101
|
Chen Z, Quek G, Zhu JY, Chan SJW, Cox-Vázquez SJ, Lopez-Garcia F, Bazan GC. A Broad Light-Harvesting Conjugated Oligoelectrolyte Enables Photocatalytic Nitrogen Fixation in a Bacterial Biohybrid. Angew Chem Int Ed Engl 2023; 62:e202307101. [PMID: 37438952 DOI: 10.1002/anie.202307101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC, which endows aerobic N2 -fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC/A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15 N2 atmosphere led to the enrichment of 15 N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2 .
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Glenn Quek
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Ji-Yu Zhu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Sarah J Cox-Vázquez
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Fernando Lopez-Garcia
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
102
|
Hamsa AP, Arulprakasam M, Unni SM. Electrochemical nitrogen fixation on single metal atom catalysts. Chem Commun (Camb) 2023; 59:10689-10710. [PMID: 37584339 DOI: 10.1039/d3cc02229c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The electrochemical reduction of nitrogen (eNRR) offers a promising alternative to the Haber-Bosch (H-B) process for producing ammonia under moderate conditions. However, the inertness of dinitrogen and the competing hydrogen evolution reaction pose significant challenges for eNRR. Thus, developing more efficient electrocatalysts requires a deeper understanding of the underlying mechanistic reactions and electrocatalytic activity. Single atom catalysts, which offer tunable catalytic properties and increased selectivity, have emerged as a promising avenue for eNRR. Carbon and metal-based substrates have proven effective for dispersing highly active single atoms that can enhance eNRR activity. In this review, we explore the use of atomically dispersed single atoms on different substrates for eNRR from both conceptual and experimental perspectives. The review is divided into four sections: the first section describes eNRR mechanistic pathways, the second section focuses on single metal atom catalysts (SMACs) with metal atoms dispersed on carbon substrates for eNRR, the third section covers SMACs with metal atoms dispersed on non-carbon substrates for eNRR, and the final section summarizes the remaining challenges and future scope of eNRR for green ammonia production.
Collapse
Affiliation(s)
- Ashida P Hamsa
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muraliraj Arulprakasam
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
103
|
Mohar JS, Reinholdt A, Keller TM, Carroll PJ, Telser J, Mindiola DJ. A mononuclear, terminal titanium(III) imido. Chem Commun (Camb) 2023; 59:10101-10104. [PMID: 37417771 PMCID: PMC10777895 DOI: 10.1039/d3cc01758c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
We report the first mononuclear TiIII complex possessing a terminal imido ligand. Complex [TptBu,MeTi{NSi(CH3)3}(THF)] (2) (TptBu,Me = hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borate) is prepared by reduction of [TptBu,MeTi{NSi(CH3)3}(Cl)] (1) with KC8 in high yield. The connectivity and metalloradical nature of 2 were confirmed by single crystal X-ray diffraction studies, Q- and X-band EPR, UV-Vis and 1H NMR spectroscopies. The d1 complex [(TptBu,Me)TiCl(OEt2)][B(C6F5)4] (3), was prepared to spectroscopically compare it to 2. Electrochemical studies of 1 and 2 reveal a reversible 1e- process, and chemical oxidants ClCPh3 or 1/2 eq. XeF2 react cleanly with 2 yielding 1 or the fluoride derivative [TptBu,MeTi{NSi(CH3)3}(F)] (4), respectively.
Collapse
Affiliation(s)
- Jacob S Mohar
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania, USA.
| | - Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania, USA.
| | - Taylor M Keller
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania, USA.
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania, USA.
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois, USA.
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
104
|
Kumar Ray A, Paul A. Inept N 2 Activation of Tri-Nuclear Nickel Complex with Labile Sulfur Ligands Facilitates Selective N 2 H 4 Formation in Electrocatalytic Conversion of N 2. Chemistry 2023; 29:e202301435. [PMID: 37267469 DOI: 10.1002/chem.202301435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Conversion of N2 to the energy vector N2 H4 under benign conditions is highly desirable. However, such N2 fixation processes are extremely rare. It has been recently reported that N2 to N2 H4 conversion can be achieved electrochemically by using a trinuclear [Ni3 (S2 C3 H6 )4 ]2- complex (named as [Ni3 S8 ]2- ). There are hardly any precedents of Nitrogen Reduction Reaction (NRR) by molecular catalysts having Ni and the highly unusual selectivity for N2 H4 over NH3 makes this electrochemical reduction unique. A systematic theoretical study employing calibrated Density Functional Theory to unearth the mechanisms of NRR (4e- /4H+ ) and Hydrogen Evolution Reaction (2e- /2H+ ) was conducted for the aforementioned trinuclear Ni complex. Our findings unravel a curious case of ligand lability working in tandem with metal centers in facilitating this unprecedented electrocatalytic activity. Furthermore, it is shown that the poor N-N bond activation property of Ni is responsible for this unusual selectivity. Additionally, the Hydrogen Evolution Reaction (HER) mechanistic pathways have also been delineated in this report. The mechanistic intricacies thus unearthed in this study may assist in developing more efficient electrocatalysts for N2 H4 production through NRR.
Collapse
Affiliation(s)
- Anuj Kumar Ray
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
105
|
Brinck T, Sahoo SK. Anomalous π-backbonding in complexes between B(SiR 3) 3 and N 2: catalytic activation and breaking of scaling relations. Phys Chem Chem Phys 2023; 25:21006-21019. [PMID: 37519222 DOI: 10.1039/d3cp00248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Chemical transformations of molecular nitrogen (N2), including the nitrogen reduction reaction (NRR), are difficult to catalyze because of the weak Lewis basicity of N2. In this study, it is shown that Lewis acids of the types B(SiR3)3 and B(GeR3)3 bind N2 and CO with anomalously short and strong B-N or B-C bonds. B(SiH3)3·N2 has a B-N bond length of 1.48 Å and a complexation enthalpy of -15.9 kcal mol-1 at the M06-2X/jun-cc-pVTZ level. The selective binding enhancement of N2 and CO is due to π-backbonding from Lewis acid to Lewis base, as demonstrated by orbital analysis and density difference plots. The π-backbonding is found to be a consequence of constructive orbital interactions between the diffuse and highly polarizable B-Si and B-Ge bond regions and the π and π* orbitals of N2. This interaction is strengthened by electron donating substituents on Si or Ge. The π-backbonding interaction is predicted to activate N2 for chemical transformation and reduction, as it decreases the electron density and increases the length of the N-N bond. The binding of N2 and CO by the B(SiR3)3 and B(GeR3)3 types of Lewis acids also has a strong σ-bonding contribution. The relatively high σ-bond strength is connected to the highly positive surface electrostatic potential [VS(r)] above the B atom in the tetragonal binding conformation, but the σ-bonding also has a significant coordinate covalent (dative) contribution. Electron withdrawing substituents increase the potential and the σ-bond strength, but favor the binding of regular Lewis acids, such as NH3 and F-, more strongly than binding of N2 and CO. Molecules of the types B(SiR3)3 and B(GeR3)3 are chemically labile and difficult to synthesize. Heterogenous catalysts with the wanted B(Si-)3 or B(Ge-)3 bonding motif may be prepared by boron doping of nanostructured silicon or germanium compounds. B-doped and hydrogenated silicene is found to have promising properties as catalyst for the electrochemical NRR.
Collapse
Affiliation(s)
- Tore Brinck
- Department of Chemistry, CBH, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Suman Kalyan Sahoo
- Department of Chemistry, CBH, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
106
|
Vysotskiy VP, Torbjörnsson M, Jiang H, Larsson ED, Cao L, Ryde U, Zhai H, Lee S, Chan GKL. Assessment of DFT functionals for a minimal nitrogenase [Fe(SH)4H]- model employing state-of-the-art ab initio methods. J Chem Phys 2023; 159:044106. [PMID: 37486046 DOI: 10.1063/5.0152611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
We have designed a [Fe(SH)4H]- model with the fifth proton binding either to Fe or S. We show that the energy difference between these two isomers (∆E) is hard to estimate with quantum-mechanical (QM) methods. For example, different density functional theory (DFT) methods give ∆E estimates that vary by almost 140 kJ/mol, mainly depending on the amount of exact Hartree-Fock included (0%-54%). The model is so small that it can be treated by many high-level QM methods, including coupled-cluster (CC) and multiconfigurational perturbation theory approaches. With extrapolated CC series (up to fully connected coupled-cluster calculations with singles, doubles, and triples) and semistochastic heat-bath configuration interaction methods, we obtain results that seem to be converged to full configuration interaction results within 5 kJ/mol. Our best result for ∆E is 101 kJ/mol. With this reference, we show that M06 and B3LYP-D3 give the best results among 35 DFT methods tested for this system. Brueckner doubles coupled cluster with perturbaitve triples seems to be the most accurate coupled-cluster approach with approximate triples. CCSD(T) with Kohn-Sham orbitals gives results within 4-11 kJ/mol of the extrapolated CC results, depending on the DFT method. Single-reference CC calculations seem to be reasonably accurate (giving an error of ∼5 kJ/mol compared to multireference methods), even if the D1 diagnostic is quite high (0.25) for one of the two isomers.
Collapse
Affiliation(s)
- Victor P Vysotskiy
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Magne Torbjörnsson
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Hao Jiang
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Ernst D Larsson
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Lili Cao
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
107
|
Boyd EA, Peters JC. Highly Selective Fe-Catalyzed Nitrogen Fixation to Hydrazine Enabled by Sm(II) Reagents with Tailored Redox Potential and p Ka. J Am Chem Soc 2023. [PMID: 37376713 DOI: 10.1021/jacs.3c03352] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Controlling product selectivity in multiproton, multielectron reductions of unsaturated small molecules is of fundamental interest in catalysis. For the N2 reduction reaction (N2RR) in particular, parameters that dictate selectivity for either the 6H+/6e- product ammonia (NH3) or the 4H+/4e- product hydrazine (N2H4) are poorly understood. To probe this issue, we have developed conditions to invert the selectivity of a tris(phosphino)borane iron catalyst (Fe), with which NH3 is typically the major product of N2R, to instead favor N2H4 as the sole observed fixed-N product (>99:1). This dramatic shift is achieved by replacing moderate reductants and strong acids with a very strongly reducing but weakly acidic SmII-(2-pyrrolidone) core supported by a hexadentate dianionic macrocyclic ligand (SmII-PH) as the net hydrogen-atom donor. The activity and efficiency of the catalyst with this reagent remain high (up to 69 equiv of N2H4 per Fe and 67% fixed-N yield per H+). However, by generating N2H4 as the kinetic product, the overpotential of this Sm-driven reaction is 700 mV lower than that of the mildest reported set of NH3-selective conditions with Fe. Mechanistic data support assignment of iron hydrazido(2-) species FeNNH2 as selectivity-determining: we infer that protonation of FeNNH2 at Nβ, favored by strong acids, releases NH3, whereas one-electron reduction to FeNNH2-, favored by strong reductants such as SmII-PH, produces N2H4 via reactivity initiated at Nα. Spectroscopic data also implicate a role for SmIII-binding to anionic FeN2- (via an Fe-N2- -SmIII species) with respect to catalytic efficacy.
Collapse
Affiliation(s)
- Emily A Boyd
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
108
|
Liu W, Guo K, Xie Y, Liu S, Chen L, Xu J. High efficiency carbon nanotubes-based single-atom catalysts for nitrogen reduction. Sci Rep 2023; 13:9926. [PMID: 37336942 DOI: 10.1038/s41598-023-36945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Carbon-based single-atom catalysts (SACs) for electrochemical nitrogen reduction reaction (NRR) have received increasing attention due to their sustainable, efficient, and green advantages. However, at present, the research on carbon nanotubes (CNTs)-based NRR catalysts is very limited. In this paper, using FeN3@(n, 0) CNTs (n = 3 ~ 10) as the representative catalysts, we demonstrate that the CNT curvatures will affect the spin polarization of the catalytic active centers, the activation of the adsorbed N2 molecules and the Gibbs free energy barriers for the formation of the critical intermediates in the NRR processes, thus changing the catalytic performance of CNT-based catalysts. Zigzag (8, 0) CNT was taken as the optimal substrate, and twenty transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Tc, Ru, Rh, Pd, W, Re, Ir, and Pt) were embedded into (8, 0) CNT via N3 group to construct the NRR catalysts. Their electrocatalytic performance for NRR were examined using DFT calculations, and TcN3@(8, 0) CNT was screened out as the best candidate with a low onset potential of - 0.53 V via the distal mechanism, which is superior to the molecules- or graphene-support Tc catalysts. Further electronic properties analysis shows that the high NRR performance of TcN3@(8, 0) CNT originates from the strong d-2π* interaction between the N2 molecule and Tc atom. TcN3@(8, 0) CNT also exhibits higher selectivity for NRR than the competing hydrogen evolution reaction (HER) process. The present work not only provides a promising catalyst for NRR, but also open up opportunities for further exploring of low-dimensional carbon-based high efficiency electrochemical NRR catalysts.
Collapse
Affiliation(s)
- Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Kai Guo
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Yunhao Xie
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Sitong Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Liang Chen
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Jing Xu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China.
| |
Collapse
|
109
|
Zheng J, Zhang H, Lv J, Zhang M, Wan J, Gerrits N, Wu A, Lan B, Wang W, Wang S, Tu X, Bogaerts A, Li X. Enhanced NH 3 Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS 2. JACS AU 2023; 3:1328-1336. [PMID: 37234124 PMCID: PMC10207100 DOI: 10.1021/jacsau.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2-NOx-NH3 pathway. To efficiently reduce NO2- to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h-1 cm-2 at -0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3-1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2- to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
Collapse
Affiliation(s)
- Jiageng Zheng
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Hao Zhang
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Jiabao Lv
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Meng Zhang
- College
of Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jieying Wan
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Nick Gerrits
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Angjian Wu
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Bingru Lan
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Weitao Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Shuangyin Wang
- State
Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Xiaodong Li
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
110
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
111
|
Abstract
The Fischer-Tropsch (FT) process converts a mixture of CO and H2 into liquid hydrocarbons as a major component of the gas-to-liquid technology for the production of synthetic fuels. Contrary to the energy-demanding chemical FT process, the enzymatic FT-type reactions catalyzed by nitrogenase enzymes, their metalloclusters, and synthetic mimics utilize H+ and e- as the reducing equivalents to reduce CO, CO2, and CN- into hydrocarbons under ambient conditions. The C1 chemistry exemplified by these FT-type reactions is underscored by the structural and electronic properties of the nitrogenase-associated metallocenters, and recent studies have pointed to the potential relevance of this reactivity to nitrogenase mechanism, prebiotic chemistry, and biotechnological applications. This review will provide an overview of the features of nitrogenase enzymes and associated metalloclusters, followed by a detailed discussion of the activities of various nitrogenase-derived FT systems and plausible mechanisms of the enzymatic FT reactions, highlighting the versatility of this unique reactivity while providing perspectives onto its mechanistic, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Joseph B. Solomon
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| |
Collapse
|
112
|
Sun C, Shao Z, Hu Y, Peng Y, Xie Q. Photoelectrocatalysis Synthesis of Ammonia Based on a Ni-Doped MoS 2/Si Nanowires Photocathode and Porous Water with High N 2 Solubility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23085-23092. [PMID: 37140159 DOI: 10.1021/acsami.3c01304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The synthesis of ammonia through photocatalysis or photoelectrochemistry (PEC) and nitrogen reduction reaction (NRR) has become one of the recent research hotspots in the field, where the catalyzed materials and strategies are critical for the NRR. Herein, a Ni-doped MoS2/Si nanowires (Ni-MoS2/Si NWs) photocathode is prepared, where the Si NWs are formed on the surface of a Si slice by the metal-assisted chemical etching method, and the hydrothermally synthesized Ni-MoS2 nanosheets are then cast-coated on the Si NWs electrode. Porous water with high solubility of N2 is prepared by treating a hydrophobic porous coordination polymer with hydrophilic bovine serum albumin for subsequent aqueous dispersing. The relevant electrodes and materials are characterized by electrochemistry, UV-vis spectrophotometry, scanning electron microscopy/energy dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller method, and zeta potential method. The uses of the Ni-MoS2/Si NWs photocathode and the porous water with high nitrogen solubility for PEC-NRR give a yield of NH3 of 12.0 mmol h-1 m-2 under optimal conditions (e.g., at 0.25 V vs RHE), and the obtained apparent Faradaic efficiency higher than 100% is discussed from the inherent photocurrent-free photocatalysis effect of the photoelectrodes and the suggested classification of three kinds of electrons in PEC, which may have some reference value in understanding and improving other PEC-based processes.
Collapse
Affiliation(s)
- Chenglong Sun
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ziqi Shao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yan Hu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueyi Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
113
|
Yu G, Li X, Duan Q, Fu J, Zhang Y, Wang H, Luan J. Systematic identification of endogenous strong constitutive promoters from the diazotrophic rhizosphere bacterium Pseudomonas stutzeri DSM4166 to improve its nitrogenase activity. Microb Cell Fact 2023; 22:91. [PMID: 37138314 PMCID: PMC10155442 DOI: 10.1186/s12934-023-02085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/09/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Biological nitrogen fixation converting atmospheric dinitrogen to ammonia is an important way to provide nitrogen for plants. Pseudomonas stutzeri DSM4166 is a diazotrophic Gram-negative bacterium isolated from the rhizosphere of cereal Sorghum nutans. Endogenous constitutive promoters are important for engineering of the nitrogen fixation pathway, however, they have not been systematically characterized in DSM4166. RESULTS Twenty-six candidate promoters were identified from DSM4166 by RNA-seq analysis. These 26 promoters were cloned and characterized using the firefly luciferase gene. The strengths of nineteen promoters varied from 100 to 959% of the strength of the gentamicin resistance gene promoter. The strongest P12445 promoter was used to overexpress the biological nitrogen fixation pathway-specific positive regulator gene nifA. The transcription level of nitrogen fixation genes in DSM4166 were significantly increased and the nitrogenase activity was enhanced by 4.1 folds determined by the acetylene reduction method. The nifA overexpressed strain produced 359.1 µM of extracellular ammonium which was 25.6 times higher than that produced by the wild-type strain. CONCLUSIONS The endogenous strong constitutive promoters identified in this study will facilitate development of DSM4166 as a microbial cell factory for nitrogen fixation and production of other useful compounds.
Collapse
Affiliation(s)
- Guangle Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Qiuyue Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, Qingdao, Shandong, 266237, China.
| |
Collapse
|
114
|
Tarasashvili MV, Elbakidze K, Doborjginidze ND, Gharibashvili ND. Carbonate precipitation and nitrogen fixation in AMG (Artificial Martian Ground) by cyanobacteria. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:65-77. [PMID: 37087180 DOI: 10.1016/j.lssr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
This article describes experiments performed to study the survival, growth, specific adaptations and bioremediation potential of certain extreme cyanobacteria strains within a simulation of the atmospheric composition, temperature and pressure expected in a future Martian greenhouse. Initial species have been obtained from Mars-analogue sites in Georgia. The results clearly demonstrate that specific biochemical adaptations allow these autotrophs to metabolize within AMG (Artificial Martian Ground) and accumulate biogenic carbon and nitrogen. These findings may thus contribute to the development of future Martian agriculture, as well as other aspects of the life-support systems at habitable Mars stations. The study shows that carbonate precipitation and nitrogen fixation, performed by cyanobacterial communities thriving within the simulated Martian greenhouse conditions, are cross-linked biological processes. At the same time, the presence of the perchlorates (at low concentrations) in the Martian ground may serve as the initial source of oxygen and, indirectly, hydrogen via photo-Fenton reactions. Various carbonates, ammonium and nitrate salts were obtained as the result of these experiments. These affect the pH, salinity and solubility of the AMG and its components, and so the AMG's scanty biogenic properties improved, which is essential for the sustainable growth of the agricultural crops. Therefore, the use of microorganisms for the biological remediation and continuous in situ fertilization of Artificial Martian Ground is possible.
Collapse
Affiliation(s)
- M V Tarasashvili
- BTU - Business and Technology University, 82 Ilia Chavchavadze Avenue, 0179, Tbilisi, Georgia.
| | - Kh Elbakidze
- BTU - Business and Technology University, 82 Ilia Chavchavadze Avenue, 0179, Tbilisi, Georgia
| | - N D Doborjginidze
- GSRA - Georgian Space Research Agency, 4 Vasil Petriashvili Street, 0179, Tbilisi, Georgia
| | - N D Gharibashvili
- GSRA - Georgian Space Research Agency, 4 Vasil Petriashvili Street, 0179, Tbilisi, Georgia; SpaceFarms Ltd, 14 Kostava Street, 0108, Tbilisi, Georgia
| |
Collapse
|
115
|
Badding ED, Srisantitham S, Lukoyanov DA, Hoffman BM, Suess DLM. Connecting the geometric and electronic structures of the nitrogenase iron-molybdenum cofactor through site-selective 57Fe labelling. Nat Chem 2023; 15:658-665. [PMID: 36914792 PMCID: PMC10710871 DOI: 10.1038/s41557-023-01154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023]
Abstract
Understanding the chemical bonding in the catalytic cofactor of the Mo nitrogenase (FeMo-co) is foundational for building a mechanistic picture of biological nitrogen fixation. A persistent obstacle towards this goal has been that the 57Fe-based spectroscopic data-although rich with information-combines responses from all seven Fe sites, and it has therefore not been possible to map individual spectroscopic responses to specific sites in the three-dimensional structure. Here we have addressed this challenge by incorporating 57Fe into a single site of FeMo-co. Spectroscopic analysis of the resting state informed on the local electronic structure of the terminal Fe1 site, including its oxidation state and spin orientation, and, in turn, on the spin-coupling scheme for the entire cluster. The oxidized resting state and the first intermediate in nitrogen fixation were also characterized, and comparisons with the resting state provided molecular-level insights into the redox chemistry of FeMo-co.
Collapse
Affiliation(s)
- Edward D Badding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
116
|
Lai TY, Chen C, Chu K, Chien S, Ong T, Chiang M. Biologically inspired
3Fe4S
cluster as structural mimics of
FeMoco
M‐cluster. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Ting Yi Lai
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Chang‐Ting Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Kai‐Ti Chu
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Su‐Ying Chien
- Instrumentation Center National Taiwan University Taipei Taiwan
| | - Tiow‐Gan Ong
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Ming‐Hsi Chiang
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
117
|
Gärtner A, Karaca US, Rang M, Heinz M, Engel PD, Krummenacher I, Arrowsmith M, Hermann A, Matler A, Rempel A, Witte R, Braunschweig H, Holthausen MC, Légaré MA. Achieving Control over the Reduction/Coupling Dichotomy of N 2 by Boron Metallomimetics. J Am Chem Soc 2023; 145:8231-8241. [PMID: 36977310 DOI: 10.1021/jacs.3c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We report a detailed computational and experimental study of the fixation and reductive coupling of dinitrogen with low-valent boron compounds. Consistent with our mechanistic findings, the selectivity toward nitrogen fixation or coupling can be controlled through either steric bulk or the reaction conditions, allowing for the on-demand synthesis of nitrogen chains. The electronic structure and intriguing magnetic properties of intermediates and products of the reaction of dinitrogen with borylenes are also elucidated using high-level computational approaches.
Collapse
Affiliation(s)
- Annalena Gärtner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Uhut S Karaca
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Maximilian Rang
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Myron Heinz
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Philipp D Engel
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Hermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Matler
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anna Rempel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Witte
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Max C Holthausen
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Marc-André Légaré
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal H3A 0B8, Québec, Canada
| |
Collapse
|
118
|
Kokubo Y, Tsuzuki K, Sugiura H, Yomura S, Wasada-Tsutsui Y, Ozawa T, Yanagisawa S, Kubo M, Takeyama T, Yamaguchi T, Shimazaki Y, Kugimiya S, Masuda H, Kajita Y. Syntheses, Characterizations, Crystal Structures, and Protonation Reactions of Dinitrogen Chromium Complexes Supported with Triamidoamine Ligands. Inorg Chem 2023; 62:5320-5333. [PMID: 36972224 DOI: 10.1021/acs.inorgchem.2c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A novel dinitrogen-dichromium complex, [{Cr(LBn)}2(μ-N2)] (1), has been prepared from reaction of CrCl3 with a lithiated triamidoamine ligand (Li3LBn) under dinitrogen. The X-ray crystal structure analysis of 1 revealed that it is composed of two independent dimeric Cr complexes bridged by N2 in the unit cell. The bridged N-N bond lengths (1.188(4) and 1.185(7) Å) were longer than the free dinitrogen molecule. The elongations of N-N bonds in 1 were also supported by the fact that the ν(N-N) stretching vibration at 1772 cm-1 observed in toluene is smaller than the free N2. Complex 1 was identified to be a 5-coordinated high spin Cr(IV) complex by Cr K-edge XANES measurement. The 1H NMR spectrum and temperature dependent magnetic susceptibility of 1 indicated that complex 1 is in the S = 1 ground state, in which two Cr(IV) ions and unpaired electron spins of the bridging N22- ligand are strongly antiferromagnetically coupled. Reaction of complex 1 with 2.3 equiv of Na or K gave chromium complexes with N2 between the Cr ion and the respective alkali metal ion, [{CrNa(LBn)(N2)(Et2O)}2] (2) and [{CrK(LBn)(N2)}4(Et2O)2] (3), respectively. Furthermore, the complexes 2 and 3 reacted with 15-crown-5 and 18-crown-6 to form the respective crown-ether adducts, [CrNa(LBn)(N2)(15-crown-5)] (4) and [CrK(LBn)(N2)(18-crown-6)] (5). The XANES measurements of complexes 2, 3, 4, and 5 revealed that they are high spin Cr(IV) complexes like complex 1. All complexes reacted with a reducing agent and a proton source to form NH3 and/or N2H4. The yields of these products in the presence of K+ were higher than those in the presence of Na+. The electronic structures and binding properties of 1, 2, 3, 4, and 5 were evaluated and discussed based on their DFT calculations.
Collapse
|
119
|
Liu J, Shoshani MM, Sum K, Johnson SA. Breaking bonds and breaking rules: inert-bond activation by [( iPr 3P)Ni] 5H 4 and catalytic stereospecific norbornene dimerization. Chem Commun (Camb) 2023; 59:3542-3545. [PMID: 36689211 DOI: 10.1039/d2cc06681e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The facile carbon atom abstraction reaction by [(iPr3P)Ni]5H6 (1) with various terminal alkenes to give [(iPr3P)Ni]5H4(μ5-C) (2) occurs via a common highly reactive intermediate [(iPr3P)Ni]5H4 (3), which was isolated by the reaction of 1 with norbornene. Temperature dependent 1H and 31P{1H} NMR chemical shifts of 3 are consistent with a thermally populated triplet excited state only 2 kcal mol-1 higher energy than the diamagnetic ground state. Complex 3 catalyzes the dimerization of norbornene to stereoselectively provide exclusively (Z) anti-(bis-2,2'-norbornylidene).
Collapse
Affiliation(s)
- Junyang Liu
- Department of Chemistry and Biochemistry, University of Windsor, Sunset Avenue 401, Windsor, ON, N9B 3P4, Canada.
| | - Manar M Shoshani
- Department of Chemistry and Biochemistry, University of Windsor, Sunset Avenue 401, Windsor, ON, N9B 3P4, Canada.
| | - Kethya Sum
- Department of Chemistry and Biochemistry, University of Windsor, Sunset Avenue 401, Windsor, ON, N9B 3P4, Canada.
| | - Samuel A Johnson
- Department of Chemistry and Biochemistry, University of Windsor, Sunset Avenue 401, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
120
|
Abstract
When moving protons in enzymes, water molecules are often used as intermediates. The water molecules used are not necessarily seen in the crystal structures if they move around at high rates. In a different situation, for metal containing cofactors in enzymes, it is sometimes necessary to move protons on the cofactor from the position they enter the cofactor to another position where the energy is lower. That is, for example, the situation in nitrogenase. In recent studies on that enzyme, prohibitively high barriers were sometimes found for transferring protons, and that was used as a strong argument against mechanisms where a sulfide is lost in the mechanism. A high barrier could be due to nonoptimal distances and angles at the transition state. In the present study, possibilities are investigated to use water molecules to reduce these barriers. The study is very general and could have been done for many other enzymes. The effect of water was found to be very large in the case of nitrogenase with a lowering of one barrier from 15.6 kcal/mol down to essentially zero. It is concluded that the effect of water molecules must be taken into account for meaningful results.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
121
|
Yang ZY, Badalyan A, Hoffman BM, Dean DR, Seefeldt LC. The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event. J Am Chem Soc 2023; 145:5637-5644. [PMID: 36857604 DOI: 10.1021/jacs.2c09576] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A central feature of the current understanding of dinitrogen (N2) reduction by the enzyme nitrogenase is the proposed coupling of the hydrolysis of two ATP, forming two ADP and two Pi, to the transfer of one electron from the Fe protein component to the MoFe protein component, where substrates are reduced. A redox-active [4Fe-4S] cluster associated with the Fe protein is the agent of electron delivery, and it is well known to have a capacity to cycle between a one-electron-reduced [4Fe-4S]1+ state and an oxidized [4Fe-4S]2+ state. Recently, however, it has been shown that certain reducing agents can be used to further reduce the Fe protein [4Fe-4S] cluster to a super-reduced, all-ferrous [4Fe-4S]0 state that can be either diamagnetic (S = 0) or paramagnetic (S = 4). It has been proposed that the super-reduced state might fundamentally alter the existing model for nitrogenase energy utilization by the transfer of two electrons per Fe protein cycle linked to hydrolysis of only two ATP molecules. Here, we measure the number of ATP consumed for each electron transfer under steady-state catalysis while the Fe protein cluster is in the [4Fe-4S]1+ state and when it is in the [4Fe-4S]0 state. Both oxidation states of the Fe protein are found to operate by hydrolyzing two ATP for each single-electron transfer event. Thus, regardless of its initial redox state, the Fe protein transfers only one electron at a time to the MoFe protein in a process that requires the hydrolysis of two ATP.
Collapse
Affiliation(s)
- Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Artavazd Badalyan
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Brian M Hoffman
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
122
|
Mebs S. In Silico Partial N 2 to NH 3 Conversion with a Light Atom Molecule. Chemphyschem 2023; 24:e202200621. [PMID: 36416275 DOI: 10.1002/cphc.202200621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
N2 can be stepwise converted in silico into one molecule NH3 and a secondary amide with a bond activator molecule consisting only of light main group elements. The proposed N2 -activating pincer-related compound carries a silyl ion (Si(+) ) center as well as three Lewis acidic (-BF2 ) and three Lewis basic (-PMe2 ) sites, providing an efficient binding pocket for gaseous N2 within the framework of intramolecular frustrated Lewis pairs (FLP). In addition, it exhibits supportive secondary P-B and F⋅⋅⋅B contacts, which stabilize the structure. In the PSi(+) -N-N-BP environment the N≡N triple bond is extended from 1.09 Å to remarkable 1.43 Å, resembling a N-N single bond. The strongly activated N-N-fragment is prone to subsequent hydride addition and protonation steps, resulting in the energy efficient transfer of two hydrogen equivalents. The next hydride added causes the release of one molecule NH3 , but leaves the ligand system as poisoned R3 Si(+) -NH2 -PMe2 or R3 Si(+) -NH3 dead-end states behind. The study indicates that approximately tetrahedral constrained SiBP2 -pockets are capable to activate N2 , whereas the acid-rich SiB3 - and SiB2 P-pocktes, as well as the base-rich SiP3 -pockets fail, hinting towards the high relevance of the acid-base proportion and relative orientation. The electronic structure of the N2 -activated state is compared to the corresponding state of a recently published peri-substituted bond activator molecule featuring a PSi(+) -N-N-Si(+) P site (S. Mebs, J. Beckmann, Physical Chemistry Chemical Physics 2022, 24, 20953-20967).
Collapse
Affiliation(s)
- Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
123
|
Zhang Y, Pan X, Xu M, Xiong C, Hong D, Fang H, Cui P. Dinitrogen Complexes of Cobalt(-I) Supported by Rare-Earth Metal-Based Metalloligands. Inorg Chem 2023; 62:3836-3846. [PMID: 36800534 DOI: 10.1021/acs.inorgchem.2c04099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Sequential reactions of heptadentate phosphinoamine LH3 with rare-earth metal tris-alkyl precursor (Me3SiCH2)3Ln(THF)2 (Ln = Sc, Lu, Yb, Y, Gd) and a low-valent cobalt complex (Ph3P)3CoI afforded rare-earth metal-supported cobalt iodide complexes. Reduction of these iodide complexes under N2 allowed the isolation of the first series of dinitrogen complexes of Co(-I) featuring dative Co(-I) → Ln (Ln = Sc, Lu, Yb, Y, Gd) bonding interactions. These compounds were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The correlation of N-N vibrational frequencies with the pKa of [Ln(H2O)6]3+ showed that strongest activation of N2 was achieved with the least Lewis acidic Gd(III) ion. Interestingly, these Ln-Co-N2 complexes catalyzed silylation of N2 in the presence of KC8 and Me3SiCl with turnover numbers (TONs) up to 16, where the lutetium-supported Co(-I) complex showed the highest activity within the series. The role of the Lewis acidic Ln(III) was crucial to achieve catalytic turnovers and tunable reactivity toward N2 functionalization.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Min Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Chunyan Xiong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
124
|
Junge J, Engesser TA, Tuczek F. N 2 Reduction versus H 2 Evolution in a Molybdenum- or Tungsten-Based Small-Molecule Model System of Nitrogenase. Chemistry 2023; 29:e202202629. [PMID: 36458957 DOI: 10.1002/chem.202202629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Molybdenum dinitrogen complexes have played a major role as catalytic model systems of nitrogenase. In comparison, analogous tungsten complexes have in most cases found to be catalytically inactive. Herein, a tungsten complex was shown to be supported by a pentadentate tetrapodal (pentaPod) phosphine ligand, under conditions of N2 fixation, primarily catalyzes the hydrogen evolution reaction (HER), in contrast to its Mo analogue, which catalytically mediates the nitrogen-reduction reaction (N2 RR). DFT calculations were employed to evaluate possible mechanisms and identify the most likely pathways of N2 RR and HER activities exhibited by Mo- and W-pentaPod complexes. Two mechanisms for N2 RR by PCET are considered, starting from neutral (M(0) cycle) and cationic (M(I) cycle) dinitrogen complexes (M=Mo, W). The latter was found to be energetically more favorable. For HER three scenarios are treated; that is, through bimolecular reactions of early M-Nx Hy intermediates, pure hydride intermediates or mixed M(H)(Nx Hy ) species.
Collapse
Affiliation(s)
- Jannik Junge
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| | - Tobias A Engesser
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| |
Collapse
|
125
|
McWilliams SF, Mercado BQ, MacLeod KC, Fataftah MS, Tarrago M, Wang X, Bill E, Ye S, Holland PL. Dynamic effects on ligand field from rapid hydride motion in an iron(ii) dimer with an S = 3 ground state. Chem Sci 2023; 14:2303-2312. [PMID: 36873832 PMCID: PMC9977447 DOI: 10.1039/d2sc06412j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Hydride complexes are important in catalysis and in iron-sulfur enzymes like nitrogenase, but the impact of hydride mobility on local iron spin states has been underexplored. We describe studies of a dimeric diiron(ii) hydride complex using X-ray and neutron crystallography, Mössbauer spectroscopy, magnetism, DFT, and ab initio calculations, which give insight into the dynamics and the electronic structure brought about by the hydrides. The two iron sites in the dimer have differing square-planar (intermediate-spin) and tetrahedral (high-spin) iron geometries, which are distinguished only by the hydride positions. These are strongly coupled to give an S total = 3 ground state with substantial magnetic anisotropy, and the merits of both localized and delocalized spin models are discussed. The dynamic nature of the sites is dependent on crystal packing, as shown by changes during a phase transformation that occurs near 160 K. The change in dynamics of the hydride motion leads to insight into its influence on the electronic structure. The accumulated data indicate that the two sites can trade geometries by rotating the hydrides, at a rate that is rapid above the phase transition temperature but slow below it. This small movement of the hydrides causes large changes in the ligand field because they are strong-field ligands. This suggests that hydrides could be useful in catalysis not only due to their reactivity, but also due to their ability to rapidly modulate the local electronic structure and spin states at metal sites.
Collapse
Affiliation(s)
| | | | - K Cory MacLeod
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Majed S Fataftah
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Maxime Tarrago
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Xiaoping Wang
- Neutron Sciences Directorate, Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Shengfa Ye
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | | |
Collapse
|
126
|
Taut J, Chambron J, Kersting B. Fifty Years of Inorganic Biomimetic Chemistry: From the Complexation of Single Metal Cations to Polynuclear Metal Complexes by Multidentate Thiolate Ligands. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Josef Taut
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
- Institut de Chimie de Strasbourg UMR 7177 CNRS-Université de Strasbourg 1, rue Blaise Pascal 67008 Strasbourg France
| | - Jean‐Claude Chambron
- Institut de Chimie de Strasbourg UMR 7177 CNRS-Université de Strasbourg 1, rue Blaise Pascal 67008 Strasbourg France
| | - Berthold Kersting
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
127
|
Wang Z, Liu J, Zhao H, Xu W, Liu J, Liu Z, Lai J, Wang L. Free radicals promote electrocatalytic nitrogen oxidation. Chem Sci 2023; 14:1878-1884. [PMID: 36819849 PMCID: PMC9930917 DOI: 10.1039/d2sc06599a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
In this work, we introduce hydroxyl radicals into the electrocatalytic nitrogen oxidation reaction (NOR) for the first time. Cobalt tetroxide (Co3O4) acts not only as an electrocatalyst, but also as a nanozyme (in combination with hydrogen peroxide producing ˙OH), and can be used as a high-efficiency nitrogen oxidation reaction (NOR) electrocatalyst for environmental nitrate synthesis. Co3O4 + ˙OH shows an excellent nitrogen oxidation reaction (NOR) performance among Co3O4 catalysts in 0.1 M Na2SO4 solution. At an applied potential of 1.7 V vs. RHE, the HNO3 yield of Co3O4 + ˙OH reaches 89.35 μg h-1 mgcat -1, which is up to 7 times higher than that of Co3O4 (12.8 μg h-1 mgcat -1) and the corresponding FE is 20.4%. The TOF of Co3O4 + ˙OH at 1.7 V vs. RHE reaches 0.58 h-1, which is higher than that of Co3O4 (0.083 h-1), demonstrating that free radicals greatly enhance the intrinsic activity. Density functional theory (DFT) demonstrates that ˙OH not only can drive nitrogen adsorption, but also can decrease the energy barrier (rate-determining step) of N2 to N2OH*, thus producing great NOR activity.
Collapse
Affiliation(s)
- Zuochao Wang
- State Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Jiao Liu
- State Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Huan Zhao
- State Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Wenxia Xu
- State Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Jiaxin Liu
- State Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Ziyi Liu
- State Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Jianping Lai
- State Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Lei Wang
- State Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
128
|
Yogendra S, Wilson DWN, Hahn AW, Weyhermüller T, Van Stappen C, Holland P, DeBeer S. Sulfur-Ligated [2Fe-2C] Clusters as Synthetic Model Systems for Nitrogenase. Inorg Chem 2023; 62:2663-2671. [PMID: 36715662 PMCID: PMC9930126 DOI: 10.1021/acs.inorgchem.2c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/31/2023]
Abstract
Metal clusters featuring carbon and sulfur donors have coordination environments comparable to the active site of nitrogenase enzymes. Here, we report a series of di-iron clusters supported by the dianionic yldiide ligands, in which the Fe sites are bridged by two μ2-C atoms and four pendant S donors.The [L2Fe2] (L = {[Ph2P(S)]2C}2-) cluster is isolable in two oxidation levels, all-ferrous Fe2II and mixed-valence FeIIFeIII. The mixed-valence cluster displays two peaks in the Mössbauer spectra, indicating slow electron transfer between the two sites. The addition of the Lewis base 4-dimethylaminopyridine to the Fe2II cluster results in coordination with only one of the two Fe sites, even in the presence of an excess base. Conversely, the cluster reacts with 8 equiv of isocyanide tBuNC to give a monometallic complex featuring a new C-C bond between the ligand backbone and the isocyanide. The electronic structure descriptions of these complexes are further supported by X-ray absorption and resonant X-ray emission spectroscopies.
Collapse
Affiliation(s)
- Sivathmeehan Yogendra
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Daniel W. N. Wilson
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Anselm W. Hahn
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Patrick Holland
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
129
|
Biełło KA, Lucena C, López-Tenllado FJ, Hidalgo-Carrillo J, Rodríguez-Caballero G, Cabello P, Sáez LP, Luque-Almagro V, Roldán MD, Moreno-Vivián C, Olaya-Abril A. Holistic view of biological nitrogen fixation and phosphorus mobilization in Azotobacter chroococcum NCIMB 8003. Front Microbiol 2023; 14:1129721. [PMID: 36846808 PMCID: PMC9945222 DOI: 10.3389/fmicb.2023.1129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Nitrogen (N) and phosphorus (P) deficiencies are two of the most agronomic problems that cause significant decrease in crop yield and quality. N and P chemical fertilizers are widely used in current agriculture, causing environmental problems and increasing production costs. Therefore, the development of alternative strategies to reduce the use of chemical fertilizers while maintaining N and P inputs are being investigated. Although dinitrogen is an abundant gas in the atmosphere, it requires biological nitrogen fixation (BNF) to be transformed into ammonium, a nitrogen source assimilable by living organisms. This process is bioenergetically expensive and, therefore, highly regulated. Factors like availability of other essential elements, as phosphorus, strongly influence BNF. However, the molecular mechanisms of these interactions are unclear. In this work, a physiological characterization of BNF and phosphorus mobilization (PM) from an insoluble form (Ca3(PO4)2) in Azotobacter chroococcum NCIMB 8003 was carried out. These processes were analyzed by quantitative proteomics in order to detect their molecular requirements and interactions. BNF led to a metabolic change beyond the proteins strictly necessary to carry out the process, including the metabolism related to other elements, like phosphorus. Also, changes in cell mobility, heme group synthesis and oxidative stress responses were observed. This study also revealed two phosphatases that seem to have the main role in PM, an exopolyphosphatase and a non-specific alkaline phosphatase PhoX. When both BNF and PM processes take place simultaneously, the synthesis of nitrogenous bases and L-methionine were also affected. Thus, although the interdependence is still unknown, possible biotechnological applications of these processes should take into account the indicated factors.
Collapse
Affiliation(s)
- Karolina A. Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. López-Tenllado
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Jesús Hidalgo-Carrillo
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain,*Correspondence: Alfonso Olaya-Abril,
| |
Collapse
|
130
|
Wang X, Wu Z, Xiang H, He Y, Zhu S, Zhang Z, Li X, Wang J. Whole genome analysis of Enterobacter cloacae Rs-2 and screening of genes related to plant-growth promotion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21548-21564. [PMID: 36272007 DOI: 10.1007/s11356-022-23564-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The genus Enterobacter is widely recognized for its biotechnology potential in improving soil environment and crop growth promotion. To further explore these biotechnological potentials, we sequenced and analyzed the whole genome of Enterobacter cloacae Rs-2. The analysis showed that the total length of the Rs-2 genome was 6,965,070,514 bp, and GC content was 55.80%; the annotation results of GO and COG databases showed that the genome contains a variety of growth-promoting genes, such as iscU, glnA, glnB (nitrogen fixation); iucABCD (siderophore synthesis) and fepA, fcuA, fhuA, and pfeA, etc. (siderophore transport); ipdC (secreted IAA) and gcd, pqqBCDEF (dissolved phosphorus), etc. No pathogenic factors such as virulence genes were found. The application of Rs-2 as a soil inoculant in pot experiments showed great potential for growth promotion. This study proved the plant growth-promoting ability of Rs-2 at the molecular level through genetic screening and analysis, which provided guidance for the further improvement of the strain and laid a foundation for its application in agricultural production.
Collapse
Affiliation(s)
- Xiaobo Wang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Zhansheng Wu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| | - Huichun Xiang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Yanhui He
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Shuangxi Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Ziyan Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xueping Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Jianwen Wang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| |
Collapse
|
131
|
Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat Rev Chem 2023; 7:184-201. [PMID: 37117902 DOI: 10.1038/s41570-023-00462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2022] [Indexed: 02/04/2023]
Abstract
The Mo/Fe nitrogenase enzyme is unique in its ability to efficiently reduce dinitrogen to ammonia at atmospheric pressures and room temperature. Should an artificial electrolytic device achieve the same feat, it would revolutionize fertilizer production and even provide an energy-dense, truly carbon-free fuel. This Review provides a coherent comparison of recent progress made in dinitrogen fixation on solid electrodes, homogeneous catalysts and nitrogenases. Specific emphasis is placed on systems for which there is unequivocal evidence that dinitrogen reduction has taken place. By establishing the cross-cutting themes and synergies between these systems, we identify viable avenues for future research.
Collapse
|
132
|
Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nat Chem 2023; 15:286-293. [PMID: 36522581 DOI: 10.1038/s41557-022-01088-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/14/2022] [Indexed: 12/23/2022]
Abstract
The design of highly electron-active and stable heterogeneous catalysts for the ambient nitrogen reduction reaction is challenging due to the inertness of the N2 molecule. Here, we report the synthesis of a zinc-based coordination polymer that features bridging dinitrogen anionic ligands, {[Zn(L)(N2)0.5(TCNQ-TCNQ)0.5]·(TCNQ)0.5}n (L is tetra(isoquinolin-6-yl)tetrathiafulvalene and TCNQ is tetracyanoquinodimethane), and show that it is an efficient photocatalyst for nitrogen fixation under an ambient atmosphere. It exhibits an ammonia conversion rate of 140 μmol g-1 h-1 and functions well also with unpurified air as the feeding gas. Experimental and theoretical studies show that the active [Zn2+-(N≡N)--Zn2+] sites can promote the formation of NH3 and the detachment of the NH3 formed creates unsaturated [Zn2+···Zn+] intermediates, which in turn can be refilled by external N2 sequestration and fast intermolecular electron migration. The [Zn2+···Zn+] intermediates stabilized by the sandwiched cage-like donor-acceptor-donor framework can sustain continuous catalytic cycles. This work presents an example of a molecular active site embedded within a coordination polymer for nitrogen fixation under mild conditions.
Collapse
|
133
|
Siegbahn PEM. Can the E 1 state in nitrogenase tell if there is an activation process prior to catalysis? Phys Chem Chem Phys 2023; 25:3702-3706. [PMID: 36655689 DOI: 10.1039/d2cp05642a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Model calculations have been performed for the singly reduced ground state of Mo-nitrogenase, usually termed E1. Contradictory conclusions have been reached in two recent experimental studies. In a study based on EPR, it was concluded that there is a bridging hydride in E1, while in an X-ray study it was concluded that there is no hydride in E1. Therefore, the EPR study implies that there is an oxidation of the cofactor going from E0 to E1, the X-ray study implies a reduction. DFT methods have here been used, which have previously been benchmarked on a set of redox enzymes that led to the conclusion that the accuracy is about 3 kcal mol-1 in all cases, even for redox transitions. The methodology should therefore be adequate for resolving the question of the hydride presence in E1. As a comparison, calculations are performed on both Mo- and V-nitrogenase with the same conclusion. The conclusion from the calculations has far reaching consequences for the mechanism of nitrogenase.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
134
|
Xin X, Douair I, Zhao Y, Wang S, Maron L, Zhu C. Dinitrogen cleavage and hydrogenation to ammonia with a uranium complex. Natl Sci Rev 2023; 10:nwac144. [PMID: 36950222 PMCID: PMC10026940 DOI: 10.1093/nsr/nwac144] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
The Haber-Bosch process produces ammonia (NH3) from dinitrogen (N2) and dihydrogen (H2), but requires high temperature and pressure. Before iron-based catalysts were exploited in the current industrial Haber-Bosch process, uranium-based materials served as effective catalysts for production of NH3 from N2. Although some molecular uranium complexes are known to be capable of combining with N2, further hydrogenation with H2 forming NH3 has not been reported to date. Here, we describe the first example of N2 cleavage and hydrogenation with H2 to NH3 with a molecular uranium complex. The N2 cleavage product contains three uranium centers that are bridged by three imido μ 2-NH ligands and one nitrido μ 3-N ligand. Labeling experiments with 15N demonstrate that the nitrido ligand in the product originates from N2. Reaction of the N2-cleaved complex with H2 or H+ forms NH3 under mild conditions. A synthetic cycle has been established by the reaction of the N2-cleaved complex with trimethylsilyl chloride. The isolation of this trinuclear imido-nitrido product implies that a multi-metallic uranium assembly plays an important role in the activation of N2.
Collapse
Affiliation(s)
- Xiaoqing Xin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Iskander Douair
- LPCNO, CNRS and INSA, Université Paul Sabatier, Toulouse 31077, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | |
Collapse
|
135
|
Tsounis C, Kumar PV, Masood H, Kulkarni RP, Gautam GS, Müller CR, Amal R, Kuznetsov DA. Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability. Angew Chem Int Ed Engl 2023; 62:e202210828. [PMID: 36278885 PMCID: PMC10099934 DOI: 10.1002/anie.202210828] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/05/2022]
Abstract
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.
Collapse
Affiliation(s)
- Constantine Tsounis
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia.,Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Hassan Masood
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Rutvij Pankaj Kulkarni
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
136
|
Huang W, Peng LY, Zhang J, Liu C, Song G, Su JH, Fang WH, Cui G, Hu S. Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]═NNH 2 Intermediate. J Am Chem Soc 2023; 145:811-821. [PMID: 36596224 DOI: 10.1021/jacs.2c08000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The catalytic transformation of N2 to NH3 by transition metal complexes is of great interest and importance but has remained a challenge to date. Despite the essential role of vanadium in biological N2 fixation, well-defined vanadium complexes that can catalyze the conversion of N2 to NH3 are scarce. In particular, a V(NxHy) intermediate derived from proton/electron transfer reactions of coordinated N2 remains unknown. Here, we report a dinitrogen-bridged divanadium complex bearing POCOP (2,6-(tBu2PO)2-C6H3) pincer and aryloxy ligands, which can serve as a catalyst for the reduction of N2 to NH3 and N2H4. Low-temperature protonation and reduction of the dinitrogen complex afforded the first structurally characterized neutral metal hydrazido(2-) species ([V]═NNH2), which mediated 15N2 conversion to 15NH3, indicating that it is a plausible intermediate of the catalysis. DFT calculations showed that the vanadium hydrazido complex [V]═NNH2 possessed a N-H bond dissociation free energy (BDFEN-H) of as high as 59.1 kcal/mol. The protonation of a vanadium amide complex ([V]-NH2) with [Ph2NH2][OTf] resulted in the release of NH3 and the formation of a vanadium triflate complex, which upon reduction under N2 afforded the vanadium dinitrogen complex. These transformations model the final steps of a vanadium-catalyzed N2 reduction cycle. Both experimental and theoretical studies suggest that the catalytic reaction may proceed via a distal pathway to liberate NH3. These findings provide unprecedented insights into the mechanism of N2 reduction related to FeV nitrogenase.
Collapse
Affiliation(s)
- Wenshuang Huang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiayu Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chenrui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Shaowei Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
137
|
Lin RY, Deng L, An DL, Zhou ZH. Binuclear, tetranuclear and hexadecanuclear thio-oxomolybdenum(V/IV) glycolates with selective adsorptions of gases. Dalton Trans 2023; 52:562-571. [PMID: 36416137 DOI: 10.1039/d2dt03324k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
By adjusting the pH values of the solutions, binuclear, tetranuclear and hexadecanuclear glycolato thio- and oxomolybdenum(V/IV) complexes [MoV2O2(μ2-O)(μ2-S)(Hglyc)2(Hpz)2]·H2O (1, H2glyc = glycolic acid, Hpz = pyrazole), (Hdpa)[MoV2O2(μ2-S)2(Hglyc)(glyc)(H2O)] (2, dpa = 2,2'-dipyridylamine), (Hdpa)4[MoV4O4(μ3-O)2(μ2-S)2(glyc)2(S2O3)2] (3) and Na2[MoIV4MoV12O12(μ2-O)6(μ2-OH)2(μ3-O)12(glyc)4(Hpz)4(pz)8]·28H2O (4) have been obtained successfully. Here the glycolates existed in varying aggregates with different degrees of protonation and deprotonation in 1-4. The stable formations of 1 and 2 are attributed to strong hydrogen bonds formed between the molecules. In particular, the asymmetric unit in 2 is a tetramer linked by hydrogen bonding [2.574(9) Å] between α-hydroxy and α-alkoxy groups for further construction of unsaturated penta-coordination environments. Moreover, deprotonated glycolates act as bridging ligands to form tetra- and hexadecanuclear compounds 3 and 4, respectively. The smallest unit in 4 exhibits mixed valences of 4+ and 5+ simultaneously, where its gas adsorption experiments manifest that 4 is obviously beneficial for O2 and CO2 compared with no adsorption of N2, CH4 and H2 at different pressures.
Collapse
Affiliation(s)
- Rong-Yan Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Lan Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dong-Li An
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
138
|
Chiaranunt P, White JF. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:400. [PMID: 36679113 PMCID: PMC9861093 DOI: 10.3390/plants12020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.
Collapse
|
139
|
Kireev NV, Filippov OA, Epstein LM, Shubina ES, Belkova NV. Activation of dinitrogen by group 6 metal complexes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
140
|
Heliso Dolla T, Matthews T, Wendy Maxakato N, Ndungu P, Montini T. Recent advances in transition metal sulfide-based electrocatalysts and photocatalysts for nitrogen fixation. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
141
|
Wang M, Shang Y, Liu X, Chen S. Assembly of nitrogenase biosynthetic pathway in Saccharomyces cerevisiae by using polyprotein strategy. Front Microbiol 2023; 14:1137355. [PMID: 36937264 PMCID: PMC10017450 DOI: 10.3389/fmicb.2023.1137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Nitrogenase in some bacteria and archaea catalyzes conversion of N2 to ammonia. To reconstitute a nitrogenase biosynthetic pathway in a eukaryotic host is still a challenge, since synthesis of nitrogenase requires a large number of nif (nitrogen fixation) genes. Viral 2A peptide mediated "cleavage" of polyprotein is one of strategies for multigene co-expression. Here, we show that cleavage efficiency of NifB-2A-NifH polyprotein linked by four different 2A peptides (P2A, T2A, E2A, and F2A) in Saccharomyces cerevisiae ranges from ~50% to ~90%. The presence of a 2A tail in NifB, NifH, and NifD does not affect their activity. Western blotting shows that 9 Nif proteins (NifB, NifH, NifD, NifK, NifE, NifN, NifX, HesA, and NifV) from Paenibacillus polymyxa that are fused into two polyproteins via 2A peptides are co-expressed in S. cerevisiae. Expressed NifH from Klebsiella oxytoca NifU and NifS and P. polymyxa NifH fusion linked via 2A in S. cerevisiae exhibits Fe protein activity.
Collapse
|
142
|
Santana‐Sánchez A, Nikkanen L, Werner E, Tóth G, Ermakova M, Kosourov S, Walter J, He M, Aro E, Allahverdiyeva Y. Flv3A facilitates O 2 photoreduction and affects H 2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments. THE NEW PHYTOLOGIST 2023; 237:126-139. [PMID: 36128660 PMCID: PMC10092803 DOI: 10.1111/nph.18506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/10/2022] [Indexed: 05/23/2023]
Abstract
The model heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a typical example of a multicellular organism capable of simultaneously performing oxygenic photosynthesis in vegetative cells and O2 -sensitive N2 -fixation inside heterocysts. The flavodiiron proteins have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O2 (a Mehler-like reaction). Here, we performed a phenotypic and biophysical characterization of Anabaena mutants impaired in vegetative-specific Flv1A and Flv3A in order to address their physiological relevance in the bioenergetic processes occurring in diazotrophic Anabaena under variable CO2 conditions. We demonstrate that both Flv1A and Flv3A are required for proper induction of the Mehler-like reaction upon a sudden increase in light intensity, which is likely important for the activation of carbon-concentrating mechanisms and CO2 fixation. Under ambient CO2 diazotrophic conditions, Flv3A is responsible for moderate O2 photoreduction, independently of Flv1A, but only in the presence of Flv2 and Flv4. Strikingly, the lack of Flv3A resulted in strong downregulation of the heterocyst-specific uptake hydrogenase, which led to enhanced H2 photoproduction under both oxic and micro-oxic conditions. These results reveal a novel regulatory network between the Mehler-like reaction and the diazotrophic metabolism, which is of great interest for future biotechnological applications.
Collapse
Affiliation(s)
- Anita Santana‐Sánchez
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Elisa Werner
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Gábor Tóth
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Maria Ermakova
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Sergey Kosourov
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Julia Walter
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Meilin He
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Eva‐Mari Aro
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| |
Collapse
|
143
|
Threatt SD, Rees DC. Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system. FEBS Lett 2023; 597:45-58. [PMID: 36344435 PMCID: PMC10100503 DOI: 10.1002/1873-3468.14534] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Nitrogenase is the sole enzyme responsible for the ATP-dependent conversion of atmospheric dinitrogen into the bioavailable form of ammonia (NH3 ), making this protein essential for the maintenance of the nitrogen cycle and thus life itself. Despite the widespread use of the Haber-Bosch process to industrially produce NH3 , biological nitrogen fixation still accounts for half of the bioavailable nitrogen on Earth. An important feature of nitrogenase is that it operates under physiological conditions, where the equilibrium strongly favours ammonia production. This biological, multielectron reduction is a complex catalytic reaction that has perplexed scientists for decades. In this review, we explore the current understanding of the molybdenum nitrogenase system based on experimental and computational research, as well as the limitations of the crystallographic, spectroscopic, and computational techniques employed. Finally, essential outstanding questions regarding the nitrogenase system will be highlighted alongside suggestions for future experimental and computational work to elucidate this essential yet elusive process.
Collapse
Affiliation(s)
- Stephanie D Threatt
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
144
|
Xiao JD, Li R, Jiang HL. Metal-Organic Framework-Based Photocatalysis for Solar Fuel Production. SMALL METHODS 2023; 7:e2201258. [PMID: 36456462 DOI: 10.1002/smtd.202201258] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) represent a novel class of crystalline inorganic-organic hybrid materials with tunable semiconducting behavior. MOFs have potential for application in photocatalysis to produce sustainable solar fuels, owing to their unique structural advantages (such as clarity and modifiability) that can facilitate a deeper understanding of the structure-activity relationship in photocatalysis. This review takes the photocatalytic active sites as a particular perspective, summarizing the progress of MOF-based photocatalysis for solar fuel production; mainly including three categories of solar-chemical conversions, photocatalytic water splitting to hydrogen fuel, photocatalytic carbon dioxide reduction to hydrocarbon fuels, and photocatalytic nitrogen fixation to high-energy fuel carriers such as ammonia. This review focuses on the types of active sites in MOF-based photocatalysts and discusses their enhanced activity based on the well-defined structure of MOFs, offering deep insights into MOF-based photocatalysis.
Collapse
Affiliation(s)
- Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
145
|
Ma X, Li M, Lei M. Trinuclear Transition Metal Complexes in Catalytic Reactions. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
146
|
Siegbahn PEM. Computational modeling of redox enzymes. FEBS Lett 2023; 597:38-44. [PMID: 36254111 DOI: 10.1002/1873-3468.14512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 01/14/2023]
Abstract
A computational methodology is briefly described, which appears to be able to accurately describe the mechanisms of redox active enzymes. The method is built on hybrid density functional theory where the inclusion of a fraction of exact exchange is critical. Two examples of where the methodology has been applied are described. The first example is the mechanism for water oxidation in photosystem II, and the second one is the mechanism for N2 activation by nitrogenase. The mechanism for PSII has obtained very strong support from subsequent experiments. For nitrogenase, the calculations suggest that there should be an activation process prior to catalysis, which is still strongly debated.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Sweden
| |
Collapse
|
147
|
Jiang H, Svensson OKG, Ryde U. Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase. Molecules 2022; 28:65. [PMID: 36615260 PMCID: PMC9822455 DOI: 10.3390/molecules28010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
We have calculated redox potentials of the two metal clusters in Mo-nitrogenase with quantum mechanical (QM) calculations. We employ an approach calibrated for iron-sulfur clusters with 1-4 Fe ions, involving QM-cluster calculations in continuum solvent and large QM systems (400-500 atoms), based on structures from combined QM and molecular mechanics (QM/MM) geometry optimisations. Calculations on the P-cluster show that we can reproduce the experimental redox potentials within 0.33 V. This is similar to the accuracy obtained for the smaller clusters, although two of the redox reactions involve also proton transfer. The calculated P1+/PN redox potential is nearly the same independently of whether P1+ is protonated or deprotonated, explaining why redox titrations do not show any pH dependence. For the FeMo cluster, the calculations clearly show that the formal oxidation state of the cluster in the resting E0 state is MoIIIFe3IIFe4III , in agreement with previous experimental studies and QM calculations. Moreover, the redox potentials of the first five E0-E4 states are nearly constant, as is expected if the electrons are delivered by the same site (the P-cluster). However, the redox potentials are insensitive to the formal oxidation states of the Fe ion (i.e., whether the added protons bind to sulfide or Fe ions). Finally, we show that the later (E4-E8) states of the reaction mechanism have redox potential that are more positive (i.e., more exothermic) than that of the E0/E1 couple.
Collapse
Affiliation(s)
| | | | - Ulf Ryde
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
148
|
Rutledge HL, Field MJ, Rittle J, Green MT, Akif Tezcan F. Role of Serine Coordination in the Structural and Functional Protection of the Nitrogenase P-Cluster. J Am Chem Soc 2022; 144:22101-22112. [PMID: 36445204 PMCID: PMC9957664 DOI: 10.1021/jacs.2c09480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nitrogenase catalyzes the multielectron reduction of dinitrogen to ammonia. Electron transfer in the catalytic protein (MoFeP) proceeds through a unique [8Fe-7S] cluster (P-cluster) to the active site (FeMoco). In the reduced, all-ferrous (PN) state, the P-cluster is coordinated by six cysteine residues. Upon two-electron oxidation to the P2+ state, the P-cluster undergoes conformational changes in which a highly conserved oxygen-based residue (a Ser or a Tyr) and a backbone amide additionally ligate the cluster. Previous studies of Azotobacter vinelandii (Av) MoFeP revealed that when the oxygen-based residue, βSer188, was mutated to a noncoordinating residue, Ala, the P-cluster became redox-labile and reversibly lost two of its eight Fe centers. Surprisingly, the Av strain with a MoFeP variant that lacked the serine ligand (Av βSer188Ala MoFeP) displayed the same diazotrophic growth and in vitro enzyme turnover rates as wild-type Av MoFeP, calling into question the necessity of this conserved ligand for nitrogenase function. Based on these observations, we hypothesized that βSer188 plays a role in protecting the P-cluster under nonideal conditions. Here, we investigated the protective role of βSer188 both in vivo and in vitro by characterizing the ability of Av βSer188Ala cells to grow under suboptimal conditions (high oxidative stress or Fe limitation) and by determining the tendency of βSer188Ala MoFeP to be mismetallated in vitro. Our results demonstrate that βSer188 (1) increases Av cell survival upon exposure to oxidative stress in the form of hydrogen peroxide, (2) is necessary for efficient Av diazotrophic growth under Fe-limiting conditions, and (3) may protect the P-cluster from metal exchange in vitro. Taken together, our findings suggest a structural adaptation of nitrogenase to protect the P-cluster via Ser ligation, which is a previously unidentified functional role of the Ser residue in redox proteins and adds to the expanding functional roles of non-Cys ligands to FeS clusters.
Collapse
Affiliation(s)
- Hannah L. Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Mackenzie J. Field
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jonathan Rittle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Michael T. Green
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
149
|
Yang L, Cheng C, Zhang X, Tang C, Du K, Yang Y, Shen SC, Xu SL, Yin PF, Liang HW, Ling T. Dual-site collaboration boosts electrochemical nitrogen reduction on Ru-S-C single-atom catalyst. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
150
|
Shima T, Zhuo Q, Hou Z. Dinitrogen activation and transformation by multimetallic polyhydride complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|