101
|
Rampino A, Marakhovskaia A, Soares-Silva T, Torretta S, Veneziani F, Beaulieu JM. Antipsychotic Drug Responsiveness and Dopamine Receptor Signaling; Old Players and New Prospects. Front Psychiatry 2018; 9:702. [PMID: 30687136 PMCID: PMC6338030 DOI: 10.3389/fpsyt.2018.00702] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022] Open
Abstract
Antipsychotic drugs targeting dopamine neurotransmission are still the principal mean of therapeutic intervention for schizophrenia. However, about one third of people do not respond to dopaminergic antipsychotics. Genome wide association studies (GWAS), have shown that multiple genetic factors play a role in schizophrenia pathophysiology. Most of these schizophrenia risk variants are not related to dopamine or antipsychotic drugs mechanism of action. Genetic factors have also been implicated in defining response to antipsychotic medication. In contrast to disease risk, variation of genes coding for molecular targets of antipsychotics have been associated with treatment response. Among genes implicated, those involved in dopamine signaling mediated by D2-class dopamine receptor, including DRD2 itself and its molecular effectors, have been implicated as key genetic predictors of response to treatments. Studies have also reported that genetic variation in genes coding for proteins that cross-talk with DRD2 at the molecular level, such as AKT1, GSK3B, Beta-catenin, and PPP2R2B are associated with response to antipsychotics. In this review we discuss the relative contribution to antipsychotic drug responsiveness of candidate genes and GWAS identified genes encoding proteins involved in dopamine responses. We also suggest that in addition of these older players, a deeper investigation of new GWAS identified schizophrenia risk genes such as FXR1 can provide new prospects that are not clearly engaged in dopamine function while being targeted by dopamine-associated signaling molecules. Overall, further examination of genes proximally or distally related to signaling mechanisms engaged by medications and associated with disease risk and/or treatment responsiveness may uncover an interface between genes involved in disease causation with those affecting disease remediation. Such a nexus would provide realistic targets for therapy and further the development of genetically personalized approaches for schizophrenia.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Tiago Soares-Silva
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Silvia Torretta
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Veneziani
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
102
|
Li AJ, Xie W, Wang M, Xu SC. Molecular Mechanism and Dynamics of S-Deoxyephedrine Moving through Molecular Channels within D 3R. ACS OMEGA 2017; 2:8896-8910. [PMID: 31457418 PMCID: PMC6645573 DOI: 10.1021/acsomega.7b01161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/17/2017] [Indexed: 06/10/2023]
Abstract
In this article, the trajectories of S-deoxyephedrine (SBD) along molecular channels within the complex protein structure of third dopamine receptor (D3R) are analyzed via molecular dynamic techniques, including potential mean force calculations of umbrella samplings from the 4.5 version of the GROMACS program. Changes in free energy due to the movement of SBD within D3R are determined, and the molecular dynamic mechanisms of SBD transmitting along molecular channels are probed. Molecular simulated results show that the change in free energy is calculated as 171.7 kJ·mol-1 for the transmission of SBD toward the outside of the cell along the y+ axis functional molecular channel and is 275.0 kJ·mol-1 for movement toward the intracellular structure along the y- axis. Within the internal structure of D3R, the changes in free energy are determined to be 103.6, 242.1, 459.7, and 127.8 kJ·mol-1 for transmission of SBD along the x+, x-, z+, and z- axes, respectively, toward the cell bilayer membrane, which indicates that SBD leaves much more easily along the x+ axis through the gap between the TM5 (the fifth transmembrane helix) and TM6 (the sixth transmembrane helix) from the internal structure of D3R. The values of free-energy changes indicate that SBD molecules can clear the protective channel within D3R, which helps dopamine molecules to leave the D3R internal structure along the x+ axis and to prevent them for exerting excessive neurotransmitter function. Therefore, our results suggest that SBD is effective for development as a drug for treating schizophrenia and its pharmacology is closely related to its dynamics and mechanisms within the molecular pathway of dopamine receptors.
Collapse
Affiliation(s)
- Ai Jing Li
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Wei Xie
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Ming Wang
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Si Chuan Xu
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| |
Collapse
|
103
|
Rizzi G, Tan KR. Dopamine and Acetylcholine, a Circuit Point of View in Parkinson's Disease. Front Neural Circuits 2017; 11:110. [PMID: 29311846 PMCID: PMC5744635 DOI: 10.3389/fncir.2017.00110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
Data from the World Health Organization (National Institute on Aging, 2011) and the National Institutes of Health (He et al., 2016) predicts that while today the worldwide population over 65 years of age is estimated around 8.5%, this number will reach an astounding 17% by 2050. In this framework, solving current neurodegenerative diseases primarily associated with aging becomes more pressing than ever. In 2017, we celebrate a grim 200th anniversary since the very first description of Parkinson’s disease (PD) and its related symptomatology. Two centuries after this debilitating disease was first identified, finding a cure remains a hopeful goal rather than an attainable objective on the horizon. Tireless work has provided insight into the characterization and progression of the disease down to a molecular level. We now know that the main motor deficits associated with PD arise from the almost total loss of dopaminergic cells in the substantia nigra pars compacta. A concomitant loss of cholinergic cells entails a cognitive decline in these patients, and current therapies are only partially effective, often inducing side-effects after a prolonged treatment. This review covers some of the recent developments in the field of Basal Ganglia (BG) function in physiology and pathology, with a particular focus on the two main neuromodulatory systems known to be severely affected in PD, highlighting some of the remaining open question from three main stand points: - Heterogeneity of midbrain dopamine neurons. - Pairing of dopamine (DA) sub-circuits. - Dopamine-Acetylcholine (ACh) interaction. A vast amount of knowledge has been accumulated over the years from experimental conditions, but very little of it is reflected or used at a translational or clinical level. An initiative to implement the knowledge that is emerging from circuit-based approaches to tackle neurodegenerative disorders like PD will certainly be tremendously beneficial.
Collapse
Affiliation(s)
| | - Kelly R Tan
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
104
|
Goto S. Striatal Gα olf/cAMP Signal-Dependent Mechanism to Generate Levodopa-Induced Dyskinesia in Parkinson's Disease. Front Cell Neurosci 2017; 11:364. [PMID: 29201000 PMCID: PMC5696598 DOI: 10.3389/fncel.2017.00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022] Open
Abstract
The motor symptoms of Parkinson’s disease (PD) result from striatal dopamine (DA) deficiency due to a progressive degeneration of nigral dopaminergic cells. Although DA replacement therapy is the mainstay to treat parkinsonian symptoms, a long-term daily administration of levodopa often develops levodopa-induced dyskinesia (LID). LID is closely linked to the dysregulation of cyclic adenosine monophosphate (cAMP) signaling cascades in the medium spiny neurons (MSNs), the principal neurons of the striatum, which are roughly halved with striatonigral MSNs by striatopallidal MSNs. The olfactory type G-protein α subunit (Gαolf) represents an important regulator of the cAMP signal activities in the striatum, where it positively couples with D1-type dopamine receptor (D1R) and adenosine A2A receptor (A2AR) to increase cAMP production in the MSNs. Notably, D1Rs are primarily expressed in striatonigral MSNs, whereas D2Rs and A2ARs are expressed in striatopallidal MSNs. Based on the evidence obtained from parkinsonian mice, we hypothesized that in the DA-denervated striatum with D1R hypersensitivity, a repeated and pulsatile exposure to levodopa might cause a usage-induced degradation of Gαolf proteins in striatal MSNs, resulting in increased and decreased levels of Gαolf protein in the striatonigral and striatopallidal MSNs, respectively. As a principal cause for generating LID, this might lead to an increased responsiveness to levodopa exposure in both striatonigral and striatopallidal MSNs. Our hypothesis reinforces the long-standing concept that LID might result from the reduced activity of the striatopallidal pathway and has important clinical implications.
Collapse
Affiliation(s)
- Satoshi Goto
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan.,Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
105
|
Zhang L, Huang L, Lu K, Liu Y, Tu G, Zhu M, Ying L, Zhao J, Liu N, Guo F, Zhang L, Zhang L. Cocaine-induced synaptic structural modification is differentially regulated by dopamine D1 and D3 receptors-mediated signaling pathways. Addict Biol 2017; 22:1842-1855. [PMID: 27734601 DOI: 10.1111/adb.12462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 07/30/2016] [Accepted: 09/09/2016] [Indexed: 01/18/2023]
Abstract
Synaptic plasticity plays a critical role in cocaine addiction. The dopamine D1 and D3 receptors differentially regulate the cocaine-induced gene expression, structural remodeling and behavioral response. However, how these two receptors coordinately mediate the ultra-structural changes of synapses after cocaine exposure and whether these changes are behaviorally relevant are still not clear. Here, using quantitative electron microscopy, we show that D1 and D3 receptors have distinct roles in regulating cocaine-induced ultra-structural changes of synapses in the nucleus accumbens and caudoputamen. Pre-treatment of cocaine-treated mice with D3 receptor antagonist NGB2904 resulted in an increase in the ratio of total and asymmetric synapse to neuron and in the length of postsynaptic densities, compared with cocaine treatment alone. In contrast, pre-treatment of cocaine-treated mice with D1 receptor antagonist SCH23390 caused a reduction in synapse-to-neuron ratio and in postsynaptic densities length. Similarly, NGB2904 and SCH23390 showed opposite/differential effects on cocaine-induced structural plasticity, conditioned place preference and locomotor activity and signaling activation, including the activation of ERK, CREB and NR1 and the expression of c-fos and Cdk5. Therefore, we provide direct electron microscopy evidence that dopamine D1 and D3 receptors reciprocally regulate the ultra-structural changes of synapses following chronic exposure to cocaine. In addition, our data suggest that D1 and D3 receptors may regulate cocaine-induced ultra-structural changes and behavior responses by impact on structural plasticity and signaling transduction.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences; Southern Medical University; China
| | - Lu Huang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
| | - Kangrong Lu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
| | - Yutong Liu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
| | - Genghong Tu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
| | - Mengjuan Zhu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
| | - Li Ying
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
| | - Jinlan Zhao
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
| | - N. Liu
- Elderly Health Services Research Center; Southern Medical University; China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology; Children's Hospital Research Foundation; Cincinnati OH USA
| | - Lin Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences; Southern Medical University; China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences; Southern Medical University; China
- Elderly Health Services Research Center; Southern Medical University; China
| |
Collapse
|
106
|
Spigolon G, Cavaccini A, Trusel M, Tonini R, Fisone G. cJun N-terminal kinase (JNK) mediates cortico-striatal signaling in a model of Parkinson's disease. Neurobiol Dis 2017; 110:37-46. [PMID: 29107639 DOI: 10.1016/j.nbd.2017.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022] Open
Abstract
The cJun N-terminal kinase (JNK) signaling pathway has been extensively studied with regard to its involvement in neurodegenerative processes, but little is known about its functions in neurotransmission. In a mouse model of Parkinson's disease (PD), we show that the pharmacological activation of dopamine D1 receptors (D1R) produces a large increase in JNK phosphorylation. This effect is secondary to dopamine depletion, and is restricted to the striatal projection neurons that innervate directly the output structures of the basal ganglia (dSPN). Activation of JNK in dSPN relies on cAMP-induced phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32), but does not require N-methyl-d-aspartate (NMDA) receptor transmission. Electrophysiological experiments on acute brain slices from PD mice show that inhibition of JNK signaling in dSPN prevents the increase in synaptic strength caused by activation of D1Rs. Together, our findings show that dopamine depletion confers to JNK the ability to mediate dopamine transmission, informing the future development of therapies for PD.
Collapse
Affiliation(s)
- Giada Spigolon
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Cavaccini
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Massimo Trusel
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Raffaella Tonini
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
107
|
Mirmohammadsadeghi Z, Shareghi Brojeni M, Haghparast A, Eliassi A. Role of paraventricular hypothalamic dopaminergic D 1 receptors in food intake regulation of food-deprived rats. Eur J Pharmacol 2017; 818:43-49. [PMID: 29056523 DOI: 10.1016/j.ejphar.2017.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
Dopaminergic neurons play an important role on central regulatory mechanisms of feeding behavior. Dopamine receptors are distributed within the hypothalamus and densely localized in the paraventricular hypothalamic nucleus (PVN). From these ideas we postulated that PVN D1 receptors may play a role in regulating the food intake behavioral process. In this paper, we considered the effects of SKF38393, a D1 receptor agonist, and the D1 receptor antagonist (SCH23390), on food intake of conscious rats deprived of food for 24h. Our findings revealed that intraparaventricular injections of SKF383993 (0.3-5µg) stimulated food intake behavior in a dose dependent manner. This stimulatory effect of SKF3833 persisted over 2h of the monitoring period. The PVN injections of D1 receptor antagonist were associated with dose-dependent inhibition of food intake. SCH23390 (0.01µg) was also administered 5min before intraparaventricular injection of SKF3833. The results showed that SCH23390 suppressed stimulated food intake induced by SKF38393 (1.2µg). In conclusion, endogenous dopamine impact PVN D1 receptors and may be a factor in regulating the food intake behavioral process.
Collapse
Affiliation(s)
| | - Masoud Shareghi Brojeni
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
108
|
Bai M, Zhu X, Zhang L, Zhang Y, Xue L, Wang Y, Zhong M, Zhang X. Divergent anomaly in mesocorticolimbic dopaminergic circuits might be associated with different depressive behaviors, an animal study. Brain Behav 2017; 7:e00808. [PMID: 29075568 PMCID: PMC5651392 DOI: 10.1002/brb3.808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 07/01/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The mesocorticolimbic dopamine system, which originates from the ventral tegmental area (VTA) and projects primarily to the prefrontal cortex (PFC), olfactory tubercle (OT), nucleus accumbens (NAc), dorsal striatum (ST), and the amygdala (AMy), plays a pivotal role in determining individual motivation and sensitivity to rewards, namely, anhedonia. Not all depressive individuals exhibited anhedonia, thus, it is natural to speculate that the heterogenous manifestations of depression might be related to the mesocorticolimbic dopamine system. Maternal deprivation (MD) and chronic unpredictable stress (CUPS) are two well-established depressogenic stressors, and they were proven to induce different depressive phenotypes. METHODS The depressive and anxiety-like behaviors of MD and CUPS-treated rats were measured by classical behavioral tests including open field, forced swimming, and sucrose preference test. The expression of D1-5 dopamine receptors and DAT mRNA and protein in the mesocorticolimbic dopamine system of rats exposed to MD and CUPS were measured by real-time PCR and Western blot, respectively. RESULTS Severe anhedonia was observed in MD but not CUPS rats. Divergent expression of D1 and D2 receptors and DAT mRNA and protein in the mesocorticolimbic dopamine system were found between MD and CUPS rats. Significant correlations between different depressive behaviors and D1-/D2-like receptors and DAT protein levels in the mesocorticolimbic dopamine system were observed. CONCLUSION Different depressive behaviors of rats such as anhedonia, passive coping behavior, and declined exploratory interest might be related to divergent dopaminergic pathways. Anhedonia is associated with the dysfunction of VTA-NAc and VTA-OT dopaminergic pathways, the passive coping behavior is related to the dysregulation of VTA-PFC and VTA-AMy pathways, and individual exploratory interest is associated with abnormal activity of VTA-PFC and VTA-ST pathways.
Collapse
Affiliation(s)
- Mei Bai
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China.,Mental Health Institute of The Second Xiangya Hospital Key Laboratory of Psychiatry and Mental Health of Hunan Province Central South University Changsha Hunan China
| | - Xiongzhao Zhu
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China.,Mental Health Institute of The Second Xiangya Hospital Key Laboratory of Psychiatry and Mental Health of Hunan Province Central South University Changsha Hunan China
| | - Li Zhang
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Yi Zhang
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Liang Xue
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Yuting Wang
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Mingtian Zhong
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Xiuwu Zhang
- Department of Radiation Oncology School of Medicine University of Maryland Baltimore MD USA
| |
Collapse
|
109
|
Silwal AP, Yadav R, Sprague JE, Lu HP. Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells. ACS Chem Neurosci 2017; 8:1510-1518. [PMID: 28375605 DOI: 10.1021/acschemneuro.7b00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm-1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm-1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm-1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm-1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.
Collapse
Affiliation(s)
- Achut P. Silwal
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Rajeev Yadav
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Jon E. Sprague
- The Ohio Attorney General’s Center for the Future of Forensic Science, Bowling Green, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
110
|
Mach RH. Small Molecule Receptor Ligands for PET Studies of the Central Nervous System-Focus on G Protein Coupled Receptors. Semin Nucl Med 2017; 47:524-535. [PMID: 28826524 DOI: 10.1053/j.semnuclmed.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPRCs) are a class of proteins that are expressed in high abundance and are responsible for numerous signal transduction pathways in the central nervous system. Consequently, alterations in GPRC function have been associated with a wide variety of neurologic and neuropsychiatric disorders. The development of PET probes for imaging GPRCs has served as a major emphasis of PET radiotracer development and PET imaging studies over the past 30 years. In this review, a basic description of the biology of G proteins and GPRCs is provided. This includes recent evidence of the existence of dimeric and multimeric species of GPRCs that have been termed "receptor mosaics," with an emphasis on the different GPRCs that form complexes with the dopamine D2 receptor. An overview of the different PET radiotracers for imaging the component GPRC within these different multimeric complexes of the D2 receptor is also provided.
Collapse
Affiliation(s)
- Robert H Mach
- Department of Radiology, Perelman School Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
111
|
Karim TJ, Reyes-Vazquez C, Dafny N. Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats. J Neurophysiol 2017; 118:1501-1514. [PMID: 28615331 DOI: 10.1152/jn.00145.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Methylphenidate (MPD), also known as Ritalin, is a psychostimulant used to treat attention deficit hyperactivity disorder. However, it is increasingly being misused by normal adolescents for recreation and academic advantage. Therefore, it is important to elucidate the behavioral and neurophysiological effects of MPD in normal subjects. MPD inhibits the reuptake of catecholamines, mainly found in the ventral tegmental area (VTA) and locus coeruleus (LC). The VTA and LC normally mediate attention, motivation, and drug reward behaviors. Selective neuronal connections between the VTA and LC have been identified implicating regular interaction between the structures. The objective of this study was to compare the neuronal responses of the VTA and LC to MPD in normal adolescent rats. Animals were implanted with permanent electrodes in the VTA and LC, and neuronal units were recorded following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD exposure. Animals displayed either behavioral sensitization or tolerance to all three doses of MPD. Acute MPD exposure elicited excitation in the majority of all VTA and LC units. Chronic MPD exposure elicited a further increase in VTA and LC neuronal activity in animals exhibiting behavioral sensitization and an attenuation in VTA and LC neuronal activity in animals exhibiting behavioral tolerance, demonstrating neurophysiological sensitization and tolerance, respectively. The similar pattern in VTA and LC unit activity suggests that the two structures are linked in their response to MPD. These results may help determine the exact mechanism of action of MPD, resulting in optimized treatment of patients.NEW & NOTEWORTHY The same dose of 0.6, 2.5, and 10 mg/kg methylphenidate (MPD) elicits either behavioral sensitization or tolerance in adolescent rats. There is a direct correlation between the ventral tegmental area (VTA) and locus coeruleus (LC) neuronal response to chronic MPD exposure. Both the VTA and LC are involved in the behavioral and neurophysiological effects of chronic MPD.
Collapse
Affiliation(s)
- Tahseen J Karim
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Cruz Reyes-Vazquez
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| |
Collapse
|
112
|
Inhibition of glycogen synthase kinase-3 by SB 216763 affects acquisition at lower doses than expression of amphetamine-conditioned place preference in rats. Behav Pharmacol 2017; 28:262-271. [DOI: 10.1097/fbp.0000000000000283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
113
|
Dobbs LK, Lemos JC, Alvarez VA. Restructuring of basal ganglia circuitry and associated behaviors triggered by low striatal D2 receptor expression: implications for substance use disorders. GENES BRAIN AND BEHAVIOR 2017; 16:56-70. [PMID: 27860248 PMCID: PMC5243158 DOI: 10.1111/gbb.12361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/11/2023]
Abstract
Dopamine D2 receptors (D2Rs) consistently emerge as a critical substrate for the etiology of some major psychiatric disorders. Indeed, a central theory of substance use disorders (SUDs) postulates that a reduction in D2R levels in the striatum is a determining factor that confers vulnerability to abuse substances. A large number of clinical and preclinical studies strongly support this link between SUDs and D2Rs; however, identifying the mechanism by which low D2Rs facilitate SUDs has been hindered by the complexity of circuit connectivity, the heterogeneity of D2R expression and the multifaceted constellation of phenotypes observed in SUD patient. Animal models are well‐suited for understanding the mechanisms because they allow access to the circuitry and the genetic tools that enable a dissection of the D2R heterogeneity. This review discusses recent findings on the functional role of D2Rs and highlights the distinctive contributions of D2Rs expressed on specific neuronal subpopulations to the behavioral responses to stimulant drugs. A circuit‐wide restructuring of local and long‐range inhibitory connectivity within the basal ganglia is observed in response to manipulation of striatal D2R levels and is accompanied by multiple alterations in dopamine‐dependent behaviors. Collectively, these new findings provide compelling evidence for a critical role of striatal D2Rs in shaping basal ganglia connectivity; even among neurons that do not express D2Rs. These findings from animal models have deep clinical implications for SUD patients with low levels D2R availability where a similar restructuring of basal ganglia circuitry is expected to take place.
Collapse
Affiliation(s)
- L K Dobbs
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - J C Lemos
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - V A Alvarez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
114
|
Vekshina NL, Anokhin PK, Veretinskaya AG, Shamakina IY. Dopamine D1–D2 receptor heterodimers: A literature review. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s199075081702010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
115
|
Clarifying the Ghrelin System's Ability to Regulate Feeding Behaviours Despite Enigmatic Spatial Separation of the GHSR and Its Endogenous Ligand. Int J Mol Sci 2017; 18:ijms18040859. [PMID: 28422060 PMCID: PMC5412441 DOI: 10.3390/ijms18040859] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
Ghrelin is a hormone predominantly produced in and secreted from the stomach. Ghrelin is involved in many physiological processes including feeding, the stress response, and in modulating learning, memory and motivational processes. Ghrelin does this by binding to its receptor, the growth hormone secretagogue receptor (GHSR), a receptor found in relatively high concentrations in hypothalamic and mesolimbic brain regions. While the feeding and metabolic effects of ghrelin can be explained by the effects of this hormone on regions of the brain that have a more permeable blood brain barrier (BBB), ghrelin produced within the periphery demonstrates a limited ability to reach extrahypothalamic regions where GHSRs are expressed. Therefore, one of the most pressing unanswered questions plaguing ghrelin research is how GHSRs, distributed in brain regions protected by the BBB, are activated despite ghrelin’s predominant peripheral production and poor ability to transverse the BBB. This manuscript will describe how peripheral ghrelin activates central GHSRs to encourage feeding, and how central ghrelin synthesis and ghrelin independent activation of GHSRs may also contribute to the modulation of feeding behaviours.
Collapse
|
116
|
Dalmau J, Geis C, Graus F. Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System. Physiol Rev 2017; 97:839-887. [PMID: 28298428 PMCID: PMC5539405 DOI: 10.1152/physrev.00010.2016] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Investigations in the last 10 years have revealed a new category of neurological diseases mediated by antibodies against cell surface and synaptic proteins. There are currently 16 such diseases all characterized by autoantibodies against neuronal proteins involved in synaptic signaling and plasticity. In clinical practice these findings have changed the diagnostic and treatment approach to potentially lethal, but now treatable, neurological and psychiatric syndromes previously considered idiopathic or not even suspected to be immune-mediated. Studies show that patients' antibodies can impair the surface dynamics of the target receptors eliminating them from synapses (e.g., NMDA receptor), block the function of the antigens without changing their synaptic density (e.g., GABAb receptor), interfere with synaptic protein-protein interactions (LGI1, Caspr2), alter synapse formation (e.g., neurexin-3α), or by unclear mechanisms associate to a new form of tauopathy (IgLON5). Here we first trace the process of discovery of these diseases, describing the triggers and symptoms related to each autoantigen, and then review in detail the structural and functional alterations caused by the autoantibodies with special emphasis in those (NMDA receptor, amphiphysin) that have been modeled in animals.
Collapse
Affiliation(s)
- Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Christian Geis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Graus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
117
|
Role of D2 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behav Brain Res 2017; 321:99-105. [DOI: 10.1016/j.bbr.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/13/2016] [Accepted: 01/01/2017] [Indexed: 11/21/2022]
|
118
|
Lee SA, Suh Y, Lee S, Jeong J, Kim SJ, Kim SJ, Park SK. Functional expression of dopamine D2 receptor is regulated by tetraspanin 7-mediated postendocytic trafficking. FASEB J 2017; 31:2301-2313. [PMID: 28223337 DOI: 10.1096/fj.201600755rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
The dopaminergic system plays an essential role in various functions of the brain, including locomotion, memory, and reward, and the deregulation of dopaminergic signaling as a result of altered functionality of dopamine D2 receptor (DRD2) is implicated in multiple neurologic and psychiatric disorders. Tetraspanin-7 (TSPAN7) is expressed to variable degrees in different tissues, with the highest level in the brain, and multiple mutations in TSPAN7 have been implicated in intellectual disability. Here, we tested the hypothesis that TSPAN7 may be a binding partner of DRD2 that is involved in the regulation of its functional activity. Our results showed that TSPAN7 was associated with DRD2 and reduced its surface expression by enhancing DRD2 internalization. Immunocytochemical analysis revealed that TSPAN7 that resides in the plasma membrane and early and late endosomes promoted internalization of DRD2 and its localization to endosomal compartments of the endocytic pathway. Furthermore, we observed that TSPAN7 deficiency increased surface localization of DRD2 concurrent with the decrease of its endocytosis, regardless of dopamine treatment. Finally, TSPAN7 negatively affects DRD2-mediated signaling. These results disclosed a previously uncharacterized role of TSPAN7 in the regulation of the expression and functional activity of DRD2 by postendocytic trafficking.-Lee, S.-A., Suh, Y., Lee, S., Jeong, J., Kim, S. J., Kim, S. J., Park, S. K. Functional expression of dopamine D2 receptor is regulated by tetraspanin 7-mediated postendocytic trafficking.
Collapse
Affiliation(s)
- Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jaehoon Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - So Jung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
119
|
Morigaki R, Okita S, Goto S. Dopamine-Induced Changes in Gα olf Protein Levels in Striatonigral and Striatopallidal Medium Spiny Neurons Underlie the Genesis of l-DOPA-Induced Dyskinesia in Parkinsonian Mice. Front Cell Neurosci 2017; 11:26. [PMID: 28239340 PMCID: PMC5300978 DOI: 10.3389/fncel.2017.00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/26/2017] [Indexed: 12/18/2022] Open
Abstract
The dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), exerts powerful therapeutic effects but eventually generates l-DOPA-induced dyskinesia (LID) in patients with Parkinson’s disease (PD). LID has a close link with deregulation of striatal dopamine/cAMP signaling, which is integrated by medium spiny neurons (MSNs). Olfactory type G-protein α subunit (Gαolf), a stimulatory GTP-binding protein encoded by the GNAL gene, is highly concentrated in the striatum, where it positively couples with dopamine D1 (D1R) receptor and adenosine A2A receptor (A2AR) to increase intracellular cAMP levels in MSNs. In the striatum, D1Rs are mainly expressed in the MSNs that form the striatonigral pathway, while D2Rs and A2ARs are expressed in the MSNs that form the striatopallidal pathway. Here, we examined the association between striatal Gαolf protein levels and the development of LID. We used a hemi-parkinsonian mouse model with nigrostriatal lesions induced by 6-hydroxydopamine (6-OHDA). Using quantitative immunohistochemistry (IHC) and a dual-antigen recognition in situ proximity ligation assay (PLA), we here found that in the dopamine-depleted striatum, there appeared increased and decreased levels of Gαolf protein in striatonigral and striatopallidal MSNs, respectively, after a daily pulsatile administration of l-DOPA. This leads to increased responsiveness to dopamine stimulation in both striatonigral and striatopallidal MSNs. Because Gαolf protein levels serve as a determinant of cAMP signal-dependent activity in striatal MSNs, we suggest that l-DOPA-induced changes in striatal Gαolf levels in the dopamine-depleted striatum could be a key event in generating LID.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima UniversityTokushima, Japan; Parkinson's Disease and Dystonia Research Center, Tokushima University HospitalTokushima, Japan; Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima UniversityTokushima, Japan
| | - Shinya Okita
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima UniversityTokushima, Japan; Parkinson's Disease and Dystonia Research Center, Tokushima University HospitalTokushima, Japan; Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima UniversityTokushima, Japan
| | - Satoshi Goto
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima UniversityTokushima, Japan; Parkinson's Disease and Dystonia Research Center, Tokushima University HospitalTokushima, Japan
| |
Collapse
|
120
|
Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiol Learn Mem 2017; 138:252-270. [DOI: 10.1016/j.nlm.2016.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
|
121
|
Vekshina N, Anokhin P, Veretinskaya A, Shamakina I. Heterodimeric D1-D2 dopamine receptors: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.18097/pbmc20176301005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes modern data on the structure and functions ofheteromersformed by D1 and D2 dopamine receptors focusing on their role in the mechanisms of drug dependence. This article discusses potential functional significance of heterodimeric D1-D2 dopamine receptorsdue to their localization in the brain as well as unique pharmacological propertiesversus constituent monomers. It is shown that heteromerization results in dramatic changes in activated signaling pathways compare to the corresponding monomers. These studies update our current knowledge of ligand-receptor interactions and provide better understanding of dopamine receptors pharmacology. Furthermore elucidation of significance of heterodimeric D1-D2 dopamine receptors as drug targets is important for the development of new effective drug addiction treatment.
Collapse
Affiliation(s)
- N.L. Vekshina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - P.K. Anokhin
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - A.G. Veretinskaya
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - I.Yu. Shamakina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
122
|
New Concepts in Dopamine D 2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biol Psychiatry 2017; 81:78-85. [PMID: 27832841 PMCID: PMC5702557 DOI: 10.1016/j.biopsych.2016.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor that is a common target for antipsychotic drugs. Antagonism of D2R signaling in the striatum is thought to be the primary mode of action of antipsychotic drugs in alleviating psychotic symptoms. However, antipsychotic drugs are not clinically effective at reversing cortical-related symptoms, such as cognitive deficits in schizophrenia. While the exact mechanistic underpinnings of these cognitive deficits are largely unknown, deficits in cortical dopamine function likely play a contributing role. It is now recognized that similar to most G protein-coupled receptors, D2Rs signal not only through canonical G protein pathways but also through noncanonical beta-arrestin2-dependent pathways. We review the current mechanistic bases for this dual signaling mode of D2Rs and how these new concepts might be leveraged for therapeutic gain to target both cortical and striatal dysfunction in dopamine neurotransmission and hence have the potential to correct both positive and cognitive symptoms of schizophrenia.
Collapse
|
123
|
Nagatsu T, Nagatsu I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects. J Neural Transm (Vienna) 2016; 123:1255-1278. [PMID: 27491309 DOI: 10.1007/s00702-016-1596-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Ikuko Nagatsu
- Department of Anatomy, School of Medicine, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
124
|
Robles CF, Johnson AW. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor. Behav Brain Res 2016; 320:431-439. [PMID: 27984049 DOI: 10.1016/j.bbr.2016.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023]
Abstract
Dopamine is known to influence motivational processes, however the precise role of this neurotransmitter remains a contentious issue. In the current study we sought to further characterize dopamine signaling in reward-based decision-making and consummatory behavior in mice, via lateral ventricle infusion of the dopamine D2 receptor antagonist eticlopride. In Experiment 1, we examined effort-based decision-making, in which mice had a choice between one lever, where a single response led to the delivery of a low value reward (2% sucrose); and a second lever, which led to a higher value reward (20% sucrose) that gradually required more effort to obtain. As the response schedule for the high value reward became more strict, low dose (4μg in 0.5μl) central infusions of eticlopride biased preference away from the high value reward, and toward the lever that led to the low value reward. Similarly, a higher dose of eticlopride (8μg in 0.5μl) also disrupted choice responding for the high value reward, however it did so by increasing omissions. In Experiment 2, we assessed the effects of eticlopride on consumption of 20% sucrose. The antagonist led to a dose-dependent reduction in intake, and through an analysis of licking microstructure, it was revealed that this in part reflected a reduction in the motivation to engage in consummatory behavior, rather than alterations in the evaluation of the reward. These results suggest that disruptions in D2 receptor signaling reduce the willingness to engage in effortful operant responding and consumption of a desirable outcome.
Collapse
Affiliation(s)
- Cindee F Robles
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
125
|
Zanatta G, Della Flora Nunes G, Bezerra EM, da Costa RF, Martins A, Caetano EWS, Freire VN, Gottfried C. Two Binding Geometries for Risperidone in Dopamine D3 Receptors: Insights on the Fast-Off Mechanism through Docking, Quantum Biochemistry, and Molecular Dynamics Simulations. ACS Chem Neurosci 2016; 7:1331-1347. [PMID: 27434874 DOI: 10.1021/acschemneuro.6b00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Risperidone is an atypical antipsychotic used in the treatment of schizophrenia and of symptoms of irritability associated with autism spectrum disorder (ASD). Its main action mechanism is the blockade of D2-like receptors acting over positive and negative symptoms of schizophrenia with small risk of extrapyramidal symptoms (EPS) at doses corresponding to low/moderate D2 occupancy. Such a decrease in the side effect incidence can be associated with its fast unbinding from D2 receptors in the nigrostriatal region allowing the recovery of dopamine signaling pathways. We performed docking essays using risperidone and the D3 receptor crystallographic data and results suggested two possible distinct orientations for risperidone at the binding pocket. Orientation 1 is more close to the opening of the binding site and has the 6-fluoro-1,2 benzoxazole fragment toward the bottom of the D3 receptor cleft, while orientation 2 is deeper inside the binding pocket with the same fragment toward to the receptor surface. In order to unveil the implications of these two binding orientations, classical molecular dynamics and quantum biochemistry computations within the density functional theory formalism and the molecular fractionation with conjugate caps framework were performed. Quantum mechanics/molecular mechanics suggests that orientation 2 (considering the contribution of Glu90) is slightly more energetically stable than orientation 1 with the main contribution coming from residue Asp110. The residue Glu90, positioned at the opening of the binding site, is closer to orientation 1 than 2, suggesting that it may have a key role in stability through attractive interaction with risperidone. Therefore, although orientations 1 and 2 are both likely to occur, we suggest that the occurrence of the first may contribute to the reduction of side effects in patients taking risperidone due to the reduction of dopamine receptor occupancy in the nigrostriatal region through a mechanism of fast dissociation. The atypical effect may be obtained simply by either delaying D3R full blockage by spatial hindrance of orientation 1 at the binding site or through an effective blockade followed by orientation 1 fast dissociation. While the molecular interpretation suggested in this work shed some light on the potential molecular mechanisms accounting for the reduced extrapyramidal symptoms observed during risperidone treatment, further studies are necessary in order to evaluate the implications of both orientations during the receptor activation/inhibition. Altogether these data highlight important hot spots in the dopamine receptor binding site bringing relevant information for the development of novel/derivative agents with atypical profile.
Collapse
Affiliation(s)
- Geancarlo Zanatta
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| | - Gustavo Della Flora Nunes
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| | - Eveline M. Bezerra
- Post-graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Roner F. da Costa
- Department of Physics, Universidade Federal Rural do Semi-Árido, 59780-000 Caraúbas, RN Brazil
| | - Alice Martins
- Post-graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Ewerton W. S. Caetano
- Federal Institute of Education, Science and Technology, 60040-531 Fortaleza, CE Brazil
| | - Valder N. Freire
- Department of Physics, Federal University of Ceará, 60455-760 Fortaleza, CE Brazil
| | - Carmem Gottfried
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| |
Collapse
|
126
|
Jolly C, Rousseau K, Prézeau L, Vol C, Tomkiewicz J, Dufour S, Pasqualini C. Functional Characterisation of Eel Dopamine D2 Receptors and Involvement in the Direct Inhibition of Pituitary Gonadotrophins. J Neuroendocrinol 2016; 28. [PMID: 27453551 DOI: 10.1111/jne.12411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/21/2016] [Accepted: 07/20/2016] [Indexed: 01/11/2023]
Abstract
In various vertebrate species, dopamine (DA) exerts an inhibitory action on reproduction. In the European eel, DA plays a pivotal role in the inhibitory control of gonadotroph function and the blockade of puberty. In vivo studies have suggested that this effect is mediated by receptors pharmacologically related to the D2 family. In the European eel, two distinct D2 receptor (D2-R) paralogous genes have been identified (D2A-R and D2B-R) and both were shown to be expressed in the pituitary. We investigated the potential role of each paralogue in the control of gonadotroph function in this species. Eel recombinant D2A-R or D2B-R were expressed in HEK 293 cells, with a universal Gα subunit, and receptor activation was followed by inositol phosphate production. Recombinant D2-Rs exhibited a comparable affinity for DA, although they had differential affinities for mammalian D2-R agonists and antagonists, supporting subtle structure/activity differences. Furthermore, using eel pituitary cell primary cultures, the expression by gonadotroph cells of both native eel D2-R paralogues was examined by in situ hybridisation of D2A-R or D2B-R transcripts, coupled with immunofluorescence of luteinising hormone (LH)β or follicle-stimulating (FSH)β. LH and to a lesser extent, FSH cells expressed both D2-R transcripts but with a clear predominance of D2B-R. Notably, D2B-R transcripts were detected for the majority of LH cells. Accordingly, using these cultures, we showed that DA potently inhibited basal and testosterone-stimulated LHβ expression and less potently basal and activin-stimulated FSHβ expression. We also tested some D2-R antagonists, aiming to select the most adequate one to be used in innovative protocols for induction of eel sexual maturation. We identified eticlopride as the most potent inhibitor of DA action on basal and stimulated LH expression in vitro. Our data suggest a differential functionalisation of the duplicated receptor genes and demonstrate that mainly D2B-R is involved in the dopaminergic inhibitory control of eel gonadotroph function.
Collapse
Affiliation(s)
- C Jolly
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - K Rousseau
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - L Prézeau
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - C Vol
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - J Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | - S Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France.
| | - C Pasqualini
- Institut des Neurosciences Paris-Saclay, Développement et Evolution de la Neurotransmission, Département Dev-Evo, Université Paris Sud, CNRS UMR 9197, Gif-Sur-Yvette, France.
| |
Collapse
|
127
|
Novel multifunctional dopamine D 2/D 3 receptors agonists with potential neuroprotection and anti-alpha synuclein protein aggregation properties. Bioorg Med Chem 2016; 24:5088-5102. [PMID: 27591013 DOI: 10.1016/j.bmc.2016.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022]
Abstract
Our ongoing drug development endeavor to design compounds for symptomatic and neuroprotective treatment of Parkinson's disease (PD) led us to carry out a structure activity relationship study based on dopamine agonists pramipexole and 5-OHDPAT. Our goal was to incorporate structural elements in these agonists in a way to preserve their agonist activity while producing inhibitory activity against aggregation of α-synuclein protein. In our design we appended various catechol and related phenol derivatives to the parent agonists via different linker lengths. Structural optimization led to development of several potent agonists among which (-)-8a, (-)-14 and (-)-20 exhibited potent neuroprotective properties in a cellular PD model involving neurotoxin 6-OHDA. The lead compounds (-)-8a and (-)-14 were able to modulate aggregation of α-synuclein protein efficiently. Finally, in an in vivo PD animal model, compound (-)-8a exhibited efficacious anti-parkinsonian effect.
Collapse
|
128
|
Xie W, Wang M, Li A, Xu SC. Molecular dynamics simulation of d-Benzedrine transmitting through molecular channels within D 3R. J Biomol Struct Dyn 2016; 35:1672-1684. [PMID: 27191827 DOI: 10.1080/07391102.2016.1190947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dex-Benzedrine (known as d-Benzedrine or SAT) acts in dopamine receptors of central nerve cell system. In clinic, SAT is used to treat a variety of diseases; meanwhile, it has dependence and addiction. In order to investigate the pharmacology and addiction mechanisms of SAT as a medicine, in this paper, we have studied the structure of D3R complex protein with SAT, and based on which, using potential mean force with umbrella samplings and the simulated phospholipid bilayer membrane (or POPC bilayer membrane), the molecular dynamics simulation was performed to obtain free energy changes upon the trajectories for SAT moving along the molecular channels within D3R. The free energy change for SAT transmitting toward the outside of cell along the functional molecular channel within D3R is 83.5 kJ mol-1. The change of free energy for SAT to permeate into the POPC bilayer membrane along the protective molecular channel within D3R is 87.7 kJ mol-1. Our previous work gave that the free energy for Levo-Benzedrine (RAT) transmitting toward the outside of cell along the functional molecular channel within D3R is 91.4 kJ mol-1, while it is 117.7 kJ mol-1 for RAT to permeate into the POPC bilayer membrane along the protective molecular channel within D3R. The values of free energy suggest that SAT relatively prefers likely to pass through the functional molecular channel within D3R for increasing the release of dopamine molecules resulting in a variety of functional effects for SAT. The obtained results show that the pharmacology and addiction mechanisms of SAT as a drug are closely related to the molecular dynamics and mechanism for SAT transmitting along molecular channels within D3R.
Collapse
Affiliation(s)
- Wei Xie
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Ming Wang
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Aijing Li
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Si-Chuan Xu
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| |
Collapse
|
129
|
Differential regulation of the phosphorylation of Trimethyl-lysine27 histone H3 at serine 28 in distinct populations of striatal projection neurons. Neuropharmacology 2016; 107:89-99. [DOI: 10.1016/j.neuropharm.2016.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 01/02/2023]
|
130
|
Abstract
In the last 30 years dopamine has been considered as playing a role in the pathogenesis of migraine. The literature indicates that migraineurs are hypersensitive to dopamine agonists with respect to some of the premonitory symptoms of migraine such as nausea and yawning. There are various nonspecific dopamine D2 receptor antagonists that show good clinical efficacy in migraine, and also a number of polymorphisms of dopaminergic genes related to migraine. Animal studies have also shown that dopamine receptors are present in the trigeminovascular system, the area believed to be involved in headache pain, and neuronal firing here is reduced by dopamine agonists. There appears to be little effect of dopamine on peripheral trigeminal afferents. We assess some of the limitations of the clinical studies with regard to the therapeutics, and those found in the studies that discovered differences in genetic polymorphisms in migraine, and consider the implications of this on a dopaminergic hypothesis of migraine.
Collapse
Affiliation(s)
- S Akerman
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - PJ Goadsby
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
131
|
Naderi M, Jamwal A, Chivers DP, Niyogi S. Modulatory effects of dopamine receptors on associative learning performance in zebrafish (Danio rerio). Behav Brain Res 2016; 303:109-19. [DOI: 10.1016/j.bbr.2016.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
|
132
|
Chang ZW, Ke ZH, Chang CC. Roles of dopamine receptors in mediating acute modulation of immunological responses in Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2016; 49:286-297. [PMID: 26766178 DOI: 10.1016/j.fsi.2015.12.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Dopamine (DA) was found to influence the immunological responses and resistance to pathogen infection in invertebrates. To clarify the possible modulation of DA through dopamine receptors (DAR) against acute environmental stress, the levels of DA, glucose and lactate in the haemolymph of Macrobrachium rosenbergii under hypo- and hyperthermal stresses were measured. The changes in immune parameters such as total haemocyte count (THC), differential haemocyte count (DHC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and phagocytic activity (PA) were evaluated in prawns which received DAR antagonists (SCH23390, SCH, D1 antagonist; domperidone, DOM, D2 antagonist; chlorpromazine, CH, D1+2 antagonist) followed by hypo- (15 °C) and hyperthermal (34 °C) stresses. In addition, pharmacological analysis of the effect DA modulation was studied in haemocytes incubated with DA and DAR antagonists. The results revealed a significant increase in haemolymph DA accompanied with upregulated levels of glucose and lactate in prawns exposed to both hypo- and hyperthermal stresses in 2 h. In addition, a significant decrease in RBs per haemocyte was noted in prawns which received DAR antagonists when they exposed to hyperthermal stress for 30 min. In in vitro test, antagonism on RBs, SOD and GPx activity of haemocytes were further evidenced through D1, D1, D1+D2 DARs, respectively, in the meantime, no significant difference in PO activity and PA was observed among the treatment groups. These results suggest that the upregulation of DA, glucose and lactate in haemolymph might be the response to acute thermal stress for the demand of energy, and the DAR occupied by its antagonistic action impart no effect on immunological responses except RBs in vivo even though the modulation mediated through D1 DAR was further evidenced in RBs, SOD and GPx activities in vitro. It is therefore concluded that thermal stress mediate stress responses not only through DAR but also via diverse pathways, and DA might modulate the levels of RBs, SOD and GPx activities mainly through D1 DAR.
Collapse
Affiliation(s)
- Zhong-Wen Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Zhi-Han Ke
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
133
|
Li Q, Wu N, Cui P, Gao F, Qian WJ, Miao Y, Sun XH, Wang Z. Suppression of outward K(+) currents by activating dopamine D1 receptors in rat retinal ganglion cells through PKA and CaMKII signaling pathways. Brain Res 2016; 1635:95-104. [PMID: 26826585 DOI: 10.1016/j.brainres.2016.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 01/11/2023]
Abstract
Dopamine plays an important role in regulating neuronal functions in the central nervous system by activating the specific G-protein coupled receptors. Both D1 and D2 dopamine receptors are extensively distributed in the retinal neurons. In the present study, we investigated the effects of D1 receptor signaling on outward K(+) currents in acutely isolated rat retinal ganglion cells (RGCs) by patch-clamp techniques. Extracellular application of SKF81297 (10 μM), a specific D1 receptor agonist, significantly and reversibly suppressed outward K(+) currents of the cells, which was reversed by SCH23390 (10 μM), a selective D1 receptor antagonist. We further showed that SKF81297 mainly suppressed the glybenclamide (Gb)- and 4-aminopyridine (4-AP)-sensitive K(+) current components, but did not show effect on the tetraethylammonium (TEA)-sensitive one. Both protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways were likely involved in the SKF81297-induced suppression of the K(+) currents since either Rp-cAMP (10 μM), a cAMP/PKA signaling inhibitor, or KN-93 (10 μM), a specific CaMKII inhibitor, eliminated the SKF81297 effect. In contrast, neither protein kinase C (PKC) nor mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway seemed likely to be involved because both the PKC inhibitor bisindolylmaleimide IV (Bis IV) (10 μM) and the MAPK/ERK1/2 inhibitor U0126 (10 μM) did not block the SKF81297-induced suppression of the K(+) currents. These results suggest that activation of D1 receptors suppresses the Gb- and 4-AP-sensitive K(+) current components in rat RGCs through the intracellular PKA and CaMKII signaling pathways, thus modulating the RGC excitability.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Na Wu
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Peng Cui
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Feng Gao
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
134
|
Peng S, Yu S, Wang Q, Kang Q, Zhang Y, Zhang R, Jiang W, Qian Y, Zhang H, Zhang M, Xiao Z, Chen J. Dopamine receptor D2 and catechol-O-methyltransferase gene polymorphisms associated with anorexia nervosa in Chinese Han population: DRD2 and COMT gene polymorphisms were associated with AN. Neurosci Lett 2016; 616:147-51. [PMID: 26808641 DOI: 10.1016/j.neulet.2016.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/28/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022]
Abstract
Dopamine receptor D2 (DRD2) and catechol-O-methyltransferase (COMT) are important in dopamine system which is proved to be associated with food-anticipatory behavior, food restriction, reward and motivation. This has made them good candidates for anorexia nervosa (AN). The aim of this work is to explore the roles of DRD2 (rs1800497) and COMT (rs4680, rs4633, rs4818) gene polymorphisms in the susceptibility of AN within the Chinese Han population. We recruited 260AN patients with DSM-IV diagnosis criteria, and 247 unrelated, normal weight controls. DRD2 (rs1800497) and COMT (rs4680, rs4633, rs4818) were genotyped in all subjects. We found rs1800497 and rs4633 were associated with the susceptibility of AN within the Chinese Han sample, and allele C of rs1800497 was a protective factor. There was a gene-gene interaction between rs1800497 of DRD2 gene and rs4633 of COMT gene. We concluded that rs1800497 and rs4633 play important roles in the AN susceptibility with respect to the Chinese Han population. The gene-gene interaction between DRD2 and COMT contributes to the risk of AN.
Collapse
Affiliation(s)
- Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Qian Wang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Qing Kang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yanxia Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Ran Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Wenhui Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yiping Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Haiyin Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Mingdao Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zeping Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| |
Collapse
|
135
|
Dendritic Spines in Depression: What We Learned from Animal Models. Neural Plast 2016; 2016:8056370. [PMID: 26881133 PMCID: PMC4736982 DOI: 10.1155/2016/8056370] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023] Open
Abstract
Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.
Collapse
|
136
|
Pérez-Fernández J, Megías M, Pombal MA. Expression of a Novel D4 Dopamine Receptor in the Lamprey Brain. Evolutionary Considerations about Dopamine Receptors. Front Neuroanat 2016; 9:165. [PMID: 26778974 PMCID: PMC4701969 DOI: 10.3389/fnana.2015.00165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 12/28/2022] Open
Abstract
Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology - Centro de Investigaciones Biomédicas - Instituto de Investigación Biomédica de Vigo, Uiversity of Vigo Vigo, Spain
| | - Manuel Megías
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology - Centro de Investigaciones Biomédicas - Instituto de Investigación Biomédica de Vigo, Uiversity of Vigo Vigo, Spain
| | - Manuel A Pombal
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology - Centro de Investigaciones Biomédicas - Instituto de Investigación Biomédica de Vigo, Uiversity of Vigo Vigo, Spain
| |
Collapse
|
137
|
Le Foll B. What does addiction medicine expect from neuroscience? From genes and neurons to treatment responses. PROGRESS IN BRAIN RESEARCH 2016; 224:419-47. [DOI: 10.1016/bs.pbr.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
138
|
Role of the basolateral amygdala dopamine receptors in arachidonylcyclopropylamide-induced fear learning deficits. Psychopharmacology (Berl) 2016; 233:213-24. [PMID: 26546370 DOI: 10.1007/s00213-015-4096-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
Abstract
There is much evidence suggesting that the mesoamygdala dopaminergic (DAergic) system plays a crucial role in the formation and expression of fear conditioning, with both D1 and D2 receptors being involved. In addition, cannabinoid CB1 receptor (CB1R) signaling modulates DAergic pathways. The present study sought to determine the involvement of basolateral amygdala (BLA) dopamine receptors in arachidonylcyclopropylamide (ACPA)-induced fear learning deficits. Context- and tone-dependent fear conditioning in adult male NMRI mice was evaluated. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing in context- or tone-dependent fear conditioning, suggesting an acquisition impairment. Pre-training intra-BLA microinjection of a subthreshold dose of SKF38393 (D1-like receptor agonist), SCH23390 (D1-like receptor antagonist), quinpirole (D2-like receptor agonist), or sulpiride (D2-like receptor antagonist) did not alter the context-dependent fear learning deficit induced by ACPA, while SKF38393 or quinpirole restored ACPA effect on tone-dependent fear learning. Moreover, SKF38393 (1 μg/mouse), SCH23390 (0.04 and 0.08 μg/mouse), or quinpirole (0.1 μg/mouse) all impaired context-dependent fear learning. It is concluded that D1 or D2 dopamine (DA) receptor activation restores tone- but not context-dependent fear learning deficit induced by CB1 activation using ACPA.
Collapse
|
139
|
Li P, Snyder GL, Vanover KE. Dopamine Targeting Drugs for the Treatment of Schizophrenia: Past, Present and Future. Curr Top Med Chem 2016; 16:3385-3403. [PMID: 27291902 PMCID: PMC5112764 DOI: 10.2174/1568026616666160608084834] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023]
Abstract
Schizophrenia is a chronic and debilitating neuropsychiatric disorder affecting approximately 1% of the world's population. This disease is associated with considerable morbidity placing a major financial burden on society. Antipsychotics have been the mainstay of the pharmacological treatment of schizophrenia for decades. The traditional typical and atypical antipsychotics demonstrate clinical efficacy in treating positive symptoms, such as hallucinations and delusions, while are largely ineffective and may worsen negative symptoms, such as blunted affect and social withdrawal, as well as cognitive function. The inability to treat these latter symptoms may contribute to social function impairment associated with schizophrenia. The dysfunction of multiple neurotransmitter systems in schizophrenia suggests that drugs selectively targeting one neurotransmission pathway are unlikely to meet all the therapeutic needs of this heterogeneous disorder. Often, however, the unintentional engagement of multiple pharmacological targets or even the excessive engagement of intended pharmacological targets can lead to undesired consequences and poor tolerability. In this article, we will review marketed typical and atypical antipsychotics and new therapeutic agents targeting dopamine receptors and other neurotransmitters for the treatment of schizophrenia. Representative typical and atypical antipsychotic drugs and new investigational drug candidates will be systematically reviewed and compared by reviewing structure-activity relationships, pharmacokinetic properties, drug metabolism and safety, pharmacological properties, preclinical data in animal models, clinical outcomes and associated side effects.
Collapse
Affiliation(s)
- Peng Li
- Intra-Cellular Therapies Inc, 430 East 29th Street, Suite 900, New York, NY 10016, United States.
| | | | | |
Collapse
|
140
|
Firsov ML, Astakhova LA. The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0210-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
141
|
Bonito-Oliva A, DuPont C, Madjid N, Ögren SO, Fisone G. Involvement of the Striatal Medium Spiny Neurons of the Direct Pathway in the Motor Stimulant Effects of Phencyclidine. Int J Neuropsychopharmacol 2015; 19:pyv134. [PMID: 26657176 PMCID: PMC4926795 DOI: 10.1093/ijnp/pyv134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/03/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The psychotomimetic phencyclidine (PCP) produces behavioral symptoms similar to those observed in schizophrenia, accompanied by increased motor activity. The dopamine and adenosine 3',5'-cyclic monophosphate-regulated phosphoprotein of 32kDa (DARPP-32) is enriched in the medium spiny neurons (MSNs) of the striatum and has been implicated in the actions of PCP. We examined the effects of deletion of DARPP-32 in distinct populations of striatal MSNs, on the ability of PCP to induce motor activation and memory deficit. METHODS The effects of PCP were examined in mice with conditional knockout of DARPP-32 in the MSNs of the direct, or indirect pathway. DARPP-32 phosphorylation was determined by Western blotting. The motor stimulant effects of PCP were determined by measuring locomotion following acute and chronic administration. Memory deficit was evaluated using the passive avoidance test. RESULTS Loss of DARPP-32 in direct MSNs prevents PCP-induced phosphorylation and abolishes the motor stimulation effects of PCP. In contrast, lack of DARPP-32 in indirect MSNs does not affect the ability of PCP to promote DARPP-32 phosphorylation and to increase motor activity. The impairment in passive avoidance induced by PCP is independent of the expression of DARPP-32 in direct or indirect MSNs. CONCLUSIONS The increase in DARPP-32 phosphorylation induced by PCP occurs selectively in the MSNs of the direct pathway, which are also specifically involved in the motor stimulant effects of this drug. The memory deficit induced by PCP is not linked to the expression of DARPP-32 in striatal MSNs.
Collapse
Affiliation(s)
| | | | | | | | - Gilberto Fisone
- Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (Drs Bonito-Olivia, Madjid, Ögren, and Fisone, and Ms DuPont).
| |
Collapse
|
142
|
Yamamoto K, Fontaine R, Pasqualini C, Vernier P. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:164-75. [PMID: 26613258 DOI: 10.1159/000441550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022]
Abstract
Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates.
Collapse
Affiliation(s)
- Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (UMR 9197), CNRS - Universitx00E9; Paris-Sud, Universitx00E9; Paris-Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
143
|
Titova NV. [A current view on dopamine receptor agonists in the treatment of Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:76-83. [PMID: 26525820 DOI: 10.17116/jnevro20151159176-83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dopamine receptor agonists (DRA) is a widely used group of antiparkinsonian drugs. The article presents short results: related to the mechanism of the stimulation of different types of dopamine receptors. The advantages of this group of drugs compared to levodopa medications as well as the studies of DRA in vitro and in vivo are described. Multiple studies demonstrate an important role of DRA in the treatment of Parkinson's disease (PD): a good control of motor symptoms, the possibility of monotherapy in the early stages of disease, the reduced risk of motor complications compared to start therapy with levodopa and decrease in the duration of "OFF-period" and UPDRS scores as well as the possibility to reduce the dose of levodopa in case of combined treatment with levodopa containing preparations. Pramipexole has demonstrated the efficacy in the treatment of persistent tremor and depression in double-blind placebo-controlled trials. A significant improvement of quality of life index has been shown in PD patients treated with these drugs. Side-effects often limited the use of DRA in clinical practice. The data on the dose equivalence of different DRA are recommended to use if it is necessary to switch from one DRA to another.
Collapse
Affiliation(s)
- N V Titova
- Pirogov Russian National Research Medical University, Moscow
| |
Collapse
|
144
|
Synergistic Interactions of D1- and D2-Selective Dopamine Agonists in Animal Models for Parkinson’s Disease: Sites of Action and Implications for the Pathogenesis of Dyskinesias. Can J Neurol Sci 2015. [DOI: 10.1017/s0317167100041536] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT:The addition of a D2 agonist such as bromocriptine to L-Dopa therapy can often improve the response of patients with Parkinson’s disease dramatically. Simultaneous activation of D1 and D2 dopamine receptors can produce a synergistic effect on locomotion in rats and primates. However, despite the importance of this addition of a D2 agonist to the D1/D2 agonist L-Dopa, little is known of the sites of action of these agents. Recent work suggests that, in addition to D1 and D2 dopamine receptor sites in the striatum (caudate-putamen), L-Dopa and D1 agonists have important effects at D1 dopamine receptors in the substantia nigra. Animal experiments suggest that D1 and D2 dopamine receptor agonists probably also affect different outflow pathways from the striatum. An understanding of these pathways and how dopamine agonists affect them gives insight into some of the clinical problems experienced in treating Parkinson’s disease (the “on-off phenomenon, for example). D1/D2 dopamine receptors also differentially affect gene expression and regulation in the striatum. An understanding of the anatomical and biochemical location of the actions of dopamine receptor agonists will be important in maximizing the beneficial effects and minimizing the side-effects of both presently-used drugs and new treatments.
Collapse
|
145
|
Lee K, Poudel YB, Glinkerman CM, Boger DL. Total synthesis of dihydrolysergic acid and dihydrolysergol: development of a divergent synthetic strategy applicable to rapid assembly of D-ring analogs. Tetrahedron 2015; 71:5897-5905. [PMID: 26273113 PMCID: PMC4528678 DOI: 10.1016/j.tet.2015.05.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The total syntheses of dihydrolysergic acid and dihydrolysergol are detailed based on a Pd(0)-catalyzed intramolecular Larock indole cyclization for the preparation of the embedded tricyclic indole (ABC ring system) and a subsequent powerful inverse electron demand Diels-Alder reaction of 5-carbomethoxy-1,2,3-triazine with a ketone-derived enamine for the introduction of a functionalized pyridine, serving as the precursor for a remarkably diastereoselective reduction to the N-methylpiperidine D-ring. By design, the use of the same ketone-derived enamine and a set of related complementary heterocyclic azadiene [4 + 2] cycloaddition reactions permitted the late stage divergent preparation of a series of alternative heterocyclic derivatives not readily accessible by more conventional approaches.
Collapse
Affiliation(s)
- Kiyoun Lee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yam B. Poudel
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christopher M. Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
146
|
Xing L, McDonald H, Da Fonte DF, Gutierrez-Villagomez JM, Trudeau VL. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells. Front Neurosci 2015; 9:310. [PMID: 26388722 PMCID: PMC4557113 DOI: 10.3389/fnins.2015.00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022] Open
Abstract
Radial glial cells (RGCs) are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Heather McDonald
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Dillon F Da Fonte
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Juan M Gutierrez-Villagomez
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Vance L Trudeau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
147
|
Zhang Y, Wildsoet CF. RPE and Choroid Mechanisms Underlying Ocular Growth and Myopia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:221-40. [PMID: 26310157 DOI: 10.1016/bs.pmbts.2015.06.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myopia is the most common type of refractive errors and one of the world's leading causes of blindness. Visual manipulations in animal models have provided convincing evidence for the role of environmental factors in myopia development. These models along with in vitro studies have provided important insights into underlying mechanisms. The key locations of the retinal pigment epithelium (RPE) and choroid make them plausible conduits for relaying growth regulatory signals originating in the retina to the sclera, which ultimately determines eye size and shape. Identifying the key signal molecules and their targets may lead to the development of new myopia control treatments. This section summarizes findings implicating the RPE and choroid in myopia development. For RPE and/or choroid, changes in morphology, activity of ion channels/transporters, as well as in gene and protein expression, have been linked to altered eye growth. Both tissues thus represent potential targets for novel therapies for myopia.
Collapse
Affiliation(s)
- Yan Zhang
- School of Optometry, University of California, Berkeley, California, USA.
| | | |
Collapse
|
148
|
Goutier W, O'Connor JJ, Lowry JP, McCreary AC. The effect of nicotine induced behavioral sensitization on dopamine D1 receptor pharmacology: An in vivo and ex vivo study in the rat. Eur Neuropsychopharmacol 2015; 25:933-43. [PMID: 25795518 DOI: 10.1016/j.euroneuro.2015.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2014] [Accepted: 02/21/2015] [Indexed: 01/07/2023]
Abstract
Behavioral sensitization is a phenomenon which can develop following repeated intermittent administration of a range of psychostimulants, and other compounds, and may model neuroplastic changes seen in addictive processes and neuropsychiatric disease. The aim of the present study was to investigate the effect of dopamine D1 receptor (D1R) ligands on nicotine-induced behavioral sensitization and their molecular consequences in the striatum. Wistar rats were chronically treated (5 days) with vehicle or nicotine (0.4 mg/kg; s.c.) and locomotor activity was measured. Following a 5 day withdrawal period, rats were pretreated with vehicle or the D1R antagonist SCH-23390 (0.03 mg/kg; i.p.) and challenged with nicotine. Either 45 min or 24h post-challenge, the striatum was isolated and ex vivo receptor binding and cAMP accumulation (using LC-MS/MS) were assessed. It was shown that chronic nicotine administration induced the development and expression of locomotor sensitization, of which the latter was blocked by SCH-23390. Nicotine-induced sensitization had no effect on forskolin stimulated cAMP accumulation but increased the efficacy of dopamine for the D1R and decreased the potency of D1R agonists. These effects were antagonized by in vivo pre-challenge with SCH-23390. No effect on D1 receptor binding was observed. Moreover, time dependent effects were observed between tissue taken 45 min and 24h post-challenge. The present findings provide a connection between behavioral sensitization and intracellular cAMP accumulation through the D1R. Together these data suggest that changes in D1R signaling in the dorsal striatum may play an important role in the underlying mechanisms of nicotine-induced behavioral sensitization.
Collapse
Affiliation(s)
- W Goutier
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C.J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands; Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - J J O'Connor
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Ireland; Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - J P Lowry
- Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - A C McCreary
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C.J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands.
| |
Collapse
|
149
|
Trypanothione reductase inhibitors: Overview of the action of thioridazine in different stages of Chagas disease. Acta Trop 2015; 145:79-87. [PMID: 25733492 DOI: 10.1016/j.actatropica.2015.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
Thioridazine (TDZ) is a phenothiazine that has been shown to be one of the most potent phenothiazines to inhibit trypanothione reductase irreversibly. Trypanothione reductase is an essential enzyme for the survival of Trypanosoma cruzi in the host. Here, we reviewed the use of this drug for the treatment of T. cruzi experimental infection. In our laboratory, we have studied the effect of TDZ for the treatment of mice infected with different strains of T. cruzi and treated in the acute or in the chronic phases of the experimental infection, using two different schedules: TDZ at a dose of 80 mg/kg/day, for 3 days starting 1h after infection (acute phase), or TDZ 80 mg/kg/day for 12 days starting 180 days post infection (d.p.i.) (chronic phase). In our experience, the treatment of infected mice, in the acute or in the chronic phases of the infection, with TDZ led to a large reduction in the mortality rates and in the cardiac histological and electrocardiographical abnormalities, and modified the natural evolution of the experimental infection. These analyses reinforce the importance of treatment in the chronic phase to decrease, retard or stop the evolution to chagasic myocardiopathy. Other evidence leading to the use of this drug as a potential chemotherapeutic agent for Chagas disease treatment is also revised.
Collapse
|
150
|
Inhibitors of glutamate release from breast cancer cells; new targets for cancer-induced bone-pain. Sci Rep 2015; 5:8380. [PMID: 25670024 PMCID: PMC4323637 DOI: 10.1038/srep08380] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/19/2015] [Indexed: 01/20/2023] Open
Abstract
Glutamate is an important signaling molecule in a wide variety of tissues. Aberrant glutamatergic signaling disrupts normal tissue homeostasis and induces several disruptive pathological conditions including pain. Breast cancer cells secrete high levels of glutamate and often metastasize to bone. Exogenous glutamate can disrupt normal bone turnover and may be responsible for cancer-induced bone pain (CIBP). CIBP is a significant co-morbidity that affects quality of life for many advanced-stage breast cancer patients. Current treatment options are commonly accompanied by serious side-effects that negatively impact patient care. Identifying small molecule inhibitors of glutamate release from aggressive breast cancer cells advances a novel, mechanistic approach to targeting CIBP that could advance treatment for several pathological conditions. Using high-throughput screening, we investigated the ability of approximately 30,000 compounds from the Canadian Compound Collection to reduce glutamate release from MDA-MB-231 breast cancer cells. This line is known to secrete high levels of glutamate and has been demonstrated to induce CIBP by this mechanism. Positive chemical hits were based on the potency of each molecule relative to a known pharmacological inhibitor of glutamate release, sulfasalazine. Efficacy was confirmed and drug-like molecules were identified as potent inhibitors of glutamate secretion from MDA-MB-231, MCF-7 and Mat-Ly-Lu cells.
Collapse
|