101
|
Mechanism of initiation of aggregation of p53 revealed by Φ-value analysis. Proc Natl Acad Sci U S A 2015; 112:2437-42. [PMID: 25675526 DOI: 10.1073/pnas.1500243112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many oncogenic mutations inactivate the tumor suppressor p53 by destabilizing it, leading to its rapid aggregation. Small molecule drugs are being developed to stabilize such mutants. The kinetics of aggregation of p53 is deceptively simple. The initial steps in the micromolar concentration range follow apparent sigmoidal sequential first-order kinetics, with rate constants k1 and k2. However, the aggregation kinetics of a panel of mutants prepared for Φ-value analysis has now revealed a bimolecular reaction hidden beneath the observed first-order kinetics. Φu measures the degree of local unfolding on a scale of 0-1. A number of sequential Φu-values of ∼1 for k1 and k2 over the molecule implied more than one protein molecule must be reacting, which was confirmed by finding a clear concentration dependence at submicromolar protein. Numerical simulations showed that the kinetics of the more complex mechanism is difficult, if not impossible, to distinguish experimentally from simple first order under many reaction conditions. Stabilization of mutants by small molecules will be enhanced because they decrease both k1 and k2. The regions with high Φu-values point to the areas where stabilization of mutant proteins would have the greatest effect.
Collapse
|
102
|
Yang-Hartwich Y, Bingham J, Garofalo F, Alvero AB, Mor G. Detection of p53 protein aggregation in cancer cell lines and tumor samples. Methods Mol Biol 2015; 1219:75-86. [PMID: 25308263 DOI: 10.1007/978-1-4939-1661-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The p53 protein plays a central role in regulating apoptosis. The loss of functional p53 is common in many cancers. In cancer cells, the dysfunctional p53 protein often maintains a misfolded, inactive conformation due to genetic mutations or posttranslational deregulation. The misfolded p53 protein can aggregate and form amyloid-like oligomers and fibrils, which abrogate the pro-apoptotic functions of p53. Therefore, the aggregation of p53 may be a crucial factor in carcinogenesis, tumor progression, and the response of cancer cells to apoptotic signals. In this chapter, we provide details on various methods for detecting p53 aggregation in cancer cell lines and tumor samples.
Collapse
Affiliation(s)
- Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
103
|
Lamberti A, Sgammato R, Desiderio D, Punzo C, Raimo G, Novellino E, Carotenuto A, Masullo M. Native PAGE to study the interaction between the oncosuppressor p53 and its protein ligands. Electrophoresis 2014; 36:552-5. [PMID: 25363585 DOI: 10.1002/elps.201400424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022]
Abstract
In the present study, we investigated a new approach for studying the interaction between p53 and MDM2/X (where MDM is murine double minute protein). The method is based on the different mobility between the interacting domains of the oncosuppressor p53 and its protein ligands MDM2/X on polyacrylamide gels under native conditions. While the two proteins MDM2/X alone were able to enter the gel, the formation of a binary complex between p53 and MDM2/X prevented the gel entry. The novel technique is reliable for determining the different affinity elicited by MDM2 or MDMX toward p53, and can be useful for analyzing the dissociation power exerted by other molecules on the p53-MDM2/X complex.
Collapse
Affiliation(s)
- Anna Lamberti
- Department of Movement Sciences and Wellness, University of Naples "Parthenope,", Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
The partitioning of intracellular space beyond membrane-bound organelles can be achieved with collections of proteins that are multivalent or contain low-complexity, intrinsically disordered regions. These proteins can undergo a physical phase change to form functional granules or other entities within the cytoplasm or nucleoplasm that collectively we term “assemblage.” Intrinsically disordered proteins (IDPs) play an important role in forming a subset of cellular assemblages by promoting phase separation. Recent work points to an involvement of assemblages in disease states, indicating that intrinsic disorder and phase transitions should be considered in the development of therapeutics.
Collapse
Affiliation(s)
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
105
|
p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 2014; 34:3605-16. [PMID: 25263447 DOI: 10.1038/onc.2014.296] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/25/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022]
Abstract
High-grade serous ovarian carcinoma (HGSOC), the most lethal gynecological cancer, often leads to chemoresistant diseases. The p53 protein is a key transcriptional factor regulating cellular homeostasis. A majority of HGSOCs have inactive p53 because of genetic mutations. However, genetic mutation is not the only cause of p53 inactivation. The aggregation of p53 protein has been discovered in different types of cancers and may be responsible for impairing the normal transcriptional activation and pro-apoptotic functions of p53. We demonstrated that in a unique population of HGSOC cancer cells with cancer stem cell properties, p53 protein aggregation is associated with p53 inactivation and platinum resistance. When these cancer stem cells differentiated into their chemosensitive progeny, they lost tumor-initiating capacity and p53 aggregates. In addition to the association of p53 aggregation and chemoresistance in HGSOC cells, we further demonstrated that the overexpression of a p53-positive regulator, p14ARF, inhibited MDM2-mediated p53 degradation and led to the imbalance of p53 turnover that promoted the formation of p53 aggregates. With in vitro and in vivo models, we demonstrated that the inhibition of p14ARF could suppress p53 aggregation and sensitize cancer cells to platinum treatment. Moreover, by two-dimensional gel electrophoresis and mass spectrometry we discovered that the aggregated p53 may function uniquely by interacting with proteins that are critical for cancer cell survival and tumor progression. Our findings help us understand the poor chemoresponse of a subset of HGSOC patients and suggest p53 aggregation as a new marker for chemoresistance. Our findings also suggest that inhibiting p53 aggregation can reactivate p53 pro-apoptotic function. Therefore, p53 aggregation is a potential therapeutic target for reversing chemoresistance. This is paramount for improving ovarian cancer patients' responses to chemotherapy, and thus increasing their survival rate.
Collapse
|
106
|
Investigating the intrinsic aggregation potential of evolutionarily conserved segments in p53. Biochemistry 2014; 53:5995-6010. [PMID: 25181279 DOI: 10.1021/bi500825d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein aggregation and amyloid formation are known to play a role both in diseases and in biological functions. Transcription factor p53 plays a major role in tumor suppression by maintaining genomic stability. Recent studies have suggested that amyloid formation of p53 could lead to its loss of physiological function as a tumor suppressor. Here, we investigated the intrinsic amyloidogenic nature of wild-type p53 using sequence analysis. We used bioinformatics and aggregation prediction algorithms to establish the evolutionarily conserved nature of aggregation-prone sequences in wild-type p53. Further, we analyzed the amyloid forming capacity of conserved and aggregation-prone p53-derived peptides PILTIITL and YFTLQI in vitro using various biophysical techniques, including all atom molecular dynamics simulation. Finally, we probed the seeding ability of the PILTIITL peptide on p53 aggregation in vitro and in cells. Our data demonstrate the intrinsic amyloid forming ability of a sequence stretch of the p53 DNA binding domain (DBD) and its aggregation templating behavior on full-length and p53 core domain. Therefore, p53 aggregation, instigated through an amyloidogenic segment in its DBD, could be a putative driving force for p53 aggregation in vivo.
Collapse
|
107
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
108
|
Ghosh S, Pandey NK, Banerjee P, Chaudhury K, Nagy NV, Dasgupta S. Copper(II) directs formation of toxic amorphous aggregates resulting in inhibition of hen egg white lysozyme fibrillation under alkaline salt-mediated conditions. J Biomol Struct Dyn 2014; 33:991-1007. [PMID: 24806136 DOI: 10.1080/07391102.2014.921864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hen egg white lysozyme (HEWL) adopts a molten globule-like state at high pH (~12.75) and is found to form amyloid fibrils at alkaline pH. Here, we report that Cu(II) inhibits self-association of HEWL at pH 12.75 both at 37 and 65 °C. A significant reduction in Thioflavin T fluorescence intensity, attenuation in β-sheet content and reduction in hydrophobic exposure were observed with increasing Cu(II) stoichiometry. Electron paramagnetic resonance spectroscopy suggests a 4N type of coordination pattern around Cu(II) during fibrillation. Cu(II) is also capable of altering the cytotoxicity of the proteinaceous aggregates. Fibrillar species of diverse morphology were found in the absence of Cu(II) with the generation of amorphous aggregates in the presence of Cu(II), which are more toxic compared to the fibrils alone.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- a Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , India
| | | | | | | | | | | |
Collapse
|
109
|
Silva JL, De Moura Gallo CV, Costa DCF, Rangel LP. Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci 2014; 39:260-7. [PMID: 24775734 DOI: 10.1016/j.tibs.2014.04.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022]
Abstract
p53 is a master regulatory protein that participates in cellular processes such as apoptosis, DNA repair, and cell cycle control. p53 functions as a homotetrameric tumor suppressor, and is lost in more than 50% of human cancers. Recent studies have suggested that the formation of mutant p53 aggregates is associated with loss-of-function (LoF), dominant-negative (DN), and gain-of-function (GoF) effects. We propose that these phenomena can be explained by a prion-like behavior of mutant p53. We discuss the shared properties of cancer and neurodegenerative diseases and how the prion-like properties of p53 aggregates offer potential targets for drug development.
Collapse
Affiliation(s)
- Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Claudia V De Moura Gallo
- Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Departamento de Genética, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C F Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luciana P Rangel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
110
|
Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects. Extremophiles 2014; 17:701-9. [PMID: 23798033 DOI: 10.1007/s00792-013-0556-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/13/2013] [Indexed: 01/14/2023]
Abstract
Hydrostatic pressure analysis is an ideal approach for studying protein dynamics and hydration. The development of full ocean depth submersibles and high pressure biological techniques allows us to investigate enzymes from deep-sea organisms at the molecular level. The aim of this review was to overview the thermodynamic and functional characteristics of deep-sea enzymes as revealed by pressure axis analysis after giving a brief introduction to the thermodynamic principles underlying the effects of pressure on the structural stability and function of enzymes.
Collapse
|
111
|
Pathological implications of nucleic acid interactions with proteins associated with neurodegenerative diseases. Biophys Rev 2014; 6:97-110. [PMID: 28509960 DOI: 10.1007/s12551-013-0132-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022] Open
Abstract
Protein misfolding disorders (PMDs) refer to a group of diseases related to the misfolding of particular proteins that aggregate and deposit in the cells and tissues of humans and other mammals. The mechanisms that trigger protein misfolding and aggregation are still not fully understood. Increasing experimental evidence indicates that abnormal interactions between PMD-related proteins and nucleic acids (NAs) can induce conformational changes. Here, we discuss these protein-NA interactions and address the role of deoxyribonucleic (DNA) and ribonucleic (RNA) acid molecules in the conformational conversion of different proteins that aggregate in PMDs, such as Alzheimer's, Parkinson's, and prion diseases. Studies on the affinity, stability, and specificity of proteins involved in neurodegenerative diseases and NAs are specifically addressed. A landscape of reciprocal effects resulting from the binding of prion proteins, amyloid-β peptides, tau proteins, huntingtin, and α-synuclein are presented here to clarify the possible role of NAs, not only as encoders of genetic information but also in triggering PMDs.
Collapse
|
112
|
Pressure–temperature folding landscape in proteins involved in neurodegenerative diseases and cancer. Biophys Chem 2013; 183:9-18. [DOI: 10.1016/j.bpc.2013.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 01/02/2023]
|
113
|
Ghosh S, Pandey NK, Singha Roy A, Tripathy DR, Dinda AK, Dasgupta S. Prolonged glycation of hen egg white lysozyme generates non amyloidal structures. PLoS One 2013; 8:e74336. [PMID: 24066139 PMCID: PMC3774808 DOI: 10.1371/journal.pone.0074336] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022] Open
Abstract
Glycation causes severe damage to protein structure that could lead to amyloid formation in special cases. Here in this report, we have shown for the first time that hen egg white lysozyme (HEWL) does not undergo amyloid formation even after prolonged glycation in the presence of D-glucose, D-fructose and D-ribose. Cross-linked oligomers were formed in all the cases and ribose was found to be the most potent among the three sugars. Ribose mediated oligomers, however, exhibit Thioflavin T binding properties although microscopic images clearly show amorphous and globular morphology of the aggregates. Our study demonstrates that the structural damage of hen egg white lysozyme due to glycation generates unstructured aggregates.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nitin Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atanu Singha Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debi Ranjan Tripathy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Kumar Dinda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
- * E-mail:
| |
Collapse
|
114
|
Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep 2013; 33:BSR20130065. [PMID: 24003888 PMCID: PMC3728989 DOI: 10.1042/bsr20130065] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
p53 is a key protein that participates in cell-cycle control, and its malfunction can lead to cancer. This tumour suppressor protein has three main domains; the N-terminal transactivation domain, the CTD (C-terminal domain) and the core domain (p53C) that constitutes the sequence-specific DBD (DNA-binding region). Most p53 mutations related to cancer development are found in the DBD. Aggregation of p53 into amyloid oligomers and fibrils has been shown. Moreover, amyloid aggregates of both the mutant and WT (wild-type) forms of p53 were detected in tumour tissues. We propose that if p53 aggregation occurred, it would be a crucial aspect of cancer development, as p53 would lose its WT functions in an aggregated state. Mutant p53 can also exert a dominant-negative regulatory effect on WT p53. Herein, we discuss the dominant-negative effect in light of p53 aggregation and the fact that amyloid-like mutant p53 can convert WT p53 into more aggregated species, leading into gain of function in addition to the loss of tumour suppressor function. In summary, the results obtained in the last decade indicate that cancer may have characteristics in common with amyloidogenic and prion diseases.
Collapse
|
115
|
Forget KJ, Tremblay G, Roucou X. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53. PLoS One 2013; 8:e69242. [PMID: 23844254 PMCID: PMC3700952 DOI: 10.1371/journal.pone.0069242] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/12/2013] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer’s disease, Parkinson’s disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C), and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.
Collapse
Affiliation(s)
- Karolyn J. Forget
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guillaume Tremblay
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Roucou
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
116
|
Kirilyuk A, Shimoji M, Catania J, Sahu G, Pattabiraman N, Giordano A, Albanese C, Mocchetti I, Toretsky JA, Uversky VN, Avantaggiati ML. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS One 2012; 7:e48243. [PMID: 23133622 PMCID: PMC3486812 DOI: 10.1371/journal.pone.0048243] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 09/24/2012] [Indexed: 01/18/2023] Open
Abstract
Several human diseases including neurodegenerative disorders and cancer are associated with abnormal accumulation and aggregation of misfolded proteins. Proteins with high tendency to aggregate include the p53 gene product, TAU and alpha synuclein. The potential toxicity of aberrantly folded proteins is limited via their transport into intracellular sub-compartments, the aggresomes, where misfolded proteins are stored or cleared via autophagy. We have identified a region of the acetyltransferase p300 that is highly disordered and displays similarities with prion-like domains. We show that this region is encoded as an alternative spliced variant independently of the acetyltransferase domain, and provides an interaction interface for various misfolded proteins, promoting their aggregation. p300 enhances aggregation of TAU and of p53 and is a component of cellular aggregates in both tissue culture cells and in alpha-synuclein positive Lewy bodies of patients affected by Parkinson disease. Down-regulation of p300 impairs aggresome formation and enhances cytotoxicity induced by misfolded protein stress. These data unravel a novel activity of p300, offer new insights into the function of disordered domains and implicate p300 in pathological aggregation that occurs in neurodegeneration and cancer.
Collapse
Affiliation(s)
- Alexander Kirilyuk
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Mika Shimoji
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Jason Catania
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Geetaram Sahu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Christopher Albanese
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Italo Mocchetti
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Jeffrey A. Toretsky
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States of America
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- * E-mail: (MLA); (VNU)
| | - Maria Laura Avantaggiati
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
- * E-mail: (MLA); (VNU)
| |
Collapse
|
117
|
Abstract
Most proteins have not evolved for maximal thermal stability. Some are only marginally stable, as for example, the DNA-binding domains of p53 and its homologs, whose kinetic and thermodynamic stabilities are strongly correlated. Here, we applied high-throughput methods using a real-time PCR thermocycler to study the stability of several full-length orthologs and paralogs of the p53 family of transcription factors, which have diverse functions, ranging from tumour suppression to control of developmental processes. From isothermal denaturation fluorimetry and differential scanning fluorimetry, we found that full-length proteins showed the same correlation between kinetic and thermodynamic stability as their isolated DNA-binding domains. The stabilities of the full-length p53 orthologs were marginal and correlated with the temperature of their organism, paralleling the stability of the isolated DNA-binding domains. Additionally, the paralogs p63 and p73 were significantly more stable and long-lived than p53. The short half-life of p53 orthologs and the greater persistence of the paralogs may be biologically relevant.
Collapse
Affiliation(s)
- Tobias Brandt
- MRC Centre for Protein Engineering, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Joel L. Kaar
- MRC Centre for Protein Engineering, Cambridge, United Kingdom
| | - Alan R. Fersht
- MRC Centre for Protein Engineering, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Dmitry B. Veprintsev
- MRC Centre for Protein Engineering, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
118
|
Antony H, Wiegmans AP, Wei MQ, Chernoff YO, Khanna KK, Munn AL. Potential roles for prions and protein-only inheritance in cancer. Cancer Metastasis Rev 2012; 31:1-19. [PMID: 22138778 DOI: 10.1007/s10555-011-9325-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited mutations are known to cause familial cancers. However, the cause of sporadic cancers, which likely represent the majority of cancers, is yet to be elucidated. Sporadic cancers contain somatic mutations (including oncogenic mutations); however, the origin of these mutations is unclear. An intriguing possibility is that a stable alteration occurs in somatic cells prior to oncogenic mutations and promotes the subsequent accumulation of oncogenic mutations. This review explores the possible role of prions and protein-only inheritance in cancer. Genetic studies using lower eukaryotes, primarily yeast, have identified a large number of proteins as prions that confer dominant phenotypes with cytoplasmic (non-Mendelian) inheritance. Many of these have mammalian functional homologs. The human prion protein (PrP) is known to cause neurodegenerative diseases and has now been found to be upregulated in multiple cancers. PrP expression in cancer cells contributes to cancer progression and resistance to various cancer therapies. Epigenetic changes in the gene expression and hyperactivation of MAP kinase signaling, processes that in lower eukaryotes are affected by prions, play important roles in oncogenesis in humans. Prion phenomena in yeast appear to be influenced by stresses, and there is considerable evidence of the association of some amyloids with biologically positive functions. This suggests that if protein-only somatic inheritance exists in mammalian cells, it might contribute to cancer phenotypes. Here, we highlight evidence in the literature for an involvement of prion or prion-like mechanisms in cancer and how they may in the future be viewed as diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- H Antony
- Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
119
|
Pires RH, Karsai Á, Saraiva MJ, Damas AM, Kellermayer MSZ. Distinct annular oligomers captured along the assembly and disassembly pathways of transthyretin amyloid protofibrils. PLoS One 2012; 7:e44992. [PMID: 22984597 PMCID: PMC3440338 DOI: 10.1371/journal.pone.0044992] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022] Open
Abstract
Background Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated. Methodology/Principal Findings We investigated with high-resolution in situ atomic force microscopy the assembly and disassembly of transthyretin (TTR) amyloid protofibrils formed of the native protein by pH shift. Annular oligomers were the first morphologically distinct intermediates observed in the TTR aggregation pathway. Morphological analysis suggests that they can assemble into a double-stack of octameric rings with a 16±2 nm diameter, and displaying the tendency to form linear structures. According to light scattering data coupled to AFM imaging, annular oligomers appeared to undergo a collapse type of structural transition into spheroid oligomers containing 8–16 monomers. Disassembly of TTR amyloid protofibrils also resulted in the rapid appearance of annular oligomers but with a morphology quite distinct from that observed in the assembly pathway. Conclusions/Significance Our observations indicate that annular oligomers are key dynamic intermediates not only in the assembly but also in the disassembly of TTR protofibrils. The balance between annular and more compact forms of aggregation could be relevant for cytotoxicity in amyloidogenic disorders.
Collapse
Affiliation(s)
- Ricardo H. Pires
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
- * E-mail: (RHP); (AMD); (MSZK)
| | - Árpád Karsai
- Department of Biophysics, University of Pécs, Pécs, Hungary
| | - Maria J. Saraiva
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Ana M. Damas
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
- * E-mail: (RHP); (AMD); (MSZK)
| | - Miklós S. Z. Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- * E-mail: (RHP); (AMD); (MSZK)
| |
Collapse
|
120
|
Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Proc Natl Acad Sci U S A 2012; 109:13584-9. [PMID: 22869713 DOI: 10.1073/pnas.1211550109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aggregation of destabilized mutants of the tumor suppressor p53 is a major route for its loss of activity. In order to assay drugs that inhibit aggregation of p53, we established the basic kinetics of aggregation of its core domain, using the mutant Y220C that has a mutation-induced, druggable cavity. Aggregation monitored by light scattering followed lag kinetics. Electron microscopy revealed the formation of small aggregates that subsequently grew to larger amorphous aggregates. The kinetics of aggregation produced surprising results: progress curves followed either by the binding of Thioflavin T or the fluorescence of the protein at 340 nm fitted well to simple two-step sequential first-order lag kinetics with rate constants k(1) and k(2) that were independent of protein concentration, and not to classical nucleation-growth. We suggest a mechanism of first-order formation of an aggregation competent state as being rate determining followed by rapid polymerization with the higher order kinetics. By measuring the inhibition kinetics of k(1) and k(2), we resolved that the process with the higher rate constant followed that of the lower. Further, there was only partial inhibition of k(1) and k(2), which showed two parallel pathways of aggregation, one via a state that requires unfolding of the protein and the other of partial unfolding with the ligand still bound. Inhibition kinetics of ligands provides a useful tool for probing an aggregation mechanism.
Collapse
|
121
|
Ano Bom APD, Rangel LP, Costa DCF, de Oliveira GAP, Sanches D, Braga CA, Gava LM, Ramos CHI, Cepeda AOT, Stumbo AC, De Moura Gallo CV, Cordeiro Y, Silva JL. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem 2012; 287:28152-62. [PMID: 22715097 PMCID: PMC3431633 DOI: 10.1074/jbc.m112.340638] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over 50% of all human cancers lose p53 function. To evaluate the role of aggregation in cancer, we asked whether wild-type (WT) p53 and the hot-spot mutant R248Q could aggregate as amyloids under physiological conditions and whether the mutant could seed aggregation of the wild-type form. The central domains (p53C) of both constructs aggregated into a mixture of oligomers and fibrils. R248Q had a greater tendency to aggregate than WT p53. Full-length p53 aggregated into amyloid-like species that bound thioflavin T. The amyloid nature of the aggregates was demonstrated using x-ray diffraction, electron microscopy, FTIR, dynamic light scattering, cell viabilility assay, and anti-amyloid immunoassay. The x-ray diffraction pattern of the fibrillar aggregates was consistent with the typical conformation of cross β-sheet amyloid fibers with reflexions of 4.7 Å and 10 Å. A seed of R248Q p53C amyloid oligomers and fibrils accelerated the aggregation of WT p53C, a behavior typical of a prion. The R248Q mutant co-localized with amyloid-like species in a breast cancer sample, which further supported its prion-like effect. A tumor cell line containing mutant p53 also revealed massive aggregation of p53 in the nucleus. We conclude that aggregation of p53 into a mixture of oligomers and fibrils sequestrates the native protein into an inactive conformation that is typical of a prionoid. This prion-like behavior of oncogenic p53 mutants provides an explanation for the negative dominance effect and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Ana P D Ano Bom
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
The two faces of Janus: functional interactions and protein aggregation. Curr Opin Struct Biol 2012; 22:30-7. [DOI: 10.1016/j.sbi.2011.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/03/2011] [Indexed: 11/22/2022]
|
123
|
Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:511-9. [PMID: 22266402 DOI: 10.1016/j.bbapap.2012.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/19/2011] [Accepted: 01/02/2012] [Indexed: 11/20/2022]
Abstract
To understand the pressure-adaptation mechanism of deep-sea enzymes, we studied the effects of pressure on the enzyme activity and structural stability of dihydrofolate reductase (DHFR) of the deep-sea bacterium Moritella profunda (mpDHFR) in comparison with those of Escherichia coli (ecDHFR). mpDHFR exhibited optimal enzyme activity at 50MPa whereas ecDHFR was monotonically inactivated by pressure, suggesting inherent pressure-adaptation mechanisms in mpDHFR. The secondary structure of apo-mpDHFR was stable up to 80°C, as revealed by circular dichroism spectra. The free energy changes due to pressure and urea unfolding of apo-mpDHFR, determined by fluorescence spectroscopy, were smaller than those of ecDHFR, indicating the unstable structure of mpDHFR against pressure and urea despite the three-dimensional crystal structures of both DHFRs being almost the same. The respective volume changes due to pressure and urea unfolding were -45 and -53ml/mol at 25°C for mpDHFR, which were smaller (less negative) than the corresponding values of -77 and -85ml/mol for ecDHFR. These volume changes can be ascribed to the difference in internal cavity and surface hydration of each DHFR. From these results, we assume that the native structure of mpDHFR is loosely packed and highly hydrated compared with that of ecDHFR in solution.
Collapse
|
124
|
Xu X, Ma Z, Wang X, Xiao ZT, Li Y, Xue ZH, Wang YH. Water's potential role: Insights from studies of the p53 core domain. J Struct Biol 2011; 177:358-66. [PMID: 22197648 DOI: 10.1016/j.jsb.2011.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 01/19/2023]
Abstract
Soluble proteins with amyloidogenic propensity such as the tumor suppressor protein p53 have high proportion of incompletely desolvated backbone H bonds (HB). Such bonds are vulnerable to water attack, thus potentially leading to the misfolding of these proteins. However, it is still not clear how the surrounding solvent influences the protein native states. To address this, systematic surveys by molecular dynamics simulations and entropy analysis were performed on the p53 core domain in this work. We examined seven wild/mutant X-ray structures and observed two types of water-network hydration in three "hot hydration centers" (DNA- or small molecule- binding surfaces of the p53 core domain). The "tight" water, resulting from the local collective hydrogen-bond interactions, is probably fundamental to the protein structural stability. The second type of water is highly "dynamical" and exchanges very fast within the bulk solution, which is unambiguously assisted by the local protein motions. An entropy mapping of the solvent around the protein and a temperature perturbation analysis further present the main features of the p53 hydration network. The particular environment created by different water molecules around the p53 core domain also partly explains the structural vulnerabilities of this protein.
Collapse
Affiliation(s)
- X Xu
- Center of Bioinformatics, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
125
|
Gomes MPB, Vieira TCRG, Cordeiro Y, Silva JL. The role of RNA in mammalian prion protein conversion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:415-28. [PMID: 22095764 DOI: 10.1002/wrna.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prion diseases remain a challenge to modern science in the 21st century because of their capacity for transmission without an encoding nucleic acid. PrP(Sc), the infectious and alternatively folded form of the PrP prion protein, is capable of self-replication, using PrP(C), the properly folded form of PrP, as a template. This process is associated with neuronal death and the clinical manifestation of prion-based diseases. Unfortunately, little is known about the mechanisms that drive this process. Over the last decade, the theory that a nucleic acid, such as an RNA molecule, might be involved in the process of prion structural conversion has become more widely accepted; such a nucleic acid would act as a catalyst rather than encoding genetic information. Significant amounts of data regarding the interactions of PrP with nucleic acids have created a new foundation for understanding prion conversion and the transmission of prion diseases. Our knowledge has been enhanced by the characterization of a large group of RNA molecules known as non-coding RNAs, which execute a series of important cellular functions, from transcriptional regulation to the modulation of neuroplasticity. The RNA-binding properties of PrP along with the competition with other polyanions, such as glycosaminoglycans and nucleic acid aptamers, open new avenues for therapy.
Collapse
Affiliation(s)
- Mariana P B Gomes
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
126
|
Barakat K, Issack BB, Stepanova M, Tuszynski J. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant. PLoS One 2011; 6:e27651. [PMID: 22110706 PMCID: PMC3218007 DOI: 10.1371/journal.pone.0027651] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/21/2011] [Indexed: 12/20/2022] Open
Abstract
Background The protein p53 plays an active role in the regulation of cell cycle. In about half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain. Interestingly, a number of these mutations possess temperature-induced DNA-binding characteristics. A striking example is the mutation of Arg248 into glutamine or tryptophan. These mutants are defective for binding to DNA at 310 K although they have been shown to bind specifically to several p53 response elements at sub-physiological temperatures (298–306 K). Methodology/Principal Findings This important experimental finding motivated us to examine the effects of temperature on the structure and configuration of R248Q mutant and compare it to the wild type protein. Our aim is to determine how and where structural changes of mutant variants take place due to temperature changes. To answer these questions, we compared the mutant to the wild-type proteins from two different aspects. First, we investigated the systems at the atomistic level through their DNA-binding affinity, hydrogen bond networks and spatial distribution of water molecules. Next, we assessed changes in their long-lived conformational motions at the coarse-grained level through the collective dynamics of their side-chain and backbone atoms separately. Conclusions The experimentally observed effect of temperature on the DNA-binding properties of p53 is reproduced. Analysis of atomistic and coarse-grained data reveal that changes in binding are determined by a few key residues and provide a rationale for the mutant-loss of binding at physiological temperatures. The findings can potentially enable a rescue strategy for the mutant structure.
Collapse
Affiliation(s)
- Khaled Barakat
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Engineering Mathematics and Physics, Fayoum University, Fayoum, Egypt
| | - Bilkiss B. Issack
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
127
|
Amyloid-like fibrils are not detected in non-small cell lung cancer tissue samples. Med Oncol 2011; 29:614-7. [PMID: 21442312 DOI: 10.1007/s12032-011-9915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
Some proteins, canonically not associated with amyloid diseases, can aggregate into amyloid-like fibrils under special conditions. Our group hypothesized that stressful cancer microenvironment might induce the formation of insoluble deposits of p53 mutant protein. A cohort of 28 non-small cell lung cancer (NSCLC) patients was used to test the aforementioned hypothesis. Tumor specimens were assessed for TP53 mutations using DNA sequencing and for amyloid formation by Congo red staining. TP53 mutations were present in 57% of patients, whereas no amyloid deposits were detected in tissue sections under polarized light microscopy. Mutant p53 proteins are not associated with the appearance of amyloid-like fibrils in NSCLC samples, and DNA sequencing remains the standard method to detect such abnormality.
Collapse
|
128
|
Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, Zwolinska A, Marine JC, Lambrechts D, Suh YA, Rousseau F, Schymkowitz J. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7:285-95. [PMID: 21445056 DOI: 10.1038/nchembio.546] [Citation(s) in RCA: 428] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/10/2011] [Indexed: 12/19/2022]
Abstract
Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.
Collapse
Affiliation(s)
- Jie Xu
- Switch Laboratory, Flanders Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Levy CB, Stumbo AC, Ano Bom APD, Portari EA, Cordeiro Y, Carneiro Y, Silva JL, De Moura-Gallo CV. Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors. Int J Biochem Cell Biol 2010; 43:60-4. [PMID: 21056685 DOI: 10.1016/j.biocel.2010.10.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/05/2010] [Accepted: 10/28/2010] [Indexed: 11/16/2022]
Abstract
P53 is one of the most important tumor suppressor proteins in human cancers. Mutations in the TP53 gene are common features of malignant tumors and normally correlate to a more aggressive disease. In breast cancer, these gene alterations are present in approximately 20% of cases and are characteristically of missense type. In the present work we describe TP53 mutations in breast cancer biopsies and investigate whether wild and mutant p53 participate in protein aggregates formation in these breast cancer cases. We analyzed 88 biopsies from patients residing in the metropolitan area of Rio de Janeiro, and performed TP53 mutation screening using direct sequencing of exons 5-10. Seventeen mutations were detected, 12 of them were of missense type, 2 nonsenses, 2 deletions and 1 insertion. The presence of TP53 mutation was highly statistically associated to tumor aggressiveness of IDC cases, indicated here by Elston Grade III (p<0.0001). Paraffin embedded breast cancer tissues were analyzed for the presence of p53 aggregates through immunofluorescence co-localization assay, using anti-aggregate primary antibody A11, and anti-p53. Our results show that mutant p53 co-localizes with amyloid-like protein aggregates, depending on mutation type, suggesting that mutant p53 may form aggregates in breast cancer cells, in vivo.
Collapse
Affiliation(s)
- Claudia B Levy
- Departamento de Genética, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro 20550-013, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Kamada R, Nomura T, Anderson CW, Sakaguchi K. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 2010; 286:252-8. [PMID: 20978130 DOI: 10.1074/jbc.m110.174698] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53, a 393-amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50% of human tumors have TP53 gene mutations; most are missense ones that presumably lower the tumor suppressor activity of p53. In this study, we explored the effects of known tumor-derived missense mutations on the stability and oligomeric structure of p53; our comprehensive, quantitative analyses encompassed the tetramerization domain peptides representing 49 such substitutions in humans. Their effects on tetrameric structure were broad, and the stability of the mutant peptides varied widely (ΔT(m) = 4.8 ∼ -46.8 °C). Because formation of a tetrameric structure is critical for protein-protein interactions, DNA binding, and the post-translational modification of p53, a small destabilization of the tetrameric structure could result in dysfunction of tumor suppressor activity. We suggest that the threshold for loss of tumor suppressor activity in terms of the disruption of the tetrameric structure of p53 could be extremely low. However, other properties of the tetramerization domain, such as electrostatic surface potential and its ability to bind partner proteins, also may be important.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
131
|
Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, Graessmann A, Ogryzko V, Pishvaian M, Albanese C, Avantaggiati ML. Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. J Cell Physiol 2010; 225:394-405. [PMID: 20589832 DOI: 10.1002/jcp.22285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53.
Collapse
Affiliation(s)
- Ricardo E Perez
- Department of Oncology, School of Medicine, Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
The p53 tumor suppressor is a transcription factor that contains a single zinc ion near its DNA binding interface. Zn(2+) is required for site-specific DNA binding and proper transcriptional activation. In addition to its functional significance, zinc plays a dominant role in determining whether p53 folds productively or misfolds. Insufficient zinc and excess zinc cause p53 to misfold by distinct mechanisms which both result in functional loss. The zinc-binding status of p53 in the cell is impacted significantly by the presence of tumorigenic mutations and by metal ion homeostasis. This review discusses mechanisms by which zinc modulates folding and misfolding of p53, how improper metal binding and release leads to loss of function and cancer, and how misfolding can be rescued by metallochaperones.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
133
|
Silva JL, Vieira TCRG, Gomes MPB, Bom APA, Lima LMTR, Freitas MS, Ishimaru D, Cordeiro Y, Foguel D. Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins. Acc Chem Res 2010; 43:271-9. [PMID: 19817406 PMCID: PMC2825094 DOI: 10.1021/ar900179t] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein misfolding has been implicated in a large number of diseases termed protein- folding disorders (PFDs), which include Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, familial amyloid polyneuropathy, Huntington's disease, and type II diabetes. In these diseases, large quantities of incorrectly folded proteins undergo aggregation, destroying brain cells and other tissues. The interplay between ligand binding and hydration is an important component of the formation of misfolded protein species. Hydration drives various biological processes, including protein folding, ligand binding, macromolecular assembly, enzyme kinetics, and signal transduction. The changes in hydration and packing, both when proteins fold correctly or when folding goes wrong, leading to PFDs, are examined through several biochemical, biophysical, and structural approaches. Although in many cases the binding of a ligand such as a nucleic acid helps to prevent misfolding and aggregation, there are several examples in which ligands induce misfolding and assembly into amyloids. This occurs simply because the formation of structured aggregates (such as protofibrillar and fibrillar amyloids) involves decreases in hydration, formation of a hydrogen-bond network in the secondary structure, and burying of nonpolar amino acid residues, processes that also occur in the normal folding landscape. In this Account, we describe the present knowledge of the folding and misfolding of different proteins, with a detailed emphasis on mammalian prion protein (PrP) and tumoral suppressor protein p53; we also explore how ligand binding and hydration together influence the fate of the proteins. Anfinsen's paradigm that the structure of a protein is determined by its amino acid sequence is to some extent contradicted by the observation that there are two isoforms of the prion protein with the same sequence: the cellular and the misfolded isoform. The cellular isoform of PrP has a disordered N-terminal domain and a highly flexible, not-well-packed C-terminal domain, which might account for its significant hydration. When PrP binds to biological molecules, such as glycosaminoglycans and nucleic acids, the disordered segments appear to fold and become less hydrated. Formation of the PrP-nucleic acid complex seems to accelerate the conversion of the cellular form of the protein into the disease-causing isoform. For p53, binding to some ligands, including nucleic acids, would prevent misfolding of the protein. Recently, several groups have begun to analyze the folding-misfolding of the individual domains of p53, but several questions remain unanswered. We discuss the implications of these findings for understanding the productive and incorrect folding pathways of these proteins in normal physiological states and in human disease, such as prion disorders and cancer. These studies are shown to lay the groundwork for the development of new drugs.
Collapse
Affiliation(s)
- Jerson L. Silva
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Tuane C. R. G. Vieira
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Mariana P. B. Gomes
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Ana Paula Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | | | - Monica S. Freitas
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Daniella Ishimaru
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | | | - Debora Foguel
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| |
Collapse
|
134
|
Hwang IY, Baguley BC, Ching LM, Gilchrist CA. The ubiquitin-proteasome system is inhibited by p53 protein expression in human ovarian cancer cells. Cancer Lett 2010; 294:82-90. [PMID: 20153923 DOI: 10.1016/j.canlet.2010.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 11/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) and autophagy provide major cellular pathways for protein degradation. Since the p53 pathway controls autophagy, we investigated whether p53 regulates UPS in ovarian tumour cell lines. A reporter cell line (SKOV3-EGFPu) was established to measure UPS function against a constant genetic background. Transient expression of either wild type or mutant p53 in SKOV3-EGFPu cells reduced UPS activity as compared to vector control. These results, together with those from endogenous p53 expression in seven ovarian cancer cell lines, suggest that expression of both wild-type and mutant p53 protein impairs UPS function. Thus, p53 expression may regulate protein homeostasis by down-regulating UPS function in response to cellular stress.
Collapse
Affiliation(s)
- In Young Hwang
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
135
|
Bom APDA, Freitas MS, Moreira FS, Ferraz D, Sanches D, Gomes AMO, Valente AP, Cordeiro Y, Silva JL. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure. J Biol Chem 2009; 285:2857-66. [PMID: 19933157 PMCID: PMC2807339 DOI: 10.1074/jbc.m109.075861] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is a transcription factor that maintains genome integrity, and its function is lost in 50% of human cancers. The majority of p53 mutations are clustered within the core domain. Here, we investigate the effects of low pH on the structure of the wild-type (wt) p53 core domain (p53C) and the R248Q mutant. At low pH, the tryptophan residue is partially exposed to the solvent, suggesting a fluctuating tertiary structure. On the other hand, the secondary structure increases, as determined by circular dichroism. Binding of the probe bis-ANS (bis-8-anilinonaphthalene-1-sulfonate) indicates that there is an increase in the exposure of hydrophobic pockets for both wt and mutant p53C at low pH. This behavior is accompanied by a lack of cooperativity under urea denaturation and decreased stability under pressure when p53C is in acidic pH. Together, these results indicate that p53C acquires a partially unfolded conformation (molten-globule state) at low pH (5.0). The hydrodynamic properties of this conformation are intermediate between the native and denatured conformation. 1H-15N HSQC NMR spectroscopy confirms that the protein has a typical molten-globule structure at acidic pH when compared with pH 7.2. Human breast cells in culture (MCF-7) transfected with p53-GFP revealed localization of p53 in acidic vesicles, suggesting that the low pH conformation is present in the cell. Low pH stress also tends to favor high levels of p53 in the cells. Taken together, all of these data suggest that p53 may play physiological or pathological roles in acidic microenvironments.
Collapse
Affiliation(s)
- Ana Paula D Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Ishimaru D, Ano Bom APD, Lima LMTR, Quesado PA, Oyama MFC, de Moura Gallo CV, Cordeiro Y, Silva JL. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation. Biochemistry 2009; 48:6126-35. [PMID: 19505151 DOI: 10.1021/bi9003028] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tumor suppressor protein p53 is a nuclear protein that serves as an important transcription factor. The region responsible for sequence-specific DNA interaction is located in its core domain (p53C). Although full-length p53 binds to DNA as a tetramer, p53C binds as a monomer since it lacks the oligomerization domain. It has been previously demonstrated that two core domains have a dimerization interface and undergo conformational change when bound to DNA. Here we demonstrate that the interaction with a consensus DNA sequence provides the core domain of p53 with enhanced conformational stability at physiological salt concentrations (0.15 M). This stability could be either increased or abolished at low (0.01 M) or high (0.3 M) salt concentrations, respectively. In addition, interaction with the cognate sequence prevents aggregation of p53C into an amyloid-like structure, whereas binding to a nonconsensus DNA sequence has no effect on p53C stability, even at low ionic strength. Strikingly, sequence-specific DNA binding also resulted in a large stabilization of full-length p53, whereas nonspecific sequence binding led to no stabilization. The effects of cognate DNA could be mimicked by high concentrations of osmolytes such as glycerol, which implies that the stabilization is caused by the exclusion of water. Taken together, our results show an enhancement in protein stability driven by specific DNA recognition. When cognate DNA was added to misfolded protein obtained after a pressurization cycle, the original conformation was mostly recovered. Our results may aid the development of therapeutic approaches to prevent misfolded species of p53.
Collapse
Affiliation(s)
- Daniella Ishimaru
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Silva JL, Foguel D. Hydration, cavities and volume in protein folding, aggregation and amyloid assembly. Phys Biol 2009; 6:015002. [DOI: 10.1088/1478-3975/6/1/015002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
138
|
The (1-63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies. Biophys J 2008; 94:3635-46. [PMID: 18199664 DOI: 10.1529/biophysj.107.122283] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcriptional regulator p53 plays an essential role in tumor suppression. Accordingly, it is found mutated, and its activity is reduced, in many human cancers. Recent reports show that some cancers are characterized by a loss of function of wild-type p53, which, in several cases, accumulates in intracellular aggregates. Although the nature of such aggregates is still unclear, recent evidence indicates that the p53 C-terminal and core domains can undergo amyloid aggregation in vitro under mild denaturing conditions, although no information is available on the largely unstructured N-terminal transactivation domain. We therefore decided to investigate the amyloid propensity of the acidic unfolded 1-63 fragment of the transactivation domain, cloned, expressed, and purified from a bacterial strain. Here we show that, when exposed to acidic pH, the 1-63 fragment forms thioflavine T-positive aggregates whose amyloid nature was confirmed by Fourier transform infrared spectroscopy analysis, atomic force microscopy, and x-ray diffraction. These aggregates were shown to be cytotoxic to human SH-SY5Y cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, lactate dehydrogenase release, and caspase-3 activity assays. These results add new significant details to the picture describing the propensity of single domains of p53 to aggregate, further suggesting that, under suitable destabilizing conditions, the whole protein may aggregate into amyloid assemblies in vivo.
Collapse
|
139
|
Rojas Quijano FA, Morrow D, Wise BM, Brancia FL, Goux WJ. Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides. Biochemistry 2006; 45:4638-52. [PMID: 16584199 DOI: 10.1021/bi052226q] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Physical properties, including amyloid morphology, FTIR and CD spectra, enhancement of Congo red absorbance, polymerization rate, critical monomer concentration, free energy of stabilization, hydrophobicity, and the partition coefficient between soluble and amyloid states, were measured for the tau-related peptide Ac-VQIVYK amide (AcPHF6) and its single site mutants Ac-VQIVXK amide (X not equal Cys). Transmission electron microscopy showed that 15 out of the 19 peptides formed amyloid in buffer, with morphologies ranging from straight and twisted filaments to sheets and rolled sheets. Using principal component analysis (PCA), measured properties were treated in a comprehensive manner, and scores along the most significant principal components were used to define individual amino acid amyloidogenic propensities. Quantitative structure-activity modeling (QSAM) showed that residues with greater size and hydrophobicity made the largest contributions to the propensity of peptides to form amyloid. Using individual amino acid propensities, sequences within tau with high amyloid-forming potential were estimated and found to include 226VAVVR230 in the proline-rich region, 275VQIINK280 (PHF6) and 306VQIVYK311 (PHF6) within the microtubule binding region, and 392IVYK395 in the C-tail region of the protein. The results suggest that regions outside the microtubule-binding region may play important roles in tau aggregation kinetics or paired helical filament structure.
Collapse
Affiliation(s)
- Federico A Rojas Quijano
- Department of Chemistry, The University of Texas at Dallas, P.O. Box 830688 Richardson, Texas 75083-0688, USA
| | | | | | | | | |
Collapse
|
140
|
Silva JL, Cordeiro Y, Foguel D. Protein folding and aggregation: Two sides of the same coin in the condensation of proteins revealed by pressure studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:443-51. [PMID: 16480935 DOI: 10.1016/j.bbapap.2005.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/14/2005] [Indexed: 11/12/2022]
Abstract
Hydrostatic pressure can be considered as "thermodynamic tweezers" to approach the protein folding problem and to study the cases when folding goes wrong leading to the protein folding disorders. The main outcome of the use of high pressure in this field is the stabilization of folding intermediates such as partially folded conformations, thus allowing us to characterize their structural properties. Because partially folded intermediates are usually at the intersection between productive and off-pathway folding, they may give rise to misfolded proteins, aggregates and amyloids that are involved in many neurodegenerative diseases, such as transmissible spongiform encephalopathies, Alzheimer's disease, Parkinson's disease and Huntington's disease. Of particular interest is the use of hydrostatic pressure to unveil the structural transitions in prion conversion and to populate possible intermediates in the folding/unfolding pathway of the prion protein. The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform, the PrP(Sc) (from scrapie). It has been demonstrated that hydrostatic pressure affects the balance between the different prion species. The last findings on the application of high pressure on amyloidogenic proteins will be discussed here as regards to their energetic and volumetric properties. The use of high pressure promises to contribute to the identification of the underlying mechanisms of these neurodegenerative diseases and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, and Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
141
|
Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR, Anderson CW, Appella E, Sakaguchi K. Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry 2006; 45:1608-19. [PMID: 16460008 PMCID: PMC2536691 DOI: 10.1021/bi051192j] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The p53 tumor suppressor is a tetrameric transcriptional enhancer, and its activity is compromised by mutations that cause amino acid substitutions in its tetramerization domain. Here we analyze the biochemical and biophysical properties of peptides corresponding to amino acids 319-358 of wild-type human p53, which includes the tetramerization domain, and that of a cancer-derived mutant with valine substituted for glycine 334. Unlike the wild-type peptide, the G334V peptide forms amyloid fibrils by a two-step process under physiological conditions of temperature and pH. Nevertheless, the G334V peptide is capable of forming heterooligomers with a wild-type peptide. Computational modeling of the G334V peptide structure suggests that substitution of valine for glycine 334 causes a local distortion that contributes to a beta-dominated structural transition leading to amyloid formation. Since the distortion is mostly on the surface, the mutant peptide is still able to form a pseudonative tetramer complex at higher concentrations and/or lower temperatures. Our study suggests a new potential mechanism by which mutations that compromise tetramer formation inactivate p53 as a tumor suppressor.
Collapse
Affiliation(s)
- Yuichiro Higashimoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Hokkaido University, Sapporo 060−0810, Japan
| | - Yuya Asanomi
- Biological Chemistry, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060−0810, Japan
| | - Satoru Takakusagi
- Physical Chemistry, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060−0810, Japan
| | - Marc S. Lewis
- Molecular Interactions Resource, Division of Bioengineering and Physical Science, Office of Research Services, Office of Director, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kohei Uosaki
- Physical Chemistry, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060−0810, Japan
| | - Stewart R. Durell
- Center for Cancer Research Nanobiology Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carl W. Anderson
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kazuyasu Sakaguchi
- Biological Chemistry, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060−0810, Japan
| |
Collapse
|
142
|
Potesil D, Mikelova R, Adam V, Kizek R, Prusa R. Change of the Protein p53 Electrochemical Signal According to its Structural Form – Quick and Sensitive Distinguishing of Native, Denatured, and Aggregated Form of the “Guardian of the Genome”. Protein J 2006; 25:23-32. [PMID: 16721658 DOI: 10.1007/s10930-006-0014-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Presence of mutated and/or structurally modified (e.g., denatured, aggregated) protein p53 form is associated with several disorders such as Alzheimer's disease, Parkinson's disease, prion diseases, and many types of tumours. The aim of this work was to distinguish native, denatured and aggregated form of full-length p53 by flow injection analysis coupled with electrochemical detector (FIA-ED). Firstly FIA-ED method used for protein native form determination was optimized (detection limit 45.8 amol per 5 mul injection; 3 x S/N). In addition the technique was applied to identify p53 structural forms (denatured and aggregated). It was found out that denatured form provides about three times higher electrochemical response (protein structure unfolding, approach of more electroactive centers - aminoacid residues - towards electrode surface) in comparison with native form. On the other hand, aggregated form offers lower response (steric eclipse of electroactive protein parts) when compared with the signal of native form. The obtained data show that we are not only able to sensitively determine native, denatured, and aggregated structural forms of p53 protein but also to distinguish them.
Collapse
Affiliation(s)
- David Potesil
- Department of Analytical Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
143
|
Kim YS, Randolph TW, Seefeldt MB, Carpenter JF. High‐Pressure Studies on Protein Aggregates and Amyloid Fibrils. Methods Enzymol 2006; 413:237-53. [PMID: 17046400 DOI: 10.1016/s0076-6879(06)13013-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High hydrostatic pressure (HHP) modulates protein-protein and protein-solvent interactions through volume changes and thereby affects the equilibrium of protein conformational species between native and denatured forms as well as monomeric, oligomeric, and aggregated forms without the addition of chemicals or use of high temperature. Because of this unique property, HHP has provided deep insights into the thermodynamics and kinetics of protein folding and aggregation, including amyloid fibril formation. In particular, HHP is a useful tool to stabilize and populate specific folding intermediates, the characterization of which provides thorough understanding of protein folding and aggregation pathways. Furthermore, recent application of HHP for dissociation of protein aggregates, such as inclusion bodies (IBs), into native proteins in a single step facilitates protein preparation for structural and functional studies. This chapter overviews recent HHP studies on the population and characterization of folding intermediates associated with protein aggregation and protein refolding from protein aggregates of amyloid fibrils and IBs. Finally, we describe overall experimental procedures of HHP-mediated protein refolding and provide a detailed discussion of each operating parameter to optimize the refolding.
Collapse
Affiliation(s)
- Yong-Sung Kim
- Ajou University, Department of Molecular Science and Technology, Yeongtong-gu, Suwon, Korea
| | | | | | | |
Collapse
|
144
|
Abstract
The ability of proteins to fold into a defined and functional conformation is one of the most fundamental processes in biology. Certain conditions, however, initiate misfolding or unfolding of proteins. This leads to the loss of functional protein or it can result in a wide range of diseases. One group of diseases, which includes Alzheimer's, Parkinson's, Huntington's disease, and the transmissible spongiform encephalopathies (prion diseases), involves deposition of aggregated proteins. Normally, such protein aggregates are not found in properly functioning biological systems, because a variety of mechanisms inhibit their formation. Understanding the nature of these protective mechanisms together with the understanding of factors reducing or deactivating the natural protection machinery will be crucial for developing strategies to prevent and treat these disastrous diseases.
Collapse
Affiliation(s)
- T Scheibel
- Department Chemie, Lehrstuhl für Biotechnologie, Technische Universität München, Garching, Germany
| | | |
Collapse
|
145
|
Lee YN, Chen LK, Ma HC, Yang HH, Li HP, Lo SY. Thermal aggregation of SARS-CoV membrane protein. J Virol Methods 2005; 129:152-61. [PMID: 16023741 PMCID: PMC7112854 DOI: 10.1016/j.jviromet.2005.05.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 01/03/2023]
Abstract
SARS-CoV membrane protein could be detected easily using Western blotting in non-denaturing condition but not regular denaturing treatment. Boiling treatment, causing the aggregation of SARS-CoV membrane protein in the stacking gels, results in the failure to detect the membrane protein in the separating gels. Aggregated membrane proteins could not be dissociated by 1% Triton-X 100, 6 M urea, or 2% SDS. The region with amino acid residues from 51 to 170 is responsible for thermal aggregation of SARS-CoV membrane protein. Hydrophobic regions with amino acid residues from 61 to 90, from 91 to 100, from 136 to 170, are essential for this protein aggregation. Thermal aggregation of SARS-CoV membrane protein is not unique among structural proteins of coronaviruses. However, SARS-CoV membrane protein seems to be more sensitive to heat treatment, since the membrane protein of MHV-JHM, another member of the Coronaviridae, would not aggregate after the same treatment. Therefore, if SARS-CoV membrane protein needs to be analyzed using SDS-PAGE, boiling should be avoided. Thermal aggregation of SARS-CoV membrane protein may be one of the reasons for the inactivation of this virus by heat. The unusual property of SARS-CoV membrane protein aggregation induced by heat also provides a model for the study of protein aggregation.
Collapse
Affiliation(s)
- Yi-Nung Lee
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan
| | - Li-Kuang Chen
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Emergency Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Hsin-Chieh Ma
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hui-Hua Yang
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Pai Li
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Yen Lo
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, College of Medicine, 701 Section 3, Chung Yang Road, Hualien 970, Taiwan
- Corresponding author. Tel.: +886 3 8565301x7638; fax: +886 3 8571917.
| |
Collapse
|
146
|
Galea C, Bowman P, Kriwacki RW. Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Sci 2005; 14:2993-3003. [PMID: 16260757 PMCID: PMC2253254 DOI: 10.1110/ps.051622005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We describe in molecular detail how disruption of an intermonomer salt bridge (Arg337-Asp352) leads to partial destabilization of the p53 tetramerization domain and a dramatically increased propensity to form amyloid fibrils. At pH 4.0 and 37 degrees C, a p53 tetramerization domain mutant (p53tet-R337H), associated with adrenocortical carcinoma in children, readily formed amyloid fibrils, while the wild-type (p53tet-wt) did not. We characterized these proteins by equilibrium denaturation, 13C(alpha) secondary chemical shifts, (1H)-15N heteronuclear NOEs, and H/D exchange. Although p53tet-R337H was thermodynamically less stable, NMR data indicated that the two proteins had similar secondary structure and molecular dynamics. NMR derived pK(a) values indicated that at low pH the R337H mutation partially disrupted an intermonomer salt bridge. Backbone H/D exchange results showed that for at least a small population of p53tet-R337H molecules disruption of this salt bridge resulted in partial destabilization of the protein. It is proposed that this decrease in p53tet-R337H stability resulted in an increased propensity to form amyloid fibrils.
Collapse
Affiliation(s)
- Charles Galea
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | |
Collapse
|
147
|
Silva TDN, da Cunha Aguiar LC, Leta J, Santos DO, Cardoso FS, Cabral LM, Rodrigues CR, Castro HC. Role of the undergraduate student research assistant in the new millennium. CELL BIOLOGY EDUCATION 2005; 3:235-40. [PMID: 15592596 PMCID: PMC533125 DOI: 10.1187/cbe.04-02-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Accepted: 08/12/2004] [Indexed: 11/20/2022]
Abstract
In this study, we analyze the contribution of the undergraduate student who participates in the process of generating scientific data and developing a research project using Brazilian research as an example. Historically, undergraduate students have performed the critical role of research assistants in developing countries. This aspect has been underappreciated as a means of generating scientific data in Brazilian research facilities. Brazilian educational institutions are facing major age-related generational changes among the science faculty within the next 5-10 yr. A lack of adequate support for graduate students leads to a concern that undergraduates will not be interested in choosing research assistant programs and, subsequently, academic research careers. To remedy this situation it is important to focus on ways to encourage new research careers and enhance university-industry collaborations.
Collapse
Affiliation(s)
- Thais Dutra Nascimento Silva
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol) (http://www.uff.br/labiomol, 3 andar, Departamento de Biologia Celular e Molecular, IB-CEG, Universidade Federal Fluminense, CEP 24001–970, Niterói, RJ, Brazil
| | | | - Jaqueline Leta
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CEP 21941–590, Rio de Janeiro, RJ, Brazil
| | - Dilvani Oliveira Santos
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol) (http://www.uff.br/labiomol, 3 andar, Departamento de Biologia Celular e Molecular, IB-CEG, Universidade Federal Fluminense, CEP 24001–970, Niterói, RJ, Brazil
| | - Fernanda Serpa Cardoso
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol) (http://www.uff.br/labiomol, 3 andar, Departamento de Biologia Celular e Molecular, IB-CEG, Universidade Federal Fluminense, CEP 24001–970, Niterói, RJ, Brazil
| | - Lúcio Mendes Cabral
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CEP 21941–590, Rio de Janeiro, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CEP 21941–590, Rio de Janeiro, RJ, Brazil
- Corresponding authors. E-mail addresses: or and
| | - Helena Carla Castro
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol) (http://www.uff.br/labiomol, 3 andar, Departamento de Biologia Celular e Molecular, IB-CEG, Universidade Federal Fluminense, CEP 24001–970, Niterói, RJ, Brazil
- Corresponding authors. E-mail addresses: or and
| |
Collapse
|
148
|
Butler JS, Loh SN. Kinetic partitioning during folding of the p53 DNA binding domain. J Mol Biol 2005; 350:906-18. [PMID: 15982667 DOI: 10.1016/j.jmb.2005.05.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/20/2005] [Accepted: 05/25/2005] [Indexed: 01/08/2023]
Abstract
The DNA-binding domain (DBD) of wild-type p53 loses DNA binding activity spontaneously at 37 degrees C in vitro, despite being thermodynamically stable at this temperature. We test the hypothesis that this property is due to kinetic misfolding of DBD. Interrupted folding experiments and chevron analysis show that native molecules are formed via four tracks (a-d) under strongly native conditions. Folding half-lives of tracks a-d are 7.8 seconds, 50 seconds, 5.3 minutes and more than five hours, respectively, in 0.3M urea (10 degrees C). Approximately equal fractions of molecules fold through each track in zero denaturant, but above 2.0M urea approximately 90% fold via track c. A kinetic mechanism consisting of two parallel folding channels (fast and slow) is proposed. Each channel populates an on-pathway intermediate that can misfold to form an aggregation-prone, dead-end species. Track a represents direct folding through the fast channel. Track b proceeds through the fast channel but via the off-pathway state. Track c corresponds to folding via the slow channel, primarily through the off-pathway state. Track d proceeds by way of an even slower, uncharacterized route. We postulate that activity loss is caused by partitioning to the slower tracks, and that structural unfolding limits this process. In support of this view, tumorigenic hot-spot mutants G245S, R249S and R282Q accelerate unfolding rates but have no affect on folding kinetics. We suggest that these and other destabilizing mutants facilitate loss of p53 function by causing DBD to cycle unusually rapidly between folded and unfolded states. A significant fraction of DBD molecules become effectively trapped in a non-functional state with each unfolding-folding cycle.
Collapse
Affiliation(s)
- James S Butler
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
149
|
Chatani E, Kato M, Kawai T, Naiki H, Goto Y. Main-chain Dominated Amyloid Structures Demonstrated by the Effect of High Pressure. J Mol Biol 2005; 352:941-51. [PMID: 16122756 DOI: 10.1016/j.jmb.2005.07.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 07/11/2005] [Accepted: 07/14/2005] [Indexed: 11/21/2022]
Abstract
It has been suggested that, while the globular native forms of proteins are a side-chain-dominated compact structure evolved by pursuing a unique fold with optimal packing of amino acid residues, amyloid fibrils are a main-chain-dominated structure with an extensive hydrogen bond network. To address this issue, the effects of hydrostatic pressure on amyloid fibrils of beta2-microglobulin (beta2-m), involved in dialysis-related amyloidosis, were studied. A systematic analysis at various pressures and concentrations of guanidine hydrochloride conducted by monitoring thioflavin T fluorescence, light-scattering, and tryptophan fluorescence revealed contrasting conformational changes occurring consecutively: first, a pressure-induced reorganization of fibrils and then a pressure-induced unfolding. The changes in volume as well as the observed structural changes indicate that the beta2-m amyloid fibrils under ambient pressure are less tightly packed with a larger number of cavities, consistent with the main-chain-dominated amyloid structure. Moreover, the amyloid structure without optimal packing will enable various isoforms to form, suggesting the structural basis of multiple forms of amyloid fibrils in contrast to the unique native-fold.
Collapse
Affiliation(s)
- Eri Chatani
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
150
|
Chi TY, Chen GG, Ho LK, Lai PBS. Establishment of a doxycycline-regulated cell line with inducible, doubly-stable expression of the wild-type p53 gene from p53-deleted hepatocellular carcinoma cells. Cancer Cell Int 2005; 5:27. [PMID: 16117829 PMCID: PMC1224858 DOI: 10.1186/1475-2867-5-27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 08/23/2005] [Indexed: 12/04/2022] Open
Abstract
p53 is important in the development of hepatocellular carcinoma (HCC) and in therapeutic approaches, but the mechanism whereby it inhibits HCC growth is still unclear. The aim of the present study was to establish a HCC cell system in which p53 levels can be regulated. Full-length wild-type p53 cDNA obtained by PCR was cloned into a retroviral response vector controlled by the tetracycline responsive element (RevTRE-p53). The regulatory vectors RevTet-Off and RevTRE-p53 were transfected into a packaging cell line, PT67. Hep3B cells in which the p53 gene was deleted were infected with RevTet-Off viral particles from the PT67. Three G418-resistant cell clones with high luciferase expression and low background were infected with RevTRE-p53. By screening dozens of RevTRE-p53-infected clones with hygromycin we identified the one with the highest expression of p53 and the lowest background after doxycycline treatment. The results showed that p53 expression in this cell clone could be simply turned on or off by removing or adding doxycycline. Furthermore, it was found that the level of p53 protein was negatively and sensitively related to the doxycycline concentration. In conclusion, we have established a HCC cell line in which p53 expression can be switched on or off and regulated in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Tian-Yi Chi
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - George G Chen
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Lok-Kee Ho
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Paul BS Lai
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|