101
|
Li J, Daniliuc CG, Kartha KK, Fernández G, Kehr G, Erker G. Introducing the Dihydro-1,3-azaboroles: Convenient Entry by a Three-Component Reaction, Synthetic and Photophysical Application. J Am Chem Soc 2021; 143:2059-2067. [PMID: 33463151 DOI: 10.1021/jacs.0c12236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The (Fmes)BH2·SMe2 reagent (7) reacts sequentially with an acetylene and, e.g., xylylisonitrile in a convenient three-component reaction to give a series of unprecedented dihydro-1,3-azaborole derivatives 16. The tolane-derived example 16a was deprotonated and used as a ligand in organometallic chemistry. Compounds 16 served as the starting materials for the straightforward synthesis of various dihydro-1,3-azaborinine derivatives by treatment with an isonitrile. Several diaryldihydro-1,3-azaboroles showed interesting photophysical properties such as aggregation-induced emission and high fluorescence quantum yields.
Collapse
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149 Münster, Germany
| | - Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149 Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149 Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149 Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149 Münster, Germany
| |
Collapse
|
102
|
Gupta S, Sabbasani VR, Su S, Wink DJ, Lee D. Alkene-Chelated Ruthenium Alkylidenes: A Missing Link to New Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saswata Gupta
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Venkata R. Sabbasani
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Siyuan Su
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Donald J. Wink
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
103
|
Song ZJ, Meng SY, Wang QR. Total Synthesis of Marine Alkaloids Motuporamines A and B via Ring Expansion of Cyclic β-Keto Esters. ACS OMEGA 2021; 6:881-888. [PMID: 33458539 PMCID: PMC7808158 DOI: 10.1021/acsomega.0c05484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
An expedient total synthesis of the title marine sponge alkaloids has been developed. The salient features of the synthesis are as follows: (i) preparation of the required 13- and 14-membered cyclic lactams with n + 4 ring-expansion strategy of cyclic β-keto esters and (ii) functional group manipulation of the resulted keto ester lactams. This approach used easily accessible and inexpensive materials/reagents, thus providing a promising alternative to the existing preparations.
Collapse
|
104
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
105
|
Schmidt B. The Role of Total Synthesis in Structure Revision and Elucidation of Decanolides (Nonanolides). PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:1-57. [PMID: 33797640 DOI: 10.1007/978-3-030-64853-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ten-membered lactones are commonly observed structures of natural products. They are mostly fungal metabolites, which often act as plant pathogens, but recently ten-membered lactones were identified as pheromones of frogs and termites. Although modern spectroscopic methods are nowadays routinely used to elucidate the structure of natural products, structural assignments of ten-membered lactones often remain incomplete or are surprisingly often erroneous. Most errors concern the absolute configuration. The examples discussed in this chapter demonstrate that enantioselective total synthesis is not only an efficient tool for corroborating or revising a proposed structure, but that the synthesis of different stereoisomers as references for gas chromatographic investigations can be a vital part of the structure elucidation process if only minute amounts of material are available. As a method of outstanding importance for the synthesis of ten-membered lactones olefin metathesis has emerged. Most of the examples discussed herein use one or more olefin metathesis reactions as key steps.
Collapse
Affiliation(s)
- Bernd Schmidt
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
106
|
Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Recent advances in Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation via carbene migratory insertion. Org Biomol Chem 2021; 19:1438-1458. [DOI: 10.1039/d0ob02309d] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review highlighted diverse annulations, including nitrogen, oxygen, sulfur heterocycles and carbocylizations via Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation with various arene and carbene precursors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Saiprasad Nunewar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srilekha Oluguttula
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srinivas Nanduri
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| |
Collapse
|
107
|
de la Cruz-Sánchez P, Pàmies O. Metal-π-allyl mediated asymmetric cycloaddition reactions. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
108
|
Liu ZK, Gao Y, Hu XQ. Recent advances in catalytic synthesis of medium-ring lactones and their derivatives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01438b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In light of the ever-increasing significance of medium-sized lactones across the range of chemical sciences, this review summarizes the recent advances in catalytic synthesis of medium-ring lactones with emphasis on reaction scope and mechanism.
Collapse
Affiliation(s)
- Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
109
|
Wu XX, Ye H, Li M, Qian J, Dai H, Shi Y. Selective synthesis of acylated caprolactam via sequential Michael addition/palladium-catalyzed alpha-arylation of ketones. Org Chem Front 2021. [DOI: 10.1039/d0qo01323d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A formal [6 + 1] annulation reaction provides an efficient route enabling rapid access to diverse caprolactams by the double C–C bond formation of the same site from methyl ketones.
Collapse
Affiliation(s)
- Xin-Xing Wu
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
- Nantong Key Lab of Intelligent and New Energy Materials
| | - Hao Ye
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Jianing Qian
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Yujun Shi
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| |
Collapse
|
110
|
He H, Xu N, Zhang H, Chen B, Hu Z, Guo K, Chun J, Cao S, Zhu Y. Brønsted acid-promoted hydroamination of unsaturated hydrazones: access to biologically important 5-arylpyrazolines. RSC Adv 2021; 11:17340-17345. [PMID: 35479684 PMCID: PMC9033072 DOI: 10.1039/d1ra03043d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
A novel and efficient Brønsted acid-promoted hydroamination of hydrazone-tethered olefins has been developed. A variety of pyrazolines have been easily obtained in good to excellent yields with high chemo- and regioselectivity under simple and mild conditions. This method represents a straightforward, facile, and practical approach toward biologically important 5-arylpyrazolines, which are difficult to access by previously reported radical hydroamination of β,γ-unsaturated hydrazones. An efficient, chemo- and regioselective Brønsted acid-promoted hydroamination reaction of hydrazone-tethered olefins towards 5-arylpyrazolines was developed.![]()
Collapse
Affiliation(s)
- Han He
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Bin Chen
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Zhengnan Hu
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Jianlin Chun
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| |
Collapse
|
111
|
Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020; 15:4153-4167. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Indexed: 12/21/2022]
Abstract
Quinoline is considered one of the most ubiquitous heterocycles due to its engaging biological activities and synthetic utility over organic transformations. Over the past few decades, numerous reports have been documented in the synthesis of quinolines. The classical methods including, Skraup, Friedlander, Doebner-von-Miller, Conrad-Limpach, Pfitzinger quinoline synthesis, and so forth, these are the well-known methods to construct principal quinoline scaffold with several advantages and limitations. Recently, radical insertion or catalyzed reactions have emerged as a powerful and efficient tool to construct heterocycles with high atom efficiency and step economy. In this concern, this minireview mainly focused on the developments of Quinoline synthesis via radical reactions. In addition, a brief description of the preparation procedure, reactivity, and mechanisms is also included, where as possible. Respectively, the synthesis of quinolines is classified and summarized based on its reactivity, so it will help the researchers to grab the information in this exploration area, as Quinolines are promising pharmacophores.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
112
|
Tu L, Gao L, Wang X, Shi R, Ma R, Li J, Lan X, Zheng Y, Liu J. [3 + 2] Cycloaddition of Nitrile Imines with Enamides: An Approach to Functionalized Pyrazolines and Pyrazoles. J Org Chem 2020; 86:559-573. [PMID: 33301335 DOI: 10.1021/acs.joc.0c02244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient [3 + 2] cycloaddition of in situ generated nitrile imines with enamides has been established. A wide range of functionalized pyrazoline derivatives (53 examples) were obtained in moderate to good yields (up to 96%) under very mild conditions. This protocol features broad substrate scope, good functional group tolerance, and operational simplicity. Practical transformation of the products into useful pyrazoles via a one-pot process and the scalability of this protocol highlight the utility of this synthetic methodology.
Collapse
Affiliation(s)
- Liang Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Limei Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaomeng Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ruijie Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Rupei Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Junfei Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaoshuang Lan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yongsheng Zheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
113
|
Jia H, Min D, Guo T, Wu M, Wang X, Liu J, Tang S. Dithiane-Induced [3+2] Cycloaddition Tactic for the Convergent Synthesis of Dihydropyrrole and Pyrrole Derivatives. J Org Chem 2020; 85:14847-14857. [PMID: 32610903 DOI: 10.1021/acs.joc.0c01145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient transition-metal-free tactic for the convergent synthesis of substituted dihydropyrroles and pyrroles by β-chloro-vinyl dithiane cyclization with a broad range of imines was developed. [3+2] Cyclization and aromatization occur under these reaction conditions providing biologically relevant dihydropyrroles and pyrroles in good yields.
Collapse
Affiliation(s)
- Hongbin Jia
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Deng Min
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tianyun Guo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mingzhong Wu
- Sate Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- Sate Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.,Sate Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shouchu Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.,Sate Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
114
|
Wu A, Zhao W, Sun J. Synthesis of medium-sized lactones from siloxy alkynes via ring expansion. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
115
|
Abstract
The synthetically challenging and highly functionalized azabicyclo[6.4.1] ring system, which is found in lycopodium alkaloid lycoclavatumide and some natural molecules, was synthesized for the first time. The key reaction was a diastereoselective type II [5+2] cycloaddition with excellent functional group compatibility. We tried to install the desired eight-membered ring in the final product by RCM reaction.
Collapse
Affiliation(s)
- Xin-Feng Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
116
|
Han XL, Nie XD, Chen ZD, Si CM, Wei BG, Lin GQ. Synthesis of a 3,4-Dihydro-1,3-oxazin-2-ones Skeleton via an Intermolecular [4 + 2] Process of N-Acyliminium Ions with Ynamides/Terminal Alkynes. J Org Chem 2020; 85:13567-13578. [DOI: 10.1021/acs.joc.0c01692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao-Li Han
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xiao-Di Nie
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhao-Dan Chen
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Chang-Mei Si
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Bang-Guo Wei
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
117
|
Yu B, Zou S, Liu H, Huang H. Palladium-Catalyzed Ring-Closing Reaction via C–N Bond Metathesis for Rapid Construction of Saturated N-Heterocycles. J Am Chem Soc 2020; 142:18341-18345. [DOI: 10.1021/jacs.0c10615] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Suchen Zou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongchi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, 230026, P. R. China
| |
Collapse
|
118
|
Yao HF, Wang DL, Li FH, Wu B, Cai ZJ, Ji SJ. Synthesis of organoselenyl isoquinolinium imides via iron(III) chloride-mediated tandem cyclization/selenation of N'-(2-alkynylbenzylidene)hydrazides and diselenides. Org Biomol Chem 2020; 18:7577-7584. [PMID: 32945312 DOI: 10.1039/d0ob01517b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report describes the synthesis of organoselenyl isoquinolinium imides through a tandem cyclization between N'-(2-alkynylbenzylidene)hydrazides and diselenides. The reaction was carried out at room temperature under an ambient atmosphere using cheap iron(iii) chloride as the metallic source. The strategy shows good tolerance to a broad range of N'-(2-alkynylbenzylidene)hydrazides and diselenides, and forms C-N and C-Se bonds in one step. The obtained product is further transformed into a bioactive H-pyrazolo[5,1-a]isoquinoline skeleton easily via a silver catalyzed [3 + 2] cycloaddition.
Collapse
Affiliation(s)
- Hai-Feng Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | |
Collapse
|
119
|
Tao M, Li W, Zhang J. Pd/Xiang-Phos-catalyzed enantioselective intermolecular carboheterofunctionalization of norbornene and norbornadiene. Chem Commun (Camb) 2020; 56:13125-13128. [PMID: 33005910 DOI: 10.1039/d0cc04996d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective Pd/Xiang-Phos-catalyzed carbohetero-functionalization of norbornene is described, giving a direct access to various chiral norbornane-fused dihydrofurans and dihydro-pyrroles. This synthetic methodology provides the first example of asymmetric carboetherification of norbornene, and also tolerates norbornadiene well.
Collapse
Affiliation(s)
- Mengna Tao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | | | | |
Collapse
|
120
|
Nascimento D, Reim I, Foscato M, Jensen VR, Fogg DE. Challenging Metathesis Catalysts with Nucleophiles and Brønsted Base: Examining the Stability of State-of-the-Art Ruthenium Carbene Catalysts to Attack by Amines. ACS Catal 2020; 10:11623-11633. [PMID: 33123412 PMCID: PMC7587145 DOI: 10.1021/acscatal.0c02760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/29/2020] [Indexed: 11/29/2022]
Abstract
Critical to advancing the uptake of olefin metathesis in leading contexts, including pharmaceutical manufacturing, is identification of highly active catalysts that resist decomposition. Amines constitute an aggressive challenge to ruthenium metathesis catalysts. Examined here is the impact of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), morpholine, n-butylamine, and triethylamine on Ru metathesis catalysts that represent the current state of the art, including cyclic alkyl amino carbene (CAAC) and N-heterocyclic carbene (NHC) complexes. Accordingly, the amine-tolerance of the nitro-Grela catalyst RuCl2(H2IMes)(=CHAr) (nG; Ar = C6H4-2-O i Pr-5-NO2) is compared with that of its CAAC analogues nGC1 and nGC2, and the Hoveyda-class catalyst RuCl2(C2)(=CHAr') HC2 (Ar' = C6H4-2-O i Pr). In C1, the carbene carbon is flanked by an N-2,6-Et2C6H3 group and a CMePh quaternary carbon; in C2, by an N-2- i Pr-6-MeC6H3 group and a CMe2 quaternary carbon. The impact of 1 equiv amine per Ru on turnover numbers (TONs) in ring-closing metathesis of diethyl diallylmalonate was assessed at 9 ppm Ru, at RT and 70 °C. The deleterious impact of amines followed the trend NEt3 ∼ NH2 n Bu ≪ DBU ∼ morpholine. Morpholine is shown to decompose nGC1 by nucleophilic abstraction of the methylidene ligand; DBU, by proton abstraction from the metallacyclobutane. Decomposition was minimized at 70 °C, at which nGC1 enabled TONs of ca. 60 000 even in the presence of morpholine or DBU, vs ca. 80 000 in the absence of base. Unexpectedly, H2IMes catalyst nG delivered 70-90% of the performance of nGC1 at high temperatures, and underwent decomposition by Brønsted base at a similar rate. Density functional theory (DFT) analysis shows that this similarity is due to comparable net electron donation by the H2IMes and C1 ligands. Catalysts bearing the smaller C2 ligand were comparatively insensitive to amines, owing to rapid, preferential bimolecular decomposition.
Collapse
Affiliation(s)
- Daniel
L. Nascimento
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Canada K1N 6N5
| | - Immanuel Reim
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Marco Foscato
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Canada K1N 6N5
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
121
|
Dai QS, Tao YM, Zhang X, Leng HJ, Huang H, Xiang P, Li QZ, Wang QW, Li JL. Palladium-catalysed cyclisation of vinylethylene carbonates and anhydrides: a new approach to diverse medium-sized bislactones. Chem Commun (Camb) 2020; 56:12439-12442. [PMID: 32940311 DOI: 10.1039/d0cc05341d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient construction of medium-sized lactones has attracted considerable interest over several decades, but remains a formidable challenge in synthetic chemistry. Here, we describe an unprecedented palladium-catalysed regioselective [5 + n] cyclisation (n = 5, 6, and 7) between vinylethylene carbonates and various anhydrides. Catalytic transformation occurs under mild, room-temperature conditions and offers an exceptional substrate scope. A broad spectrum of medium-sized bislactones with skeletal diversity can be obtained easily.
Collapse
Affiliation(s)
- Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Mandal T, Dhara K, Parui N, Dash J. Domino Relay Olefin Metathesis of Triallyl Oxindole and Indole Precursors to Access Cyclic Indoxyls and Carbazoles. ChemCatChem 2020. [DOI: 10.1002/cctc.202000813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tirtha Mandal
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032 India
| | - Kalyan Dhara
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032 India
| | - Nabin Parui
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032 India
| | - Jyotirmayee Dash
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032 India
| |
Collapse
|
123
|
Li J, Yang F, Hu W, Ren B, Chen ZS, Ji K. Gold(i)-catalyzed tandem cyclization of cyclopropylidene-tethered propargylic alcohols: an approach to functionalized naphtho[2,3-c]pyrans. Chem Commun (Camb) 2020; 56:9154-9157. [PMID: 32657308 DOI: 10.1039/d0cc03285a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An unprecedented gold(i)-catalyzed cyclization of cyclopropylidene-tethered propargylic alcohols via a 6-endo-dig enyne cyclization followed by a ring-opening of cyclopropane and nucleophilic closure reaction to construct naphtho[2,3-c]pyrans was developed. This transformation represents a highly efficient method for the synthesis of polycyclic compounds in one-pot, and two new rings are formed in an atom economic manner.
Collapse
Affiliation(s)
- Jian Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China. and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| | - Weiwei Hu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| | - Bo Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| | - Zi-Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| |
Collapse
|
124
|
Xie J, Li X, Kleij AW. Pd-catalyzed stereoselective tandem ring-opening amination/cyclization of vinyl γ-lactones: access to caprolactam diversity. Chem Sci 2020; 11:8839-8845. [PMID: 34123137 PMCID: PMC8163440 DOI: 10.1039/d0sc03647a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
A stereoselective amination/cyclization cascade process has been developed that allows for the preparation of a series of unsaturated and substituted caprolactam derivatives in good yields. This conceptually novel protocol takes advantage of the easy access and modular character of vinyl γ-lactones that can be prepared from simple precursors. Activation of the lactone substrate in the presence of a suitable Pd precursor and newly developed phosphoramidite ligand offers a stereocontrolled ring-opening/allylic amination manifold under ambient conditions. The intermediate (E)-configured ε-amino acid can be cyclized using a suitable dehydrating agent in an efficient one-pot, two-step sequence. This overall highly chemo-, stereo- and regio-selective transformation streamlines the production of a wide variety of modifiable and valuable caprolactam building blocks in an operationally attractive way.
Collapse
Affiliation(s)
- Jianing Xie
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007-Tarragona Spain
| | - Xuetong Li
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007-Tarragona Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007-Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
125
|
Heinrich CF, Durand D, Starck J, Michelet V. Ruthenium Metathesis: A Key Step To Access a New Cyclic Tetrasubstituted Olefin Platform. Org Lett 2020; 22:7064-7067. [PMID: 32806204 DOI: 10.1021/acs.orglett.0c01344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An rapid and mild synthetic route for the preparation of cyclic tetrasubstituted platforms via ruthenium-catalyzed ring-closing metathesis (RCM) has been developed. This process tolerates a wide range of functionalities such as nitrogen, oxygen, sulfur, silicon, and carbon tethered groups, as well as very challenging fluorine and boron atoms (36 derivatives, up to 96%). This diversity-oriented method was further demonstrated by the postfunctionalization reactions, such as Pd-couplings, N-substitution, and reductive amination introducing a morpholine moiety.
Collapse
Affiliation(s)
- Clément F Heinrich
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 rue P. et M. Curie, 75005 Paris, France
| | - Didier Durand
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-Seine, France
| | - Jérôme Starck
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-Seine, France
| | - Véronique Michelet
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 rue P. et M. Curie, 75005 Paris, France.,University Côte d'Azur, Institut de Chimie de Nice, Parc Valrose, Faculté des Sciences, 06100 Nice, France
| |
Collapse
|
126
|
Luo N, Zhan Z, Ban Z, Lu G, He J, Hu F, Huang G. Brønsted Acid‐Promoted Diastereoselective [4+1] Cyclization Reaction of Enamides and Sulfoxonium Ylides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Zhenzhen Zhan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Zihui Ban
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Guoqiang Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Jianping He
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Fangpeng Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
127
|
Llobat A, Escorihuela J, Sedgwick DM, Rodenes M, Román R, Soloshonok VA, Han J, Medio‐Simón M, Fustero S. The Ruthenium‐Catalyzed Domino Cross Enyne Metathesis/Ring‐Closing Metathesis in the Synthesis of Enantioenriched Nitrogen‐Containing Heterocycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Llobat
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Daniel M. Sedgwick
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Miriam Rodenes
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Raquel Román
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country 20018 San Sebastian Spain
- Basque Foundation for Science IKERBASQUE 48011 Bilbao Spain
| | - Jianlin Han
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University 210037 Jiangsu People's Republic of China
| | - Mercedes Medio‐Simón
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Santos Fustero
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| |
Collapse
|
128
|
Li Z, Li S, Kan T, Wang X, Xin X, Hou Y, Gong P. Silver(I)‐ and Base‐Mediated formal [4+3] Cycloaddition of
in Situ
generated 1,2‐Diaza‐1,3‐dienes with
C,N
‐Cyclic Azomethine Imines: An Efficient Protocol for the Synthesis of Tetrazepine Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zefei Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Shuaikang Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Tianjiao Kan
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Xinyue Wang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Xin Xin
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yunlei Hou
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Ping Gong
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| |
Collapse
|
129
|
Xu D, Li H, Pan G, Huang P, Oberkofler J, Reich RM, Kühn FE, Guo H. Visible-Light-Induced Dehydrohalogenative Coupling for Intramolecular α-Alkenylation: A Way to Build Seven- and Eight-Membered Rings. Org Lett 2020; 22:4372-4377. [DOI: 10.1021/acs.orglett.0c01391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dawen Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Han Li
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Guangxing Pan
- Academic for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, 200438, P.R. China
| | - Pan Huang
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Jens Oberkofler
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Robert M. Reich
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Fritz E. Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| |
Collapse
|
130
|
Hu YJ, Li LX, Han JC, Min L, Li CC. Recent Advances in the Total Synthesis of Natural Products Containing Eight-Membered Carbocycles (2009-2019). Chem Rev 2020; 120:5910-5953. [PMID: 32343125 DOI: 10.1021/acs.chemrev.0c00045] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural products containing eight-membered carbocycles constitute a class of structurally intriguing and biologically important molecules such as the famous diterpenes taxol and vinigrol. Such natural products are being increasingly investigated because of their fascinating architectural features and potent medicinal properties. However, synthesis of natural products with cyclooctane moieties has proved to be highly challenging. This review highlights the recently completed total syntheses of natural products with eight-membered carbocycles with a focus on strategic considerations. A collection of 27 representative studies from the literature covering the decade from 2009 to 2019 is described in chronological order with relevant studies grouped together, including syntheses of the same natural product by different research groups using different strategies. Finally, a summary and outlook including a discussion of the major features of each strategy used in the syntheses are presented. This review illustrates the diversity and creativity in the elegant synthetic designs of eight-membered carbocycles. We hope this review will provide timely illumination and beneficial guidance for future synthetic efforts for organic chemists who are interested in this area.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Li-Xuan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
131
|
Tippannanavar M, Verma A, Kumar R, Gogoi R, Kundu A, Patanjali N. Preparation of Nanofungicides Based on Imidazole Drugs and Their Antifungal Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4566-4578. [PMID: 32227935 DOI: 10.1021/acs.jafc.9b06387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In spite of modern crop protection measures, the overall crop losses due to pests and pathogens are huge. Rhizoctonia solani, Macrophomina phaseolina, Sclerotium rolfsii, and Fusarium oxysporum are one of the most devastating soil-borne fungi and cause numerous plant diseases. Therefore, the present study aimed to systematically design and develop new nanofungicides based on imidazole drugs, clotrimazole, econazole nitrate, and miconazole nitrate, for effective and efficient management of plant diseases. The assessment of these antifungal medicines for their fungicide likeness using Hao's rule and their enzyme inhibitory potential by molecular docking was helpful in ensuring their utility as antifungal agents in managing phytopathogenic fungi. Nanotechnological strategies were used to develop nanoformulations of test compounds in poly(ethylene glycol) 300 for further augmenting their bioactivity. Transmission electron microscopy studies confirmed the nanosize of the prepared products. Analysis of their in vitro and in vivo antifungal properties revealed their usefulness in controlling the test fungi, R. solani, M. phaseolina, S. rolfsii, and F. oxysporum. Excellent in vitro antifungal activities were displayed by the clotrimazole nanoformulation with a median effective dose (ED50) of 1.18 μg/mL against R. solani, the econazole nitrate nanoformulation with an ED50 of 5.25 μg/mL against S. rolfsii, and the miconazole nitrate nanoformulation with an ED50 of 1.49 and 1.82 μg/mL against M. phaseolina and F. oxysporum. Furthermore, in vivo studies against test fungi demonstrated the antifungal potency of all the nanoformulations with disease incidences ranging from 11.11 to 27.38% in plants treated with nanoformulations of test chemicals as compared to the inoculated control (39.68-72.38%).
Collapse
Affiliation(s)
- Madhu Tippannanavar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Ankita Verma
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Robin Gogoi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| |
Collapse
|
132
|
Wen X, Li X, Luo X, Wang W, Song S, Jiao N. Intramolecular Csp 3-H/C-C bond amination of alkyl azides for the selective synthesis of cyclic imines and tertiary amines. Chem Sci 2020; 11:4482-4487. [PMID: 34122906 PMCID: PMC8159442 DOI: 10.1039/c9sc05522c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intramolecular Csp3–H and/or C–C bond amination is very important in modern organic synthesis due to its efficiency in the construction of diversified N-heterocycles. Herein, we report a novel intramolecular cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines through selective Csp3–H and/or C–C bond cleavage. Two C–N single bonds or a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N double bond are efficiently constructed in these transformations. The carbocation mechanism differs from the reported metal nitrene intermediates and therefore enables metal-free and new transformation. A novel intramolecular cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines has been developed. The aliphatic C–H or C–C bond was selectively cleaved with the efficient formation of two C–N single bonds or a CN double bond.![]()
Collapse
Affiliation(s)
- Xiaojin Wen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Xiao Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
133
|
Sytniczuk A, Milewski M, Kajetanowicz A, Grela K. Preparation of macrocyclic musks via olefin metathesis: comparison with classical syntheses and recent advances. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
134
|
An X, Du J, Jia Z, Zhang Q, Yu K, Zhang Y, Zhao X, Fang R, Fan C. Asymmetric Catalytic [4+5] Annulation of
ortho
‐Quinone Methides with Vinylethylene Carbonates and its Extension to Stereoselective Tandem Rearrangement. Chemistry 2020; 26:3803-3809. [DOI: 10.1002/chem.201904903] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Xian‐Tao An
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Ji‐Yuan Du
- College of Chemistry and Chemical EngineeringLiaocheng University 1 Hunan Road Liaocheng 252059 China
| | - Zhi‐Long Jia
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Qing Zhang
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Ke‐Yin Yu
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Yi‐Zhou Zhang
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Xian‐He Zhao
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Ran Fang
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Chun‐An Fan
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| |
Collapse
|
135
|
Lu J, He X, Cheng X, Zhang A, Xu G, Xuan J. Photoredox Catalyst Free, Visible Light‐Promoted C3−H Acylation of Quinoxalin‐2(1
H
)‐ones in Water. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000116] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Lu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Xiang‐Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Xiao Cheng
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Ai‐Jun Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Guo‐Yong Xu
- Institute of Physical Science and Information TechnologyAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University)Ministry of Education Hefei 230601 People's Republic of China
| |
Collapse
|
136
|
Martin C, Trajkovic M, Fraaije MW. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angew Chem Int Ed Engl 2020; 59:4869-4872. [PMID: 31912947 PMCID: PMC7079103 DOI: 10.1002/anie.201914877] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Indexed: 11/10/2022]
Abstract
Flavoprotein oxidases can catalyze oxidations of alcohols and amines by merely using molecular oxygen as the oxidant, making this class of enzymes appealing for biocatalysis. The FAD-containing (FAD=flavin adenine dinucleotide) alcohol oxidase from P. chrysosporium facilitated double and triple oxidations for a range of aliphatic diols. Interestingly, depending on the diol substrate, these reactions result in formation of either lactones or hydroxy acids. For example, diethylene glycol could be selectively and fully converted into 2-(2-hydroxyethoxy)acetic acid. Such a facile cofactor-independent biocatalytic route towards hydroxy acids opens up new avenues for the preparation of polyester building blocks.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| |
Collapse
|
137
|
Shi Z, Wang L, Yang Z, Jie L, Liu X, Cui X. Tandem Construction of Indole-Fused Phthalazines from (2-Alkynylbenzylidene)hydrazines under Metal-Free Conditions. J Org Chem 2020; 85:3029-3040. [PMID: 32031804 DOI: 10.1021/acs.joc.9b02937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An efficient approach to invent diversely substituted indole-fused phthalazines from in situ formed (2-alkynylbenzylidene)hydrazines under metal-free conditions via selective radical cyclization has been developed. Notably, this 6-exo-dig addition-cyclization tandem procedure proceeds under air atmosphere and shows a broad substrate suitability, as well as avoids harmful byproducts, which complies with the concept of green synthesis.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Lianhui Wang
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Lianghua Jie
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiao Liu
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
138
|
Diastereoselective [3 + 3] cycloaddition reaction of 2-arylideneindan-1,3-diones with β-naphthols: Efficient assemble of immunosuppressive pentacyclic chromanes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
139
|
Gujjarappa R, Vodnala N, Putta V, Ganga Reddy V, Malakar CC. Conversion of alkynes into 1,2-diketones using HFIP as sacrificial hydrogen donor and DMSO as dihydroxylating agent. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
140
|
Quintin F, Pinaud J, Lamaty F, Bantreil X. Mechanosynthesis of Noels-type NHC–Ruthenium Complexes and Applications in Ring-Opening Metathesis Polymerization. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- François Quintin
- IBMM, Université Montpellier, CNRS, ENSCM, Montpellier CEDEX 5 34095, France
| | - Julien Pinaud
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Frédéric Lamaty
- IBMM, Université Montpellier, CNRS, ENSCM, Montpellier CEDEX 5 34095, France
| | - Xavier Bantreil
- IBMM, Université Montpellier, CNRS, ENSCM, Montpellier CEDEX 5 34095, France
| |
Collapse
|
141
|
Martin C, Trajkovic M, Fraaije MW. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| |
Collapse
|
142
|
Yanagi S, Sugai T, Noguchi T, Kawakami M, Sasaki M, Niwa S, Sugimoto A, Fuwa H. Fluorescence-labeled neopeltolide derivatives for subcellular localization imaging. Org Biomol Chem 2020; 17:6771-6776. [PMID: 31259993 DOI: 10.1039/c9ob01276a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Design, synthesis and functional analysis of fluorescent derivatives of neopeltolide, an antiproliferative marine macrolide, are reported herein. Live cell imaging using the fluorescent derivatives showed rapid cellular uptake and localization within the endoplasmic reticulum as well as the mitochondria.
Collapse
Affiliation(s)
- Shota Yanagi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tomoya Sugai
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Takuma Noguchi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masato Kawakami
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Asako Sugimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| |
Collapse
|
143
|
Affiliation(s)
- Jiajin Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Biao Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chenhui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
144
|
Ascorbic Acid as an Efficient Organocatalyst for the Synthesis of 2‐Substituted‐2,3‐dihydroquinazolin‐4(1
H
)‐one and 2‐Substituted Quinazolin‐4(3
H
)‐one in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.201903937] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
145
|
Khan I, Zaib S, Ibrar A. New frontiers in the transition-metal-free synthesis of heterocycles from alkynoates: an overview and current status. Org Chem Front 2020. [DOI: 10.1039/d0qo00698j] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the successful utilization of transition-metal-free approaches for the modular assembly of various heterocycles from alkynoates.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Sumera Zaib
- Department of Biochemistry
- Faculty of Life Sciences
- University of Central Punjab
- Lahore-54590
- Pakistan
| | - Aliya Ibrar
- Department of Chemistry
- Faculty of Natural Sciences
- The University of Haripur
- Haripur, KPK-22620
- Pakistan
| |
Collapse
|
146
|
Nazeri MT, Mohammadian R, Farhid H, Shaabani A, Notash B. An efficient pseudo-seven component reaction for the synthesis of fully-substituted furans containing pseudopeptide based on the union of multicomponent reactions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
147
|
Meng F, Fang Q, Yuan W, Xu N, Cao S, Chun J, Li J, Zhang H, Zhu Y. Access to cyano-substituted pyrazolines through copper-catalyzed cascade cyanation/cyclization of unactivated olefins. Org Chem Front 2020. [DOI: 10.1039/d0qo00282h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A mild copper-catalyzed cascade cyanation/cyclization of hydrazone-tethered unactivated olefins was developed for the efficient and practical synthesis of cyano-containing pyrazolines.
Collapse
Affiliation(s)
- Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Qin Fang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Jianlin Chun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Jie Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|
148
|
Mousavi SH, Mohammadizadeh MR, Arimitsu S, Saberi D, Poorsadeghi S, Genta K. Metal-free syntheses of new azocines viaaddition reactions of enaminones with acenaphthoquinone followed by oxidative cleavages of the corresponding vicinal diols. RSC Adv 2020; 10:20552-20557. [PMID: 35517728 PMCID: PMC9054298 DOI: 10.1039/d0ra02852e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
A one-pot, clean and green procedure is described for the syntheses of new azocine derivatives via addition reactions of enaminones with acenaphthoquinone followed by periodic acid-mediated oxidative cleavages of the corresponding vicinal diols. Various derivatives of azocine were prepared and well characterized. The excellent yields, simple synthesis procedure, lack of a need to carry out any tedious work-up and column chromatography, metal-free catalysis, and mild reaction conditions are important features of this protocol. One-pot metal-free periodic acid-mediated syntheses of azocine rings with high yields under mild reaction conditions via the addition reactions of enaminones and acenaphthoquinone.![]()
Collapse
Affiliation(s)
- S. Hekmat Mousavi
- Department of Chemistry
- Faculty of Sciences
- Persian Gulf University
- Bushehr 75169
- Iran
| | | | - Satoru Arimitsu
- Department of Chemistry, Biology and Marine Science
- Faculty of Science
- University of the Ryukyus
- Nakagami
- Japan
| | - Dariush Saberi
- Marine Chemistry Department
- Faculty of Marine Science and Technology
- Persian Gulf University
- Bushehr 75169
- Iran
| | - Samira Poorsadeghi
- Department of Chemistry, Biology and Marine Science
- Faculty of Science
- University of the Ryukyus
- Nakagami
- Japan
| | - Kojya Genta
- Center for Research Advancement and Collaboration
- University of the Ryukyus
- Okinawa 903-0213
- Japan
| |
Collapse
|
149
|
Zhong C, Yin Q, Zhao Y, Li Q, Hu L. Formal [5+1] annulation reactions of dielectrophilic peroxides: facile access to functionalized dihydropyrans. Chem Commun (Camb) 2020; 56:13189-13192. [DOI: 10.1039/d0cc05565d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peroxides, functioning as unique five-atom bielectrophilic synthons, enable the new [5+1] annulation reactions to access dihydropyrans in high yields.
Collapse
Affiliation(s)
- Chen Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| | - Qi Yin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| | - Yukun Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| | - Qinfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
150
|
Fu W, Wang L, Yang Z, Shen JS, Tang F, Zhang J, Cui X. Facile access to versatile aza-macrolides through iridium-catalysed cascade allyl-amination/macrolactonization. Chem Commun (Camb) 2020; 56:960-963. [DOI: 10.1039/c9cc07372h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Direct access to benzo-fused aza-macrolides was successfully realised via the first iridium-catalysed intermolecular decarboxylative couplings of vinylethylene carbonates with isatoic anhydrides under relatively mild conditions.
Collapse
Affiliation(s)
- Wei Fu
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Lianhui Wang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Jiang-Shan Shen
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Fei Tang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Jiayi Zhang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| |
Collapse
|