101
|
Demir S, Bilgin N, Cepni HM, Furukawa H, Yilmaz F, Altintas C, Keskin S. Enhanced water stability and high CO 2 storage capacity of a Lewis basic sites-containing zirconium metal-organic framework. Dalton Trans 2021; 50:16587-16592. [PMID: 34740231 DOI: 10.1039/d1dt02772g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) are an emerging class of materials employed for custom-designed purposes by judicious selection of linkers and metal ions. Among the MOFs composed of carboxylate linkers, Zr-based MOFs have attracted great attention due to their high thermal and chemical stabilities, which are important for practical applications, including capturing CO2 from a point source. UiO-67(bipy) containing 2,2'-bipyridine-5,5'-dicarboxylate is particularly useful among the Zr-MOF family due to the Lewis basic sites of the linker; however, the hydrolytic stability of UiO-67(bipy) does not seem to be as high as those of UiO-66 and UiO-67. To improve the hydrolytic stability without sacrificing the adsorption enthalpy of CO2 for selective CO2 capture, in this study, we added hydrophobic methyl groups to the backbone of the bipyridine linker. The synthesized 6,6'-dimethyl-2,2'-bipyridine-5,5'-dicarboxylic acid (H2Me2bipy) was used to prepare a Zr-based MOF [MOF-553, Zr6O4(OH)4(Me2Bipy)6]. In addition, the water stability and CO2 adsorption capacity of MOF-553 were compared to those of UiO-67(bipy). We revealed that MOF-553 is more robust and has a higher CO2 adsorption capacity than UiO-67(bipy), indicating that the methylation of the linker improves the water stability of the framework, which is advantageous for point-source CO2 capture.
Collapse
Affiliation(s)
- Selçuk Demir
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Department of Chemistry, 53100, Rize, Turkey.
| | - Nuray Bilgin
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Department of Chemistry, 53100, Rize, Turkey.
| | - Hamide Merve Cepni
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Department of Chemistry, 53100, Rize, Turkey.
| | - Hiroyasu Furukawa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Fatih Yilmaz
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Department of Chemistry, 53100, Rize, Turkey.
| | - Cigdem Altintas
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
102
|
Cho HJ, Kang E, Kim S, Yang DC, Nam J, Jin E, Choe W. Impact of Zr 6 Node in a Metal-Organic Framework for Adsorptive Removal of Antibiotics from Water. Inorg Chem 2021; 60:16966-16976. [PMID: 34662513 DOI: 10.1021/acs.inorgchem.1c01890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quinolone-based antibiotics commonly detected in surface, ground, and drinking water are difficult to remove and therefore pose a threat as organic contaminants of aqueous environment. We performed adsorptive removal of quinolone antibiotics, nalidixic acid and ofloxacin, using a zirconium-porphyrin-based metal-organic framework (MOF), PCN-224. PCN-224 exhibits the highest adsorption capacities for both nalidixic acid and ofloxacin among those reported for MOFs to date. The accessible metal sites of Zr metal nodes are responsible for efficient adsorptive removal. This study offers a pragmatic approach to design MOFs optimized for adsorptive removal of antibiotics.
Collapse
Affiliation(s)
- Hye Jin Cho
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Eunyoung Kang
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Seonghoon Kim
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - D ChangMo Yang
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Joohan Nam
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
103
|
Yang X, Bonnett BL, Spiering GA, Cornell HD, Gibbons BJ, Moore RB, Foster EJ, Morris AJ. Understanding the Mechanical Reinforcement of Metal-Organic Framework-Polymer Composites: The Effect of Aspect Ratio. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51894-51905. [PMID: 34086436 DOI: 10.1021/acsami.1c05430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aspect ratio (AR) of filler particles is one of the most critical determinants for the mechanical properties of particle-reinforced polymer composites. However, it has been challenging to solely study the effect of particle AR due to the difficulties of controlling AR without altering the physical and chemical properties of the particle. Herein, we synthesized PCN-222, a zirconium-based porphyrinic metal-organic framework (MOF) with preferential longitudinal growth as a series of particles with ARs increasing from 3.4 to 54. The synthetic MOF conditions allowed for the chemical properties of the particles to remain constant over the series. The particles were employed as reinforcers for poly(methyl methacrylate) (PMMA). MOF-polymer composite films were fabricated using doctor-blading techniques, which facilitated particle dispersion and alignment in the PMMA matrix, as revealed by optical microscopy and wide-angle X-ray diffraction. Mechanical measurements showed that both elastic and dynamic moduli increased with particle AR and particle concentrations but started to decrease as particle loading increased beyond 0.5 wt % (1.12 vol %). The data obtained at low particle loadings were fitted well with the Halpin-Tsai model. In contrast, the percolation model and the Cox model were unable to adequately fit the data, indicating the mechanical reinforcement in our system mainly originated from efficient load transfer between particles and the matrix in the particle orienting direction. Finally, we showed that the thermal stability of composite films increased with the addition of MOF particles because of the high thermal degradation temperature and restricted polymer chain mobility.
Collapse
Affiliation(s)
- Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Brittany L Bonnett
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Glenn A Spiering
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hannah D Cornell
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Bradley J Gibbons
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Robert B Moore
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - E Johan Foster
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemical and Biological Engineering, University of British Columbia, British Columbia, Vancouver, V6T 1Z3, Canada
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
104
|
Hurlock MJ, Hao L, Kriegsman KW, Guo X, O'Keeffe M, Zhang Q. Evolution of 14-Connected Zr 6 Secondary Building Units through Postsynthetic Linker Incorporation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51945-51953. [PMID: 34124879 DOI: 10.1021/acsami.1c07701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two new zirconium MOFs, WSU-6 and WSU-7, were synthesized through postsynthetic modifications. In both cases, linker insertion was conducted on a MOF consisting of eight-connected (8-c) Zr6 cluster and four-connected (4-c) ETTC linker, WSU-5, which possesses the uncommon 4, 8-c scu-c topology. The insertion of 1, 4-benzenedicarboxylate into the MOF formed the new 4, 12-c mjh topology, WSU-6. Interestingly, when 2, 6-naphthalenedicarboxylate was inserted, WSU-7 can be formed, which possesses a new 4, 14-c jkz topology. WSU-7 contains very rare 14-c Zr6 secondary building units (SBUs) and is the first MOF to have a Zr6 SBUs with connectivity greater than 12. The three Zr-MOFs were structurally characterized, and the photoluminescence properties of the materials were also studied.
Collapse
Affiliation(s)
| | | | | | | | - Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | | |
Collapse
|
105
|
Zhang W, Nafady A, Shan C, Wojtas L, Chen YS, Cheng Q, Zhang XP, Ma S. Functional Porphyrinic Metal-Organic Framework as a New Class of Heterogeneous Halogen-Bond-Donor Catalyst. Angew Chem Int Ed Engl 2021; 60:24312-24317. [PMID: 34496141 DOI: 10.1002/anie.202111893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/12/2022]
Abstract
Biomimetic metal-organic frameworks have attracted great attention as they can be used as bio-inspired models, allowing us to gain important insights into how large biological molecules function as catalysts. In this work, we report the synthesis and utilization of such a metal-metalloporphyrin framework (MMPF) that is constructed from a custom-designed ligand as an efficient halogen bond donor catalyst for Diels-Alder reactions under ambient conditions. The implementation of fabricated halogen bonding capsule as binding pocket with high-density C-Br bonds enabled the use of halogen bonding to facilitate organic transformations in their three-dimensional cavities. Through combined experimental and computational studies, we showed that the substrate molecules diffuse through the pores of the MMPF, establishing a host-guest system via the C-Br⋅⋅⋅π interaction. The formation of halogen bonds is a plausible explanation for the observed boosted catalytic efficiency in Diels-Alder reactions. Moreover, the unique capability of MMPF highlights new opportunities in using artificial non-covalent binding pockets as highly tunable and selective catalytic materials.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chuan Shan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Yu-Sheng Chen
- ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Qigan Cheng
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
106
|
Zhang W, Nafady A, Shan C, Wojtas L, Chen Y, Cheng Q, Zhang XP, Ma S. Functional Porphyrinic Metal–Organic Framework as a New Class of Heterogeneous Halogen‐Bond‐Donor Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weijie Zhang
- Department of Chemistry University of North Texas Denton TX 76203 USA
| | - Ayman Nafady
- Department of Chemistry College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Chuan Shan
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Yu‐Sheng Chen
- ChemMatCARS Center for Advanced Radiation Sources University of Chicago 9700 S. Cass Avenue Argonne IL 60439 USA
| | - Qigan Cheng
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - X. Peter Zhang
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Shengqian Ma
- Department of Chemistry University of North Texas Denton TX 76203 USA
| |
Collapse
|
107
|
Rabie EM, Khalil MMH, Elaasser MM, Ismail EH. Macro‐ and nano‐oligomers ternary metal complexes preparation, structural elucidation: Antimicrobial, anticancer activities, and mechanistic study of Cu nanocomplexes on liver carcinoma. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eman M. Rabie
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | | | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology Al‐Azhar University Cairo Egypt
| | - Eman H. Ismail
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
108
|
Abstract
Metal-organic frameworks (MOFs) have attracted great attention for their applications in chemical sensors mainly due to their high porosity resulting in high density of spatially accessible active sites, which can interact with the aimed analyte. Among various MOFs, frameworks constructed from group 4 metal-based (e.g., zirconium, titanium, hafnium, and cerium) MOFs, have become especially of interest for the sensors requiring the operations in aqueous media owing to their remarkable chemical stability in water. Research efforts have been made to utilize these group 4 metal-based MOFs in chemosensors such as luminescent sensors, colorimetric sensors, electrochemical sensors, and resistive sensors for a range of analytes since 2013. Though several studies in this subfield have been published especially over the past 3–5 years, some challenges and concerns are still there and sometimes they might be overlooked. In this review, we aim to highlight the recent progress in the use of group 4 metal-based MOFs in chemical sensors, and focus on the challenges, potential concerns, and opportunities in future studies regarding the developments of such chemically robust MOFs for sensing applications.
Collapse
|
109
|
Liu Y, Tang C, Cheng M, Chen M, Chen S, Lei L, Chen Y, Yi H, Fu Y, Li L. Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03866] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chensi Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
110
|
Zhou J, Li Y, Wang L, Xie Z. Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances. J Mater Chem B 2021; 9:7760-7770. [PMID: 34586151 DOI: 10.1039/d1tb01311d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive MOF-based delivery systems are highly attractive for photodynamic therapy (PDT), but the fundamental interplay among structural parameters and photoactivity and biological properties of these MOFs remains unclear. Herein, porphyrinic MOF isomers (TCPP-MOFs), constructing using the same building blocks into distinct topologies, have been selected as ideal models to understand this problem. Both the intramolecular distances and molecular polarization within TCPP-MOFs isomers collectively contribute to the photoactivity of generating reactive oxygen species. Remarkably, the morphology-determined endocytic pathways and cytotoxicity, as well as good biocompatibility have been confirmed for TCPP-MOF isomers without any chemical modification for the first time. Besides the topology-dependent photoactive regulation, this work also provides in-depth insights into the biological effect from the MOF nanoparticles with controllable structural factors, benefiting further in vivo applications and clinical transformation.
Collapse
Affiliation(s)
- Junli Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
111
|
Huang Y, Li X, Zhang YC, Shi Z, Zeng L, Xie J, Du Y, Lu D, Hu Z, Cai T, Luo Z. Aqueous Protein-Polymer Bioconjugation via Photoinduced RAFT Polymerization Using High Loading Heterogeneous Catalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44488-44496. [PMID: 34514775 DOI: 10.1021/acsami.1c13770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light-driven polymerization, such as photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, enables biological benign conditions and versatile functional polymer structure design, which is readily used in protein-polymer bioconjugates. However, conventional metalloporphyrinic homogeneous catalysts for PET-RAFT polymerization suffer from limited aqueous solubility and tedious purification. Here we demonstrate the design of PET-RAFT photocatalyst from the reticular assembled Zr-porphyrinic metal-organic frameworks (MOFs), along with a biomacromolecule-based chain transfer agent, as efficient bioconjugation tools in water. Our methodology offers manufacturing advantages on bioconjugates under mild conditions such that MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and cytotoxicity assays have shown the preservation of the protein integrity, bioactivity, and high cell viability after PET-RAFT polymerization. We find that the fast kinetics are benefiting from the ultrahigh loading of metalloporphyrins in MOF-525-Zn. This heterogeneous catalyst also allows us to maintain living characteristics to incorporate myriads of monomers into block copolymers. Other advantages like easy postreaction purification, reusability, and high oxygen tolerance even in an open system are demonstrated. This study provides a tool of highly efficient heterogeneous photocatalysts for polymer-protein bioconjugation in aqueous media and paves the road for biological applications.
Collapse
Affiliation(s)
- Ya Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yu Chi Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhiwei Shi
- Guangzhou Baiyun Medical Adhesive Company Ltd., Guangzhou, Guangdong 510405, P. R. China
| | - Lun Zeng
- Guangzhou Baiyun Medical Adhesive Company Ltd., Guangzhou, Guangdong 510405, P. R. China
| | - Jianbo Xie
- Guangzhou Baiyun Medical Adhesive Company Ltd., Guangzhou, Guangdong 510405, P. R. China
| | - Yucong Du
- Guangzhou Baiyun Medical Adhesive Company Ltd., Guangzhou, Guangdong 510405, P. R. China
| | - Dong Lu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong 511458, P. R. China
| | - Zhigang Hu
- Silver Age Engineering Plastics (Dongguan) Company Ltd., Dongguan, Guangdong 523187, P. R. China
| | - Tao Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
112
|
Yang H, Peng F, Hong AN, Wang Y, Bu X, Feng P. Ultrastable High-Connected Chromium Metal-Organic Frameworks. J Am Chem Soc 2021; 143:14470-14474. [PMID: 34464126 DOI: 10.1021/jacs.1c07277] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
State-of-the-art MOFs are generally known for chemical stability at one end of the pH scale (i.e., pH < 0 or pH > 14). Herein, we report new Cr-MOFs capable of withstanding extreme pH conditions across approximately 16 pH units from pH < 0 to pH > 14, likely the largest observed pH range for MOFs. The integration of multiple stability-enhancing factors including nonlabile Cr3+, mixed Cr-N and Cr-O cross-links, and the highest possible connectivity by Cr3O trimers enables extraordinary chemical stability confirmed by both PXRD and gas adsorption. Notably, the base stability is much higher than literature Cr-MOFs, thereby revitalizing Cr-MOF's viability in the pursuit for the most chemically stable MOFs. Among known cationic MOFs, the chemical stability of these new Cr-MOFs is unmatchable, to our knowledge. These Cr-MOFs can be developed into multiseries of isoreticular MOFs with a rich potential for functionalization, pore size, and pore geometry engineering and applications.
Collapse
Affiliation(s)
- Huajun Yang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States.,Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Fang Peng
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Anh N Hong
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yanxiang Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
113
|
Chen L, Hu HJ, Wang YL, Zhang XF, Xu LP, Liu QY. Metal-Organic Frameworks Featuring 18-Connected Nonanuclear Rare-Earth Oxygen Clusters and Cavities for Efficient C 2H 2/CO 2 Separation. Inorg Chem 2021; 60:13471-13478. [PMID: 34492758 DOI: 10.1021/acs.inorgchem.1c01827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two rare-earth (RE) metal-organic frameworks (MOFs) formulated as {(Me2NH2)2[RE9(μ3-OH)8(μ2-OH)3(DCPB)6(H2O)3]}n (RE = Y3+ and Tb3+; termed JXNU-10) built from a triangular 3,5-di(4'-carboxylphenyl)benzoic acid (DCPB3-) ligand are presented. JXNU-10 features the rarely observed 18-connected nonanuclear [RE9(μ3-OH)8(μ2-OH)3] clusters, one-dimensional-nanosized tubular channels, and trigonal-bipyramidal cavities. The presence of the high-nuclear RE-oxo clusters and the robust coordination bonds between the highly charged RE ions and the hard base of the carboxylate/hydroxyl oxygen atoms yielded the water-resistant JXNU-10 materials. JXNU-10 exhibits highly selective sorption of C2H2 over CO2 and highly efficient separation of a C2H2 and CO2 mixture. The carboxylate oxygen atoms and the rich π systems of the organic ligands on the pore walls are the desirable binding sites for a C2H2 molecule with acidic hydrogen atoms and an alkyne group, facilitating the excellent efficiency of JXNU-10 for C2H2/CO2 separation demonstrated by breakthrough experiments.
Collapse
Affiliation(s)
- Ling Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Hui-Jun Hu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Xue-Feng Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Lan-Ping Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
114
|
|
115
|
Lamare R, Ruppert R, Boudon C, Ruhlmann L, Weiss J. Porphyrins and Polyoxometalate Scaffolds. Chemistry 2021; 27:16071-16081. [PMID: 34459527 DOI: 10.1002/chem.202102277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Polyoxometalates (POMs) can act as unique reservoirs for multiple electron transfers. As POMs display only weak absorption in the visible spectrum, they can be associated with chromophores such as porphyrins and porphyrin antennae. In this Minireview, the research dedicated to the combination of porphyrins and polyoxometalates is put in context and the state of the art identifying the challenges addressed in the optimization of hybrid materials for applications is detailed.
Collapse
Affiliation(s)
- Raphaël Lamare
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Romain Ruppert
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Corinne Boudon
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Laurent Ruhlmann
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
116
|
Peralta RA, Huxley MT, Albalad J, Sumby CJ, Doonan CJ. Single-Crystal-to-Single-Crystal Transformations of Metal-Organic-Framework-Supported, Site-Isolated Trigonal-Planar Cu(I) Complexes with Labile Ligands. Inorg Chem 2021; 60:11775-11783. [PMID: 34160208 DOI: 10.1021/acs.inorgchem.1c00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transition-metal complexes bearing labile ligands can be difficult to isolate and study in solution because of unwanted dinucleation or ligand substitution reactions. Metal-organic frameworks (MOFs) provide a unique matrix that allows site isolation and stabilization of well-defined transition-metal complexes that may be of importance as moieties for gas adsorption or catalysis. Herein we report the development of an in situ anion metathesis strategy that facilitates the postsynthetic modification of Cu(I) complexes appended to a porous, crystalline MOF. By exchange of coordinated chloride for weakly coordinating anions in the presence of carbon monoxide (CO) or ethylene, a series of labile MOF-appended Cu(I) complexes featuring CO or ethylene ligands are prepared and structurally characterized using X-ray crystallography. These complexes have an uncommon trigonal planar geometry because of the absence of coordinating solvents. The porous host framework allows small and moderately sized molecules to access the isolated Cu(I) sites and displace the "place-holder" CO ligand, mirroring the ligand-exchange processes involved in Cu-centered catalysis.
Collapse
Affiliation(s)
- Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
117
|
Synthesis, DFT Calculations, Antiproliferative, Bactericidal Activity and Molecular Docking of Novel Mixed-Ligand Salen/8-Hydroxyquinoline Metal Complexes. Molecules 2021; 26:molecules26164725. [PMID: 34443314 PMCID: PMC8401699 DOI: 10.3390/molecules26164725] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
Despite the common use of salens and hydroxyquinolines as therapeutic and bioactive agents, their metal complexes are still under development. Here, we report the synthesis of novel mixed-ligand metal complexes (MSQ) comprising salen (S), derived from (2,2′-{1,2-ethanediylbis[nitrilo(E) methylylidene]}diphenol, and 8-hydroxyquinoline (Q) with Co(II), Ni(II), Cd(II), Al(III), and La(III). The structures and properties of these MSQ metal complexes were investigated using molar conductivity, melting point, FTIR, 1H NMR, 13C NMR, UV–VIS, mass spectra, and thermal analysis. Quantum calculation, analytical, and experimental measurements seem to suggest the proposed structure of the compounds and its uncommon monobasic tridentate binding mode of salen via phenolic oxygen, azomethine group, and the NH group. The general molecular formula of MSQ metal complexes is [M(S)(Q)(H2O)] for M (II) = Co, Ni, and Cd or [M(S)(Q)(Cl)] and [M(S)(Q)(H2O)]Cl for M(III) = La and Al, respectively. Importantly, all prepared metal complexes were evaluated for their antimicrobial and anticancer activities. The metal complexes exhibited high cytotoxic potency against human breast cancer (MDA-MB231) and liver cancer (Hep-G2) cell lines. Among all MSQ metal complexes, CoSQ and LaSQ produced IC50 values (1.49 and 1.95 µM, respectively) that were comparable to that of cisplatin (1.55 µM) against Hep-G2 cells, whereas CdSQ and LaSQ had best potency against MDA-MB231 with IC50 values of 1.95 and 1.43 µM, respectively. Furthermore, the metal complexes exhibited significant antimicrobial activities against a wide spectrum of both Gram-positive and -negative bacterial and fungal strains. The antibacterial and antifungal efficacies for the MSQ metal complexes, the free S and Q ligands, and the standard drugs gentamycin and ketoconazole decreased in the order AlSQ > LaSQ > CdSQ > gentamycin > NiSQ > CoSQ > Q > S for antibacterial activity, and for antifungal activity followed the trend of LaSQ > AlSQ > CdSQ > ketoconazole > NiSQ > CoSQ > Q > S. Molecular docking studies were performed to investigate the binding of the synthesized compounds with breast cancer oxidoreductase (PDB ID: 3HB5). According to the data obtained, the most probable coordination geometry is octahedral for all the metal complexes. The molecular and electronic structures of the metal complexes were optimized theoretically, and their quantum chemical parameters were calculated. PXRD results for the Cd(II) and La(III) metal complexes indicated that they were crystalline in nature.
Collapse
|
118
|
Zhang L, Feng Y, He H, Liu Y, Weng J, Zhang P, Huang W. Construction of hexanuclear Ce(III) metal−porphyrin frameworks through linker induce strategy for CO2 capture and conversion. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
119
|
Abstract
Synthetic efforts targeting highly symmetrical metal–organic frameworks (MOFs) have always been relentless, for the symmetry of a MOF’s pore environment and overall crystal structure are relevant to the MOF’s properties and behavior. Herein, we report a novel Th-based MOF constructed from assembling highly symmetrical Th-oxo clusters via in situ reductive coupling of nitroso groups on the cluster surface. Nitroso groups have long been known to dimerize in a reversible fashion. Putting them on the monovalent ligands that decorate the Th-oxo clusters can facilitate a downstream assembly process that link the said clusters in a controllable and predictable manner, preserving the overall symmetry in the MOF product. Moreover, the assembly can be made permanent by reducing the azodioxy moiety to azo, effectively locking the symmetrical MOF form. We believe this process of assembling pre-formed Th-oxo clusters helps the overall MOF adopt a highly symmetrical topology (face-centered cubic, fcu) resembling the well-known UiO series MOFs based on tetravalent Zr/Hf.
Collapse
|
120
|
Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev 2021; 121:12278-12326. [PMID: 34280313 DOI: 10.1021/acs.chemrev.1c00243] [Citation(s) in RCA: 382] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.
Collapse
Affiliation(s)
- Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangliang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi 710072, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
121
|
Liu YY, Chen LJ, Zhao X, Yan XP. Effect of Topology on Photodynamic Sterilization of Porphyrinic Metal-Organic Frameworks. Chemistry 2021; 27:10151-10159. [PMID: 33978976 DOI: 10.1002/chem.202100920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Porphyrinic metal-organic frameworks (MOFs) are promising photosensitizers due to the lack of self-aggregation of porphyrin in aqueous solution. However, how the topology of porphyrinic MOFs affects the generation of singlet oxygen (1 O2 ) is unclear. Here, the effect of the topology of porphyrinic MOFs on their photodynamic performance is reported. Four porphyrinic zirconium MOFs (MOF-525, MOF-545, PCN-223 and PCN-224 with different topologies: ftw, csq, shp and she, respectively) were selected to study the influence of topology on the photodynamic antibacterial performance. The 1 O2 generation and the photodynamic antibacterial performance followed an decreasing order of MOF-545>MOF-525>PCN-224>PCN-223. The results reveal that the pore size, the distance between porphyrin, and the number of porphyrin per Zr6 O8 cluster in MOFs greatly affected 1 O2 generation. This work provides guidance for designing new MOFs for efficient photodynamic sterilization.
Collapse
Affiliation(s)
- Yao-Yao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, P. R. China.,Key Laboratory of Synthetic and Biological Colloids Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
122
|
Morgan SE, O'Connell AM, Jansson A, Peterson GW, Mahle JJ, Eldred TB, Gao W, Parsons GN. Stretchable and Multi-Metal-Organic Framework Fabrics Via High-Yield Rapid Sorption-Vapor Synthesis and Their Application in Chemical Warfare Agent Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31279-31284. [PMID: 34170678 DOI: 10.1021/acsami.1c07366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protocols to create metal-organic framework (MOF)/polymer composites for separation, chemical capture, and catalytic applications currently rely on relatively slow solution-based processing to form single MOF composites. Here, we report a rapid, high-yield sorption-vapor method for direct simultaneous growth of single and multiple MOF materials onto untreated flexible and stretchable polymer fibers and films. The synthesis utilizes favorable reactant absorption into polymers coupled with rapid vapor-driven MOF crystallization to form high surface area (>250 m2/gcomposite) composites, including UiO-66-NH2, HKUST-1, and MOF-525 on spandex, nylon, and other fabrics. The resulting composites are robust and maintain their functionality even after stretching. Stretchable MOF fabrics enable rapid solid-state hydrolysis of the highly toxic chemical warfare agent soman and paraoxon-methyl simulant. We show that this approach can readily be scaled by solution spray-coating of MOF precursors and to large area substrates.
Collapse
Affiliation(s)
- Sarah E Morgan
- Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Andie M O'Connell
- Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Anton Jansson
- Analytical Instrument Facility, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Command Chemical Biologic Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - John J Mahle
- U.S. Army Combat Capabilities Command Chemical Biologic Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Tim B Eldred
- Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Wenpei Gao
- Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Gregory N Parsons
- Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
123
|
Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213945] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
124
|
Peng Y, Zhang Y, Tan Q, Huang H. Bioinspired Construction of Uranium Ion Trap with Abundant Phosphate Functional Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27049-27056. [PMID: 34076417 DOI: 10.1021/acsami.1c04892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly efficient extraction of radioactive uranium from aqueous solution remains a serious task in the nuclear energy field. To address this, we here create an effective uranium ion trap by using a novel and facile strategy that introduces bioinspired moiety phytic acid (PA) into highly robust PCN-222. The resultant metal-organic framework (MOF)-based uranium ion trap (PCN-222-PA) with a high density of accessible phosphate groups exhibits a remarkable U(VI) uptake capacity (401.6 mg·g-1), surpassing most of the reported phosphorus-modified MOFs and various other MOF adsorbents. Kinetics study reveals that PCN-222-PA can reduce the uranium concentration from 10 mg L-1 to 21 μg L-1, below the acceptable limit defined by the US Environmental Protection Agency. In addition, PCN-222-PA also shows good selectivity and high stability as well as excellent recyclability toward uranium capture. Our work demonstrates a new strategy to design functional MOFs with abundant phosphate groups and provides a new perspective for extracting uranium from aqueous solution.
Collapse
Affiliation(s)
- Yaguang Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuxi Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Tan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
125
|
Zhao X, Li J, Li X, Huo P, Shi W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
126
|
Koschnick C, Stäglich R, Scholz T, Terban MW, von Mankowski A, Savasci G, Binder F, Schökel A, Etter M, Nuss J, Siegel R, Germann LS, Ochsenfeld C, Dinnebier RE, Senker J, Lotsch BV. Understanding disorder and linker deficiency in porphyrinic zirconium-based metal-organic frameworks by resolving the Zr 8O 6 cluster conundrum in PCN-221. Nat Commun 2021; 12:3099. [PMID: 34035286 PMCID: PMC8149457 DOI: 10.1038/s41467-021-23348-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Porphyrin-based metal–organic frameworks (MOFs), exemplified by MOF-525, PCN-221, and PCN-224, are promising systems for catalysis, optoelectronics, and solar energy conversion. However, subtle differences between synthetic protocols for these three MOFs give rise to vast discrepancies in purported product outcomes and description of framework topologies. Here, based on a comprehensive synthetic and structural analysis spanning local and long-range length scales, we show that PCN-221 consists of Zr6O4(OH)4 clusters in four distinct orientations within the unit cell, rather than Zr8O6 clusters as originally published, and linker vacancies at levels of around 50%, which may form in a locally correlated manner. We propose disordered PCN-224 (dPCN-224) as a unified model to understand PCN-221, MOF-525, and PCN-224 by varying the degree of orientational cluster disorder, linker conformation and vacancies, and cluster–linker binding. Our work thus introduces a new perspective on network topology and disorder in Zr-MOFs and pinpoints the structural variables that direct their functional properties. Zirconium-based metal–organic frameworks have defective structures that are useful in catalysis and gas storage. Here, the authors study the interplay between cluster disorder and linker vacancies in PCN-221 and propose a new structure model with tilted Zr6O4(OH)4 clusters rather than Zr8O6 clusters.
Collapse
Affiliation(s)
- Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Robert Stäglich
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Tanja Scholz
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Maxwell W Terban
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Alberto von Mankowski
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Florian Binder
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany
| | - Alexander Schökel
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607, Germany
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607, Germany
| | - Jürgen Nuss
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Renée Siegel
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Luzia S Germann
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, QC, Canada
| | - Christian Ochsenfeld
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Robert E Dinnebier
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Jürgen Senker
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany. .,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany.
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany. .,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany. .,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany. .,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany.
| |
Collapse
|
127
|
|
128
|
Lu Z, Wang R, Liao Y, Farha OK, Bi W, Sheridan TR, Zhang K, Duan J, Liu J, Hupp JT. Isomer of linker for NU-1000 yields a new she-type, catalytic, and hierarchically porous, Zr-based metal-organic framework. Chem Commun (Camb) 2021; 57:3571-3574. [PMID: 33704273 DOI: 10.1039/d0cc07974j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The well-known MOF (metal-organic framework) linker tetrakis(p-benzoate)pyrene (TBAPy4-) lacks steric hindrance between its benzoates. Changing the 1,3,6,8-siting of benzoates in TBAPy4- to 4,5,9,10-siting introduces substantial steric hindrance and, in turn, enables the synthesis of a new hierarchically porous, she-type MOF Zr6(μ3-O)4(μ3-OH)4(C6H5COO)3(COO)3(TBAPy-2)3/2 (NU-601), where TBAPy-24- is the 4,5,9,10 isomer of TBAPy4-. NU-601 shows high catalytic activity for degradative hydrolysis of a simulant for G-type fluoro-phosphorus nerve agents.
Collapse
Affiliation(s)
- Zhiyong Lu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Metal–organic frameworks (MOFs) are emerging porous materials with highly tunable structures developed in the 1990s, while organometallic chemistry is of fundamental importance for catalytic transformation in the academic and industrial world for many decades. Through the years, organometallic chemistry has been incorporated into functional MOF construction for diverse applications. Here, we will focus on how organometallic chemistry is applied in MOF design and modifications from linker-centric and metal-cluster-centric perspectives, respectively. Through structural design, MOFs can function as a tailorable platform for traditional organometallic transformations, including reaction of alkenes, cross-coupling reactions, and C–H activations. Besides, an overview will be made on other application categories of organometallic MOFs, such as gas adsorption, magnetism, quantum computing, and therapeutics.
Collapse
|
130
|
Yoshinari N, Konno T. Lithium-, Sodium-, and Potassium-ion Conduction in Polymeric and Discrete Coordination Systems. CHEM LETT 2021. [DOI: 10.1246/cl.200857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0044, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0044, Japan
| |
Collapse
|
131
|
Morita M, Kusaka S, Yonezu A, Ohara Y, Sakamoto H, Matsuda R. Enhanced CO 2 Adsorption by Insertion Reaction in the Nanospace of a Porphyrin-based MOF. CHEM LETT 2021. [DOI: 10.1246/cl.200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masashi Morita
- Panasonic Corporation, 1006 Oaza Kadoma, Kadoma, Osaka 571-8501, Japan
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shinpei Kusaka
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Akira Yonezu
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yuki Ohara
- Panasonic Corporation, 1006 Oaza Kadoma, Kadoma, Osaka 571-8501, Japan
| | - Hirotoshi Sakamoto
- Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
132
|
Wang Y, Hao C, Fan W, Fu M, Wang X, Wang Z, Zhu L, Li Y, Lu X, Dai F, Kang Z, Wang R, Guo W, Hu S, Sun D. One‐step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobalt‐Functionalized Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:11350-11358. [DOI: 10.1002/anie.202100782] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Yutong Wang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Chunlian Hao
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Weidong Fan
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Mingyue Fu
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaokang Wang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zhikun Wang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Lei Zhu
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Yue Li
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaoqing Lu
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Fangna Dai
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zixi Kang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Rongming Wang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Wenyue Guo
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Songqing Hu
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Daofeng Sun
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| |
Collapse
|
133
|
Wang Y, Hao C, Fan W, Fu M, Wang X, Wang Z, Zhu L, Li Y, Lu X, Dai F, Kang Z, Wang R, Guo W, Hu S, Sun D. One‐step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobalt‐Functionalized Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yutong Wang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Chunlian Hao
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Weidong Fan
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Mingyue Fu
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaokang Wang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zhikun Wang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Lei Zhu
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Yue Li
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaoqing Lu
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Fangna Dai
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zixi Kang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Rongming Wang
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Wenyue Guo
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Songqing Hu
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Daofeng Sun
- School of Materials Science and Engineering College of Science China University of Petroleum (East China) Qingdao Shandong 266580 China
| |
Collapse
|
134
|
Porphyrinic zirconium metal-organic frameworks: Synthesis and applications for adsorption/catalysis. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0730-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
135
|
Tang X, Luo Y, Zhang Z, Ding W, Liu D, Wang J, Guo L, Wen M. Effects of functional groups of –NH2 and –NO2 on water adsorption ability of Zr-based MOFs (UiO-66). Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
136
|
Chen J, Zhu Y, Kaskel S. Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications. Angew Chem Int Ed Engl 2021; 60:5010-5035. [PMID: 31989749 PMCID: PMC7984248 DOI: 10.1002/anie.201909880] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/04/2019] [Indexed: 12/21/2022]
Abstract
Porphyrins and porphyrin derivatives have been widely explored for various applications owing to their excellent photophysical and electrochemical properties. However, inherent shortcomings, such as instability and self-quenching under physiological conditions, limit their biomedical applications. In recent years, metal-organic frameworks (MOFs) have received increasing attention. The construction of porphyrin-based MOFs by introducing porphyrin molecules into MOFs or using porphyrins as organic linkers to form MOFs can combine the unique features of porphyrins and MOFs as well as overcome the limitations of porphyrins. This Review summarizes important synthesis strategies for porphyrin-based MOFs including porphyrin@MOFs, porphyrinic MOFs, and composite porphyrinic MOFs, and highlights recent achievements and progress in the development of porphyrin-based MOFs for biomedical applications in tumor therapy and biosensing. Finally, the challenges and prospects presented by this class of emerging materials for biomedical applications are discussed.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
- School of Materials Science and EngineeringUniversity of Shanghai for Science and Technology516 Jungong RoadShanghai200093China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
- School of Materials Science and EngineeringUniversity of Shanghai for Science and Technology516 Jungong RoadShanghai200093China
- Hubei Key Laboratory of Processing and Application of Catalytic MaterialsCollege of Chemical EngineeringHuanggang Normal UniversityHuanggangHubei438000China
| | - Stefan Kaskel
- Professur für Anorganische Chemie IFachrichtung Chemie und LebensmittelchemieTechnische Universität DresdenBergstrasse 66Dresden01062Germany
| |
Collapse
|
137
|
Yuan N, Gong X, Sun W, Yu C. Advanced applications of Zr-based MOFs in the removal of water pollutants. CHEMOSPHERE 2021; 267:128863. [PMID: 33199106 DOI: 10.1016/j.chemosphere.2020.128863] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The global water pollution is caused by the increase of industrial and agricultural activities, which have produced various toxic pollutants. Pollutants in water generally consist of metal ions, pharmaceuticals and personal care products (PPCPs), oil spills, organic dyes, and other organic pollutants. Amongst the adsorbents that have been developed to deal with pollutants in water, Zr-based metal-organic frameworks (MOFs) have drawn scientists' great attention due to their excellent stability and adjustable functionalization. Herein, the present review article introduces the synthetic methods of functionalized Zr-based MOFs and summarizes their applications in water pollution treatment. It also clarifies the interactions and removal mechanisms between pollutants and Zr-based MOFs. The use of these MOFs with eminent adsorption ability and recycling performance have been discussed in detail. Zr-based MOFs also face some challenges such as high cost, lack of real water environment applications, selective removal of pollutants, and low ability to remove composite pollutants. Future research should focus on addressing these issues. Although there is still a blank of the practical utility of Zr-based MOFs on a commercial scale, the research reported to date clearly shows that they are very promising materials for the water treatment.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Xinrui Gong
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Wenduo Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
138
|
Zhang X, Wasson MC, Shayan M, Berdichevsky EK, Ricardo-Noordberg J, Singh Z, Papazyan EK, Castro AJ, Marino P, Ajoyan Z, Chen Z, Islamoglu T, Howarth AJ, Liu Y, Majewski MB, Katz MJ, Mondloch JE, Farha OK. A historical perspective on porphyrin-based metal-organic frameworks and their applications. Coord Chem Rev 2021; 429:213615. [PMID: 33678810 PMCID: PMC7932473 DOI: 10.1016/j.ccr.2020.213615] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Mohsen Shayan
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Ellan K. Berdichevsky
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Joseph Ricardo-Noordberg
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zujhar Singh
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Edgar K. Papazyan
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Anthony J. Castro
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Paola Marino
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zvart Ajoyan
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Ashlee J. Howarth
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Marek B. Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Michael J. Katz
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Joseph E. Mondloch
- Department of Chemistry, University of Wisconsin-Stevens Point, 2100 Main Street, Stevens Point, WI 54481, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| |
Collapse
|
139
|
Guan QL, Sun Y, Huo R, Xin Y, Bai FY, Xing YH, Sun LX. Cu-MOF Material Constructed with a Triazine Polycarboxylate Skeleton: Multifunctional Identify and Microdetecting of the Aromatic Diamine Family ( o, m, p-Phenylenediamine) Based on the Luminescent Response. Inorg Chem 2021; 60:2829-2838. [PMID: 33501829 DOI: 10.1021/acs.inorgchem.0c03753] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic aromatic amines are widely used in various fields such as pharmaceuticals, pesticides, dyes, and tobacco smoke. The pollution of organic amines has become a problem that cannot be ignored, due to the extensive harmful effects on the environment and public health, which has become one of the most concerned frontier fields in the world. Identifying and microdetecting o-phenylenediamine (OPD), m-phenylenediamine (MPD), and p-phenylenediamine (PPD) using MOFs have rarely been reported. On the basis of the blue emission properties of Cu-TBDA constructed with 5,5'-((6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl))diisophthalic acid (H4TBDA) ligand, Cu-TBDA was studied primarily to identify and detect aromatic diamine family as a multifunctional chemical sensor. Interestingly, Cu-TBDA has a very high selectivity and sensitivity to OPD and MPD with a low limit of detection (5.00 μM for OPD and 1.77 μM for MPD). Especially for OPD, Cu-TBDA has a unique switching function for it. When the concentration of OPD is less than 9.1 × 10-4 M, the fluorescence response of Cu-TBDA suspension exhibit enhanced. However, when the concentration of OPD is more than 9.1 × 10-4 M, the emission intensity displays quenching phenomenon. Therefore, Cu-TBDA as a chemical sensor not only has recognition and detection functions for organic aromatic amines but also first exhibits turn-on and -off sensing behavior toward OPD.
Collapse
Affiliation(s)
- Qing Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Ying Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Rong Huo
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Yu Xin
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, PR China
| |
Collapse
|
140
|
Hu P, Sun Z, Shen Y, Pan Y. A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H 2O 2 in Fishery Products. Foods 2021; 10:419. [PMID: 33672942 PMCID: PMC7918592 DOI: 10.3390/foods10020419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) has been reported to be used for the illegal treatment of fishery products in order to obtain "fake" freshness. Residues of H2O2 in food may be of toxicology concern. In this study, a nonenzymatic sensor was developed based on Fe@PCN-224 metal-organic frameworks wrapped by Nafion to detect H2O2 concentration. The hybrid structure of Fe@PCN-224 was fabricated by incorporated free FeIII ions into the center of PCN-224, which was ultra-stable due to the strong interactions between Zr6 and the carboxyl group. Scanning electron spectroscopy images exhibited that Nafion sheets crossed together on the surface of Fe@PCN-224 nanoparticles to form a hierarchical and coherent structure for efficient electron transfer. Electrochemical investigations showed that the Fe@PCN-224/Nafion/GCE possessed good linearity from 2 to 13,000 μM (including four orders of magnitude), low detection limits (0.7 μM), high stability in continuous monitoring (current remained nearly stable over 2300 s) and in long-term measurement (current decreased 3.4% for 30 days). The prepared nanohybrid modified electrode was effectively applied to H2O2 detection in three different fishery products. The results were comparable to those measured using photometrical methods. The developed electrochemical method has a great potential in detecting the illegal management of fishery products with H2O2.
Collapse
Affiliation(s)
| | | | | | - Yiwen Pan
- Ocean College, Zhejiang University, Zhoushan 316021, China; (P.H.); (Z.S.); (Y.S.)
| |
Collapse
|
141
|
De S, Devic T, Fateeva A. Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Trans 2021; 50:1166-1188. [PMID: 33427825 DOI: 10.1039/d0dt03903a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the ubiquitous role of porphyrins in natural systems, these molecules and related derivatives such as phthalocyanines are fascinating building units to achieve functional porous materials. Porphyrin-based MOFs have been developed over the past three decades, yet chemically robust frameworks, necessary for applications, have been achieved much more recently and this field is expanding. This progress is partially driven by the development of porphyrins and phthalocyanines bearing alternative coordinating groups (phosphonate, azolates, phenolates…) that allowed moving the related MOFs beyond metal-carboxylates and achieving new topologies and properties. In this perspective article we first give a brief outline of the synthetic pathways towards simple porphyrins and phthalocyanines bearing these complexing groups. The related MOF compounds are then described; their structural and textural properties are discussed, as well as their stability and physical properties. An overview of the resulting nets and topologies is proposed, showing both the similarities with metal-carboxylate phases and the peculiarities related to the alternative coordinating groups. Eventually, the opportunities offered by this recent research topic, in terms of both synthesis pathways and modulation of pore size and shape, stability and physical properties, are discussed.
Collapse
Affiliation(s)
- Siddhartha De
- Univ. Lyon, Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, F-69622 Villeurbanne, France.
| | - Thomas Devic
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Alexandra Fateeva
- Univ. Lyon, Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, F-69622 Villeurbanne, France.
| |
Collapse
|
142
|
Wang H, Shi Z, Yang J, Sun T, Rungtaweevoranit B, Lyu H, Zhang Y, Yaghi OM. Docking of Cu
I
and Ag
I
in Metal–Organic Frameworks for Adsorption and Separation of Xenon. Angew Chem Int Ed Engl 2021; 60:3417-3421. [DOI: 10.1002/anie.202015262] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Haoze Wang
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Zhaolin Shi
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Jingjing Yang
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Tu Sun
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Bunyarat Rungtaweevoranit
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Hao Lyu
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Yue‐Biao Zhang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Omar M. Yaghi
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
- Joint UAEU–UC Berkeley Laboratories for Materials Innovations UAE University Alain United Arab Emirates
| |
Collapse
|
143
|
Wang H, Shi Z, Yang J, Sun T, Rungtaweevoranit B, Lyu H, Zhang Y, Yaghi OM. Docking of Cu
I
and Ag
I
in Metal–Organic Frameworks for Adsorption and Separation of Xenon. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Haoze Wang
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Zhaolin Shi
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Jingjing Yang
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Tu Sun
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Bunyarat Rungtaweevoranit
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Hao Lyu
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Yue‐Biao Zhang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Omar M. Yaghi
- Department of Chemistry University of California-Berkeley Berkeley CA 94720 USA
- Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
- Joint UAEU–UC Berkeley Laboratories for Materials Innovations UAE University Alain United Arab Emirates
| |
Collapse
|
144
|
Xia J, Gao Y, Yu G. Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies. J Colloid Interface Sci 2021; 590:495-505. [PMID: 33567374 DOI: 10.1016/j.jcis.2021.01.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 01/16/2021] [Indexed: 11/25/2022]
Abstract
The adsorptive removal of tetracycline (TC) was studied with three types of zirconium-based metal-organic frameworks (Zr-MOFs), UiO-66, NU-1000 and MOF-525. The adsorption kinetics best fitted with the pseudo-second-order kinetic model and the adsorption equilibrium was rapidly reached within 40 min on UiO-66 and NU-1000, and 120 min on MOF-525. The adsorption isotherms best fitted with Sips model, and the maximum Sips adsorption capacities of TC on UiO-66, NU-1000 and MOF-525 were 145 mg·g-1, 356 mg·g-1 and 807 mg·g-1 respectively, which were much higher than common adsorbents. The X-ray photoelectron spectra measurements and the influence of pH suggested that the π-π interaction played a crucial role during the adsorption. Pore characteristics and topology of MOFs showed great effect on adsorption performance. The cages whose size match well with TC helped MOF-525 to get highest adsorption amount per surface area among MOFs we studied. The proper topology of NU-1000 contributed to its high adsorption rate. River water was also used to confirm the excellent adsorptive performance of these three Zr-MOFs in practical application. These results might aid us to comprehend the adsorption of TC on Zr-MOFs and expand the application of Zr-MOFs in water treatment for removal of emerging contaminants.
Collapse
Affiliation(s)
- Jing Xia
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, PR China.
| | - Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
145
|
Marschner SM, Haldar R, Fuhr O, Wöll C, Bräse S. Modular Synthesis of trans-A 2 B 2 -Porphyrins with Terminal Esters: Systematically Extending the Scope of Linear Linkers for Porphyrin-Based MOFs. Chemistry 2021; 27:1390-1401. [PMID: 32857452 PMCID: PMC7898653 DOI: 10.1002/chem.202003885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 12/03/2022]
Abstract
Differently functionalized porphyrin linkers represent the key compounds for the syntheses of new porphyrin-based metal-organic frameworks (MOFs), which have gathered great interest within the last two decades. Herein we report the synthesis of a large range of 5,15-bis(4-ethoxycarbonylphenyl)porphyrin derivatives, through Suzuki and Sonogashira cross-coupling reactions of an easily accessible corresponding meso-dibrominated trans-A2 B2 -porphyrin with commercially available boronic acids or terminal alkynes. The resulting porphyrins were fully characterized through NMR, MS, and IR spectroscopy and systematically investigated through UV/Vis absorption. Finally, selected structures were saponified to the corresponding carboxylic acids and subsequently proven to be suitable for the synthesis of surface-anchored MOF thin films.
Collapse
Affiliation(s)
- Stefan M. Marschner
- Institute of Organic ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Ritesh Haldar
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of, Technology (KIT)76344Eggenstein-LeopoldshafenGermany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility, (KNMF)Karlsruhe Institute of Technology (KIT)Hermann-, von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of, Technology (KIT)76344Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-, Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
146
|
|
147
|
Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A. Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem Soc Rev 2021; 50:6152-6220. [DOI: 10.1039/d0cs00323a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.
Collapse
Affiliation(s)
- P. Mialane
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - C. Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques
- UMR CNRS 8229
- Collège de France
- Sorbonne Université
- PSL Research University
| | - P. Gairola
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - M. Duguet
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - Y. Benseghir
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - O. Oms
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - A. Dolbecq
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| |
Collapse
|
148
|
Liu X, Liu Y. Recent progress in the design and synthesis of zeolite-like metal–organic frameworks (ZMOFs). Dalton Trans 2021; 50:3450-3458. [DOI: 10.1039/d0dt04338a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZMOFs are a subset of MOFs that exhibit zeolite-like topologies. Using molecular building block strategy, many ZMOFs with high stability and excellent performance can be rationally designed and synthesized using different secondary building units.
Collapse
Affiliation(s)
- Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
149
|
Guo C, Ma X, Wang B. Metal-organic Frameworks-based Composites and Their Photothermal Applications. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
150
|
Amini A, Khajeh M, Oveisi AR, Daliran S, Ghaffari-Moghaddam M, Delarami HS. A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|