101
|
Kani R, Kubota Y, Inuzuka T, Funabiki K. Aromatic fluorine atom-induced highly amine-sensitive trimethine cyanine dye showing colorimetric and ratiometric fluorescence change. RSC Adv 2022; 12:25587-25592. [PMID: 36199322 PMCID: PMC9451369 DOI: 10.1039/d2ra04387d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
The prepared ring-perfluorinated trimethine cyanine dye 2a has a significantly higher response to n-hexylamine than the non-fluorinated dye 2b, and exhibited a dual change in the solution and on filter paper and fluorescence color at widely shifted wavelengths, visible to the naked eye.
Collapse
Affiliation(s)
- Ryunosuke Kani
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Centre, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
102
|
Desvals A, Fortino M, Lefebvre C, Rogier J, Michelin C, Alioui S, Rousset E, Pedone A, Lemercier G, Hoffmann N. Synthesis and characterization of polymethine dyes carrying thiobarbituric and carboxylic acid moieties. NEW J CHEM 2022. [DOI: 10.1039/d2nj00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymethine dyes are prepared using a convenient synthesis and characterized by physicochemical and computational methods.
Collapse
Affiliation(s)
- Arthur Desvals
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| | | | - Corentin Lefebvre
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| | - Johann Rogier
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| | - Clément Michelin
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, 63000 Clermont-Ferrand, France
| | - Samy Alioui
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| | - Elodie Rousset
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| | - Alfonso Pedone
- Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Gilles Lemercier
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
103
|
Zhao X, Zhang F, Lei Z. The pursuit of polymethine fluorophores with NIR-II emission and high brightness for in vivo applications. Chem Sci 2022; 13:11280-11293. [PMID: 36320587 PMCID: PMC9533410 DOI: 10.1039/d2sc03136a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Polymethine cyanine dyes, as the most important class of organic near-infrared-II (NIR-II) fluorophores, recently received increasing attention due to their high molar extinction coefficients, intensive fluorescence brightness, and flexible wavelength tunability for fluorescent bioimaging applications. Very recently, remarkable advances have been made in the development of NIR-II polymethine fluorophores with improved optical performance, mainly including tunable fluorescence, improved brightness, improved water solubility and stability. In this review, we summarize the recent research advances in molecular tailoring design strategies of NIR-II polymethine fluorophores, and then emphasize the representative bioimaging and biosensing applications. The potential challenges and perspectives of NIR-II polymethine fluorophores in this emerging field are also discussed. This review may provide guidance and reference for further development of high-performance NIR-II polymethine fluorophores to boost their clinical translation in the future. Overview of historical development for polymethine fluorophores with NIR-II emission and high brightness for in vivo applications.![]()
Collapse
Affiliation(s)
- Xuan Zhao
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuhai Lei
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
104
|
Santra M, Owens M, Birch G, Bradley M. Near-Infrared-Emitting Hemicyanines and Their Photodynamic Killing of Cancer Cells. ACS APPLIED BIO MATERIALS 2021; 4:8503-8508. [DOI: 10.1021/acsabm.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mithun Santra
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Matthew Owens
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Gavin Birch
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
105
|
Das A, Das S, Biswas A, Chattopadhyay N. Exploration of Self-Aggregation of Coumarin 7 and Coumarin 30 in Water: Role of β-Cyclodextrin as a Modulator. J Phys Chem B 2021; 125:13482-13493. [PMID: 34865492 DOI: 10.1021/acs.jpcb.1c07287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Steady-state and time-resolved spectroscopic studies demonstrate that two members of the coumarin class of dyes, coumarin 7 (C7) and coumarin 30 (C30), undergo self-aggregation in water. The development of hypsochromically shifted new absorption bands in addition to the existing monomer bands with an increase in concentration of the dyes in an aqueous medium suggests that the aggregates are of H-type. An absorption-based kinetic study reveals that the rate of aggregation of C30 is an order of magnitude faster than that of C7. Second-order rate kinetics, as obtained from the half-life (t1/2) data, implies that the aggregates are dimeric in nature. Observations of isosbestic points in area-normalized absorption spectra (ANAS) and isoemissive points in area-normalized fluorescence excitation spectra (ANFES) and time-resolved area-normalized emission spectra (TRANES) establish that ground-state monomer ⇌ dimer equilibria for both of the systems are preserved in the photoexcited state. The present study further establishes that β-cyclodextrin is the most efficient of the three common cyclodextrins in shifting the equilibria toward the monomer by encapsulating the monomers within its cavity, making β-CD a convenient modulator to control the self-aggregation process. Dynamic light scattering (DLS), quantum chemical calculations, and molecular docking studies provide further support to our propositions.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sinjan Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Arnab Biswas
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | |
Collapse
|
106
|
Pronkin PG, Tatikolov AS. Photonics of meso-substituted carbocyanine dyes in solutions and in complexes with DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120171. [PMID: 34280796 DOI: 10.1016/j.saa.2021.120171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Spectral-fluorescent and photochemical properties (photoisomerization and generation of the triplet state) of meso-substituted cationic carbocyanine dyes, 3,3'-di-(β-hydroxyethyl)-5,5'-dimethoxy-9-ethylthiacarbocyanine iodide (K1) and 3,3'-di-(β-hydroxyethyl)-9-methylthiacarbocyanine iodide (K2), have been studied in solutions and in the presence of DNA. In solutions, on passing from acetonitrile to dioxane, a growth of fluorescence of the dyes is observed due to a shift of the equilibrium of cis/trans isomers toward the fluorescent trans-isomer. Upon flash photolysis of dye solutions in dioxane, the formation and subsequent decay of the cis-photoisomers of the dyes are observed. In aqueous solutions, the interaction with DNA leads to the formation of noncovalent complexes of K1 and K2 with DNA, which is accompanied by a significant increase in the fluorescence intensity. The results of the molecular docking experiments showed the possibility of several types of binding, which was confirmed by the data obtained from other experiments. The effects of temperature and additions of NaCl on the stability of the dye-DNA complexes were studied. The spectral-fluorescent data were used to estimate the binding constants of the dyes with DNA and other characteristics of the dyes that are important for their use as probes. Upon flash photolysis of the dyes in complexes with DNA, photoisomerization is not observed, but the quantum yield of intersystem crossing to the triplet state increases. The decay of the triplet states occurs by a two-exponential law. The rate constants for quenching of the triplet states of the dyes complexed with DNA by oxygen were found to be lower than the expected values for diffusion-controlled quenching (taking into account the spin statistical factor 1/9), which is explained by the steric factor of complexation.
Collapse
Affiliation(s)
- Pavel G Pronkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia.
| | - Alexander S Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia.
| |
Collapse
|
107
|
Selvaggio G, Nißler R, Nietmann P, Patra A, Patalag LJ, Janshoff A, Werz DB, Kruss S. NIR-emitting benzene-fused oligo-BODIPYs for bioimaging. Analyst 2021; 147:230-237. [PMID: 34897304 DOI: 10.1039/d1an01850g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) fluorophores are emerging tools for biophotonics because of their reduced scattering, increased tissue penetration and low phototoxicity. However, the library of NIR fluorophores is still limited. Here, we report the NIR fluorescence of two benzene-fused oligo-BODIPYs in their hexameric (H) and octameric (O) forms. These dyes emit bright NIR fluorescence (H: maxima 943/1075 nm, O: maxima 976/1115 nm) that can be excited in the NIR (H = 921 nm, O = 956 nm) or non-resonantly over a broad range in the visible region. The emission bands of H show a bathochromic shift and peak sharpening with increasing dye concentration. Furthermore, the emission maxima of both H and O shift up to 20 nm in solvents of different polarity. These dyes can be used as NIR ink and imaged remotely on the macroscopic level with a stand-off distance of 20 cm. We furthermore demonstrate their versatility for biophotonics by coating microscale beads and performing microrheology via NIR video particle tracking (NIR-VPT) in biopolymer (F-actin) networks. No photodamaging of the actin filaments takes place, which is typically observed for visible fluorophores and highlights the advantages of these NIR dyes.
Collapse
Affiliation(s)
- Gabriele Selvaggio
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany. .,Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Robert Nißler
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany. .,Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Peter Nietmann
- Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Atanu Patra
- Technical University of Braunschweig, Institute of Organic Chemistry, 38106 Braunschweig, Germany
| | - Lukas J Patalag
- Technical University of Braunschweig, Institute of Organic Chemistry, 38106 Braunschweig, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Daniel B Werz
- Technical University of Braunschweig, Institute of Organic Chemistry, 38106 Braunschweig, Germany
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany. .,Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany.,Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
108
|
Carrascosa E, Bull JN, Martínez-Núñez E, Scholz MS, Buntine JT, Bieske EJ. Photoisomerization of Linear and Stacked Isomers of a Charged Styryl Dye: A Tandem Ion Mobility Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2842-2851. [PMID: 34787413 PMCID: PMC8640989 DOI: 10.1021/jasms.1c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The photoisomerization behavior of styryl 9M, a common dye used in material sciences, is investigated using tandem ion mobility spectrometry (IMS) coupled with laser spectroscopy. Styryl 9M has two alkene linkages, potentially allowing for four geometric isomers. IMS measurements demonstrate that at least three geometric isomers are generated using electrospray ionization with the most abundant forms assigned to a combination of EE (major) and ZE (minor) geometric isomers, which are difficult to distinguish using IMS as they have similar collision cross sections. Two additional but minor isomers are generated by collisional excitation of the electrosprayed styryl 9M ions and are assigned to the EZ and ZZ geometric isomers, with the latter predicted to have a π-stacked configuration. The isomer assignments are supported through calculations of equilibrium structures, collision cross sections, and statistical isomerization rates. Photoexcitation of selected isomers using an IMS-photo-IMS strategy shows that each geometric isomer photoisomerizes following absorption of near-infrared and visible light, with the EE isomer possessing a S1 ← S0 electronic transition with a band maximum near 680 nm and shorter wavelength S2 ← S0 electronic transition with a band maximum near 430 nm. The study demonstrates the utility of the IMS-photo-IMS strategy for providing fundamental gas-phase photochemical information on molecular systems with multiple isomerizable bonds.
Collapse
Affiliation(s)
- Eduardo Carrascosa
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - James N. Bull
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emilio Martínez-Núñez
- Departamento
de Química Física, Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Michael S. Scholz
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jack T. Buntine
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evan J. Bieske
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
109
|
Wang C, Chi W, Qiao Q, Tan D, Xu Z, Liu X. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chem Soc Rev 2021; 50:12656-12678. [PMID: 34633008 DOI: 10.1039/d1cs00239b] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The twisted intramolecular charge transfer (TICT) mechanism has guided the development of numerous bright and sensitive fluorophores. This review briefly overviews the history of establishing the TICT mechanism, and systematically summarizes the molecular design strategies in modulating the TICT tendency of various organic fluorophores towards different applications, along with key milestone studies and representative examples. Additionally, we also succinctly review the twisted intramolecular charge shuttle (TICS) and twists during photoinduced electron transfer (PET), and compare their similarities and differences with TICT, with emphasis on understanding the structure-property relationships between the twisted geometries and how they can directly affect the fluorescence of the molecules. Such structure-property relationships presented herein will greatly aid the rational development of fluorophores that involve molecular twisting in the excited state.
Collapse
Affiliation(s)
- Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. .,Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
110
|
Martínez-Vollbert E, Philouze C, Gautier-Luneau I, Moreau Y, Lanoë PH, Loiseau F. Study of a phosphorescent cationic iridium(III) complex displaying a blue-shift in crystals. Phys Chem Chem Phys 2021; 23:24789-24800. [PMID: 34714313 DOI: 10.1039/d1cp03341g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and the characterization of a new cationic iridium(III) complex featuring two 1-(p-methoxyphenyl)-5-methoxybenzimidazole cyclometallating ligands and a dimethylbipyridine ancillary ligand. The complex has been fully characterized by 1D and 2D NMR (1H, 13C, 19F and 31P), elemental analysis and high-resolution mass spectrometry (HRMS). The photoluminescence studies performed in a solution, on amorphous powder and on crystals revealed an unexpected behavior. Indeed, the emission spectra observed in both solution (CH2Cl2) and amorphous powder samples are centered at around 580 nm, whereas in crystals the emission displays a large hypsochromic shift of ∼800 cm-1 (λem = 558 nm). X-ray diffraction experiments, photophysical studies and DFT calculations allow for rationalizing the hypsochromic shift.
Collapse
Affiliation(s)
| | | | | | - Yohann Moreau
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | | | | |
Collapse
|
111
|
Alkhamis O, Canoura J, Bukhryakov KV, Tarifa A, DeCaprio AP, Xiao Y. DNA Aptamer-Cyanine Complexes as Generic Colorimetric Small-Molecule Sensors. Angew Chem Int Ed Engl 2021; 61:e202112305. [PMID: 34706127 DOI: 10.1002/anie.202112305] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/31/2022]
Abstract
Aptamers are promising biorecognition elements for sensors. However, aptamer-based assays often lack the requisite levels of sensitivity and/or selectivity because they typically employ structure-switching aptamers with attenuated affinity and/or utilize reporters that require aptamer labeling or which are susceptible to false positives. Dye-displacement assays offer a label-free, sensitive means for overcoming these issues, wherein target binding liberates a dye that is complexed with the aptamer, producing an optical readout. However, broad utilization of these assays has been limited. Here, we demonstrate a rational approach to develop colorimetric cyanine dye-displacement assays that can be broadly applied to DNA aptamers regardless of their structure, sequence, affinity, or the physicochemical properties of their targets. Our approach should accelerate the development of mix-and-measure assays that could be applied for diverse analytical applications.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.,Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.,Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Konstantin V Bukhryakov
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Anamary Tarifa
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Anthony P DeCaprio
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.,Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| |
Collapse
|
112
|
Kang B, Seok C, Lee J. MOLGENGO: Finding Novel Molecules with Desired Electronic Properties by Capitalizing on Their Global Optimization. ACS OMEGA 2021; 6:27454-27465. [PMID: 34693166 PMCID: PMC8529683 DOI: 10.1021/acsomega.1c04347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The discovery of novel and favorable fluorophores is critical for understanding many chemical and biological studies. High-resolution biological imaging necessitates fluorophores with diverse colors and high quantum yields. The maximum oscillator strength and its corresponding absorption wavelength of a molecule are closely related to the quantum yields and the emission spectrum of fluorophores, respectively. Thus, the core step to design favorable fluorophore molecules is to optimize the desired electronic transition properties of molecules. Here, we present MOLGENGO, a new molecular property optimization algorithm, to discover novel and favorable fluorophores with machine learning and global optimization. This study reports novel molecules from MOLGENGO with high oscillator strength and absorption wavelength close to 200, 400, and 600 nm. The results of MOLGENGO simulations have the potential to be candidates for new fluorophore frameworks.
Collapse
Affiliation(s)
- Beomchang Kang
- Department
of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chaok Seok
- Department
of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Juyong Lee
- Department
of Chemistry, Division of Chemistry and Biochemistry, Kangwon National University, 24341 Chuncheon, Republic of
Korea
| |
Collapse
|
113
|
Yip WM, Yu Q, Tantipanjaporn A, Chan WC, Deng JR, Ko BCB, Wong MK. Synthesis of new quinolizinium-based fluorescent compounds and studies on their applications in photocatalysis. Org Biomol Chem 2021; 19:8507-8515. [PMID: 34542126 DOI: 10.1039/d1ob00716e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quinoliziniums, cationic aromatic heterocycles bearing a quaternary bridgehead nitrogen, have been widely used as fluorescent dyes, DNA intercalators, ionic liquids etc. A library of new quinolizinium compounds was synthesized from quinolines and internal alkyne substrates in up to 65% isolated yields. Systematic studies of their photophysical properties were conducted. The quinoliziniums have been used in three visible-light-induced photocatalysis reactions with good yields.
Collapse
Affiliation(s)
- Wai-Ming Yip
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Qiong Yu
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
| | - Ajcharapan Tantipanjaporn
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Wing-Cheung Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Jie-Ren Deng
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Ben Chi-Bun Ko
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Man-Kin Wong
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| |
Collapse
|
114
|
Abstract
Multifunctional stimuli-responsive fluorophores showing bright environment-sensitive emissions have fueled intense research due to their innovative applications in the fields of biotechnologies, optoelectronics, and materials. A strong structural diversity is observed among molecular materials, which has been enriched over the years with a growing responsiveness to stimuli. Boron dipyrromethene (BODIPY) dyes have long been the flagship of emissive boron complexes due to their outstanding properties until a decade ago when analogues based on N^O, N^N, or N^C π-conjugated chelates emerged. The finality of developing borate dyes was to compensate for BODIPYs’ lack of solid-state fluorescence and small Stokes shifts while keeping their excellent optical properties in solution. Among them, the borate complexes based on a salicylaldimine ligand, called by the acronym boranils appear as the most promising, owing to their facile synthesis and dual-state emission properties. Boranil dyes have proven to be good alternatives to BODIPY dyes and have been applied in applications such as bioimaging, bioconjugation, and detection of biosubstrates. Meanwhile, ab initio calculations have rationalized experimental results and provided insightful feedback for future designs. This review article aims at providing a concise yet representative overview of the chemistry around the boranil core with the subsequent applications.
Collapse
|
115
|
Xu Y, Tan Y, Ma X, Jin X, Tian Y, Li M. Photodynamic Therapy with Tumor Cell Discrimination through RNA-Targeting Ability of Photosensitizer. Molecules 2021; 26:5990. [PMID: 34641533 PMCID: PMC8512109 DOI: 10.3390/molecules26195990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
Photodynamic therapy (PDT) represents an effective treatment to cure cancer. The targeting ability of the photosensitizer is of utmost importance. Photosensitizers that discriminate cancer cells can avoid the killing of normal cells and improve PDT efficacy. However, the design and synthesis of photosensitizers conjugated with a recognition unit of cancer cell markers is complex and may not effectively target cancer. Considering that the total RNA content in cancer cells is commonly higher than in normal cells, this study has developed the photosensitizer QICY with RNA-targeting abilities for the discrimination of cancer cells. QICY was specifically located in cancer cells rather than normal cells due to their stronger electrostatic interactions with RNA, thereby further improving the PDT effects on the cancer cells. After intravenous injection into mice bearing a xenograft tumor, QICY accumulated into the tumor location through the enhanced permeability and retention effect, automatically targeted cancer cells under the control of RNA, and inhibited tumor growth under 630 nm laser irradiation without obvious side effects. This intelligent photosensitizer with RNA-targeting ability not only simplifies the design and synthesis of cancer-cell-targeting photosensitizers but also paves the way for the further development of highly efficient PDTs.
Collapse
Affiliation(s)
- Yuan Xu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yang Tan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116023, China; (Y.T.); (X.M.); (X.J.)
| | - Xiuqin Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116023, China; (Y.T.); (X.M.); (X.J.)
| | - Xiaoyi Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116023, China; (Y.T.); (X.M.); (X.J.)
| | - Ye Tian
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Miao Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116023, China; (Y.T.); (X.M.); (X.J.)
| |
Collapse
|
116
|
Sorour MI, Kistler KA, Marcus AH, Matsika S. Accurate Modeling of Excitonic Coupling in Cyanine Dye Cy3. J Phys Chem A 2021; 125:7852-7866. [PMID: 34494437 DOI: 10.1021/acs.jpca.1c05556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accurate modeling of excitonic coupling in molecules is of great importance for inferring the structures and dynamics of coupled systems. Cy3 is a cyanine dye that is widely used in molecular spectroscopy. Its well-separated excitation bands, high sensitivity to the surroundings, and the high energy transfer efficiency make it a perfect choice for excitonic coupling experiments. Many methods have been used to model the excitonic coupling in molecules with varying degrees of accuracy. The atomic transition charge model offers a high-accuracy and cost-effective way to calculating the excitonic coupling. The main focus of this work is to generate high-quality atomic transition charges that can accurately model the Cy3 dye's transition density. The transition density of the excitation of the ground to first excited state is calculated using configuration-interaction singles and time-dependent density functional theory and is benchmarked against the algebraic diagrammatic construction method. Using the transition density we derived the atomic transition charges using two approaches: Mulliken population analysis and charges fitted to the transition electrostatic potential. The quality of the charges is examined, and their ability to accurately calculate the excitonic coupling is assessed via comparison to experimental data of an artificial biscyanine construct. Theoretical comparisons to the supermolecule ab initio couplings and the widely used point-dipole approximation are also made. Results show that using the transition electrostatic potential is a reliable approach for generating the transition atomic charges. A high-quality set of charges, that can be used to model the Cy3 dye dimer excitonic coupling with high-accuracy and a reasonable computational cost, is obtained.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kurt A Kistler
- Department of Chemistry, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania 19063, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
117
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
118
|
Bazeľ Y, Tóth J, Fizer M, Sidey V, Balogh I. Estimation of ground and excited-state dipole moments of three symmetric carbocyanine dyes via the analysis of luminescence properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
119
|
Three-Component Suzuki-Knoevenagel Synthesis of Merocyanine Libraries and Correlation Analyses of Their Oxidation Potentials and Optical Band Gaps. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175149. [PMID: 34500584 PMCID: PMC8433686 DOI: 10.3390/molecules26175149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The Suzuki coupling Knoevenagel condensation one-pot synthesis of boronic acids/esters, (hetero)aromatic bromo aldehydes and methylene active compounds is a highly practical consecutive three-component process to provide substance libraries with 60 donor-π-bridge-acceptor molecules, i.e., merocyanines in a broader sense, in moderate to excellent yield. As already seen with the naked eye, a broad variation of the optical properties becomes accessible using this practical synthetic tool. More systematically, correlation analyses upon plotting the optical band gaps against the first oxidation potentials of redox active systems of consanguineous series furnishes linear correlations and, by extension, two parameter plots (oxidation potential and emission maximum) planar correlations with the optical band gaps.
Collapse
|
120
|
Yang D, Han J, Sang Y, Zhao T, Liu M, Duan P. Steering Triplet-Triplet Annihilation Upconversion through Enantioselective Self-Assembly in a Supramolecular Gel. J Am Chem Soc 2021; 143:13259-13265. [PMID: 34387996 DOI: 10.1021/jacs.1c05927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research on chiral selection and recognition not only is of fundamental importance in resolving the origin of biological homochirality, but also is instructive in the fabrication of controlled molecular organization in supramolecular systems to modulate their chirality-related functional properties. Here we report an enantioselective assembly process between a chiral energy donor and two enantiomeric energy acceptors, which further results in chirality-controlled energy transfer and enantioselective triplet-triplet annihilation upconversion (TTA-UC). It is found that the chiral energy donor Pd(II) octaethylporphyrin derivative PdOEP-LG12 (RD) can selectively coassemble with the chiral energy acceptor LGAn (RA) with the same chiral scaffold but tends to form segregation with the energy acceptor DGAn (SA) with the opposite chiral scaffold in a thermodynamic equilibrium state. Thus, the coassembly of RA/RD shows more effective triplet-triplet energy transfer (TTET) and stronger upconverted luminescence and upconverted circularly polarized luminescence in comparison to the segregation of SA/RD. The establishment of such an enantioselective TTA-UC system highlights the applications of chirality-regulated triplet fusion in optoelectronic materials.
Collapse
Affiliation(s)
- Dong Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianlei Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Minghua Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China
| |
Collapse
|
121
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
122
|
Ran H, Li F, Zheng R, Ni W, Lei Z, Xie F, Duan X, Han R, Pan N, Hu JY. Dithienocoronene diimide (DTCDI)-derived triads for high-performance air-stable, solution-processed balanced ambipolar organic field-effect transistors. Phys Chem Chem Phys 2021; 23:16357-16365. [PMID: 34318838 DOI: 10.1039/d1cp02703d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing ambipolar organic semiconducting materials is essential for use in complementary-like inverters and light-emitting transistors. In this study, three new dithienocoronenediimide (DTCDI)-derived triads, DTCDI-BT, DTCDI-BBT and DTCDI-BNT, were designed and synthesized, in which various sizes of terminal groups, i.e., thiophene (T), benzo[b]thiophene (BT) and naphtha[2,3-b]thiophene (NT) were substituted at the α-positions of the two thiophene rings of DTCDI, respectively. The DFT calculations reveal that the HOMO energy levels of the three triads when compared to that of the parent DTCDI-core (-5.99 eV) are significantly increased to -5.59, -5.59 and -5.45 eV for DTCDI-BT, DTCDI-BBT and DTCDI-BNT, respectively, whereas the LUMO energy levels (-3.07 eV ∼ -3.14 eV) are almost identical with that of the DTCDI-core (-3.10 eV). The results predict that the triads could possess ambipolar transport properties in organic field-effect transistor (OFET) applications. In fact, under an ambient atmosphere, solution-processed bottom-gate top-contact (BGTC) transistors exhibit ambipolar charge transport properties by tuning the HOMOs of the DTCDI-based triads so that they were suitable for hole injection, resulting in balanced maximum electron and hole mobilities of 1.66 × 10-3 and 1.02 × 10-3 cm2 V-1 s-1 for DTCDI-BT, 2.60 × 10-2 and 3.60 × 10-2 cm2 V-1 s-1 for DTCDI-BBT, and 2.43 × 10-3 and 4.15 × 10-3 cm2 V-1 s-1 for DTCDI-BNT, respectively. This is the first time that the DTCDI building block has been used to develop ambipolar small molecular semiconductors, and achieved a device performance comparable to that of the DTCDI-based polymeric semiconductors. In addition, DTCDI-BBT-based complementary-like inverters were made, and the inverter devices operated well in both p-mode and n-mode under ambient conditions. The results show that the DTCDI is a promising π-electron-deficient building block which could be further used to develop ambipolar semiconducting materials for OFET devices.
Collapse
Affiliation(s)
- Huijuan Ran
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Rappitsch T, M. Borisov S. Carbazole- and Fluorene-Fused Aza-BODIPYs: NIR Fluorophores with High Brightness and Photostability. Chemistry 2021; 27:10685-10692. [PMID: 33950529 PMCID: PMC8362076 DOI: 10.1002/chem.202100965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/20/2022]
Abstract
Three new aza-BODIPY dyes incorporating fused fluorene or carbazole moieties have been prepared. The dyes show significant enhancement of photophysical properties compared to the parent 1,3,5,7-tetraphenyl aza-BODIPY (TPAB): a bathochromic shift of the absorption maximum (up to 2700 cm-1 ) and emission maximum (up to 2270 cm-1 ); an almost threefold increase in molar absorption coefficients (to ca. 230 000 M-1 cm-1 ) and a significant increase in the fluorescence quantum yield to 49-66 %. Owing to the combination of these properties, the new aza-BODIPY dyes belong to the brightest NIR dyes reported. The dyes also show excellent photostability. Due to their outstanding properties, the new dyes represent a promising platform for further exploration in biomedical research. A pH indicator containing only one fused carbazole unit was also prepared and shows absorption and emission spectra that are bathochromically shifted by about 110 and 100 nm, respectively, compared to the indicator dye based on the TPAB chromophore.
Collapse
Affiliation(s)
- Tanja Rappitsch
- Graz University of Technology Institute of Analytical Chemistry and Food ChemistryStremayrgasse 98010GrazAustria
| | - Sergey M. Borisov
- Graz University of Technology Institute of Analytical Chemistry and Food ChemistryStremayrgasse 98010GrazAustria
| |
Collapse
|
124
|
Liu Y, Zheng X, Zhou J, Xie Z. Merocyanine-paclitaxel conjugates for photothermal induced chemotherapy. J Mater Chem B 2021; 9:2334-2340. [PMID: 33623945 DOI: 10.1039/d0tb02569k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small molecular nanomedicines that integrate the flexibility of self-assembly strategies and the advantages of a precise molecular structure, a high drug content and controlled drug release are effective diagnostic and therapeutic modalities. Herein, merocyanine-paclitaxel conjugates (MC-PTX) were developed and fabricated by using the degradable ester bonds as the linker. The as-prepared MC-PTX could self-assemble into nanoparticles (MC-PTX NPs) using the non-covalent molecular interaction via the nanoprecipitation method. MC-PTX NPs possess a favorable biological stability and can efficiently release the paclitaxel (PTX) activated by the heat of the photoactive material merocyanine under light illumination, as monitored using dynamic light scattering. The obtained MC-PTX NPs could be endocytosed into cancer cells and release PTX under laser irradiation in the cytoplasm, thus eliciting a satisfactory anticancer effect. Photothermal triggered degradation upon light illumination could enhance the chemotherapeutic efficacy of paclitaxel. The fluorescent nature of the NPs could visualize the internalization process. We believe that this robust nanomedicine offers a novel strategy to facilitate clinical translation for use as a small molecular chemotherapy nanomedicine.
Collapse
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junli Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
125
|
Aristova D, Kosach V, Chernii S, Slominsky Y, Balanda A, Filonenko V, Yarmoluk S, Rotaru A, Özkan HG, Mokhir A, Kovalska V. Monomethine cyanine probes for visualization of cellular RNA by fluorescence microscopy. Methods Appl Fluoresc 2021; 9. [PMID: 34198271 DOI: 10.1088/2050-6120/ac10ad] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022]
Abstract
We have studied spectral-luminescent properties of the monomethine cyanine dyes both in their free states and in the presence of either double-stranded deoxyribonucleic acids (dsDNAs) or single-stranded ribonucleic acids (RNAs). The dyes possess low fluorescence intensity in an unbound state, which is increased up to 479 times in the presence of the nucleic acids. In the presence of RNAs, the fluorescence intensity increase was stronger than that observed in the presence of dsDNA. Next, we have performed staining of live and fixed cells by all prepared dyes. The dyes proved to be cell and nuclear membrane permeant. They are photostable and brightly stain RNA-containing organelles in both live and fixed cells. The colocalization confirmed the specific nucleoli staining with anti-Ki-67 antibodies. The RNA digestion experiment has confirmed the selectivity of the dyes toward intracellular RNA. Based on the obtained results, we can conclude that the investigated monomethine cyanine dyes are useful fluorescent probes for the visualization of intracellular RNA and RNA-containing organelles such as nucleoli by using fluorescence microscopy.
Collapse
Affiliation(s)
- Daria Aristova
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.,Scientific Services Company Otava Ltd, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Viktoriia Kosach
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Svitlana Chernii
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.,Scientific Services Company Otava Ltd, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Yuriy Slominsky
- Institute of Organic Chemistry NASU, 5 Murmans'ka St., 02094 Kyiv, Ukraine
| | - Anatoliy Balanda
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.,Scientific Services Company Otava Ltd, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Sergiy Yarmoluk
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.,Scientific Services Company Otava Ltd, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Alexandru Rotaru
- 'Petru Poni' Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Hülya Gizem Özkan
- Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Andriy Mokhir
- Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Vladyslava Kovalska
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.,Scientific Services Company Otava Ltd, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| |
Collapse
|
126
|
Reddy NR, Aubin M, Kushima A, Fang J. Fluorescent H-Aggregate Vesicles and Tubes of a Cyanine Dye and Their Potential as Light-Harvesting Antennae. J Phys Chem B 2021; 125:7911-7918. [PMID: 34232656 DOI: 10.1021/acs.jpcb.1c04262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
H-aggregates of π-conjugated dyes are an ordered supramolecular structure. However, the non-fluorescence behavior of H-aggregates greatly limits their potential applications. In this paper, we report the formation of fluorescent H-aggregates with vesicular and tubular morphologies by the self-assembly of 3,3'-diethylthiacarbocyanine iodide (DiSC2(3)) in ammonia/methanol mixtures. The transition from H-aggregate vesicles to H-aggregate tubes can be achieved by increasing the volume fraction of methanol in the mixtures. H-aggregate vesicles and tubes show two blue-shifted absorption bands and strong fluorescence, which result from the inclined arrangement of DiSC2(3) molecules. Furthermore, light-harvesting complexes are formed by adding dopamine (DA)-quinone (acceptor) in synthetic urine with H-aggregate vesicles or tubes. Our results show that H-aggregate tubes are more efficient than H-aggregate vesicles in transferring excited electrons to DA-quinone acceptors.
Collapse
Affiliation(s)
- Nitin Ramesh Reddy
- Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Megan Aubin
- Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Akihiro Kushima
- Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Jiyu Fang
- Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
127
|
Ietto G, Zani E, Benedetti F, Parise C, Iori V, Masci F, Franchi C, Ferri E, Liepa L, Brusa D, Oltolina M, Baglieri C, Ripamonti M, Guzzetti L, Dalla Gasperina D, Ambrosini A, Amico F, Di Saverio S, Latham L, Iovino D, Soldini G, Tozzi M, Carcano G. Indocyanine Green Angiography for Quality Assessment of the Kidney During Transplantation: An Outcome Predictor Prospective Study. Transplant Proc 2021; 53:1892-1896. [PMID: 34233847 DOI: 10.1016/j.transproceed.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Microvascular damage is the main cause of delayed graft function (DGF) after kidney transplant. Assessing its extent may be helpful in predicting DGF to achieve better postoperative management, especially in terms of an immunosuppressive regimen. Our aim was to explore the capability of intraoperative indocyanine green (ICG) angiography to examine the microvasculature of the kidney. METHODS We conducted a prospective cohort study on 37 kidney transplant recipients in a high-volume kidney transplant center. During surgery, after graft implant, an ICG angiography was performed through a high-definition Storz camera system (Karl Storz GmbH, Tuttlingen, Germany) with successive quantitative assessment of fluorescence using Icy bioimage analysis. RESULTS All transplanted kidneys that showed immediate recovery of their function had a fluorescent intensity ≥49.953 with a mean of 96.930 ± 21. The fluorescence intensity for kidneys that showed a delayed recovery of their function never exceeded 55.648, and the mean was 37.718 ± 13. The difference between the 2 groups was statistically significant with a P value < .001. The only kidney that never recovered showed a fluorescence intensity consistently <25.220, the lowest detected. CONCLUSIONS This study demonstrates that intraoperative ICG angiography may be used to assess the microvasculature of the graft. A statistically significant difference in terms of fluorescent intensity can be highlighted between kidneys that immediately recover their function and those with delayed recovery. Further larger studies are needed to confirm the capability of the technique to predict DGF to optimize the transplanted patients' management.
Collapse
Affiliation(s)
- Giuseppe Ietto
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy.
| | - Elia Zani
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | | | - Cristiano Parise
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Valentina Iori
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Federica Masci
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Caterina Franchi
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Enrico Ferri
- General, Emergency and Transplant Surgery Department, University of Insubria, Varese, Italy
| | - Linda Liepa
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | | | - Mauro Oltolina
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | | | - Marta Ripamonti
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Luca Guzzetti
- Anesthesia and Intensive Care Unit, ASST-Settelaghi and University of Insubria, Varese, Italy
| | | | - Andrea Ambrosini
- Nephrology Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Francesco Amico
- Trauma Service, Department of Surgery, University of Newcastle, Newcastle, Australia
| | - Salomone Di Saverio
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Lorenzo Latham
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Domenico Iovino
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Gabriele Soldini
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Matteo Tozzi
- Vascular Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| | - Giulio Carcano
- General, Emergency and Transplant Surgery Department, ASST-Settelaghi and University of Insubria, Varese, Italy
| |
Collapse
|
128
|
Mustroph H. Hemicyanine dyes. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Hemicyanine dyes are a subclass of polymethine colorants. At one end of their polymethine chain is an unsaturated heterocyclic ring possessing a nitrogen atom as would be found in a cyanine dye. However, the other end is terminated by a nitrogen atom that does not form part of an unsaturated heterocycle. The name alludes to their half-cyanine substitution pattern. Later the scope of the term “hemicyanine” was extended to the phenylogous dyes where there is a phenyl group between the two terminal nitrogen atoms. The first main technical application of hemicyanine dyes was in textile coloration. Nowadays hemicyanine dyes are used extensively as optical probes of cell membrane potential.
Collapse
Affiliation(s)
- Heinz Mustroph
- Former FEW Chemicals GmbH , Technikumstraße 1 , Bitterfeld-Wolfen , 06756 Germany
| |
Collapse
|
129
|
Moore C, Borum RM, Mantri Y, Xu M, Fajtová P, O’Donoghue AJ, Jokerst JV. Activatable Carbocyanine Dimers for Photoacoustic and Fluorescent Detection of Protease Activity. ACS Sens 2021; 6:2356-2365. [PMID: 34038103 DOI: 10.1021/acssensors.1c00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activatable contrast agents are of ongoing research interest because they offer low background and high specificity to the imaging target. Engineered sensitivity to protease activity is particularly desirable because proteases are critical biomarkers in cancer, infectious disease, inflammatory disorders, and so forth. Herein, we developed and characterized a set of peptide-linked cyanine conjugates for dual-modal detection of protease activity via photoacoustic (PA) and fluorescence imaging. The peptide-dye conjugates were designed to undergo contact quenching via intramolecular dimerization and contained n dyes (n = 2, 3, or 4) with n - 1 cleavable peptide substrates. The absorption peaks of the conjugates were blue-shifted 50 nm relative to the free dye and had quenched fluorescence. This effect was sensitive to solvent polarity and could be reversed by solvent switching from water to dimethyl sulfoxide. Employing trypsin as a model protease, we observed a 2.5-fold recovery of the peak absorbance, 330-4600-fold fluorescent enhancement, and picomolar detection limits following proteolysis. The dimer probe was further characterized for PA activation. Proteolysis released single dye-peptide fragments that produced a 5-fold PA enhancement through the increased absorption at 680 nm with nanomolar sensitivity to trypsin. The peptide substrate could also be tuned for protease selectivity; as a proof-of-concept, we detected the main protease (Mpro) associated with the viral replication in SARS-CoV-2 infection. Last, the activated probe was imaged subcutaneously in mice and signal was linearly correlated to the cleaved probe. Overall, these results demonstrate a tunable scaffold for the PA molecular imaging of protease activity with potential value in areas such as disease monitoring, tumor imaging, intraoperative imaging, in vitro diagnostics, and point-of-care sensing.
Collapse
Affiliation(s)
- Colman Moore
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Raina M. Borum
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ming Xu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
130
|
Bilici K, Cetin S, Celikbas E, Yagci Acar H, Kolemen S. Recent Advances in Cyanine-Based Phototherapy Agents. Front Chem 2021; 9:707876. [PMID: 34249874 PMCID: PMC8263920 DOI: 10.3389/fchem.2021.707876] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 01/28/2023] Open
Abstract
Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), are very promising treatment modalities for cancer since they provide locality and turn-on mechanism for toxicity, both of which are critical in reducing off-site toxicity. Irradiation of photosensitive agents demonstrated successful therapeutic outcomes; however, each approach has its limitations and needs to be improved for clinical success. The combination of PTT and PDT may work in a synergistic way to overcome the limitations of each method and indeed improve the treatment efficacy. The development of single photosensitive agents capable of inducing both PDT and PTT is, therefore, extremely advantageous and highly desired. Cyanine dyes are shown to have such potential, hence have been very popular in the recent years. Luminescence of cyanine dyes renders them as phototheranostic molecules, reporting the localization of the photosensitive agent prior to irradiation to induce phototoxicity, hence allowing image-guided phototherapy. In this review, we mainly focus on the cyanine dye-based phototherapy of different cancer cells, concentrating on the advancements achieved in the last ten years.
Collapse
Affiliation(s)
- Kubra Bilici
- Department of Chemistry, Koc University, Istanbul, Turkey
| | - Sultan Cetin
- Department of Chemistry, Koc University, Istanbul, Turkey
| | - Eda Celikbas
- Department of Chemistry, Koc University, Istanbul, Turkey
| | - Havva Yagci Acar
- Department of Chemistry, Koc University, Istanbul, Turkey,Surface Science and Technology Center (KUYTAM), Koc University, Istanbul, Turkey,Graduate School of Materials Science and Engineering, Koc University, Istanbul, Turkey,*Correspondence: Havva Yagci Acar, ; Safacan Kolemen,
| | - Safacan Kolemen
- Department of Chemistry, Koc University, Istanbul, Turkey,Surface Science and Technology Center (KUYTAM), Koc University, Istanbul, Turkey,Boron and Advanced Materials Application and Research Center, Koc University, Istanbul, Turkey,TUPRAS Energy Center (KUTEM), Koc University, Istanbul, Turkey,*Correspondence: Havva Yagci Acar, ; Safacan Kolemen,
| |
Collapse
|
131
|
St. Lorenz A, Buabeng ER, Taratula O, Taratula O, Henary M. Near-Infrared Heptamethine Cyanine Dyes for Nanoparticle-Based Photoacoustic Imaging and Photothermal Therapy. J Med Chem 2021; 64:8798-8805. [PMID: 34081463 PMCID: PMC10807376 DOI: 10.1021/acs.jmedchem.1c00771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have synthesized and characterized a library of near-infrared (NIR) heptamethine cyanine dyes for biomedical application as photoacoustic imaging and photothermal agents. These hydrophobic dyes were incorporated into a polymer-based nanoparticle system to provide aqueous solubility and protection of the photophysical properties of each dye scaffold. Among those heptamethine cyanine dyes analyzed, 13 compounds within the nontoxic polymeric nanoparticles have been selected to exemplify structural relationships in terms of photostability, photoacoustic imaging, and photothermal behavior within the NIR (∼650-850 nm) spectral region. The most contributing structural features observed in our dye design include hydrophobicity, rotatable bonds, heavy atom effects, and stability of the central cyclohexene ring within the dye core. The NIR agents developed within this project serve to elicit a structure-function relationship with emphasis on their photoacoustic and photothermal characteristics aiming at producing customizable NIR photoacoustic and photothermal tools for clinical use.
Collapse
Affiliation(s)
- Anna St. Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Emmanuel Ramsey Buabeng
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
132
|
Dahal D, Ray P, Pan D. Unlocking the power of optical imaging in the second biological window: Structuring near-infrared II materials from organic molecules to nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1734. [PMID: 34159753 DOI: 10.1002/wnan.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Biomedical imaging techniques play a crucial role in clinical diagnosis, surgical intervention, and prognosis. Fluorescence imaging in the second biological window (second near-infrared [NIR-II]; 1000-1700 nm) has attracted attention recently. NIR-II fluorescence imaging offers unique advantages in terms of reduced photon scattering, deep tissue penetration, high sensitivity, and many others. A host of materials, including small organic molecules, single-walled carbon nanotubes, polymeric and rare-earth-doped nanoparticles, have been explored as NIR-II emitting fluorescent probes. Efficient and viable approaches to design and develop fluorescence probes with tunable photophysical properties without compromising other key features are of paramount importance. Various chemical strategies are explored to increase the quantum yield of these imaging agents without compromising their spatiotemporal resolution, specificity, and tissue penetration capabilities. This review summarizes the strategies implemented to design and synthesize NIR-II emitting nanoparticles and small organic molecule-based fluorescent probes for applications in the biomedical field. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Dipendra Dahal
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| | - Priyanka Ray
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Dipanjan Pan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
133
|
Roth SM, Press DJ, Heyne B, Sutherland TC. Synthetic Access to Benzimidacarbocyanine Dyes to Tailor Their Aggregation Properties. J Org Chem 2021; 86:8641-8651. [PMID: 34151572 DOI: 10.1021/acs.joc.1c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing structure-aggregation relationships of cyanine dyes is crucial for controlling their optical properties for various uses. This study develops a synthetic route and the structure-dependent self-assembly of a family of benzimidacarbocyanine dyes for J- or H-aggregation properties. It was found that both the presence and placement of halogen atoms play a defining role in the resulting supramolecular interactions of these compounds.
Collapse
Affiliation(s)
- Sophia M Roth
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - David J Press
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Belinda Heyne
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Todd C Sutherland
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
134
|
Busson B, Farhat M, Nini Teunda PJ, Roy S, Jarisz T, Hore DK. All-experimental analysis of doubly resonant sum-frequency generation spectra: Application to aggregated rhodamine films. J Chem Phys 2021; 154:224704. [PMID: 34241238 DOI: 10.1063/5.0048787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new method is proposed to analyze Doubly Resonant infrared-visible Sum-Frequency Generation (DR-SFG) spectra. Based on the transform technique, this approach is free from assumptions about vibronic modes, energies, or line widths and accurately captures through the overlap spectral function all required aspects of the vibronic structure from simple experimental linear absorption spectra. Details and implementation of the method are provided along with three examples treating rhodamine thin films about one monolayer thick. The technique leads to a perfect agreement between experiment and simulations of the visible DR-SFG line shapes, even in the case of complex intermolecular interactions resulting from J-aggregated chromophores in heterogeneous films. For films with mixed H- and J-aggregates, separation of their responses shows that the J-aggregate DR-SFG response is dominant. Our analysis also accounts for the unexplained results published in the early times of DR-SFG experiments.
Collapse
Affiliation(s)
- Bertrand Busson
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Maissa Farhat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | | | - Sandra Roy
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Tasha Jarisz
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
135
|
Study of excited state relaxation by time-resolved spectroscopy in conjugated substituted polyene bis-oxazoles. Struct Chem 2021. [DOI: 10.1007/s11224-021-01752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
136
|
Munz D, Meyer K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 2021; 5:422-439. [PMID: 37118028 DOI: 10.1038/s41570-021-00276-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including 'click chemistry', photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity - or, rather, 'charge frustration' - as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor-acceptor ligand systems for reversible 1e- chemistry or switching.
Collapse
|
137
|
Vettoretto N, Foglia E, Ferrario L, Gerardi C, Molteni B, Nocco U, Lettieri E, Molfino S, Baiocchi GL, Elmore U, Rosati R, Currò G, Cassinotti E, Boni L, Cirocchi R, Marano A, Petz WL, Arezzo A, Bonino MA, Davini F, Biondi A, Anania G, Agresta F, Silecchia G. Could fluorescence-guided surgery be an efficient and sustainable option? A SICE (Italian Society of Endoscopic Surgery) health technology assessment summary. Surg Endosc 2021; 34:3270-3284. [PMID: 32274626 DOI: 10.1007/s00464-020-07542-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Indocyanine green fluorescence vision is an upcoming technology in surgery. It can be used in three ways: angiographic and biliary tree visualization and lymphatic spreading studies. The present paper shows the most outstanding results from an health technology assessment study design, conducted on fluorescence-guided compared with standard vision surgery. METHODS A health technology assessment approach was implemented to investigate the economic, social, ethical, and organizational implications related to the adoption of the innovative fluorescence-guided view, with a focus on minimally invasive approach. With the support of a multidisciplinary team, qualitative and quantitative data were collected, by means of literature evidence, validated questionnaires and self-reported interviews, considering the dimensions resulting from the EUnetHTA Core Model. RESULTS From a systematic search of literature, we retrieved the following studies: 6 on hepatic, 1 on pancreatic, 4 on biliary, 2 on bariatric, 4 on endocrine, 2 on thoracic, 11 on colorectal, 7 on urology, 11 on gynecology, 2 on gastric surgery. Fluorescence guide has shown advantages on the length of hospitalization particularly in colorectal surgery, with a reduction of the rate of leakages and re-do anastomoses, in spite of a slight increase in operating time, and is confirmed to be a safe, efficacious, and sustainable vision technology. Clinical applications are still presenting a low evidence in the literature. CONCLUSION The present paper, under the patronage of Italian Society of Endoscopic Surgery, based on an HTA approach, sustains the use of fluorescence-guided vision in minimally invasive surgery, in the fields of general, gynecologic, urologic, and thoracic surgery, as an efficient and economically sustainable technology.
Collapse
Affiliation(s)
- N Vettoretto
- Chirurgia Montichiari, Azienda Socio Sanitaria Territoriale Degli Spedali Civili, V.le Ciotti 154, Montichiari, 25018, Brescia, Italy.
| | - E Foglia
- LIUC - Università Cattaneo, Castellanza, VA, Italy
| | - L Ferrario
- LIUC - Università Cattaneo, Castellanza, VA, Italy
| | - C Gerardi
- Centro di Politiche Regolatorie, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| | - B Molteni
- Department of Clinical and Experimental Surgery, University of Brescia, Brescia, Italy
| | - U Nocco
- Ingegneria Clinica, Azienda Socio Sanitaria Territoriale dei Sette Laghi, Varese, Italy
| | - E Lettieri
- School of Management, Department of Management, Economics and Industrial Engineering, Politecnico, Milano, Italy
| | - S Molfino
- Department of Clinical and Experimental Surgery, University of Brescia, Brescia, Italy
| | - G L Baiocchi
- Department of Clinical and Experimental Surgery, University of Brescia, Brescia, Italy
| | - U Elmore
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - R Rosati
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - G Currò
- Department of Human Pathology of Adult and Evolutive Age, University Hospital of Messina, Messina, Italy
| | - E Cassinotti
- Chirurgia Generale, Fondazione IRCCS - Ca' Granda - Ospedale Maggiore Policlinico - University of Milan, Milan, Italy
| | - L Boni
- Chirurgia Generale, Fondazione IRCCS - Ca' Granda - Ospedale Maggiore Policlinico - University of Milan, Milan, Italy
| | - R Cirocchi
- Department of Surgical Sciences, University of Perugia, Perugia, Italy
| | - A Marano
- Chirurgia Generale ed Oncologica, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy
| | - W L Petz
- Chirurgia, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - A Arezzo
- Department of Surgical Sciences, University of Torino, Turin, Italy
| | - M A Bonino
- Department of Surgical Sciences, University of Torino, Turin, Italy
| | - F Davini
- Centro multidisciplinare Chirurgia Robotica, Chirurgia Toracica mini-invasiva e Robotica, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - A Biondi
- Chirurgia Generale, Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - G Anania
- Chirurgia Generale, University of Ferrara, Ferrara, Italy
| | - F Agresta
- Chirurgia Generale, Azienda ULSS 5 "Polesana", Hospital of Adria, Adria, RO, Italy
| | - G Silecchia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, Rome, Italy
| |
Collapse
|
138
|
Shang J, Li Y, Chen K, Li H. Synthesis and Properties of a Water-soluble Fluorescent Probe Based on ICT System for Detection of Ultra-trace SO 2 Derivatives. J Fluoresc 2021; 31:755-761. [PMID: 33646474 DOI: 10.1007/s10895-021-02702-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
SO2 and its derivatives are widely present in the environment and living organisms, endangering the environment and human health. Therefore, it is of great significance for the effective detection of sulfur dioxide (SO2) and its hydrated derivatives (HSO3- /SO32-). In this study, based on the mechanism of intramolecular charge transfer (ICT), a water-soluble colorimetric fluorescent probe (E)-2-(4-acetamidostyryl)-3-(5-carboxypentyl)-1, 1-dimethyl-1H-benzo[e]indol-3-ium (ABI) for the detection of SO2 derivatives was successfully synthesized from p-acetaminobenzaldehyde by connecting the benzo[e]indoles cationic fluorophore containing highly activated methyl via C = C double bond, and the ABI structure was characterized by HRMS and 1H NMR, 13 C NMR. Studies have shown that the ABI probe has some advantages such as good selectivity for SO2 derivatives, high sensitivity (detection limit LOD = 14.9 nM), and fast reaction rate. After adding HSO3-, the color of the probe solution changed from light yellow to colorless within 10 s, which provides a simple way to identify bisulfite with the naked eye. Studies on the effect of pH on the fluorescence performance of ABI showed that fluorescence performance of ABI was stable in the range of pH (7.0-10.26). Therefore, ABI is expected to become an effective tool for detecting SO2 derivatives in cells and organisms in the future.
Collapse
Affiliation(s)
- Jinyan Shang
- School of Chemistry and Food Engineering, Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Yanbo Li
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Kangni Chen
- School of Chemistry and Food Engineering, Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Heping Li
- School of Chemistry and Food Engineering, Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology, Changsha, Hunan, 410114, China.
| |
Collapse
|
139
|
Shoji T, Yamazaki A, Ariga Y, Uda M, Ando D, Sasahara N, Kai N, Ito S. Azulene-Substituted Donor-Acceptor Polymethines and 1,6'-Bi-, 1,6';3,6''-Ter-, and Quinqueazulenes via Zincke Salts: Synthesis, and Structural, Optical, and Electrochemical Properties. Chempluschem 2021; 86:946-966. [PMID: 33973729 DOI: 10.1002/cplu.202100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Azulene-substituted donor-acceptor polymethines, bi-, ter-, and quinqueazulenes composed of the 1,6'-biazulene unit have been successfully prepared from corresponding Zincke salts. The synthesis of polymethines through the reaction of Zincke salts with several amines, followed by a Knoevenagel reaction with malononitrile, was accomplished in moderate to high yields (40-92 %). Meanwhile, the reaction of Zincke salts with secondary amines and the subsequent sequential condensation-cyclization with cyclopentadienide ions, so-called Ziegler-Hafner method, produced the corresponding 1,6'-biazulenes, 1,6';3,6''-terazulenes, and quinqueazulene, respectively. The structural, optical, and electrochemical properties of the azulene-substituted donor-acceptor polymethines, bi-, ter-, and quinqueazulenes were revealed by single-crystal X-ray structure analysis, UV/vis spectroscopy, voltammetry analysis, spectroelectrochemistry, and theoretical calculations. These results suggested that the substituents on the azulene ring and their substitution positions directly affect their reactivities, optical and electrochemical properties.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Akari Yamazaki
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Yukino Ariga
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Mayumi Uda
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Daichi Ando
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Nichika Sasahara
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Naohito Kai
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Aomori, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Aomori, Japan
| |
Collapse
|
140
|
Guo X, Li Q, Xiang J, Liu M, Guan A, Tang Y, Sun H. A hybrid aggregate FRET probe from the mixed assembly of cyanine dyes for highly specific monitoring of mitochondria autophagy. Anal Chim Acta 2021; 1165:338561. [PMID: 33975703 DOI: 10.1016/j.aca.2021.338561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/27/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Mitochondria autophagy, also known as mitophagy, is a process in which mitochondria are wrapped by autophagosomes and fused with lysosomes for degradation. This process is essential for mitochondrial quality control. Here, we developed a hybrid aggregate FRET probe through mixed assembly of two cyanine dyes FMOTY and AMTC. In live cells, FMOTY and AMTC exist independently in lysosomes and mitochondria and will not produce interfering FRET background signals. The FRET signal is only generated when mitochondria is transported to lysosomes during mitophagy. This allows the hybridized aggregate to be used as a highly specific probe for monitoring mitophagy.
Collapse
Affiliation(s)
- Xiaomeng Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qian Li
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Junfeng Xiang
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Meirong Liu
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Aijiao Guan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
141
|
Tirri B, Mazzone G, Ottochian A, Gomar J, Raucci U, Adamo C, Ciofini I. A combined Monte Carlo/DFT approach to simulate UV-vis spectra of molecules and aggregates: Merocyanine dyes as a case study. J Comput Chem 2021; 42:1054-1063. [PMID: 33797766 DOI: 10.1002/jcc.26505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/09/2022]
Abstract
The combination of a Monte Carlo (MC) sampling of the configurational space with time dependent-density functional theory (TD-DFT) to estimate vertical excitations energies has been applied to compute the absorption spectra of a family of merocyanine dyes in both their monomeric and dimeric forms. These results have been compared to those obtained using a static DFT/TD-DFT approach as well as to the available experimental spectra. Though suffering of the limitations related to the use of DFT and TD-DFT for this type of systems, our data clearly show that the classical MC sampling provides a suitable alternative to classical molecular dynamics to explore the structural flexibility of these donor-acceptor (D-π-A) chromophores enabling a realistic description of the potential energy surface of both their monomers and aggregates (here dimers) and thus of their spectra. Overall, the combination of MC sampling with quantum mechanics (TD-DFT) calculations, carried out in implicit dioxane solvent on random snapshots, provides a workable compromise to solve the combined challenge of accuracy and time-consuming problem not only for merocyanines momers, but also for their dimers, up to now less investigated. Indeed, the simulated absorption spectra fairly agree with the experimental ones, suggesting the general reliability of the method.
Collapse
Affiliation(s)
- Bernardino Tirri
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| | - Gloria Mazzone
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| | - Jerôme Gomar
- L'Oréal, Research and Innovation, Aulnay-sous-Bois, France
| | - Umberto Raucci
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France.,Institut Universitaire de France, Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| |
Collapse
|
142
|
Guarin CA, Mendoza-Luna LG, Haro-Poniatowski E, Hernández-Pozos JL. Two-photon absorption spectrum and characterization of the upper electronic states of the dye IR780. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119291. [PMID: 33360055 DOI: 10.1016/j.saa.2020.119291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
In this work, the full two-photon absorption (2PA) spectrum of cyanine dye IR780 in methanol was measured and some important properties of the upper excited electronic states were investigated. Specifically, two IR780 2PA bands of intensities nearing 140 and 2800 Goeppert-Mayer (GM) were found. In order to determine the optical properties of the upper electronic singlet states, a deconvolution of the absorption peaks in the UV region of the spectrum was made. Based on this, properties such as transition dipole moments, oscillator strengths, absorption maxima in the UV-vis spectra, S2-S1 vibrational couplings and predictions of the lifetime of the second excited state were calculated. Moreover, by combining experimental and computational results, the 2PA transitions were assigned to the upper excited states S2 and S4. Cross-section magnitudes, positions and shapes of the 2PA bands have been satisfactorily explained with a four-state model that comprises the singlet states S1, S2 and S4. From these results, the cyanine investigated in the present work could be used as a novel and interesting moiety for more complex systems that respond to two-photon excitation.
Collapse
Affiliation(s)
- Cesar A Guarin
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México; Cátedras CONACYT - Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México.
| | - Luis Guillermo Mendoza-Luna
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México; Cátedras CONACYT - Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México.
| | - Emmanuel Haro-Poniatowski
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México
| | - José Luis Hernández-Pozos
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México
| |
Collapse
|
143
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine conjugates in cancer theranostics. Bioact Mater 2021; 6:794-809. [PMID: 33024900 PMCID: PMC7528000 DOI: 10.1016/j.bioactmat.2020.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cyanine is a meritorious fluorogenic core for the construction of fluorescent probes and its phototherapeutic potential has been enthusiastically explored as well. Alternatively, the covalent conjugation of cyanine with other potent therapeutic agents not only boosts its therapeutic efficacy but also broadens its therapeutic modality. Herein, we summarize miscellaneous cyanine-therapeutic agent conjugates in cancer theranostics from literature published between 2014 and 2020. The application scenarios of such theranostic cyanine conjugates covered common cancer therapeutic modalities, including chemotherapy, phototherapy and targeted therapy. Besides, cyanine conjugates that serve as nanocarriers for drug delivery are introduced as well. In an additional section, we analyze the potential of these conjugates for clinical translation. Overall, this review is aimed to stimulate research interest in exploring unattempted therapeutic agents and novel conjugation strategies and hopefully, accelerate clinical translation in this field.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
144
|
Colas K, Doloczki S, Posada Urrutia M, Dyrager C. Prevalent Bioimaging Scaffolds: Synthesis, Photophysical Properties and Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kilian Colas
- Department of Chemistry – BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Susanne Doloczki
- Department of Chemistry – BMC Uppsala University Box 576 75123 Uppsala Sweden
| | | | - Christine Dyrager
- Department of Chemistry – BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
145
|
Atabekyan LS, Aleksandrova NA, Gromov SP. Photoconversions of 15-crown-5-containing styryl dye and its complex with barium cation in the presence of cucurbit[7,8]urils. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3092-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
146
|
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021; 50:4185-4219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Citation(s) in RCA: 500] [Impact Index Per Article: 166.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT), a therapeutic mode involving light triggering, has been recognized as an attractive oncotherapy treatment. However, nonnegligible challenges remain for its further clinical use, including finite tumor suppression, poor tumor targeting, and limited therapeutic depth. The photosensitizer (PS), being the most important element of PDT, plays a decisive role in PDT treatment. This review summarizes recent progress made in the development of PSs for overcoming the above challenges. This progress has included PSs developed to display enhanced tolerance of the tumor microenvironment, improved tumor-specific selectivity, and feasibility of use in deep tissue. Based on their molecular photophysical properties and design directions, the PSs are classified by parent structures, which are discussed in detail from the molecular design to application. Finally, a brief summary of current strategies for designing PSs and future perspectives are also presented. We expect the information provided in this review to spur the further design of PSs and the clinical development of PDT-mediated cancer treatments.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | | | | | | | | |
Collapse
|
147
|
de Oliveira MA, Pound-Lana G, Capelari-Oliveira P, Pontífice TG, Silva SED, Machado MGC, Postacchini BB, Mosqueira VCF. Release, transfer and partition of fluorescent dyes from polymeric nanocarriers to serum proteins monitored by asymmetric flow field-flow fractionation. J Chromatogr A 2021; 1641:461959. [PMID: 33611111 DOI: 10.1016/j.chroma.2021.461959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
Fluorescent probes are used in drug nanocarrier pre-clinical studies or as active compounds in theranostics and photodynamic therapy. In the biological medium, nanoparticles interact with proteins, which can result in the off-target release of their cargo. The present study used asymmetric flow field-flow fractionation with online multi-angle laser light scattering and fluorescence detection (AF4-MALLS-FLD) to study the release, transfer, and partition of fluorescent dyes from polymeric nanoparticles (NP). NP formulations containing the dyes Rose Bengal, Rhodamine B, DiI, 3-(α-azidoacetyl)coumarin and its polymer conjugate, Nile Red, and IR780 and its polymer conjugate were prepared. NP suspensions were incubated in a medium with serum proteins and then analyzed by AF4. AF4 allowed efficient separation of proteins (< 10 nm) from fluorescently labeled NP (range of 54 - 180 nm in diameters). The AF4 analyses showed that some dyes, such as Rose Bengal, IR780, and Coumarin were transferred to a high extent (68-77%) from NP to proteins. By contrast, for DiI and dye-polymer conjugates, transfer occured to a lower extent. The studies of dye release kinetics showed that the transfer of IR780 from NP to proteins occurs at a high extent (~50%) and rate, while Nile Red was slowly released from the NP over time with reduced association with proteins (~20%). This experiment assesses the stability of fluorescence labeling of nanocarriers and probes the transfer of fluorescent dyes from NP to proteins, which is otherwise not accessible with commonly used techniques of separation, such as dialysis and ultrafiltration/centrifugation employed in drug encapsulation and release studies of nanocarriers. Determining the interaction and transfer of dyes to proteins is of utmost importance in the pre-clinical evaluation of drug nanocarriers for improved correlation between in vitro and in vivo studies.
Collapse
Affiliation(s)
- Maria Alice de Oliveira
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Gwenaelle Pound-Lana
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Patricia Capelari-Oliveira
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Thaís Godinho Pontífice
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Sabrina Emanuelle Dias Silva
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Marina Guimarães Carvalho Machado
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Bruna Bueno Postacchini
- Photophysics Laboratory, Department of Physics, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
148
|
Xu Z, Chen H, Deng GJ, Huang H. Copper-Catalyzed Formal [3 + 3] Annulations of Arylketoximes and o-Fluorobenzaldehydes: An Entry to Quinoline Compounds. Org Lett 2021; 23:936-942. [DOI: 10.1021/acs.orglett.0c04138] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
149
|
Land MA, Robertson KN, Ylijoki KEO, Clyburne JAC. Reactivity of 1,3-dichloro-1,3-bis(dimethylamino)-propenium salts with primary amines. NEW J CHEM 2021. [DOI: 10.1039/d1nj02298a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1,3-Dichloro-1,3-bis(dimethylamino)propenium salts react with primary amines to give different products depending on properties of the amine used, including the size of the R groups, whether it is aromatic, and if there is a hydrogen on the α-carbon.
Collapse
|
150
|
Kumar V, Pandey S, Behera K. Aggregation behavior of a model carbocyanine dye: Polar organic solvent versus ionic liquid mixture. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|