton PL, Hinton JF. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles. Biophys J 2004; 88:224-34. [PMID: 15501932 PMCID: PMC1305000 DOI: 10.1529/biophysj.104.047456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The common occurrence of Trp residues at the aqueous-lipid interface region of transmembrane channels is thought to be indicative of its importance for insertion and stabilization of the channel in membranes. To further investigate the effects of Trp-->Phe substitution on the structure and function of the gramicidin channel, four analogs of gramicidin A have been synthesized in which the tryptophan residues at positions 9, 11, 13, and 15 are sequentially replaced with phenylalanine. The three-dimensional structure of each viable analog has been determined using a combination of two-dimensional NMR techniques and distance geometry-simulated annealing structure calculations. These phenylalanine analogs adopt a homodimer motif, consisting of two beta6.3 helices joined by six hydrogen bonds at their NH2-termini. The replacement of the tryptophan residues does not have a significant effect on the backbone structure of the channels when compared to native gramicidin A, and only small effects are seen on side-chain conformations. Single-channel conductance measurements have shown that the conductance and lifetime of the channels are significantly affected by the replacement of the tryptophan residues (Wallace, 2000; Becker et al., 1991). The variation in conductance appears to be caused by the sequential removal of a tryptophan dipole, thereby removing the ion-dipole interaction at the channel entrance and at the ion binding site. Channel lifetime variations appear to be related to changing side chain-lipid interactions. This is supported by data relating to transport and incorporation kinetics.
Collapse
Affiliation(s)
- J B Jordan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | |
Collapse
|
132
|
Won HS, Jung SJ, Kim HE, Seo MD, Lee BJ. Systematic Peptide Engineering and Structural Characterization to Search for the Shortest Antimicrobial Peptide Analogue of Gaegurin 5. J Biol Chem 2004; 279:14784-91. [PMID: 14739294 DOI: 10.1074/jbc.m309822200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As part of an effort to develop new, low molecular mass peptide antibiotics, we searched for the shortest bioactive analogue of gaegurin 5 (GGN5), a 24-residue antimicrobial peptide. Thirty-one kinds of GGN5 analogues were synthesized, and their biological activities were analyzed against diverse microorganisms and human erythrocytes. The structural properties of the peptides in various solutions were characterized by spectroscopic methods. The N-terminal 13 residues of GGN5 were identified as the minimal requirement for biological activity. The helical stability, the amphipathic property, and the hydrophobic N terminus were characterized as the important structural factors driving the activity. To develop shorter antibiotic peptides, amino acid substitutions in an inactive 11-residue analogue were examined. Single tryptophanyl substitutions at certain positions yielded some active 11-residue analogues. The most effective site for the substitution was the hydrophobic-hydrophilic interface in the amphipathic helical structure. At this position, tryptophan was the most useful amino acid conferring favorable activity to the peptide. The introduced tryptophan played an important anchoring role for the membrane interaction of the peptides. Finally, two 11-residue analogues of GGN5, which exhibited strong bactericidal activity with little hemolytic activity, were obtained as property-optimized candidates for new peptide antibiotic development. Altogether, the present approach not only characterized some important factors for the antimicrobial activity but also provided useful information about peptide engineering to search for potent lead molecules for new peptide antibiotic development.
Collapse
Affiliation(s)
- Hyung-Sik Won
- National Research Laboratory for Membrane Protein Structure, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
133
|
Koeppe RE, Sun H, van der Wel PCA, Scherer EM, Pulay P, Greathouse DV. Combined experimental/theoretical refinement of indole ring geometry using deuterium magnetic resonance and ab initio calculations. J Am Chem Soc 2004; 125:12268-76. [PMID: 14519012 DOI: 10.1021/ja035052d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used experimental deuterium NMR spectra from labeled tryptophans in membrane-spanning gramicidin A (gA)(1) channels to refine the geometry of the indole ring and, specifically, the C2-(2)H bond direction. By using partial exchange in a cold organic acid, we were able to selectively deuterate ring positions C2 and C5 and, thereby, define unambiguous spectral assignments. In a backbone-independent analysis, the assigned spectra from four distinct labeled tryptophans were used to assess the geometry of the planar indole ring. We found that the C2-(2)H bond makes an angle of about 6 degrees with respect to the normal to the indole ring bridge, and the experimental geometry was confirmed by density functional calculations using a 6-311G** basis set. The precisely determined ring geometry and the experimental spectra in turn are the foundation for calculations of the orientation of each tryptophan indole ring, with respect to the bilayer membrane normal, and of a principal order parameter S(zz) for each ring. The results have general significance for revising the tryptophan ring geometry that is used in protein molecular modeling, as well as for the analysis of tryptophan ring orientations in membrane-spanning proteins. The experimental precision in the definition of the indole ring geometry demonstrates yet another practical application emanating from fundamental research on the robust gramicidin channel.
Collapse
Affiliation(s)
- Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Allen TW, Andersen OS, Roux B. Energetics of ion conduction through the gramicidin channel. Proc Natl Acad Sci U S A 2004; 101:117-22. [PMID: 14691245 PMCID: PMC314148 DOI: 10.1073/pnas.2635314100] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Indexed: 11/18/2022] Open
Abstract
The free energy governing K(+) conduction through gramicidin A channels is characterized by using over 0.1 micros of all-atom molecular dynamics simulations with explicit solvent and membrane. The results provide encouraging agreement with experiments and insights into the permeation mechanism. The free energy surface of K(+), as a function of both axial and radial coordinates, is calculated. Correcting for simulation artifacts due to periodicity and the lack of hydrocarbon polarizability, the calculated single-channel conductance for K(+) ions is 0.8 pS, closer to experiment than any previous calculation. In addition, the estimated single ion dissociation constants are within the range of experimental determinations. The relatively small free energy barrier to ion translocation arises from a balance of large opposing contributions from protein, single-file water, bulk electrolyte, and membrane. Mean force decomposition reveals a remarkable ability of the single-file water molecules to stabilize K(+) by -40 kcal/mol, roughly half the bulk solvation free energy. The importance of the single-file water confirms the conjecture of Mackay et al. [Mackay, D. H. J., Berens, P. H., Wilson, K. R. & Hagler, A. T. (1984) Biophys. J. 46, 229-248]. Ion association with the channel involves gradual dehydration from approximately six to seven water molecules in the first shell, to just two inside the narrow pore. Ion permeation is influenced by the orientation of the single-file water column, which can present a barrier to conduction and give rise to long-range coupling of ions on either side of the pore. Small changes in the potential function, including contributions from electronic polarization, are likely to be sufficient to obtain quantitative agreement with experiments.
Collapse
Affiliation(s)
- Toby W Allen
- Departments of Physiology and Biophysics and Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
135
|
Miloshevsky GV, Jordan PC. Gating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation. Biophys J 2004; 86:92-104. [PMID: 14695253 PMCID: PMC1303840 DOI: 10.1016/s0006-3495(04)74087-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 09/17/2003] [Indexed: 11/26/2022] Open
Abstract
The dissociation of gramicidin A (gA) channels into monomers is the simplest example of a channel gating process. The initial steps in this process are studied via a computational model that simulates the reaction coordinate for dimer-monomer dissociation. The nonbonded interaction energy between the monomers is determined, allowing for their free relative translational and rotational motion. Lowest energy pathways and reaction coordinates of the gating process are determined. Partial rupture of the six hydrogen bonds (6HB) at the dimer junction takes place by coupling monomer rotation and lateral displacement. Coupling rotation with axial separation is far more expensive energetically. The transition state for channel dissociation occurs when monomers are displaced laterally by approximately 4-6 A, separated by approximately 1.6-2 A, and rotated by approximately 120 degrees, breaking two hydrogen bonds. In membranes with significant hydrophobic mismatch there is a much greater likelihood of forming 4HB and possibly even 2HB states. In the 4HB state the pore remains fully open and conductive. However, transitions from the 6HB to 4HB and 4HB to 2HB states take place via intermediates in which the gA pore is closed and nonconductive. These lateral monomer displacements give rise to transitory pore occlusion at the dimer junction, which provides a rationale for fast closure events (flickers). Local dynamics of gA monomers also leads to lateral and rotational diffusion of the whole gA dimer, giving rise to diffusional rotation of the dimer about the channel axis.
Collapse
Affiliation(s)
- Gennady V Miloshevsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
136
|
Abstract
Although most antibiotics do not need metal ions for their biological activities, there are a number of antibiotics that require metal ions to function properly, such as bleomycin (BLM), streptonigrin (SN), and bacitracin. The coordinated metal ions in these antibiotics play an important role in maintaining proper structure and/or function of these antibiotics. Removal of the metal ions from these antibiotics can cause changes in structure and/or function of these antibiotics. Similar to the case of "metalloproteins," these antibiotics are dubbed "metalloantibiotics" which are the title subjects of this review. Metalloantibiotics can interact with several different kinds of biomolecules, including DNA, RNA, proteins, receptors, and lipids, rendering their unique and specific bioactivities. In addition to the microbial-originated metalloantibiotics, many metalloantibiotic derivatives and metal complexes of synthetic ligands also show antibacterial, antiviral, and anti-neoplastic activities which are also briefly discussed to provide a broad sense of the term "metalloantibiotics."
Collapse
Affiliation(s)
- Li-June Ming
- Department of Chemistry and Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33620-5250, USA.
| |
Collapse
|
137
|
Harms GS, Orr G, Montal M, Thrall BD, Colson SD, Lu HP. Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys J 2003; 85:1826-38. [PMID: 12944296 PMCID: PMC1303355 DOI: 10.1016/s0006-3495(03)74611-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 06/04/2003] [Indexed: 10/21/2022] Open
Abstract
Complex conformational changes influence and regulate the dynamics of ion channels. Such conformational changes are stochastic and often inhomogeneous, which makes it extremely difficult, if not impossible, to characterize them by ensemble-averaged experiments or by single-channel recordings of the electric current that report the open-closed events but do not specifically probe the associated conformational changes. Here, we report our studies on ion channel conformational changes using a new approach, patch-clamp fluorescence microscopy, which simultaneously combines single-molecule fluorescence spectroscopy and single-channel current recordings to probe the open-closed transitions and the conformational dynamics of individual ion channels. We demonstrate patch-clamp fluorescence microscopy by measuring gramicidin ion channel conformational changes in a lipid bilayer formed at a patch-clamp micropipette tip under a buffer solution. By measuring single-pair fluorescence resonance energy transfer and fluorescence self-quenching from dye-labeled gramicidin channels, we observed that the efficiency of single-pair fluorescence resonance energy transfer and self-quenching is widely distributed, which reflects a broad distribution of conformations. Our results strongly suggest a hitherto undetectable correlation between the multiple conformational states of the gramicidin channel and its closed and open states in a lipid bilayer.
Collapse
Affiliation(s)
- Greg S Harms
- Pacific Northwest National Laboratory, Fundamental Science Division, Richland, Washington 99352, USA
| | | | | | | | | | | |
Collapse
|
138
|
Allen TW, Andersen OS, Roux B. Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data. J Am Chem Soc 2003; 125:9868-77. [PMID: 12904055 DOI: 10.1021/ja029317k] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two different high-resolution structures recently have been proposed for the membrane-spanning gramicidin A channel: one based on solid-state NMR experiments in oriented phospholipid bilayers (Ketchem, R. R.; Roux, B.; Cross, T. A. Structure 1997, 5, 1655-1669; Protein Data Bank, PDB:1MAG); and one based on two-dimensional NMR in detergent micelles (Townsley, L. E.; Tucker, W. A.; Sham, S.; Hinton, J. F. Biochemistry 2001, 40, 11676-11686; PDB:1JNO). Despite overall agreement, the two structures differ in peptide backbone pitch and the orientation of several side chains; in particular that of the Trp at position 9. Given the importance of the peptide backbone and Trp side chains for ion permeation, we undertook an investigation of the two structures using molecular dynamics simulation with an explicit lipid bilayer membrane, similar to the system used for the solid-state NMR experiments. Based on 0.1 micros of simulation, both backbone structures converge to a structure with 6.25 residues per turn, in agreement with X-ray scattering, and broad agreement with SS backbone NMR observables. The side chain of Trp 9 is mobile, more so than Trp 11, 13, and 15, and undergoes spontaneous transitions between the orientations in 1JNO and 1MAG. Based on empirical fitting to the NMR results, and umbrella sampling calculations, we conclude that Trp 9 spends 80% of the time in the 1JNO orientation and 20% in the 1MAG orientation. These results underscore the utility of molecular dynamics simulations in the analysis and interpretation of structural information from solid-state NMR.
Collapse
Affiliation(s)
- Toby W Allen
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
139
|
Bañó MC, Salom D, Abad C. Size-exclusion high-performance liquid chromatography in the study of the autoassociating antibiotic gramicidin A in micellar milieu. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 56:297-309. [PMID: 12834985 DOI: 10.1016/s0165-022x(03)00067-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gramicidin A (gA) is a polypeptide antibiotic which forms dimeric channels specific for monovalent cations in biological membranes. It is a polymorphic molecule that adopts several different conformations, double-stranded (ds) helical dimers (pore conformation) and single-stranded beta-helical dimers (channel conformation). This study investigated the conformational adaptability of gramicidin A when incorporated into micelles as membrane-mimetic model system. Taking advantage of our reported, versatile, size-exclusion high-performance liquid chromatography (SE-HPLC) strategy that allows the separation of double-stranded dimers and monomers, we have quantitatively characterized the conformational transition undergone by the peptide in the micellar milieu. The importance of both hydrophobic/hydrophilic moieties of the amphipaths in the stabilization of concrete conformational species is demonstrated using detergents with different hydrocarbon chain length and/or polar head. SE-HPLC is a valuable, rapid, accurate technique for the structural characterization of hydrophobic autoassociating peptides that work in lipid environments such as biological membranes.
Collapse
Affiliation(s)
- Maria Carmen Bañó
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/ Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
140
|
Allen TW, Baştuğ T, Kuyucak S, Chung SH. Gramicidin A channel as a test ground for molecular dynamics force fields. Biophys J 2003; 84:2159-68. [PMID: 12668425 PMCID: PMC1302783 DOI: 10.1016/s0006-3495(03)75022-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We use the well-known structural and functional properties of the gramicidin A channel to test the appropriateness of force fields commonly used in molecular dynamics (MD) simulations of ion channels. For this purpose, the high-resolution structure of the gramicidin A dimer is embedded in a dimyristoylphosphatidylcholine bilayer, and the potential of mean force of a K(+) ion is calculated along the channel axis using the umbrella sampling method. Calculations are performed using two of the most common force fields in MD simulations: CHARMM and GROMACS. Both force fields lead to large central barriers for K(+) ion permeation, that are substantially higher than those deduced from the physiological data by inverse methods. In long MD simulations lasting over 60 ns, several ions are observed to enter the binding site but none of them crossed the channel despite the presence of a large driving field. The present results, taken together with many earlier studies, highlights the shortcomings of the standard force fields used in MD simulations of ion channels and calls for construction of more appropriate force fields for this purpose.
Collapse
Affiliation(s)
- Toby W Allen
- Department of Physics, Faculty of Science, Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
141
|
Sham SS, Shobana S, Townsley LE, Jordan JB, Fernandez JQ, Andersen OS, Greathouse DV, Hinton JF. The structure, cation binding, transport, and conductance of Gly15-gramicidin A incorporated into SDS micelles and PC/PG vesicles. Biochemistry 2003; 42:1401-9. [PMID: 12578352 DOI: 10.1021/bi0204286] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To further investigate the effect of single amino acid substitution on the structure and function of the gramicidin channel, an analogue of gramicidin A (GA) has been synthesized in which Trp(15) is replaced by Gly in the critical aqueous interface and cation binding region. The structure of Gly(15)-GA incorporated into SDS micelles has been determined using a combination of 2D-NMR spectroscopy and molecular modeling. Like the parent GA, Gly(15)-GA forms a dimeric channel composed of two single-stranded, right-handed beta(6.3)-helices joined by hydrogen bonds between their N-termini. The replacement of Trp(15) by Gly does not have a significant effect on backbone structure or side chain conformations with the exception of Trp(11) in which the indole ring is rotated away from the channel axis. Measurement of the equilibrium binding constants and Delta G for the binding of monovalent cations to GA and Gly(15)-GA channels incorporated into PC vesicles using (205)Tl NMR spectroscopy shows that monovalent cations bind much more weakly to the Gly(15)-GA channel entrance than to GA channels. Utilizing the magnetization inversion transfer NMR technique, the transport of Na(+) ions through GA and Gly(15)-GA channels incorporated into PC/PG vesicles has been investigated. The Gly(15) substitution produces an increase in the activation enthalpy of transport and thus a significant decrease in the transport rate of the Na(+) ion is observed. The single-channel appearances show that the conducting channels have a single, well-defined structure. Consistent with the NMR results, the single-channel conductances are reduced by 30% and the lifetimes by 70%. It is concluded that the decrease in cation binding, transport, and conductance in Gly(15)-GA results from the removal of the Trp(15) dipole and, to a lesser extent, the change in orientation of Trp(11).
Collapse
Affiliation(s)
- S S Sham
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, and Department of Physiology and Biophysics, Cornell University, Weill Medical College, New York, New York 10021
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Grage SL, Wang J, Cross TA, Ulrich AS. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes. Biophys J 2002; 83:3336-50. [PMID: 12496101 PMCID: PMC1302409 DOI: 10.1016/s0006-3495(02)75334-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR.
Collapse
|
143
|
Presley Bodnar AL, Gilbert EJ, Yoburn JC, Van Vranken DL. Synthesis and study of a gramicidin B mutant possessing a ditryptophan crosslink. J Pept Sci 2002; 8:510-20. [PMID: 12371704 DOI: 10.1002/psc.417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent studies of peptide dimers linked by Trp-Trp (ditryptophan) crosslinks suggest that the crosslinks can reinforce antiparallel beta-structure. Depending on environment, gramicidins A, B and C form either helical ion channels with parallel beta-structure or non-functional pores with antiparallel beta-structure. In the channel conformation of the gramicidins Trp9 and Trp15 are close in space, but in the pore conformation Trp9 and Trp15 are far apart. We hypothesized that a ditryptophan crosslink between Trp9 and Trp15 could pre-organize gramicidin in an active conformation. To test the potential for preorganization, an intramolecular ditryptophan crosslink was formed between Trp9 and Trp15 in a W13F mutant of gramicidin B. Photooxidative conditions were shown to generate ditryptophan crosslinks in low yields. While not preparatively useful, photooxidative tryptophan crosslinking may have implications for protein aging processes like cataract formation. The ditryptophan crosslink in the gramicidin B mutant substantially lowered the antibiotic activity of the gramicidin B mutant, unlike the ditryptophan crosslink in the antibiotic X-indolicidin. The biaryl chromophore generated diagnostic Cotton effects in the CD spectrum that revealed the absolute stereochemistry of the biaryl chromophore, but the biaryl chromophore obscured diagnostic features below 220 nm. However, changes in peptide conformation were reflected in changes in the biaryl region of the CD spectrum above 240 nm.
Collapse
|
144
|
Abstract
Volatile anesthetic agent, 1-chloro-1,2,2-trifluorocyclobutane (F3), was found to alter gramicidin A channel function by enhancing Na(+) transport (. Biophys. J. 77:739-746). Whether this functional change is associated with structural alternation is evaluated by circular dichroism and nuclear magnetic resonance spectroscopy. The circular dichroism and nuclear magnetic resonance results indicate that at low millimolar concentrations, 1-chloro-1,2,2-trifluorocyclobutane causes minimal changes in gramicidin A channel structure in sodium dodecyl sulfate micelles. All hydrogen bonds between channel backbones are well maintained in the presence of 1-chloro-1,2,2-trifluorocyclobutane, and the channel structure is stable. The finding supports the notion that low affinity drugs such as volatile anesthetics and alcohols can cause significant changes in protein function without necessarily producing associated changes in protein structure. To understand the molecular mechanism of general anesthesia, it is important to recognize that in addition to structural changes, other protein properties, including dynamic characteristics of channel motions, may also be of functional significance.
Collapse
Affiliation(s)
- Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 USA.
| | | | | |
Collapse
|
145
|
Abstract
Ion channels are highly specific membrane-spanning protein structures which serve to facilitate the passage of selected ions across the lipid barrier. In the past decade, molecular dynamics simulations based on atomic models and realistic microscopic interactions with explicit solvent and membrane lipids have been used to gain insight into the function of these complex systems. These calculations have considerably expanded our view of ion permeation at the microscopic level. This Account will mainly focus on computational studies of the gramicidin A channel, one of the simplest and best characterized molecular pore.
Collapse
Affiliation(s)
- Benoît Roux
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| |
Collapse
|