101
|
Laghrib F, Bakasse M, Lahrich S, El Mhammedi MA. Electrochemical sensors for improved detection of paraquat in food samples: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110349. [PMID: 31761239 DOI: 10.1016/j.msec.2019.110349] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/06/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022]
Abstract
Paraquat (1,10-dimethyl-4,40-dipyridinium chloride), also known as methyl viologen, is widely used as a quaternary ammonium herbicide (broadleaf weed killer) all over the world owing to its excellent effect in plant cells for crop protection and horticultural use. However, it is dangerous because of its high acute toxicity even at low concentrations. Its detection in the environment is therefore necessary. As a consequence of its widespread usage, it causes genotoxic, teratogenic as well as other environmental and ecological adverse impacts. Exposure to PQ leads to a high mortality rate because no specific drug is effective for treatment. Excessive consumption of PQ can cause cellular damage and necrosis in the brain, heart, lungs, liver, and kidneys. The diversity and sensitivity of the analyses currently required have forced the experimenter to use more advanced and efficient techniques, which can provide qualitative and quantitative results in complex environments. Electrochemical methods generally meet these criteria while offering other advantages to achieve excellent accuracy and fast handling. This paper provides an overview of the determination of PQ using electrochemical methods combined with several modified electrodes in food samples, including milk, apple juice, tomato juice, and potato juice. Emphasis was placed on the most relevant modifiers used to generate high selectivity and sensitivity such as noble metals, metallic nanoparticles, polymers, biomolecules, clay, and apatite minerals. Comprehensively, it is strongly convincing that the synergy between the sensor substrate and the modifier architecture gives the electrodes a high capacity to detect paraquat in complex matrices such as food. In line with the context, information's on the mechanism of electrooxidation or reduction of PQ has been reported with the discussion of some future prospects and some insights. To the best of our knowledge, there is no review article relating the electrochemical determination of paraquat.
Collapse
Affiliation(s)
- F Laghrib
- Univ. Sultan Moulay Slimane, Laboratoire de Chimie, Modélisation et Sciences de l'Environnement, Faculté Polydisciplinaire, 25 000, Khouribga, Morocco
| | - M Bakasse
- Univ. Chouaib Doukkali, Equipe d'Analyse des Micropolluants Organiques, Faculté de Sciences, El-Jadida, Morocco
| | - S Lahrich
- Univ. Sultan Moulay Slimane, Laboratoire de Chimie, Modélisation et Sciences de l'Environnement, Faculté Polydisciplinaire, 25 000, Khouribga, Morocco
| | - M A El Mhammedi
- Univ. Sultan Moulay Slimane, Laboratoire de Chimie, Modélisation et Sciences de l'Environnement, Faculté Polydisciplinaire, 25 000, Khouribga, Morocco.
| |
Collapse
|
102
|
Mobed A, Nami F, Hasanzadeh M, Hassanpour S, Saadati A, Mokhtarzadeh A. A novel nucleic acid based bio-assay toward recognition of Haemophilus influenza using bioconjugation and DNA hybridization method. Int J Biol Macromol 2019; 139:1239-1251. [PMID: 31400417 DOI: 10.1016/j.ijbiomac.2019.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023]
Abstract
Haemophilus influenza (H. influenza) is a gram negative coccobacillus pathogenic microorganism. H. influenza produces beta-lactamases, and it is also able to modify its penicillin-binding proteins, so it has gained resistance to the penicillin family of antibiotics. In this work, a novel sensitive approach was established for the monitoring of H. influenza using DNA based bio-assay. For the first time, specific sequence of thiolated probe of Haemophilus influenza (SH-5'-AAT TTT CCA ACT TTT TCA CCT GCA T-3') was immobilized on the surface of gold (Au) electrode. Square wave voltammetry (SWV) was carried out in toluidine blue (TB) solution for DNA hybridization and targeting of cDNA sequence of Haemophilus influenza. Field scanning electron microscope (FE-SEM) was applied to investigation of the electrode morphology and estimate of particle size. In the optimal conditions, the planned strategy could detect target DNA (5'-ATG CAG GTG AAA AAG TTG GAA AAT T-3') down to 1 ZM with a linear range from 1 μM to 1 ZM. Moreover, engineered geno-assay selectively differentiates the complementary sequence from target sequences with one, double and three base mismatch sequences.
Collapse
Affiliation(s)
- Ahmad Mobed
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Fatemeh Nami
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz 51664, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soodabeh Hassanpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
103
|
Althagafi II, Kassem MA, Awad MI. Enhanced Electrocatalytic Oxidation of Paracetamol at DNA Modified Gold Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ismail I. Althagafi
- Chemistry Department, Faculty of Applied ScienceUmm Al-Qura University, Makkah Kingdom Saudi Arabia
| | - Mohammed A. Kassem
- Chemistry Department, Faculty of Applied ScienceUmm Al-Qura University, Makkah Kingdom Saudi Arabia
- Chemistry Department, Faculty of ScienceBenha University Benha 13518 Egypt
| | - Mohamed I. Awad
- Chemistry Department, Faculty of Applied ScienceUmm Al-Qura University, Makkah Kingdom Saudi Arabia
- Chemistry Department, Faculty of ScienceCairo University Cairo Egypt
| |
Collapse
|
104
|
Kumar A, Purohit B, Maurya PK, Pandey LM, Chandra P. Engineered Nanomaterial Assisted Signal‐amplification Strategies for Enhancing Analytical Performance of Electrochemical Biosensors. ELECTROANAL 2019; 31:1615-1629. [DOI: 10.1002/elan.201900216] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/24/2019] [Indexed: 05/15/2025]
Abstract
AbstractThe design and development of modern biosensors for sensitive and selective detection of various biomarkers is important in diversified arenas including healthcare, environment, and food industries etc. The requirement of more robust and reliant biosensors lead to the development of various sensing modules. The nanomaterials having specific optical, electrical, and mechanical strength can pave the way towards development of ultrafast, robust, and miniaturized modules for biosensors. It can provide not only the point‐of‐care applicability but also has tremendous commercial as well as industrial justification. In order to improve the performance of the sensor systems, various nanostructure materials have been readily studied and applied for development of novel biosensors. In the last few years, researchers are engaged on harnessing the unique atomic and molecular properties of advance‐engineered materials including carbon nanotubes, graphene nanosheets, metal nanoparticles, metal oxide nanoparticles, and their nano‐conjugates. In view of such recent developments in nanomaterial engineering, the current review has been formulated emphasizing the role of these materials in surface engineering, biomolecule conjugation, and signal amplification for development of various ultrasensitive and robust biosensors having commercial as well as industrial viability. Attention is given on the electrochemical biosensors incorporating various nanomaterials and their conjugates. Importance of nanomaterials in the analytical performance of the various biosensor has also been discussed. To put a perceptive insights on the importance of various nanomaterials, an extended table is incorporated, which includes probe design, analyte, LOD, and dynamic range of various electrochemical biosensors.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Buddhadev Purohit
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Pawan Kumar Maurya
- Department of Biochemistry Central University of Haryana Mahendragarh 123031 Haryana India
| | - Lalit Mohan Pandey
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Pranjal Chandra
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati 781039 Assam India
| |
Collapse
|
105
|
A novel highly sensitive thebaine sensor based on MWCNT and dandelion-like Co3O4 nanoflowers fabricated via solvothermal synthesis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103980] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
106
|
Novel QCM and SPR sensors based on molecular imprinting for highly sensitive and selective detection of 2,4-dichlorophenoxyacetic acid in apple samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:483-491. [DOI: 10.1016/j.msec.2019.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 11/22/2022]
|
107
|
Gadallah MI, Ali HRH, Askal HF, Saleh GA. Poly (bromocresol green) flakes-decorated pencil graphite electrode for selective electrochemical sensing applications and pharmacokinetic studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:634-645. [DOI: 10.1016/j.msec.2019.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
|
108
|
Torkzadeh-Mahani R, Foroughi MM, Jahani S, Kazemipour M, Hassani Nadiki H. The effect of ultrasonic irradiation on the morphology of NiO/Co 3O 4 nanocomposite and its application to the simultaneous electrochemical determination of droxidopa and carbidopa. ULTRASONICS SONOCHEMISTRY 2019; 56:183-192. [PMID: 31101254 DOI: 10.1016/j.ultsonch.2019.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The present work deals with the preparation of NiO/Co3O4 nanocomposites in presence of ultrasonic irradiation, and its use in electrochemical determination of Parkinson's drugs. NiO/Co3O4 nanocomposites are prepared using ultrasound assisted method. The impact of ultrasonic irradiation power (0, 75, 150, 300 and 600 W) on the structure and morphology of NiO/Co3O4 nanocomposites was investigated. Various particle morphologies were attained because of the existence of ultrasonic irradiation. The nanoparticles' structure exhibited more uniformity whilst the particles sizes and nanoparticle accumulation was reduced when ultrasonic irradiation power was increased. The NiO/Co3O4 nanocomposite was determined via X-ray diffraction, scanning electron microscopy i.e. SEM as well as energy dispersion X-ray spectroscopy (EDX). Drop casting NiO/Co3O4 nanocomposites suspension on glassy carbon electrode was employed to fabricate the modified glassy carbon electrode (NiO/Co3O4/GCE). The electrochemical studies on the NiO/Co3O4 nanocomposite towards droxidopa and carbidopa were experimented via cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). The CV examinations displayed increased catalytic behavior of droxidopa because of synergistic impact of the nanocomposite that was bolstered through enhanced material surface roughness. By using differential pulse voltammetry, the droxidopa detection limit and linear range was determined as 0.01 μM and 0.1-500.0 μM, respectively. Also, the adjusted electrode was implemented to ascertain droxidopa in the presence of carbidopa by differential pulse voltammetry. This sensor exhibited long term reproducibility and stability. Droxidopa and carbidopa quantification within biological specimens of fluids i.e. human urine and serum were conducted to validate the suitability in the application of this sensor.
Collapse
Affiliation(s)
| | | | - Shohreh Jahani
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran; Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Kazemipour
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Hadi Hassani Nadiki
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| |
Collapse
|
109
|
Fahmi MRG, Fajar AT, Roslan N, Yuliati L, Fadlan A, Santoso M, Lintang HO. Fluorescence study of 5-nitroisatin Schiff base immobilized on SBA-15 for sensing Fe3+. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractN’-(5-nitro-2-oxoindolin-3-ylidene) thiophene-2-carbohydrazide (NH) was successfully synthesized as a ligand, then grafted onto the surface of mesoporous silica SBA-15via an aminopropyl bridge. The successful grafting of ligand NH onto the hybrid nanomaterial (SBA-15/APTES-NH) was confirmed by infrared spectroscopy. On excitation at 276 and 370 nm, the ligand NH and the hybrid nanomaterial SBA-15/APTES-NH showed a strong and narrow emission peak centered at 533 nm. By dispersing SBA-15/APTES-NH in an aqueous solution containing metal ions, the resulting solid materials showed a higher binding of NH sensing site to Fe3+ ions as compared to the others with a quench of the emission intensity up to 84%. This result showed that the hybrid nanomaterial is a potential chemosensor that requires development for the detection of metal ions.
Collapse
Affiliation(s)
- Muhammad Riza Ghulam Fahmi
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, East Java, Indonesia
| | - Adroit T.N. Fajar
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
| | - Nurliana Roslan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru, Johor, Malaysia
| | - Leny Yuliati
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
| | - Arif Fadlan
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, East Java, Indonesia
| | - Mardi Santoso
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, East Java, Indonesia
| | - Hendrik O. Lintang
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
| |
Collapse
|
110
|
De la Cruz Morales K, Alarcón‐Angeles G, Merkoçi A. Nanomaterial‐based Sensors for the Study of DNA Interaction with Drugs. ELECTROANAL 2019. [DOI: 10.1002/elan.201900286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. De la Cruz Morales
- Universidad Autónoma Metropolitana-XochimilcoDepartamento de Sistemas Biológicos C.P. 04960 México City
| | - G. Alarcón‐Angeles
- Universidad Autónoma Metropolitana-XochimilcoDepartamento de Sistemas Biológicos C.P. 04960 México City
| | - A. Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193 Barcelona Spain
- ICREA – Catalan Institution for Research and Advanced Studies Barcelona 08010 Spain
| |
Collapse
|
111
|
Immobilization of tyrosinase on Fe3o4@Au core–shell nanoparticles as bio-probe for detection of dopamine, phenol and catechol. J Biol Inorg Chem 2019; 24:961-969. [DOI: 10.1007/s00775-019-01691-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/14/2019] [Indexed: 01/08/2023]
|
112
|
Rahimi‐Mohseni M, Raoof JB, Aghajanzadeh TA, Ojani R. Rapid Determination of Phenolic Compounds in Water Samples: Development of a Paper‐based Nanobiosensor Modified with Functionalized Silica Nanoparticles and Potato Tissue. ELECTROANAL 2019. [DOI: 10.1002/elan.201800780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohadeseh Rahimi‐Mohseni
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar Iran
| | | | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar Iran
| |
Collapse
|
113
|
Dlamini N, Mukaya HE, Van Zyl RL, Chen CT, Zeevaart RJ, Mbianda XY. Synthesis, characterization, kinetic drug release and anticancer activity of bisphosphonates multi-walled carbon nanotube conjugates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109967. [PMID: 31499981 DOI: 10.1016/j.msec.2019.109967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
The statistical proof that most forms of cancer metastasize to bone tissue has redirected research focus to the development of efficient secondary bone cancer treatment regimens. Bisphosphonates (BPs) have been earmarked as a drug of choice for bone metastasis. However, they have a shortcoming of being released before reaching targeted sites due to their low molecular weight. In haste to attain increased efficacy, there is a tendency for drug overdose to occur, resulting in systemic toxicity. One way to curb this is by employing drug delivery systems for targeted and controlled release of the drugs. Having been explored as versatile and innovative drug carriers, multi-walled carbon nanotubes (MWCNTs) have emerged as potential drug delivery systems. Hence, in the present study, alendronate, neridronate and pamidronate are three classes of bisphosphonates that were conjugated onto multi-walled carbon nanotubes. Conjugation was confirmed by characterization techniques including SEM, TEM, EDX, FTIR, Raman and TGA. Drug release studies were also conducted at pH 1.2, 5.5 and 7.4 to study the mechanism of release for neridronate. Results obtained were fitted into Zero order (42.6%), Higuchi (26%) and Korsmeyer-Peppas (22%). The best models describing the release of neridronate from MWCNTs were Zero order, Higuchi and Korsmeyer-Peppas at pH 1.2, 5.5 and 7.4, respectively. A tetrazolium cell viability assay was performed to assess the anticancer activity of the MWCNTs conjugated BPs.
Collapse
Affiliation(s)
- N Dlamini
- Department of Applied Chemistry; Faculty of Science; University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, South Africa
| | - H E Mukaya
- Department of Applied Chemistry; Faculty of Science; University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, South Africa
| | - R L Van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology; WITS Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C T Chen
- Pharmacology Division, Department of Pharmacy and Pharmacology; WITS Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R J Zeevaart
- Radiochemistry, NECSA (South African Nuclear Energy Corporation Ltd.), Pretoria, South Africa
| | - X Y Mbianda
- Department of Applied Chemistry; Faculty of Science; University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, South Africa.
| |
Collapse
|
114
|
Karimi-Maleh H, Karimi F, Rezapour M, Bijad M, Farsi M, Beheshti A, Shahidi SA. Carbon Paste Modified Electrode as Powerful Sensor Approach Determination of Food Contaminants, Drug Ingredients, and Environmental Pollutants: A Review. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666181026100037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Application of electrochemical sensors for analysis of food, biological and
water polluting compounds helps to speed up their analysis in the real samples. Electrochemical sensors
with low cost, fast response and portable ability are a better choice compared to traditional
methods for analysis of electro-active compounds such as HPLC. Therefore, in recent years, many
analytical scientists have suggested this type of analytical method for analysis of food, biological
compounds and water pollutants.
Objective:
Due to low cost, easy modification and low non-faradic current, the carbon paste electrode
is a suitable choice as a working electrode in the electrochemical and especially voltammetric analysis.
On the other hand, modification of carbon paste electrode can improve the quality of the sensor
for the analysis of electroactive compounds at nanomolar level.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Morteza Rezapour
- IP Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran
| | - Majede Bijad
- Department of Food Science, Sari Branch, Islamic Azad University, Sari, Iran
| | - Mohammad Farsi
- Department of Food Science, Sari Branch, Islamic Azad University, Sari, Iran
| | - Aliasghar Beheshti
- Department of Water Resources Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
115
|
Munir A, Bozal-Palabiyik B, Khan A, Shah A, Uslu B. A novel electrochemical method for the detection of oxymetazoline drug based on MWCNTs and TiO2 nanoparticles. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
116
|
Zhu K, Ren X, Sun X, Zhu L, Sun Z. Effect of Supporting Electrolyte on the Surface Corrosion and Anodic Oxidation Performance of Graphite Electrode. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00541-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
117
|
Song J, Ni J, Wang Q, Chen H, Gao F, Lin Z, Wang Q. A planar and uncharged copper(II)-picolinic acid chelate: Its intercalation to duplex DNA by experimental and theoretical studies and electrochemical sensing application. Biosens Bioelectron 2019; 141:111405. [PMID: 31195198 DOI: 10.1016/j.bios.2019.111405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 11/28/2022]
Abstract
Using an external redox-active molecule as a DNA hybridization indicator is still a popular strategy in electrochemical DNA biosensors because it is label-free and the multi-site binding can enhance the response signal. A planar and uncharged transition metal complex, Cu(PA)2 (PA = picolinic acid) with excellent electrochemical activity has been synthesized and its interaction with double-stranded DNA (dsDNA) is studied by experimental electrochemical methods and theoretical molecular docking technology. The experimental results reveal that the copper complex interacts with dsDNA via specific intercalation, which is verified by the molecular docking result. The surface-based voltammetric analysis demonstrates that the planar Cu(PA)2 can effectively accumulate within the electrode-confined hybridized duplex DNA rather than the single-stranded probe DNA. Based on this phenomenon, the Cu(PA)2 is utilized as an electrochemical hybridization indicator for the detection of oligonucleotides. The sensing assays show that upon incubation in Cu(PA)2 solution, the probe electrode does not display any Faraday signal, but the hybridized one has a pair of strong redox peaks corresponding to the electrochemistry of Cu(PA)2, showing excellent hybridization indicating function of Cu(PA)2 without background interference. The signal intensity of Cu(PA)2 is dependent on the concentrations of the target oligonucleotide ranging from 1 fM to 100 nM with an experimental detection limit of 1.0 fM. Due to the specific intercalation of Cu(PA)2 with dsDNA, the biosensor also exhibits good ability to recognize oligonucleotide with different base mismatching degree.
Collapse
Affiliation(s)
- Juan Song
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Jiancong Ni
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou, 363000, PR China; Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, 350116, China
| | - Qinghua Wang
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Huangcan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feng Gao
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Zhenyu Lin
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou, 363000, PR China; Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, 350116, China
| | - Qingxiang Wang
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou, 363000, PR China.
| |
Collapse
|
118
|
Acrylic-based genosensor utilizing metal salphen labeling approach for reflectometric dengue virus detection. Talanta 2019; 198:358-370. [DOI: 10.1016/j.talanta.2019.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 01/21/2023]
|
119
|
Zhou T, Yan L, Xie C, Li P, Jiang L, Fang J, Zhao C, Ren F, Wang K, Wang Y, Zhang H, Guo T, Lu X. A Mussel-Inspired Persistent ROS-Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805440. [PMID: 31106983 DOI: 10.1002/smll.201805440] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Conductive polymers are promising for bone regeneration because they can regulate cell behavior through electrical stimulation; moreover, they are antioxidative agents that can be used to protect cells and tissues from damage originating from reactive oxygen species (ROS). However, conductive polymers lack affinity to cells and osteoinductivity, which limits their application in tissue engineering. Herein, an electroactive, cell affinitive, persistent ROS-scavenging, and osteoinductive porous Ti scaffold is prepared by the on-surface in situ assembly of a polypyrrole-polydopamine-hydroxyapatite (PPy-PDA-HA) film through a layer-by-layer pulse electrodeposition (LBL-PED) method. During LBL-PED, the PPy-PDA nanoparticles (NPs) and HA NPs are in situ synthesized and uniformly coated on a porous scaffold from inside to outside. PDA is entangled with and doped into PPy to enhance the ROS scavenging rate of the scaffold and realize repeatable, efficient ROS scavenging over a long period of time. HA and electrical stimulation synergistically promote osteogenic cell differentiation on PPy-PDA-HA films. Ultimately, the PPy-PDA-HA porous scaffold provides excellent bone regeneration through the synergistic effects of electroactivity, cell affinity, and antioxidative activity of the PPy-PDA NPs and the osteoinductivity of HA NPs. This study provides a new strategy for functionalizing porous scaffolds that show great promise as implants for tissue regeneration.
Collapse
Affiliation(s)
- Ting Zhou
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Liwei Yan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Pengfei Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Lili Jiang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, Center for Advanced Materials and Energy, School of Materials Science and Engineering, Xihua University, Chengdu, 610039, China
| | - Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cancan Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Hongping Zhang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Tailin Guo
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
120
|
The Advances in Biomedical Applications of Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Unique chemical, physical, and biological features of carbon nanotubes make them an ideal candidate for myriad applications in industry and biomedicine. Carbon nanotubes have excellent electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion, nano-size, and a high surface area, which can be tailored and functionalized on demand. This review discusses the progress and main fields of bio-medical applications of carbon nanotubes based on recently-published reports. It encompasses the synthesis of carbon nanotubes and their application for bio-sensing, cancer treatment, hyperthermia induction, antibacterial therapy, and tissue engineering. Other areas of carbon nanotube applications were out of the scope of this review. Special attention has been paid to the problem of the toxicity of carbon nanotubes.
Collapse
|
121
|
Jamei HR, Rezaei B, Ensafi AA. An ultrasensitive electrochemical anti-lysozyme aptasensor with biorecognition surface based on aptamer/amino-rGO/ionic liquid/amino-mesosilica nanoparticles. Colloids Surf B Biointerfaces 2019; 181:16-24. [PMID: 31112933 DOI: 10.1016/j.colsurfb.2019.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
In this work, a novel method based on aptamers is proposed for electrochemical measurement of lysozyme. To this end, screen-printed carbon electrode (SPCE) was modified with a nanocomposite made from amino-reduced graphene oxide (Amino-rGO) synthesized from natural graphite powder, an ionic liquid (IL), and amino-mesosilica nanoparticles (Amino-MSNs). The composition of the nanocomposite (Amino-rGO/IL/Amino-MSNs) results in high thermal and chemical stability, conductivity, surface-to-volume ratio, cost efficiency, biocompatibility, and great bioelectrocatalysis characteristics. Presence of numerous amino groups, as well as remaining oxygen defects in rGO, provides a suitable site for immobilization of aptamers. Furthermore, use of this nanocomposite leads to considerable enhancement of the electrochemical signal and improved method sensitivity. Covalent coupling of aptamer's amino groups with that of the nanocomposite using glutaraldehyde (GLA) as a linker helps immobilize amino-linked lysozyme aptamers (Anti-Lys aptamers) on nanocomposite. The modified electrode was characterized using electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The immobilized aptamer selectively adsorbs lysozyme (Lys) on the electrode interface, leading to increased Charge Transfer Resistance (RCT) in EIS and decrease in the DPV peak currents which are used as analytical signals. Two separate calibration curves were drawn using the data acquired from EIS and DPV. The prepared anti-Lys aptasensor has two very low LODs equal to 2.1 and 4.2 fmol L-1 with wide detection ranges of 10 fmol L-1 to 200 nmol L-1, and 20 fmol L-1 to 50 nmol L-1 for EIS and DPV calibration curves, respectively. The SPCE/Amino-rGO/IL/Amino-MSNs/APT also showed high reproducibility, specificity, sensitivity, and rapid response to Lys which has various applications in fields of bioengineering and biomedicine.
Collapse
Affiliation(s)
- Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| |
Collapse
|
122
|
Bayraktepe DE, Yazan Z, Önal M. Sensitive and cost effective disposable composite electrode based on graphite, nano-smectite and multiwall carbon nanotubes for the simultaneous trace level detection of ascorbic acid and acetylsalicylic acid in pharmaceuticals. Talanta 2019; 203:131-139. [PMID: 31202317 DOI: 10.1016/j.talanta.2019.05.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
In this study, we used nano-smectite (SMT) and multiwall carbon nanotube (MWCNT) as a recognition surface over the disposable pencil graphite electrode for the low-level detection of ascorbic acid (AA) and acetyl salicylic acid (ACA). Firstly, nano-semectit was obtained by the purification of natural bentonite clay. XRD patterns and Scanning electron microscopy (SEM) were employed to ensure the purity of the bentonite samples. Pencil graphite rodes were immersed into suspensions of SMT, MWCNT or the both.The surface morphology of the sensor was investigated by cyclic voltammery (CV), electrochemical impedance spectroscopy (EIS) and SEM techniques. The effect of pH, percentage composition of modifiers, immobilization time, accumulation time and accumulation potential was optimized for reaching the best electroanalytical response for AA and ACA. The sensor developed proved to give good recovery, notable electro-catalytic activity and appropriately distant signals for the simultaneous determination of the analytes. Common contaminates, uric acid, l-cysteine, dopamine, glucose, Na+, Cl- and citric acid were investigated for their interference effects. Uric acid, citric acid and dopamine were found to interfere to some extent. The electrode exhibited wide working ranges and a fairly satisfactory detection limit of 0.096 and 0.241 μM for AA and ACA, respectively. The electrode system proved to be practical for the analysis of pharmaceutical tablets and the recovery results are very satisfactory.
Collapse
Affiliation(s)
| | - Zehra Yazan
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06560, Turkey.
| | - Müşerref Önal
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06560, Turkey
| |
Collapse
|
123
|
Jahandari S, Taher MA, Karimi-Maleh H, Khodadadi A, Faghih-Mirzaei E. A powerful DNA-based voltammetric biosensor modified with Au nanoparticles, for the determination of Temodal; an electrochemical and docking investigation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
124
|
Afzali M, Mostafavi A, Nekooie R, Jahromi Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
125
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Novel electrochemical strategy for determination of 6-mercaptopurine using anodically pretreated boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
126
|
Erady V, Mascarenhas RJ, Satpati AK, Bhakta AK, Mekhalif Z, Delhalle J, A D. Carbon paste modified with Bi decorated multi-walled carbon nanotubes and CTAB as a sensitive voltammetric sensor for the detection of Caffeic acid. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
127
|
Kumar A, Pathak PK, Prasad BB. Electrocatalytic Imprinted Polymer of N-Doped Hollow Carbon Nanosphere-Palladium Nanocomposite for Ultratrace Detection of Anticancer Drug 6-Mercaptopurine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16065-16074. [PMID: 30990996 DOI: 10.1021/acsami.9b02947] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, a nanohybrid-based imprinted polymer consisting of N-doped hollow carbon nanospheres and palladium is reported for the electroanalysis of ultratrace level of anticancer drug, 6-mercaptopurine, used in the treatment of leukemia. For this, N-doped carbon nanospheres decorated with palladium were first developed, and subsequently, a molecular imprinted polymer layer was grown onto their surfaces. The so-produced silica-embedded nanocomposite was made hollow by etching silica moieties with hydrofluoric acid. Finally, the whole system was doped on an ionic-liquid-modified pencil graphite electrode. The underlying synergistic effect of hollow carbon nanosphere-supported palladium nanoparticles inculcated electrocatalytic action. Notably, all rebinding sites in solid core-shells were confined within the shell, which hampers the effective diffusion of template. However, in this work, an effective diffusion of template across the hollow structure of inner and outer surfaces was observed. Consequently, this rendered approximately 2-fold heterogeneous rate constant as compared to the solid core-shell-based sensor. Differential pulse voltammetric transduction was used for ultratrace detection of 6-mercaptopurine through anodic stripping method. The hollow imprinted sensor revealed a linear dependence of current with concentration range 0.80-70.748 ng mL-1. The limits of detection 0.11-0.22 ng mL-1 were realized in water, human blood plasma, urine, and pharmaceuticals. Thus, the proposed sensor demonstrated an attractive sensitivity reproducibility, as well as endurance requisite for the treatment of leukemia patients.
Collapse
Affiliation(s)
- Anil Kumar
- Analytical Section, Department of Chemistry, Institute of Science , Banaras Hindu University , Varanasi - 221005 , India
| | - Purnendu Kumar Pathak
- Analytical Section, Department of Chemistry, Institute of Science , Banaras Hindu University , Varanasi - 221005 , India
| | - Bhim Bali Prasad
- Analytical Section, Department of Chemistry, Institute of Science , Banaras Hindu University , Varanasi - 221005 , India
| |
Collapse
|
128
|
Kenarkob M, Pourghobadi Z. Electrochemical sensor for acetaminophen based on a glassy carbon electrode modified with ZnO/Au nanoparticles on functionalized multi-walled carbon nano-tubes. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
129
|
Dehghani MH, Sarmadi M, Alipour MR, Sanaei D, Abdolmaleki H, Agarwal S, Gupta VK. Investigating the equilibrium and adsorption kinetics for the removal of Ni (II) ions from aqueous solutions using adsorbents prepared from the modified waste newspapers: A low-cost and available adsorbent. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
130
|
Wu T, Liu C, Kong B, Sun J, Gong Y, Liu K, Xie J, Pei A, Cui Y. Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water. ACS CENTRAL SCIENCE 2019; 5:719-726. [PMID: 31041392 PMCID: PMC6487541 DOI: 10.1021/acscentsci.9b00130] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 05/28/2023]
Abstract
Heavy metal pollution continues to be one of the most serious environmental problems which has attracted major global concern. Here, a rapid, high-capacity, yet economical strategy for deep cleaning of heavy metals ions in water is reported based on amidoxime-functionalized macroporous carbon electrode materials. The active sites of our material can be self-refreshed during the electrochemical removal process, which is different from traditional methods. The novel filter device in this work can purify contaminated water very rapidly (3000 L h-1 m-2), and can decrease heavy metal ion concentrations to below 5 ppb with a very short contact time (only 3 s). The original treatment efficiency of the device can be retained even after 1 week of continuous device operation. An extremely high removal capacity of over 2300 mg g-1 can be achieved with 2-3 orders of magnitude higher efficiency than that of surface adsorption-based commercial filters without any decay. Additionally, the cost of energy consumed in our method is lower than $6.67 × 10-3 per ton of wastewater. We envision that this approach can be routinely applied for the rapid, efficient, and thorough removal of heavy metals from both point-of-use water and industrial wastewater.
Collapse
Affiliation(s)
- Tong Wu
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Chong Liu
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Biao Kong
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jie Sun
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Yongji Gong
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Kai Liu
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jin Xie
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Allen Pei
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Yi Cui
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Stanford
Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California 94305, United States
| |
Collapse
|
131
|
Fowotade SA, Yusof NA, Abdullah J, Sulaiman Y, Abd Rahman SF. Enhanced electrochemical sensing of secondary metabolites in oil palms for early detection of Ganoderma boninense based on novel nanoparticle-chitosan functionalized multi-walled carbon nanotube platform. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
132
|
Aghaie A, Khanmohammadi A, Hajian A, Schmid U, Bagheri H. Nonenzymatic Electrochemical Determination of Paraoxon Ethyl in Water and Fruits by Graphene-Based NiFe Bimetallic Phosphosulfide Nanocomposite as a Superior Sensing Layer. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01486-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
133
|
Shamsadin-Azad Z, Taher MA, Cheraghi S, Karimi-Maleh H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00096-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
134
|
Tursynbolat S, Bakytkarim Y, Huang J, Wang L. Highly sensitive simultaneous electrochemical determination of myricetin and rutin via solid phase extraction on a ternary Pt@r-GO@MWCNTs nanocomposite. J Pharm Anal 2019; 9:358-366. [PMID: 31929945 PMCID: PMC6951492 DOI: 10.1016/j.jpha.2019.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023] Open
Abstract
The simultaneous electrochemical determination of myricetin and rutin remains a challenge due to their indistinguishable potentials. To solve this problem, we constructed a ternary platinum nanoparticle, reduced graphene oxide, multi-walled carbon nanotubes (Pt@r-GO@MWCNTs) nanocomposite via a facile one-pot synthetic method. Under the optimized conditions, the ternary Pt@r-GO@MWCNTs nanocomposite exhibited good electrocatalytic activity toward myricetin and rutin via solid phase extraction and excellent performance for the simultaneous determination of myricetin and rutin. The oxidation peak current of myricetin was proportional to its concentrations in the range of 0.05–50 μM with a detection limit of 0.01 μM (S/N = 3). The linear range for rutin was 0.05–50 μM with a detection limit of 0.005 μM (S/N = 3). The ternary nanocomposite sensor also exhibited good reproducibility and stability, and was successfully used for the simultaneous determination of myricetin and rutin in real orange juice samples with recoveries ranging between 100.57% and 108.46%.
Collapse
Affiliation(s)
- Satar Tursynbolat
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yrysgul Bakytkarim
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jianzhi Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
135
|
Zhang Q, Jiao Q, Zhang Q, Liu Z. A novel crown ether-acylhydrazone turn-on fluorescent chemosensor for Al 3+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:1-8. [PMID: 30502579 DOI: 10.1016/j.saa.2018.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
A novel fluorescent chemosensor based on crown ether-acylhydrazone (L) was synthesized and characterized. The sensor L exhibited high selectivity and sensitive recognition towards Al3+ through a significant "turn-on" fluorescence response at 444 nm in methanol solution. While, other competitive ions had no such significant effects on the fluorescence emission. The associated spectra behavior might be attributed to the formation of 2:1 L-Al3+ complex and the proposed binding mode of L-Al3+ was demonstrated by the fluorescence titration profiles, Job's plot, ESI-MS spectrometry, 1H NMR titration and the IR analysis. Besides the high reproducibility of the optical signals, very low detection limit of 0.24 μM was calculated. The association constant (Ks) for L-Al3+ complex was about 5.56 × 109 ± 8.19 × 107 M-2. The results of various experiments showed the sensor L followed a turn-on mechanism via of the suppression of CN isomerization and excited state intramolecular proton transfer (ESIPT) process and the activation of chelation-enhanced fluorescence (CHEF). Theoretical calculations using DFT/B3LYP method was also used to get insight into the sensing mechanism and electronic structure of L. The sensor L could be conceived as an effective and practical fluorescent chemosensor for determination of Al3+.
Collapse
Affiliation(s)
- Qing Zhang
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| | - Qiyue Jiao
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| | - Qiang Zhang
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China.
| | - Zizhong Liu
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| |
Collapse
|
136
|
Elbalkiny HT, Yehia AM, Riad SM, Elsaharty YS. Potentiometric diclofenac detection in wastewater using functionalized nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
137
|
Chemometrics-assisted voltammetric determination of timolol maleate and brimonidine tartrate utilizing a carbon paste electrode modified with iron (III) oxide nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
138
|
High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
139
|
Aghamohseni B, Hassaninejad-Darzi SK, Asadollahi-Baboli M. A new sensitive voltammetric determination of thymol based on MnY nanozeolite modified carbon paste electrode using response surface methodology. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
140
|
Samadzadeh A, Sheikhshoaie I, Karimi-Maleh H. Simultaneous Determination of Epinephrine and Tyrosine Using a Glassy Carbon Electrode Amplified with ZnO-Pt/CNTs Nanocomposite. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180313115001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Simultaneous analysis of epinephrine and tyrosine as two effective and important
biological compounds in human blood and urine samples are very important for the investigation
of human health.
Objective:
In this research, a highly effective voltammetric sensor fabricated for simultaneous analysis
of epinephrine and tyrosine. The sensor was fabricated by the modification of glassy carbon electrode
with ZnO-Pt/CNTs nanocomposite (ZnO-Pt/CNTs/GCE). The synthesized nanocomposite was characterized
by SEM method. The ZnO-Pt/CNTs/GCE showed two separated oxidation signals at potential
~220 mV and 700 mV for epinephrine and tyrosine, respectively. Also, we detected linear dynamic
ranges 0.5-250.0 µM and 1.0-220 µM with a limit of detections 0.1 µM and 0.5 µM for the determination
of epinephrine and tyrosine, respectively. The ZnO-Pt/CNTs/GCE was used for the determination
of epinephrine and tyrosine in blood serum and human urine samples.
Collapse
Affiliation(s)
- Ali Samadzadeh
- Department of Chemistry, Shahid Bahonar University, Kerman, Iran
| | | | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
141
|
Pourbasheer E, Azari Z, Ganjali MR. Recent Advances in Biosensors Based Nanostructure for Pharmaceutical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180319152853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The development of novel nanostructures for pharmaceutical analysis has received
great attention. Biosensors are a class of analytical techniques competent in the rapid quantification
of drugs. Recently, the nanostructures have been applied for modification of biosensors.
Objective:
The goal of the present study is to review novel nanostructures for pharmaceutical analysis
by biosensors.
Method:
In this review, the application of different biosensors was extensively discussed.
Results:
Biosensors based nanostructures are a powerful alternative to conventional analytical techniques,
enabling highly sensitive, real-time, and high-frequency monitoring of drugs without extensive
sample preparation. Several examples of their application have been reported.
Conclusion:
The present paper reviews the recent advances on the pharmaceutical analysis of biosensor
based nanostructures.
Collapse
Affiliation(s)
- Eslam Pourbasheer
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Zhila Azari
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
142
|
Gupta VK, Alharbie NS, Agarwal S, Grachev VA. New Emerging One Dimensional Nanostructure Materials for Gas Sensing Application: A Mini Review. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180319151407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Nanomaterials have numerous potential applications in many areas such as
electronics, optoelectronics, catalysis and composite materials. Particularly, one dimensional (1D) nanomaterials
such as nanobelts, nanorods, and nanotubes can be used as either functional materials or
building blocks for hierarchical nanostructures. 1D nanostructure plays a very important role in sensor
technology.
Objective:
In the current review, our efforts are directed toward recent review on the use of 1D
nanostructure materials which are used in the literature for developing high-performance gas sensors
with fast response, quick recovery time and low detection limit. This mini review also focuses on the
methods of synthesis of 1D nanostructural sensor array, sensing mechanisms and its application in sensing
of different types of toxic gases which are fatal for human mankind. Particular emphasis is given to
the relation between the nanostructure and sensor properties in an attempt to address structure-property
correlations. Finally, some future research perspectives and new challenges that the field of 1D
nanostructure sensors will have to address are also discussed.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Department of Biological Sciences, King Abd ulaziz University, Jeddah 21589, Saudi Arabia
| | - Njud S. Alharbie
- Department of Biological Sciences, King Abd ulaziz University, Jeddah 21589, Saudi Arabia
| | - Shilpi Agarwal
- A.N. Frumkin Institute of Physical Chemistry snd Electrochemistry of the RAS, Leninsky Ave., 31, Moscow, 119071, Russian Federation
| | - Vladimir A. Grachev
- A.N. Frumkin Institute of Physical Chemistry snd Electrochemistry of the RAS, Leninsky Ave., 31, Moscow, 119071, Russian Federation
| |
Collapse
|
143
|
Hosseini F, Ebrahimi M, Karimi-Maleh H. Electrochemical Determination of Mycophenolate Mofetil in Drug Samples Using Carbon Paste Electrode Modified with 1-methyl-3-butylimidazolium Bromide and NiO/SWCNTs Nanocomposite. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180326114345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The mycophenolate mofetil is an immunosuppressant drug with wide application
in the treatment of cancer and prevent rejection in organ transplantation. This drug showed many
sides effects for pregnant women and determination of this drug is very important in the human body.
Objective:
A new electrochemical strategy was described for analysis of Mycophenolate Mofetil
(MMF) using novel voltammetric sensor. The sensor was fabricated using NiO/SWCNTs and 1-methyl-
3-butylimidazolium bromide as two conductive mediators for modification of carbon paste electrode
(NiO/SWCNTs/MBBr/CPE). The NiO/SWCNTs/MBBr/CPE can be used for analysis of MMF in
aqueous buffer solution in the concentration range of 0.08-900 µM. In addition, the NiO/SWCNTs/
MBBr/CPE reduced oxidation over-potential of MMF ~ 80 mV and increased the oxidation current of
MMF ~ 2.85 times. In the final step, NiO/SWCNTs/MBBr/CPE was used for determination of MMF in
pharmaceutical serum and tablet samples.
Collapse
Affiliation(s)
- Firuzeh Hosseini
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahmoud Ebrahimi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
144
|
Karimi F, Bijad M, Farsi M, Vahid A, Asari-Bami H, Wen Y, Ganjali MR. A New Nanostructure Square Wave Voltammetric Platform for Determination of Tert-butylhydroxyanisole in Food Samples. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180320114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Antioxidants are one of the important additives in food samples due to their
role in protecting human cells against the effects of free radicals. The analysis of antioxidants is
essential due to the role of antioxidants in improving body health.
Objective:
A square wave voltammetric sensor was fabricated for the determination of tert-butylhydroxyanisole
(TBHA) based on the application of CdO/SWCNTs and 1-methyl-3-butylimidazolium
chloride as mediators for the modification of carbon paste electrode (MBCl/CdO/SWCNTs/CPE). The
MBCl/CdO/SWCNTs/CPE improved the sensitivity of TBHA ~ 6.7 times and showed a linear dynamic
range 0.07-600 µM with detection limit 0.02 µA for the analysis of TBHA. The pH investigation confirmed
that electro-oxidation of TBHA occurred by exchanging two electrons and two protons. In addition,
the MBCl/CdO/SWCNTs/CPE was used for determination of TBHA in food samples.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Majede Bijad
- Department of Agriculture, Sari Branch, Islamic Azad University, Sari, Iran
| | - Mohammad Farsi
- Department of Agriculture, Sari Branch, Islamic Azad University, Sari, Iran
| | - Amir Vahid
- Research Institute of Petroleum Industry, Tehran, Iran
| | - Hesam Asari-Bami
- Department of Agriculture, Sari Branch, Islamic Azad University, Sari, Iran
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
145
|
Feng Y, Peng C, Li Y, Hu J, Deng Q, Wu Q, Xu Z. Superhydrophobic nanocomposite coatings with photoinitiated three-dimensional networks based on reactive graphene nanosheet-induced self-wrinkling patterned surfaces. J Colloid Interface Sci 2019; 536:149-159. [PMID: 30366180 DOI: 10.1016/j.jcis.2018.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023]
Abstract
HYPOTHESIS Bionic superhydrophobicity including high contact angle, low sliding angle and nonstick property, combined with both strong pH and ultraviolet (UV) resistance, is difficult to simultaneously achieve for large-scale preparation of superhydrophobic surfaces by blending polymer with a nonreactive inorganic nanofiller. EXPERIMENTS A series of high pH and UV-irradiation-resistant superhydrophobic nanocomposite films were prepared through UV-light-assisted chemical cross-linking among ternary components under nitrogen protection. Ethoxylated bisphenol A diacrylate, 2-(perfluorooctyl) ethyl acrylate, reactive thiol-coupled graphene nanosheets and photoinitiator were evenly mixed, followed by UV-irradiation curing. FINDINGS Abundant 3D networks could be formed. A robust self-wrinkling surface morphology was formed due to a UV-curing-induced inner tension in the composites, 2D morphology-induced flexibility for graphene nanosheets and fluorine-bearing component-induced phase separation at the wetted surfaces. High roughness and use of the fluorine element endows the surfaces with superhydrophobicity and oleophobicity. A favorable nonstick performance was obtained. Superhydrophobicity could be maintained despite changing the film-forming substrate, pH of soaking solutions from 1 to 12, or use of a prolonged UV-irradiation time reaching 120 h. Therefore, both superhydrophobicity/oleophobicity and strong pH/UV resistance are finely balanced. This work might open up the way for large-scale fabrication of promising superhydrophobic surfaces.
Collapse
Affiliation(s)
- Yefeng Feng
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Cheng Peng
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, PR China.
| | - Yandong Li
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Jianbing Hu
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Qihuang Deng
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, PR China.
| | - Qin Wu
- Department of Fashion Communication and Media, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Zhichao Xu
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
146
|
Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.070] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
147
|
Sasireka A, Rajendran R, Priya P, Raj V. Ciprofloxacin-Loaded Ceramic/Polymer Composite Coatings on Ti with Improved Antibacterial and Corrosion Resistance Properties for Orthopedic Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201803769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asokan Sasireka
- Advanced Materials Research Laboratory, Department of Chemistry; Periyar University; Salem - 636 011, Tamil Nadu India
| | - Renji Rajendran
- Advanced Materials Research Laboratory, Department of Chemistry; Periyar University; Salem - 636 011, Tamil Nadu India
| | - Palanisamy Priya
- Advanced Materials Research Laboratory, Department of Chemistry; Periyar University; Salem - 636 011, Tamil Nadu India
| | - Vairamuthu Raj
- Advanced Materials Research Laboratory, Department of Chemistry; Periyar University; Salem - 636 011, Tamil Nadu India
| |
Collapse
|
148
|
Do Carmo DR, da Silveira TFS. A New Composite Based on Electroactive Zirconium Phosphate: Morfology, Structure and Their Behavior as a Voltammetric Sensor in the Ascorbic Acid Detection. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01084-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
149
|
Ghosh S, Singharoy D, Naskar JP, Bhattacharya SC. Deciphering of Ligand‐to‐Metal Charge‐Transfer Process: Synthesis, Spectroscopic and Theoretical Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201801898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Swadesh Ghosh
- Department of ChemistryJadavpur University Kolkata 700032 India
| | - Dipti Singharoy
- Department of ChemistryJadavpur University Kolkata 700032 India
| | | | | |
Collapse
|
150
|
Chen JY, Zhou Q, Xu G, Wang RT, Tai EG, Xie L, Zhang Q, Guan Y, Huang X. Non-invasive blood glucose measurement of 95% certainty by pressure regulated Mid-IR. Talanta 2019; 197:211-217. [PMID: 30771926 DOI: 10.1016/j.talanta.2019.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/29/2022]
Abstract
To fight against diabetes mellitus, from which more than 400 million people suffer in the world, the patients have to puncture their fingers 4-5 times a day for the blood glucose level checks when using a glucometer, causing invasive pain and the risk of infection. Therefore, non-invasive method has been urged for blood glucose monitoring, among which the mid-infrared spectroscopy (Mid-IR) response of interstitial fluid was found to be promising. However, despite the prolonged effort, the accuracy still falls below the FDA's requirement. To break this barrier which lasted for almost three decades, we discovered the finger contact pressure playing a critical role during the measurement, where the Mid-IR reading could be affected significantly by a small change of the finger posture. In addition, the Mid-IR absorption level was also found to be highly associated with individual, revealing the necessity of adjusting the calibration correlation for each patient. By imposing a certain contact pressure monitored by a pressure transducer, we were able to achieve over 95% certainty from the Mid-IR measurement of glucose concentration and 100% comparability to the "true" glucose concentration for the first time, which was mainly attributed to the morphological change of finger tissue under pressure. The previous works resulted in only about 70% accuracy on average, barely hitting 80 + %, whereas ours reaches 95%, finally exceeding the requirement of FDA.
Collapse
Affiliation(s)
- Jason Yuanzhe Chen
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Canada L8S4L7
| | - Qi Zhou
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main ST W, Hamilton, ON, Canada L8S 4L1
| | - Gu Xu
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Canada L8S4L7.
| | - Ryan Taoran Wang
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Canada L8S4L7
| | - Edward Guangqing Tai
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Canada L8S4L7
| | - Longhan Xie
- South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, Guangdong Province 510630, China
| | - Qianzhi Zhang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, China
| | - Yanyan Guan
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, China
| | - Xiaochun Huang
- Shantou University, No. 243 University Road, Shantou Guangdong Province 515021, China
| |
Collapse
|