101
|
Effect of Furostanol Saponins from Allium Macrostemon Bunge Bulbs on Platelet Aggregation Rate and PI3K/Akt Pathway in the Rat Model of Coronary Heart Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9107847. [PMID: 31341503 PMCID: PMC6612384 DOI: 10.1155/2019/9107847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022]
Abstract
Aim. To investigate the effect of Furostanol Saponins from Allium Macrostemon Bunge Bulbs (FSAMB) on platelet aggregation rate of rats with coronary heart disease and discuss the mechanism of FSAMB affecting the platelet aggregation rate through PI3K/Akt pathway. We established the rat models with coronary heart disease (CHD) and prepared the platelet-rich plasma. The effect of different concentrations of FSAMB on platelet aggregation in SD rats induced by ADP was observed in vitro and in vivo. And Lactate Dehydrogenase (LDH), Creatine Kinase-MB Form (CK-MB), and Cardiac Troponin I (cTnI) are detected in the blood to know the level of damage to heart cells. The expansion of platelets in the immobilized fibrinogen in different concentrations of FSAMB was observed. Western blot was conducted to detect the phosphorylation level of protein kinase B (also known as Akt) and the expression level of phosphoinositide 3-kinase (PI3K). We found that FSAMB had a significant inhibitory effect on the ADP-induced platelet aggregation in vitro. Intragastric administration of FSAMB also inhibited platelet aggregation induced by ADP in rats. LDH, CK-MB, and cTnI levels in serum of rats in FSAMB (672 mg/kg) group were lower than those in the model control group after the intervention (P<0.01 or P<0.05). FSAMB inhibited the expansion of platelets on immobilized fibrinogen. Also, FSAMB inhibited ADP-induced platelet PI3K expression and Akt phosphorylation. The inhibition of Akt phosphorylation by FSAMB was more obvious after the inhibition of the expression of PI3K. This study demonstrated that FSAMB can reduce the degree of myocardial cell damage and inhibit ADP-induced platelet aggregation in SD rats, possibly by inhibiting platelet PI3K/Akt signaling pathway in vitro and in vivo.
Collapse
|
102
|
Peng Q, Ratnasothy K, Boardman DA, Jacob J, Tung SL, McCluskey D, Smyth LA, Lechler RI, Dorling A, Lombardi G. Protease Activated Receptor 4 as a Novel Modulator of Regulatory T Cell Function. Front Immunol 2019; 10:1311. [PMID: 31275306 PMCID: PMC6591367 DOI: 10.3389/fimmu.2019.01311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023] Open
Abstract
Regulatory T cells (Tregs) are a subpopulation of T cells that maintain immunological tolerance. In inflammatory responses the function of Tregs is tightly controlled by several factors including signaling through innate receptors such as Toll like receptors and anaphylatoxin receptors allowing an effective immune response to be generated. Protease-activated receptors (PARs) are another family of innate receptors expressed on multiple cell types and involved in the pathogenesis of autoimmune disorders. Whether proteases are able to directly modulate Treg function is unknown. Here, we show using two complimentary approaches that signaling through PAR-4 influences the expression of CD25, CD62L, and CD73, the suppressive capacity, and the stability of Tregs, via phosphorylation of FoxO1 and negative regulation of PTEN and FoxP3. Taken together, our results demonstrate an important role of PAR4 in tuning the function of Tregs and open the possibility of targeting PAR4 to modulate immune responses.
Collapse
Affiliation(s)
- Qi Peng
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| | - Kulachelvy Ratnasothy
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| | - Dominic A Boardman
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| | - Jacinta Jacob
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| | - Sim Lai Tung
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| | - Daniel McCluskey
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Lesley A Smyth
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - Robert I Lechler
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| | - Anthony Dorling
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| |
Collapse
|
103
|
Li S, Zhang D, Lu K, Wu Y, Sheng L, Tang Q. Activation of calcium signaling in human gingival fibroblasts by recombinant Porphyromonas gingivalis RgpB protein. Eur J Oral Sci 2019; 127:287-293. [PMID: 31175838 DOI: 10.1111/eos.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
Abstract
Arginine-specific cysteine proteinases, such as Arg-gingipain B (RgpB), mediate inflammation by activating protease-activated receptors (PARs). Arg-gingipain B is produced by Porphyromonas gingivalis, and is implicated in the causation of periodontal disease. The purpose of the present study was to observe the influence of recombinant RgpB protein (rRgpB) on PAR activation by monitoring intracellular Ca2+ ion concentration ([Ca2+]i) and inositol-1,4,5-triphosphate (IP3) levels in human gingival fibroblasts (HGFs). Our findings showed that rRgpB could cause a transient increase in [Ca2+]i. This increase in [Ca2+]i was completely suppressed by vorapaxar, a PAR-1 antagonist. Recombinant Arg-gingipain B increased the concentration of IP3, reaching a maximum at 60 s after treatment; this was completely inhibited by vorapaxar. We therefore conclude that rRgpB-induced calcium signaling in HGFs is mainly caused by PAR-1 activation. This suggests that PAR-1 activation plays a significant role in chronic inflammatory periodontal disease induced by P. gingivalis RgpB.
Collapse
Affiliation(s)
- Shenglai Li
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Diya Zhang
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Lu
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Wu
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lieping Sheng
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Tang
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
104
|
Abstract
INTRODUCTION The development of new biologic agents able to restore thrombin generation has become the focus of innovation in hemophilia management. There is growing interest in the proposal of novel, non-replacement therapy with alternative mechanisms of action and route of administration, hoping to solve still unmet needs in treatment of hemophilic patients with or without inhibitors. AREAS COVERED The review describes the new molecules, in particular the bi-specific antibody mimicking the coagulation function of FVIII and/or those which work by inhibiting the natural anticoagulants, their mechanism of action and the results of ongoing clinical trials. EXPERT OPINION Exciting results in enhancing the protection against bleeding and improving quality of life are emerging from clinical trials. However, these molecules with their mechanisms of action also open new problems. Treatment of bleeding and management of surgery in subjects with a rebalanced hemostasis may be difficult, especially for the lack of laboratory tests perfectly reflecting the in vivo coagulation status. A careful surveillance is required to evaluate the risk of thrombotic complication in patients with rebalanced hemostasis, in addition to understand whether these new products offer the same protection on joints as regular prophylaxis with the missing clotting factors.
Collapse
Affiliation(s)
- Giancarlo Castaman
- a Center for Bleeding Disorders and Coagulation, Department of Oncology , Careggi University Hospital , Florence , Italy
| | - Silvia Linari
- a Center for Bleeding Disorders and Coagulation, Department of Oncology , Careggi University Hospital , Florence , Italy
| |
Collapse
|
105
|
Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction. Cancer Metastasis Rev 2019; 37:147-157. [PMID: 29222765 DOI: 10.1007/s10555-017-9711-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the main signal-transmitting components in the cell membrane. Over the past several years, biochemical and structural analyses have immensely enhanced our knowledge of GPCR involvement in health and disease states. The present review focuses on GPCRs that are cancer drivers, involved in tumor growth and development. Our aim is to highlight the involvement of stabilized β-catenin molecular machinery with a specific array of GPCRs. We discuss recent advances in understanding the molecular path leading to β-catenin nuclear localization and transcriptional activity and their implications for future cancer therapy research.
Collapse
|
106
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
107
|
Heuberger DM, Franchini AG, Madon J, Schuepbach RA. Thrombin cleaves and activates the protease-activated receptor 2 dependent on thrombomodulin co-receptor availability. Thromb Res 2019; 177:91-101. [PMID: 30861432 DOI: 10.1016/j.thromres.2019.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/14/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Protease-activated receptors (PARs) evolved to react to extracellular proteolytic activity. In mammals, three of the four PARs (PAR1, PAR3, and PAR4) that are expressed respond to the prototypical procoagulant enzyme thrombin, whereas PAR2 was assumed to resist activation by thrombin. To date, involvement of cell surface thrombin-recruiting co-receptors such as thrombomodulin (TM), which potentially facilitates PAR2 cleavage, has not been addressed. Thus, we examined whether TM-bound thrombin cleaved PAR2 and tested biological responses such as nuclear factor kappa B (NF-κB) DNA binding activity and cytokine release. MATERIALS AND METHODS We examined 293T cells overexpressing PAR2 and TM for thrombin recruitment by TM promoting PAR2 cleavage. To test for the TM-thrombin interactions required for PAR2 cleavage and to map cleavage sites on PAR2, mutant constructs of TM or PAR2 were engineered. Biological effects because of PAR2 activation were investigated using an NF-κB reporter system and cytokine release. RESULTS AND CONCLUSIONS We identified that, at low to moderate concentrations, thrombin cleaved PAR2 in a TM co-receptor-dependent manner with cleavage efficiency comparable to that of trypsin. In TM's presence, thrombin efficiently cleaved both, PAR1 and PAR2, albeit kinetics differed. Whereas the majority of surface expressed PAR1 was immediately cleaved off, prolonged exposure to thrombin resulted in few additional cleavage. In contrast, PAR2 cleavage was sustained upon prolonged exposure to thrombin. However, TM EGF-like domain 5 was required and TM chondroitin sulfate (CS) proteoglycan sites serine 490 and serine 492 assisted in PAR2 cleavage, while thrombin preferentially cleaved at arginine 36 on PAR2's N-terminus. Note that thrombin-induced activation of NF-κB via PAR2 resulted in release of interleukin-8. Thus, we provide a novel concept of how thrombin efficiently cleaves PAR2 in a TM-dependent manner, resulting in pro-inflammatory interleukin-8 release. This unexpected pro-inflammatory role of TM, promoting cleavage and activation of PAR2 by thrombin, may lead to novel therapeutic options for treating inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alessandro G Franchini
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jerzy Madon
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
108
|
Billur R, Sabo TM, Maurer MC. Thrombin Exosite Maturation and Ligand Binding at ABE II Help Stabilize PAR-Binding Competent Conformation at ABE I. Biochemistry 2019; 58:1048-1060. [PMID: 30672691 DOI: 10.1021/acs.biochem.8b00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombin, derived from zymogen prothrombin (ProT), is a serine protease involved in procoagulation, anticoagulation, and platelet activation. Thrombin's actions are regulated through anion-binding exosites I and II (ABE I and ABE II) that undergo maturation during activation. Mature ABEs can utilize exosite-based communication to fulfill thrombin functions. However, the conformational basis behind such long-range communication and the resultant ligand binding affinities are not well understood. Protease activated receptors (PARs), involved in platelet activation and aggregation, are known to target thrombin ABE I. Unexpectedly, PAR3 (44-56) can already bind to pro-ABE I of ProT. Nuclear magnetic resonance (NMR) ligand-enzyme titrations were used to characterize how individual PAR1 (49-62) residues interact with pro-ABE I and mature ABE I. 1D proton line broadening studies demonstrated that binding affinities for native PAR1P (49-62, P54) and for the weak binding variant PAR1G (49-62, P54G) increased as ProT was converted to mature thrombin. 1H,15N-HSQC titrations revealed that PAR1G residues K51, E53, F55, D58, and E60 exhibited less affinity to pro-ABE I than comparable residues in PAR3G (44-56, P51G). Individual PAR1G residues then displayed tighter binding upon exosite maturation. Long-range communication between thrombin exosites was examined by saturating ABE II with phosphorylated GpIbα (269-282, 3Yp) and monitoring the binding of PAR1 and PAR3 peptides to ABE I. Individual PAR residues exhibited increased affinities in this dual-ligand environment supporting the presence of interexosite allostery. Exosite maturation and beneficial long-range allostery are proposed to help stabilize an ABE I conformation that can effectively bind PAR ligands.
Collapse
Affiliation(s)
- Ramya Billur
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center , University of Louisville , Louisville , Kentucky 40202 , United States
| | - Muriel C Maurer
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
109
|
Chaudhary PK, Kim S. Characterization of the distinct mechanism of agonist-induced canine platelet activation. J Vet Sci 2019; 20:10-15. [PMID: 30541187 PMCID: PMC6351763 DOI: 10.4142/jvs.2019.20.1.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023] Open
Abstract
Platelet activation has a major role in hemostasis and thrombosis. Various agonists including adenosine diphosphate (ADP) and thrombin interact with G protein-coupled receptors (GPCRs) which transduce signals through various G proteins. Recent studies have elucidated the role of GPCRs and their corresponding G proteins in the regulation of events involved in platelet activation. However, agonist-induced platelet activation in companion animals has not been elucidated. This study was designed to characterize the platelet response to various agonists in dog platelets. We found that 2-methylthio-ADP-induced dog platelet aggregation was blocked in the presence of either P2Y1 receptor antagonist MRS2179 or P2Y12 receptor antagonist AR-C69931MX, suggesting that co-activation of both the P2Y1 and P2Y12 receptors is required for ADP-induced platelet aggregation. Thrombin-induced dog platelet aggregation was inhibited in the presence of either AR-C69931MX or the PKC inhibitor GF109203X, suggesting that thrombin requires secreted ADP to induce platelet aggregation in dog platelets. In addition, thrombin-mediated Akt phosphorylation was inhibited in the presence of GF109203X or AR-C69931MX, indicating that thrombin causes Gi stimulation through the P2Y12 receptor by secreted ADP in dog platelets. Unlike human and murine platelets, protease-activated receptor 4 (PAR4)-activating peptide AYPGKF failed to cause dog platelet aggregation. Moreover, PAR1-activating peptide SFLLRN or co-stimulation of SFLLRN and AYPGKF failed to induce dog platelet aggregation. We conclude that ADP induces platelet aggregation through the P2Y1 and P2Y12 receptors in dogs. Unlike human and murine platelets, selective activation of the PAR4 receptor may be insufficient to cause platelet aggregation in dog platelets.
Collapse
Affiliation(s)
- Preeti K Chaudhary
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Soochong Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
110
|
Miki M, Yasuoka S, Tsutsumi R, Nakamura Y, Hajime M, Takeuchi Y, Miki K, Kitada S, Maekura R. Human airway trypsin-like protease enhances interleukin-8 synthesis in bronchial epithelial cells by activating protease-activated receptor 2. Arch Biochem Biophys 2019; 664:167-173. [PMID: 30677406 DOI: 10.1016/j.abb.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
Human airway trypsin-like protease (HAT) localizes at human bronchial epithelial cells (HBECs). HAT enhanced release of interleukin-8 (IL-8) from HBECs at 10-100 mU/mL and the enhanced release was almost completely abolished by 50 μM leupeptin, a serine protease inhibitor. Previous reports suggested that HAT displays its physiological functions via protease-activated receptor 2 (PAR2). In the present study, we examined the mechanism whereby HAT upregulates IL-8 synthesis in HBECs with a focus on PAR2. Northern blot analysis revealed that HAT enhanced IL-8 mRNA expression at concentrations of 10-100 mU/mL. PAR2 activating peptide (PAR2 AP) also enhanced IL-8 release and IL-8 mRNA expression in HBECs at 50-1,000 μM at similar levels as HAT. Knockdown of PAR2 mRNA by siRNA methods showed that PAR2 mRNA expression was significantly depressed in primary HBECs, and both HAT- and PAR2 AP-induced IL-8 mRNA elevation was significantly depressed in PAR2 siRNA-transfected HBECs. Additionally, HAT cleaved the PAR2 activating site (R36-S37 bond) of synthetic PAR2 N-terminal peptide. These results indicate that HAT stimulates IL-8 synthesis in airway epithelial cells via PAR2 and could help to amplify inflammation in chronic respiratory tract disease.
Collapse
Affiliation(s)
- Mari Miki
- Department of Respiratory Medicine, National Hospital Organization Toneyama National Hospital, Osaka, Japan.
| | - Susumu Yasuoka
- Department of Nutrition and Metabolism, University of Tokushima School of Medicine, Tokushima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, University of Tokushima School of Medicine, Tokushima, Japan
| | - Yoichi Nakamura
- Medical Center for Allergic and Immune Diseases, Yokohama City Minato Red Cross Hospital, Kanagawa, Japan
| | - Maeda Hajime
- Department of Thoracic Surgery, National Hospital Organization Toneyama National Hospital, Osaka, Japan
| | - Yukiyasu Takeuchi
- Department of Thoracic Surgery, National Hospital Organization Toneyama National Hospital, Osaka, Japan
| | - Keisuke Miki
- Department of Respiratory Medicine, National Hospital Organization Toneyama National Hospital, Osaka, Japan
| | - Seigo Kitada
- Department of Respiratory Medicine, National Hospital Organization Toneyama National Hospital, Osaka, Japan
| | - Ryoji Maekura
- Graduate School of Health Care Sciences, Jikei Institute, Osaka, Japan
| |
Collapse
|
111
|
|
112
|
Mutch NJ. Regulation of Fibrinolysis by Platelets. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
113
|
|
114
|
|
115
|
Coller BS. Foreword: A Brief History of Ideas About Platelets in Health and Disease. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
116
|
Schultz NH, Holme PA, Bjørnsen S, Henriksson CE, Sandset PM, Jacobsen EM. The impact of rivaroxaban on primary hemostasis in patients with venous thrombosis. Platelets 2018; 31:43-47. [PMID: 30569801 DOI: 10.1080/09537104.2018.1557618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Factor Xa inhibitors are safe and effective alternatives to warfarin, but several studies indicate that rivaroxaban may cause a different risk profile for bleeding. For instance, while the risk of major bleeding in general may be lower with rivaroxaban than for warfarin, the risk of gastrointestinal bleeding or abnormal uterine bleeding may be higher. The underlying mechanisms for these differences are not known, and the effect of rivaroxaban on primary hemostasis is poorly understood. The aim of this study was to investigate the effect of rivaroxaban on platelet function, P-selectin and von Willebrand factor (VWF) antigen and activity. Patients with venous thrombosis assigned to 3 months of treatment due to temporary risk factors were included. Blood was collected both during (on-treatment) and 4-6 weeks after end of treatment (without treatment). The platelet reactivity was assessed by light transmission aggregometry. P-selectin was measured by an enzyme-linked immunosorbent assay and vWF antigen and activity by latex immunoagglutination assays. Platelet reactivity during on-treatment (trough- and peak concentration) was similar to values without treatment. There was a trend toward a reduction of P-selectin during rivaroxaban treatment (peak concentration) compared to value without treatment (p = 0.06). There were no differences in vWF antigen and activity between the different time-points. We found no difference in platelet reactivity or vWF antigen/activity during rivaroxaban treatment compared with values without treatment. Apart from possibly causing a reduction of P-selectin, rivaroxaban seems not to influence primary hemostasis.
Collapse
Affiliation(s)
- Nina Haagenrud Schultz
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Department of Hematology, Oslo University Hospital, Oslo, Norway.,Department of Hematology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Andre Holme
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Department of Hematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stine Bjørnsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Carola Elisabeth Henriksson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Per Morten Sandset
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Department of Hematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
117
|
Rigg RA, Healy LD, Chu TT, Ngo ATP, Mitrugno A, Zilberman-Rudenko J, Aslan JE, Hinds MT, Vecchiarelli LD, Morgan TK, Gruber A, Temple KJ, Lindsley CW, Duvernay MT, Hamm HE, McCarty OJT. Protease-activated receptor 4 activity promotes platelet granule release and platelet-leukocyte interactions. Platelets 2018; 30:126-135. [PMID: 30560697 DOI: 10.1080/09537104.2017.1406076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human platelets express two protease-activated receptors (PARs), PAR1 (F2R) and PAR4 (F2RL3), which are activated by a number of serine proteases that are generated during pathological events and cause platelet activation. Recent interest has focused on PAR4 as a therapeutic target, given PAR4 seems to promote experimental thrombosis and procoagulant microparticle formation, without a broadly apparent role in hemostasis. However, it is not yet known whether PAR4 activity plays a role in platelet-leukocyte interactions, which are thought to contribute to both thrombosis and acute or chronic thrombo-inflammatory processes. We sought to determine whether PAR4 activity contributes to granule secretion from activated platelets and platelet-leukocyte interactions. We performed in vitro and ex vivo studies of platelet granule release and platelet-leukocyte interactions in the presence of PAR4 agonists including PAR4 activating peptide, thrombin, cathepsin G, and plasmin in combination with small-molecule PAR4 antagonists. Activation of human platelets with thrombin, cathepsin G, or plasmin potentiated platelet dense granule secretion that was specifically impaired by PAR4 inhibitors. Platelet-leukocyte interactions and platelet P-selectin exposure the following stimulation with PAR4 agonists were also impaired by activated PAR4 inhibition in either a purified system or in whole blood. These results indicate PAR4-specific promotion of platelet granule release and platelet-leukocyte aggregate formation and suggest that pharmacological control of PAR4 activity could potentially attenuate platelet granule release or platelet-leukocyte interaction-mediated pathological processes.
Collapse
Affiliation(s)
- Rachel A Rigg
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Laura D Healy
- b Department of Cell, Developmental & Cancer Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Tiffany T Chu
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Anh T P Ngo
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Annachiara Mitrugno
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Jevgenia Zilberman-Rudenko
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Joseph E Aslan
- d Department of Biochemistry and Molecular Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,e Knight Cardiovascular Institute , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Monica T Hinds
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Lisa Dirling Vecchiarelli
- f Department of Pathology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Terry K Morgan
- f Department of Pathology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - András Gruber
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,c Division of Hematology & Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Kayla J Temple
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA.,h Vanderbilt Center for Neuroscience Drug Discovery , Nashville , TN , USA
| | - Craig W Lindsley
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA.,h Vanderbilt Center for Neuroscience Drug Discovery , Nashville , TN , USA
| | - Matthew T Duvernay
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Heidi E Hamm
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Owen J T McCarty
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,b Department of Cell, Developmental & Cancer Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,c Division of Hematology & Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|
118
|
Whitley MJ, Henke D, Ghazi A, Nieman M, Stoller M, Simon LM, Chen E, Vesci J, Holinstat M, McKenzie S, Shaw C, Edelstein L, Bray PF. The protease-activated receptor 4 Ala120Thr variant alters platelet responsiveness to low-dose thrombin and protease-activated receptor 4 desensitization, and is blocked by non-competitive P2Y 12 inhibition. J Thromb Haemost 2018; 16:2501-2514. [PMID: 30347494 PMCID: PMC6289679 DOI: 10.1111/jth.14318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Essentials The rs773902 SNP results in differences in platelet protease-activated receptor (PAR4) function. The functional consequences of rs773902 were analyzed in human platelets and stroke patients. rs773902 affects thrombin-induced platelet function, PAR4 desensitization, stroke association. Enhanced PAR4 Thr120 effects on platelet function are blocked by ticagrelor. SUMMARY: Background F2RL3 encodes protease-activated receptor (PAR) 4 and harbors an A/G single-nucleotide polymorphism (SNP) (rs773902) with racially dimorphic allelic frequencies. This SNP mediates an alanine to threonine substitution at residue 120 that alters platelet PAR4 activation by the artificial PAR4-activation peptide (PAR4-AP) AYPGKF. Objectives To determine the functional effects of rs773902 on stimulation by a physiological agonist, thrombin, and on antiplatelet antagonist activity. Methods Healthy human donors were screened and genotyped for rs773902. Platelet function in response to thrombin was assessed without and with antiplatelet antagonists. The association of rs773902 alleles with stroke was assessed in the Stroke Genetics Network study. Results As compared with rs773902 GG donors, platelets from rs773902 AA donors had increased aggregation in response to subnanomolar concentrations of thrombin, increased granule secretion, and decreased sensitivity to PAR4 desensitization. In the presence of PAR1 blockade, this genotype effect was abolished by higher concentrations of or longer exposure to thrombin. We were unable to detect a genotype effect on thrombin-induced PAR4 cleavage, dimerization, and lipid raft localization; however, rs773902 AA platelets required a three-fold higher level of PAR4-AP for receptor desensitization. Ticagrelor, but not vorapaxar, abolished the PAR4 variant effect on thrombin-induced platelet aggregation. A significant association of modest effect was detected between the rs773902 A allele and stroke. Conclusion The F2RL3 rs773902 SNP alters platelet reactivity to thrombin; the allelic effect requires P2Y12 , and is not affected by gender. Ticagrelor blocks the enhanced reactivity of rs773902 A platelets. PAR4 encoded by the rs773902 A allele is relatively resistant to desensitization and may contribute to stroke risk.
Collapse
Affiliation(s)
- M. J. Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - D.M. Henke
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - A. Ghazi
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - M. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Michelle Stoller
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - L. M. Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - E. Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - J. Vesci
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - M. Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - S.E. McKenzie
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - C.A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - L.C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - Paul F. Bray
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
119
|
Mechanisms coupling thrombin to metastasis and tumorigenesis. Thromb Res 2018; 164 Suppl 1:S29-S33. [PMID: 29703481 DOI: 10.1016/j.thromres.2017.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023]
Abstract
The association of malignancy and thrombophilia is bidirectional, as evidenced by four decades of studies in animal models showing that hemostatic system components support cancer progression. Consistent with this view, clinical studies have suggested that anticoagulants not only limit thromboembolic complications associated with cancer, but also improve survival by impeding cancer progression, and may even prevent the development of cancer. In order to fully capitalize on this association, a detailed understanding of the mechanisms coupling hemostatic factors to cancer pathogenesis is required. Multiple studies have shown that thrombin-mediated procoagulant functions strongly promote metastatic potential. In particular, the platelet/fibrin(ogen) axis has been shown to protect newly formed micrometastases from innate immune surveillance, contribute to creation of a metastatic niche by recruitment of prometastatic inflammatory cells, and promote the epithelial to mesenchymal transition of metastatic cells. Thrombin-mediated functions have also been shown to support tumor growth in some contexts, and have even been linked to tumorigenesis in the setting of inflammation-driven colon cancer. Here, local thrombin-mediated extravascular fibrin deposition, and specifically fibrin-αMβ2 integrin interaction, push intestinal inflammatory cells toward a pro-tumorigenic phenotype, resulting in the elaboration of key cytokines and growth factors that support the proliferation and survival of transformed intestinal epithelial cells. These studies reveal that hemostatic factors can serve as a bridge between pathological inflammation and the development of cancer. As a large proportion of cancers are caused by pathological inflammation, these studies suggest that therapies targeting the nexus between hemostasis and inflammation could be used to prevent cancer development.
Collapse
|
120
|
Sébert M, Denadai-Souza A, Quaranta M, Racaud-Sultan C, Chabot S, Lluel P, Monjotin N, Alric L, Portier G, Kirzin S, Bonnet D, Ferrand A, Vergnolle N. Thrombin modifies growth, proliferation and apoptosis of human colon organoids: a protease-activated receptor 1- and protease-activated receptor 4-dependent mechanism. Br J Pharmacol 2018; 175:3656-3668. [PMID: 29959891 PMCID: PMC6109216 DOI: 10.1111/bph.14430] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Thrombin is massively released upon tissue damage associated with bleeding or chronic inflammation. The effects of this thrombin on tissue regrowth and repair has been scarcely addressed and only in cancer cell lines. Hence, the purpose of the present study was to determine thrombin's pharmacological effects on human intestinal epithelium growth, proliferation and apoptosis, using three-dimensional cultures of human colon organoids. EXPERIMENTAL APPROACH Crypts were isolated from human colonic resections and cultured for 6 days, forming human colon organoids. Cultured organoids were exposed to 10 and 50 mU·mL-1 of thrombin, in the presence or not of protease-activated receptor (PAR) antagonists. Organoid morphology, metabolism, proliferation and apoptosis were followed. KEY RESULTS Thrombin favoured organoid maturation leading to a decreased number of immature cystic structures and a concomitant increased number of larger structures releasing cell debris and apoptotic cells. The size of budding structures, metabolic activity and proliferation were significantly reduced in organoid cultures exposed to thrombin, while apoptosis was dramatically increased. Both PAR1 and PAR4 antagonists inhibited apoptosis regardless of thrombin doses. Thrombin-induced inhibition of proliferation and metabolic activity were reversed by PAR4 antagonist for thrombin's lowest dose and by PAR1 antagonist for thrombin's highest dose. CONCLUSIONS AND IMPLICATIONS Overall, our data suggest that the presence of thrombin in the vicinity of human colon epithelial cells favours their maturation at the expense of their regenerative capacities. Our data point to thrombin and its two receptors PAR1 and PAR4 as potential molecular targets for epithelial repair therapies.
Collapse
Affiliation(s)
- Morgane Sébert
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Muriel Quaranta
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Purpan, Toulouse, France
| | - Guillaume Portier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sylvain Kirzin
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Delphine Bonnet
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
121
|
Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci U S A 2018; 115:E7748-E7757. [PMID: 30065114 DOI: 10.1073/pnas.1805784115] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Approximately one-third of the mammalian proteome is transported from the endoplasmic reticulum-to-Golgi via COPII-coated vesicles. SEC23, a core component of coat protein-complex II (COPII), is encoded by two paralogous genes in vertebrates (Sec23a and Sec23b). In humans, SEC23B deficiency results in congenital dyserythropoietic anemia type-II (CDAII), while SEC23A deficiency results in a skeletal phenotype (with normal red blood cells). These distinct clinical disorders, together with previous biochemical studies, suggest unique functions for SEC23A and SEC23B. Here we show indistinguishable intracellular protein interactomes for human SEC23A and SEC23B, complementation of yeast Sec23 by both human and murine SEC23A/B, and rescue of the lethality of sec23b deficiency in zebrafish by a sec23a-expressing transgene. We next demonstrate that a Sec23a coding sequence inserted into the murine Sec23b locus completely rescues the lethal SEC23B-deficient pancreatic phenotype. We show that SEC23B is the predominantly expressed paralog in human bone marrow, but not in the mouse, with the reciprocal pattern observed in the pancreas. Taken together, these data demonstrate an equivalent function for SEC23A/B, with evolutionary shifts in the transcription program likely accounting for the distinct phenotypes of SEC23A/B deficiency within and across species, a paradigm potentially applicable to other sets of paralogous genes. These findings also suggest that enhanced erythroid expression of the normal SEC23A gene could offer an effective therapeutic approach for CDAII patients.
Collapse
|
122
|
Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C, protease activated receptor 1, and neuroprotection. Blood 2018; 132:159-169. [PMID: 29866816 PMCID: PMC6043978 DOI: 10.1182/blood-2018-02-769026] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Protein C is a plasma serine protease zymogen whose active form, activated protein C (APC), exerts potent anticoagulant activity. In addition to its antithrombotic role as a plasma protease, pharmacologic APC is a pleiotropic protease that activates diverse homeostatic cell signaling pathways via multiple receptors on many cells. Engineering of APC by site-directed mutagenesis provided a signaling selective APC mutant with 3 Lys residues replaced by 3 Ala residues, 3K3A-APC, that lacks >90% anticoagulant activity but retains normal cell signaling activities. This 3K3A-APC mutant exerts multiple potent neuroprotective activities, which require the G-protein-coupled receptor, protease activated receptor 1. Potent neuroprotection in murine ischemic stroke models is linked to 3K3A-APC-induced signaling that arises due to APC's cleavage in protease activated receptor 1 at a noncanonical Arg46 site. This cleavage causes biased signaling that provides a major explanation for APC's in vivo mechanism of action for neuroprotective activities. 3K3A-APC appeared to be safe in ischemic stroke patients and reduced bleeding in the brain after tissue plasminogen activator therapy in a recent phase 2 clinical trial. Hence, it merits further clinical testing for its efficacy in ischemic stroke patients. Recent studies using human fetal neural stem and progenitor cells show that 3K3A-APC promotes neurogenesis in vitro as well as in vivo in the murine middle cerebral artery occlusion stroke model. These recent advances should encourage translational research centered on signaling selective APC's for both single-agent therapies and multiagent combination therapies for ischemic stroke and other neuropathologies.
Collapse
Affiliation(s)
- John H Griffin
- The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California, San Diego, CA; and
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | | |
Collapse
|
123
|
Shimada IS, Mukhopadhyay S. G-protein-coupled receptor signaling and neural tube closure defects. Birth Defects Res 2018; 109:129-139. [PMID: 27731925 DOI: 10.1002/bdra.23567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Disruption of the normal mechanisms that mediate neural tube closure can result in neural tube defects (NTDs) with devastating consequences in affected patients. With the advent of next-generation sequencing, we are increasingly detecting mutations in multiple genes in NTD cases. However, our ability to determine which of these genes contribute to the malformation is limited by our understanding of the pathways controlling neural tube closure. G-protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in humans and have been historically favored as drug targets. Recent studies implicate several GPCRs and downstream signaling pathways in neural tube development and closure. In this review, we will discuss our current understanding of GPCR signaling pathways in pathogenesis of NTDs. Notable examples include the orphan primary cilia-localized GPCR, Gpr161 that regulates the basal suppression machinery of sonic hedgehog pathway by means of activation of cAMP-protein kinase A signaling in the neural tube, and protease-activated receptors that are activated by a local network of membrane-tethered proteases during neural tube closure involving the surface ectoderm. Understanding the role of these GPCR-regulated pathways in neural tube development and closure is essential toward identification of underlying genetic causes to prevent NTDs. Birth Defects Research 109:129-139, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
124
|
Kremers BMM, Ten Cate H, Spronk HMH. Pleiotropic effects of the hemostatic system. J Thromb Haemost 2018; 16:S1538-7836(22)02208-5. [PMID: 29851288 DOI: 10.1111/jth.14161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 01/19/2023]
Abstract
Atherothrombosis is characterized by the inflammatory process of atherosclerosis combined with a hypercoagulable state leading to superimposed thrombus formation. In atherosclerotic plaques, cell signaling can occur via protease-activated receptors (PARs), four of which have been identified so far (PAR1-PAR4). Proteases that are able to activate PARs can be produced systemically, but also at the sites of lesions, and they include thrombin and activated factor X. After PAR activation, downstream signaling can lead to both proinflammatory effects and a hypercoagulable state. Which specific effect occurs depends on the type of protease and activated PAR, and the site of activation. Hypercoagulable effects are mainly exerted through PAR1 and PAR4, whereas proinflammatory responses are mostly seen after PAR1 and PAR2 activation. PAR signaling pathways contribute to atherothrombosis, suggesting that inhibition of these pathways possibly prevents cardiovascular events based on this pathophysiological mechanism. In this review, we highlight the pathways by which PAR activation leads to proinflammatory responses and a hypercoagulable state. Furthermore, we give an overview of potential pharmacological treatment targets that promote vascular protection.
Collapse
Affiliation(s)
- B M M Kremers
- Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - H Ten Cate
- Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - H M H Spronk
- Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
125
|
Scherlinger M, Guillotin V, Truchetet ME, Contin-Bordes C, Sisirak V, Duffau P, Lazaro E, Richez C, Blanco P. Systemic lupus erythematosus and systemic sclerosis: All roads lead to platelets. Autoimmun Rev 2018; 17:625-635. [PMID: 29635077 DOI: 10.1016/j.autrev.2018.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are two phenotypically distincts inflammatory systemic diseases. However, SLE and SSc share pathogenic features such as interferon signature, loss of tolerance against self-nuclear antigens and increased tissue damage such as fibrosis. Recently, platelets have emerged as a major actor in immunity including auto-immune diseases. Both SLE and SSc are characterized by strong platelet system activation, which is likely to be both the witness and culprit in their pathogenesis. Platelet activation pathways are multiple and sometimes redundant. They include immune complexes, Toll-like receptors activation, antiphospholipid antibodies and ischemia-reperfusion associated with Raynaud phenomenon. Once activated, platelet promote immune dysregulation by priming interferon production by immune cells, providing CD40L supporting B lymphocyte functions and providing a source of autoantigens. Platelets are actively implicated in SLE and SSc end-organ damage such as cardiovascular and renal disease and in the promotion of tissue fibrosis. Finally, after understanding the main pathogenic implications of platelet activation in both diseases, we discuss potential therapeutics targeting platelets.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vivien Guillotin
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Elise Truchetet
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Cécile Contin-Bordes
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pierre Duffau
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Estibaliz Lazaro
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Blanco
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
126
|
Varjú I, Farkas VJ, Kőhidai L, Szabó L, Farkas ÁZ, Polgár L, Chinopoulos C, Kolev K. Functional cyclophilin D moderates platelet adhesion, but enhances the lytic resistance of fibrin. Sci Rep 2018; 8:5366. [PMID: 29599453 PMCID: PMC5876378 DOI: 10.1038/s41598-018-23725-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 03/20/2018] [Indexed: 01/11/2023] Open
Abstract
In the course of thrombosis, platelets are exposed to a variety of activating stimuli classified as 'strong' (e.g. thrombin and collagen) or 'mild' (e.g. ADP). In response, activated platelets adhere to injured vasculature, aggregate, and stabilise the three-dimensional fibrin scaffold of the expanding thrombus. Since 'strong' stimuli also induce opening of the mitochondrial permeability transition pore (MPTP) in platelets, the MPTP-enhancer Cyclophilin D (CypD) has been suggested as a critical pharmacological target to influence thrombosis. However, it is poorly understood what role CypD plays in the platelet response to 'mild' stimuli which act independently of MPTP. Furthermore, it is unknown how CypD influences platelet-driven clot stabilisation against enzymatic breakdown (fibrinolysis). Here we show that treatment of human platelets with Cyclosporine A (a cyclophilin-inhibitor) boosts ADP-induced adhesion and aggregation, while genetic ablation of CypD in murine platelets enhances adhesion but not aggregation. We also report that platelets lacking CypD preserve their integrity in a fibrin environment, and lose their ability to render clots resistant against fibrinolysis. Our results indicate that CypD has opposing haemostatic roles depending on the stimulus and stage of platelet activation, warranting a careful design of any antithrombotic strategy targeting CypD.
Collapse
Affiliation(s)
- Imre Varjú
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, 02115, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | | | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - László Szabó
- Department of Functional and Structural Materials, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - Ádám Zoltán Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Lívia Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
- MTA-SE Lendület Neurobiochemistry Research Group, Budapest, 1094, Hungary
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
127
|
Salu BR, Pando SC, Brito MVD, Medina AF, Odei-Addo F, Frost C, Naude R, Sampaio MU, Emsley J, Maffei FHA, Oliva MLV. Improving the understanding of plasma kallikrein contribution to arterial thrombus formation using two plant protease inhibitors. Platelets 2018; 30:305-313. [PMID: 29442535 DOI: 10.1080/09537104.2018.1428738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of antithrombotic therapy is the prevention of thrombus formation and/or its extension with a minimum risk of bleeding. The inhibition of a variety of proteolytic processes, particularly those of the coagulation cascade, has been reported as a property of plant protease inhibitors. The role of trypsin inhibitors (TIs) from Delonix regia (Dr) and Acacia schweinfurthii (As), members of the Kunitz family of protease inhibitors, was investigated on blood coagulation, platelet aggregation, and thrombus formation. Different from Acacia schweinfurthii trypsin inhibitor (AsTI), Delonix regia trypsin inhibitor (DrTI) is a potent inhibitor of FXIa with a Kiapp of 1.3 × 10-9 M. In vitro, both inhibitors at 100 µg corresponding to the concentrations of 21 μM and 15.4 μM of DrTI and AsTI, respectively, increased approximately 2.0 times the activated partial thromboplastin time (aPTT) in human plasma compared to the control, likely due to the inhibition of human plasma kallikrein (huPK) or activated factor XI (FXIa), in the case of DrTI. Investigating in vivo models of arterial thrombus formation and bleeding time, DrTI and AsTI, 1.3 µM and 0.96 µM, respectively, prolonged approximately 50% the time for total carotid artery occlusion in mice compared to the control. In contrast to heparin, the bleeding time in mice treated with the two inhibitors did not differ from that of the control group. DrTI and AsTI inhibited 49.3% and 63.8%, respectively, ex vivo murine platelet aggregation induced by adenosine diphosphate (ADP), indicating that these protein inhibitors prevent arterial thrombus formation possibly by interfering with the plasma kallikrein (PK) proteolytic action on the intrinsic coagulation pathway and its ability to enhance the platelet aggregation activity on the intravascular compartment leading to the improvement of a thrombus.
Collapse
Affiliation(s)
- Bruno R Salu
- a Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil
| | - Silvana Cristina Pando
- a Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil.,b Department Physiological Sciences , Federal University of Amazonas, ICB , Manaus , AM , Brazil
| | - Marlon V De Brito
- a Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil
| | - André Fernando Medina
- a Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil
| | - Frank Odei-Addo
- c Department of Biochemistry & Microbiology , Nelson Mandela University , Port Elizabeth , South Africa
| | - Carminita Frost
- c Department of Biochemistry & Microbiology , Nelson Mandela University , Port Elizabeth , South Africa
| | - Ryno Naude
- c Department of Biochemistry & Microbiology , Nelson Mandela University , Port Elizabeth , South Africa
| | - Misako U Sampaio
- a Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil
| | - Jonas Emsley
- d Centre for Biomolecular Sciences, School of Pharmacy , University of Nottingham , Nottingham , England
| | | | - Maria Luiza V Oliva
- a Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil
| |
Collapse
|
128
|
Wong PC, Seiffert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, Allegretto N, Hua J, Harden D, Guay J, Callejo M, Miller MM, Lawrence RM, Banville J, Guy J, Maxwell BD, Priestley ES, Marinier A, Wexler RR, Bouvier M, Gordon DA, Schumacher WA, Yang J. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med 2018; 9:9/371/eaaf5294. [PMID: 28053157 DOI: 10.1126/scitranslmed.aaf5294] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Antiplatelet agents are proven efficacious treatments for cardiovascular and cerebrovascular diseases. However, the existing drugs are compromised by unwanted and sometimes life-threatening bleeding that limits drug usage or dosage. There is a substantial unmet medical need for an antiplatelet drug with strong efficacy and low bleeding risk. Thrombin is a potent platelet agonist that directly induces platelet activation via the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled protease-activated receptors PAR1 and PAR4. A PAR1 antagonist is approved for clinical use, but its use is limited by a substantial bleeding risk. Conversely, the potential of PAR4 as an antiplatelet target has not been well characterized. Using anti-PAR4 antibodies, we demonstrated a low bleeding risk and an effective antithrombotic profile with PAR4 inhibition in guinea pigs. Subsequently, high-throughput screening and an extensive medicinal chemistry effort resulted in the discovery of BMS-986120, an orally active, selective, and reversible PAR4 antagonist. In a cynomolgus monkey arterial thrombosis model, BMS-986120 demonstrated potent and highly efficacious antithrombotic activity. BMS-986120 also exhibited a low bleeding liability and a markedly wider therapeutic window compared to the standard antiplatelet agent clopidogrel tested in the same nonhuman primate model. These preclinical findings define the biological role of PAR4 in mediating platelet aggregation. In addition, they indicate that targeting PAR4 is an attractive antiplatelet strategy with the potential to treat patients at a high risk of atherothrombosis with superior safety compared with the current standard of care.
Collapse
Affiliation(s)
- Pancras C Wong
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Dietmar Seiffert
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - J Eileen Bird
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Carol A Watson
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jeffrey S Bostwick
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Mary Giancarli
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Nick Allegretto
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Ji Hua
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - David Harden
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jocelyne Guay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Mario Callejo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Michael M Miller
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | | | - Jacques Banville
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Julia Guy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Brad D Maxwell
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - E Scott Priestley
- Bristol-Myers Squibb Company, 350 Carter Road, Hopewell, NJ 08540, USA
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Ruth R Wexler
- Bristol-Myers Squibb Company, 350 Carter Road, Hopewell, NJ 08540, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - David A Gordon
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - William A Schumacher
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jing Yang
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| |
Collapse
|
129
|
Morikawa Y, Kato H, Kashiwagi H, Nishiura N, Akuta K, Honda S, Kanakura Y, Tomiyama Y. Protease-activated receptor-4 (PAR4) variant influences on platelet reactivity induced by PAR4-activating peptide through altered Ca 2+ mobilization and ERK phosphorylation in healthy Japanese subjects. Thromb Res 2018; 162:44-52. [DOI: 10.1016/j.thromres.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
|
130
|
PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proc Natl Acad Sci U S A 2018; 115:E982-E991. [PMID: 29343648 DOI: 10.1073/pnas.1718600115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stimulation of protease-activated receptor 1 (PAR1) on endothelium by activated protein C (APC) is protective in several animal models of disease, and APC has been used clinically in severe sepsis and wound healing. Clinical use of APC, however, is limited by its immunogenicity and its anticoagulant activity. We show that a class of small molecules termed "parmodulins" that act at the cytosolic face of PAR1 stimulates APC-like cytoprotective signaling in endothelium. Parmodulins block thrombin generation in response to inflammatory mediators and inhibit platelet accumulation on endothelium cultured under flow. Evaluation of the antithrombotic mechanism showed that parmodulins induce cytoprotective signaling through Gβγ, activating a PI3K/Akt pathway and eliciting a genetic program that includes suppression of NF-κB-mediated transcriptional activation and up-regulation of select cytoprotective transcripts. STC1 is among the up-regulated transcripts, and knockdown of stanniocalin-1 blocks the protective effects of both parmodulins and APC. Induction of this signaling pathway in vivo protects against thromboinflammatory injury in blood vessels. Small-molecule activation of endothelial cytoprotection through PAR1 represents an approach for treatment of thromboinflammatory disease and provides proof-of-principle for the strategy of targeting the cytoplasmic surface of GPCRs to achieve pathway selective signaling.
Collapse
|
131
|
Bergmeier W, Stefanini L. Platelets at the Vascular Interface. Res Pract Thromb Haemost 2018; 2:27-33. [PMID: 29457148 PMCID: PMC5810953 DOI: 10.1002/rth2.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 02/01/2023] Open
Abstract
In this brief review paper, we will summarize the State-of-the-Art on how platelet reactivity is regulated in circulation and at sites of vascular injury. Our review discusses recent and ongoing work, presented at this year's International Society on Thrombosis and Haemostasis (ISTH) meeting, on the role of platelets in (1) classical hemostasis at sites of mechanical injury, and (2) the maintenance of vascular integrity at sites of inflammation.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| |
Collapse
|
132
|
|
133
|
Bode C, Duerschmied D. Vorapaxar expands antiplatelet options. Hamostaseologie 2017; 32:221-227. [DOI: 10.5482/hamo-12-05-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/05/2012] [Indexed: 11/05/2022] Open
Abstract
SummaryVorapaxar is the first substance of a new class of antiplatelet drugs that has been tested in large clinical trials. The protease-activated receptor 1 (PAR-1) antagonist inhibits thrombin-induced platelet activation to prevent atherothrombosis. In the phase 3 trials TRACER (acute coronary syndrome) and TRA 2P-TIMI 50 (stable atherosclerosis) reducing ischemic events with vorapaxar came at the cost of bleeding.TRACER compared vorapaxar to placebo in 12 944 patients who had non-ST-segment elevation acute coronary syndromes on top of contemporary treatment including dual antiplatelet therapy (aspirin and clopidogrel). Vorapaxar reduced ischemic events non-significantly, but increased bleeding significantly, therefore not justifying triple antiplatelet therapy in this setting. Follow-up was stopped early because of bleeding. TRA 2P-TIMI 50 examined 26 449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease. Vorapaxar reduced ischemic events and increased bleeding both significantly. Recruitment of patients with prior stroke was stopped early. Net clinical outcome and subgroup analyses suggested that vorapaxar could be beneficial for patients with prior myocardial infarction – but no history of stroke.
Collapse
|
134
|
Wilson SJ, Ismat FA, Wang Z, Cerra M, Narayan H, Raftis J, Gray TJ, Connell S, Garonzik S, Ma X, Yang J, Newby DE. PAR4 (Protease-Activated Receptor 4) Antagonism With BMS-986120 Inhibits Human Ex Vivo Thrombus Formation. Arterioscler Thromb Vasc Biol 2017; 38:448-456. [PMID: 29269513 PMCID: PMC5779320 DOI: 10.1161/atvbaha.117.310104] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— BMS-986120 is a novel first-in-class oral PAR4 (protease-activated receptor 4) antagonist with potent and selective antiplatelet effects. We sought to determine for the first time, the effect of BMS-986120 on human ex vivo thrombus formation. Approach and Results— Forty healthy volunteers completed a phase 1 parallel-group PROBE trial (Prospective Randomized Open-Label Blinded End Point). Ex vivo platelet activation, platelet aggregation, and thrombus formation were measured at 0, 2, and 24 hours after (1) oral BMS-986120 (60 mg) or (2) oral aspirin (600 mg) followed at 18 hours with oral aspirin (600 mg) and oral clopidogrel (600 mg). BMS-986120 demonstrated highly selective and reversible inhibition of PAR4 agonist peptide (100 μM)-stimulated P-selectin expression, platelet-monocyte aggregates, and platelet aggregation (P<0.001 for all). Compared with pretreatment, total thrombus area (μm2/mm) at high shear was reduced by 29.2% (95% confidence interval, 18.3%–38.7%; P<0.001) at 2 hours and by 21.4% (9.3%–32.0%; P=0.002) at 24 hours. Reductions in thrombus formation were driven by a decrease in platelet-rich thrombus deposition: 34.8% (19.3%–47.3%; P<0.001) at 2 hours and 23.3% (5.1%–38.0%; P=0.016) at 24 hours. In contrast to aspirin alone, or in combination with clopidogrel, BMS-986120 had no effect on thrombus formation at low shear (P=nonsignificant). BMS-986120 administration was not associated with an increase in coagulation times or serious adverse events. Conclusions— BMS-986120 is a highly selective and reversible oral PAR4 antagonist that substantially reduces platelet-rich thrombus formation under conditions of high shear stress. Our results suggest PAR4 antagonism has major potential as a therapeutic antiplatelet strategy. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439190.
Collapse
Affiliation(s)
- Simon J Wilson
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.).
| | - Fraz A Ismat
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Zhaoqing Wang
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Michael Cerra
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Hafid Narayan
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Jennifer Raftis
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Timothy J Gray
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Shea Connell
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Samira Garonzik
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Xuewen Ma
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Jing Yang
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - David E Newby
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| |
Collapse
|
135
|
Lê VB, Riteau B, Alessi MC, Couture C, Jandrot-Perrus M, Rhéaume C, Hamelin MÈ, Boivin G. Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections. Br J Pharmacol 2017; 175:388-403. [PMID: 29105740 DOI: 10.1111/bph.14084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Protease-activated receptor 1 (PAR1) has been demonstrated to be involved in the pathogenesis of viral diseases. However, its role remains controversial. The goal of our study was to investigate the contribution of PAR1 to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. EXPERIMENTAL APPROACH Pharmacological approaches were used to investigate the role of PAR1 during RSV and hMPV infection, in vitro using epithelial A549 cells and in vivo using a mouse model of virus infection. KEY RESULTS In vitro, the PAR1 antagonist RWJ-56110 reduced the replication of RSV and hMPV in A549 cells. In agreement with these results, RWJ-56110-treated mice were protected against RSV and hMPV infections, as indicated by less weight loss and mortality. This protective effect in mice correlated with decreased lung viral replication and inflammation. In contrast, hMPV-infected mice treated with the PAR1 agonist TFLLR-NH2 showed increased mortality, as compared to infected mice, which were left untreated. Thrombin generation was shown to occur downstream of PAR1 activation in infected mice via tissue factor exposure as part of the inflammatory response, and thrombin inhibition by argatroban reduced the pathogenicity of the infection with no additive effect to that induced by PAR1 inhibition. CONCLUSION AND IMPLICATIONS These data show that PAR1 plays a detrimental role during RSV and hMPV infections in mice via, at least, a thrombin-dependent mechanism. Thus, the use of PAR1 antagonists and thrombin inhibitors may have potential as a novel approach for the treatment of RSV and hMPV infections.
Collapse
Affiliation(s)
- Vuong Ba Lê
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Béatrice Riteau
- UMR INSERM U1062/INRA 1260/AMU, Aix Marseille University, Marseille, France
| | | | - Christian Couture
- Department of Anatomy-Pathology, Laval University Institute of Cardiology and Pneumology, Quebec City, Quebec, Canada
| | | | - Chantal Rhéaume
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Marie-Ève Hamelin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
136
|
van ’t Veer C, van den Boogaard FE, Nieuwland R, Hoogendijk AJ, de Boer OJ, Roelofs JJTH, der Poll TV, de Stoppelaar SF. Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice. Thromb Haemost 2017; 110:582-92. [DOI: 10.1160/th13-01-0052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/19/2013] [Indexed: 01/08/2023]
Abstract
SummaryStreptococcus pneumoniae is a common causative pathogen of pneumonia and sepsis. Pneumonia and sepsis are associated with enhanced activation of coagulation, resulting in the production of several host-derived proteases at the primary site of infection and in the circulation. Serine proteases cleave protease activated receptors (PARs), which form a molecular link between coagulation and inflammation. PAR4 is one of four subtypes of PARs and is widely expressed by multiple cell types in the respiratory tract implicated in pulmonary inflammation, by immune cells and by platelets. In mice, mouse (m)PAR4 is the only thrombin receptor expressed by platelets. We here sought to determine the contribution of mPAR4 to the host response during pneumococcal pneumonia. Pneumonia was induced by intranasal inoculation with S. pneumoniae in mPAR4-deficient (par4-/- ) and wild-type mice. Mice were sacrificed after 6, 24 or 48 hours (h). Blood, lungs, liver and spleen were collected for analyses. Ex vivo stimulation assays were performed with S. pneumoniae and mPAR4 activating peptides. At 48 h after infection, higher bacterial loads were found in the lungs and blood of par4-/- mice (p < 0.05), accompanied by higher histopathology scores and increased cytokine levels (p < 0.05) in the lungs. Ex vivo, co-stimulation with mPAR4 activating peptide enhanced the whole blood cytokine response to S. pneumoniae. Thrombin inhibition resulted in decreased cytokine release after S. pneumoniae stimulation in human whole blood. Our findings suggest that mPAR4 contributes to antibacterial defence during murine pneumococcal pneumonia.
Collapse
|
137
|
Billur R, Ban D, Sabo TM, Maurer MC. Deciphering Conformational Changes Associated with the Maturation of Thrombin Anion Binding Exosite I. Biochemistry 2017; 56:6343-6354. [PMID: 29111672 DOI: 10.1021/acs.biochem.7b00970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thrombin participates in procoagulation, anticoagulation, and platelet activation. This enzyme contains anion binding exosites, ABE I and ABE II, which attract regulatory biomolecules. As prothrombin is activated to thrombin, pro-ABE I is converted into mature ABE I. Unexpectedly, certain ligands can bind to pro-ABE I specifically. Moreover, knowledge of changes in conformation and affinity that occur at the individual residue level as pro-ABE I is converted to ABE I is lacking. Such changes are transient and were not captured by crystallography. Therefore, we employed nuclear magnetic resonance (NMR) titrations to monitor development of ABE I using peptides based on protease-activated receptor 3 (PAR3). Proton line broadening NMR revealed that PAR3 (44-56) and more weakly binding PAR3G (44-56) could already interact with pro-ABE I on prothrombin. 1H-15N heteronuclear single-quantum coherence NMR titrations were then used to probe binding of individual 15N-labeled PAR3G residues (F47, E48, L52, and D54). PAR3G E48 and D54 could interact electrostatically with prothrombin and tightened upon thrombin maturation. The higher affinity for PAR3G D54 suggests the region surrounding thrombin R77a is better oriented to bind D54 than the interaction between PAR3G E48 and thrombin R75. Aromatic PAR3G F47 and aliphatic L52 both reported on significant changes in the chemical environment upon conversion of prothrombin to thrombin. The ABE I region surrounding the 30s loop was more affected than the hydrophobic pocket (F34, L65, and I82). Our NMR titrations demonstrate that PAR3 residues document structural rearrangements occurring during exosite maturation that are missed by reported X-ray crystal structures.
Collapse
Affiliation(s)
- Ramya Billur
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40292, United States
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky 40202, United States
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky 40202, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40292, United States
| |
Collapse
|
138
|
Sharma R, Waller AP, Agrawal S, Wolfgang KJ, Luu H, Shahzad K, Isermann B, Smoyer WE, Nieman MT, Kerlin BA. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. J Am Soc Nephrol 2017; 28:2618-2630. [PMID: 28424276 PMCID: PMC5576925 DOI: 10.1681/asn.2016070789] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nephrotic syndrome is characterized by massive proteinuria and injury of specialized glomerular epithelial cells called podocytes. Studies have shown that, whereas low-concentration thrombin may be cytoprotective, higher thrombin concentrations may contribute to podocyte injury. We and others have demonstrated that ex vivo plasma thrombin generation is enhanced during nephrosis, suggesting that thrombin may contribute to nephrotic progression. Moreover, nonspecific thrombin inhibition has been shown to decrease proteinuria in nephrotic animal models. We thus hypothesized that thrombin contributes to podocyte injury in a protease-activated receptor-specific manner during nephrosis. Here, we show that specific inhibition of thrombin with hirudin reduced proteinuria in two rat nephrosis models, and thrombin colocalized with a podocyte-specific marker in rat glomeruli. Furthermore, flow cytometry immunophenotyping revealed that rat podocytes express the protease-activated receptor family of coagulation receptors in vivo High-concentration thrombin directly injured conditionally immortalized human and rat podocytes. Using receptor-blocking antibodies and activation peptides, we determined that thrombin-mediated injury depended upon interactions between protease-activated receptor 3 and protease-activated receptor 4 in human podocytes, and between protease-activated receptor 1 and protease-activated receptor 4 in rat podocytes. Proximity ligation and coimmunoprecipitation assays confirmed thrombin-dependent interactions between human protease-activated receptor 3 and protease-activated receptor 4, and between rat protease-activated receptor 1 and protease-activated receptor 4 in cultured podocytes. Collectively, these data implicate thrombinuria as a contributor to podocyte injury during nephrosis, and suggest that thrombin and/or podocyte-expressed thrombin receptors may be novel therapeutic targets for nephrotic syndrome.
Collapse
Affiliation(s)
- Ruchika Sharma
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Hematology, Oncology, and BMT, and
| | - Amanda P Waller
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Katelyn J Wolfgang
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Hiep Luu
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan; and
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital,
- Division of Hematology, Oncology, and BMT, and
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
139
|
Smith TH, Li JG, Dores MR, Trejo J. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin. J Biol Chem 2017; 292:13867-13878. [PMID: 28652403 DOI: 10.1074/jbc.m117.782359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate β-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls β-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for β-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of β-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes β-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for β-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation.
Collapse
Affiliation(s)
- Thomas H Smith
- From the Biomedical Sciences Graduate Program and.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| | - Julia G Li
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| | - Michael R Dores
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and.,the Department of Biology, Hofstra University, Hempstead, New York 11549
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| |
Collapse
|
140
|
A cluster of aspartic residues in the extracellular loop II of PAR 4 is important for thrombin interaction and activation of platelets. Thromb Res 2017; 154:84-92. [DOI: 10.1016/j.thromres.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022]
|
141
|
Gremmel T, Panzer S. Oral antiplatelet therapy: impact for transfusion medicine. Vox Sang 2017; 112:511-517. [DOI: 10.1111/vox.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/15/2017] [Accepted: 04/25/2017] [Indexed: 01/03/2023]
Affiliation(s)
- T. Gremmel
- Department of Internal Medicine II; Medical University of Vienna; Vienna Austria
| | - S. Panzer
- Department of Blood Group Serology and Transfusion Medicine; Medical University of Vienna; Vienna Austria
| |
Collapse
|
142
|
Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2017; 118:1392-408. [PMID: 27126649 DOI: 10.1161/circresaha.116.306853] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders.
Collapse
Affiliation(s)
- Jonathan H Foley
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Edward M Conway
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.).
| |
Collapse
|
143
|
Lin C, Borensztajn K, Spek CA. Targeting coagulation factor receptors - protease-activated receptors in idiopathic pulmonary fibrosis. J Thromb Haemost 2017; 15:597-607. [PMID: 28079978 DOI: 10.1111/jth.13623] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with a 5-year mortality rate of > 50% and unknown etiology. Treatment options remain limited and, currently, only two drugs are available, i.e. nintedanib and pirfenidone. However, both of these antifibrotic agents only slow down the progression of the disease, and do not remarkably prolong the survival of IPF patients. Hence, the discovery of new therapeutic targets for IPF is crucial. Studies exploring the mechanisms that are involved in IPF have identified several possible targets for therapeutic interventions. Among these, blood coagulation factor receptors, i.e. protease-activated receptors (PARs), are key candidates, as these receptors mediate the cellular effects of coagulation factors and play central roles in influencing inflammatory and fibrotic responses. In this review, we will focus on the controversial role of the coagulation cascade in the pathogenesis of IPF. In the light of novel data, we will attempt to reconciliate the apparently conflicting data and discuss the possibility of pharmacologic targeting of PARs for the treatment of fibroproliferative diseases.
Collapse
Affiliation(s)
- C Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - K Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Département Hospitalo-universtaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - C A Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
144
|
Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol 2017; 23:2106-2123. [PMID: 28405139 PMCID: PMC5374123 DOI: 10.3748/wjg.v23.i12.2106] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
Collapse
|
145
|
Kassassir H, Siewiera K, Talar M, Przygodzki T, Watala C. Flow cytometry analysis reveals different activation profiles of thrombin- or TRAP-stimulated platelets in db/db mice. The regulatory role of PAR-3. Blood Cells Mol Dis 2017; 65:16-22. [PMID: 28460264 DOI: 10.1016/j.bcmd.2017.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. RESULTS We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. CONCLUSIONS The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice.
Collapse
Affiliation(s)
- Hassan Kassassir
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland.
| | - Karolina Siewiera
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Marcin Talar
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| |
Collapse
|
146
|
Receptor-interacting protein kinase 3 promotes platelet activation and thrombosis. Proc Natl Acad Sci U S A 2017; 114:2964-2969. [PMID: 28242694 DOI: 10.1073/pnas.1610963114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that receptor-interacting protein kinase 3 (RIP3) is involved in many important biological processes, including necroptosis, apoptosis, and inflammation. Here we show that RIP3 plays a critical role in regulating platelet functions and in vivo thrombosis and hemostasis. Tail bleeding times were significantly longer in RIP3-knockout (RIP3-/-) mice compared with their wild-type (WT) littermates. In an in vivo model of arteriole thrombosis, mice lacking RIP3 exhibited prolonged occlusion times. WT mice repopulated with RIP3-/- bone marrow-derived cells had longer occlusion times than RIP3-/- mice repopulated with WT bone marrow-derived cells, suggesting a role for RIP3-deficient platelets in arterial thrombosis. Consistent with these findings, we observed that RIP3 was expressed in both human and mice platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 analog, U46619. Phosphorylation of Akt induced by U46619 or thrombin was diminished in RIP3-/- platelets. Moreover, RIP3 interacted with Gα13 Platelet spreading on fibrinogen and clot retraction were impaired in the absence of RIP3. RIP3 inhibitor dose-dependently inhibited platelet aggregation in vitro and prevented arterial thrombus formation in vivo. These data demonstrate a role for RIP3 in promoting in vivo thrombosis and hemostasis by amplifying platelet activation. RIP3 may represent a novel promising therapeutic target for thrombotic diseases.
Collapse
|
147
|
Proteinase-activated receptors (PARs) as targets for antiplatelet therapy. Biochem Soc Trans 2016; 44:606-12. [PMID: 27068977 DOI: 10.1042/bst20150282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/07/2023]
Abstract
Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date.
Collapse
|
148
|
Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. Proc Natl Acad Sci U S A 2016; 114:E327-E336. [PMID: 28031487 DOI: 10.1073/pnas.1619052114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genetic variants affecting hematopoiesis can influence commonly measured blood cell traits. To identify factors that affect hematopoiesis, we performed association studies for blood cell traits in the population-based Estonian Biobank using high-coverage whole-genome sequencing (WGS) in 2,284 samples and SNP genotyping in an additional 14,904 samples. Using up to 7,134 samples with available phenotype data, our analyses identified 17 associations across 14 blood cell traits. Integration of WGS-based fine-mapping and complementary epigenomic datasets provided evidence for causal mechanisms at several loci, including at a previously undiscovered basophil count-associated locus near the master hematopoietic transcription factor CEBPA The fine-mapped variant at this basophil count association near CEBPA overlapped an enhancer active in common myeloid progenitors and influenced its activity. In situ perturbation of this enhancer by CRISPR/Cas9 mutagenesis in hematopoietic stem and progenitor cells demonstrated that it is necessary for and specifically regulates CEBPA expression during basophil differentiation. We additionally identified basophil count-associated variation at another more pleiotropic myeloid enhancer near GATA2, highlighting regulatory mechanisms for ordered expression of master hematopoietic regulators during lineage specification. Our study illustrates how population-based genetic studies can provide key insights into poorly understood cell differentiation processes of considerable physiologic relevance.
Collapse
|
149
|
Kazzaz NM, Sule G, Knight JS. Intercellular Interactions as Regulators of NETosis. Front Immunol 2016; 7:453. [PMID: 27895638 PMCID: PMC5107827 DOI: 10.3389/fimmu.2016.00453] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are chromatin-derived webs extruded from neutrophils in response to either infection or sterile stimulation with chemicals, cytokines, or microbial products. The vast majority of studies have characterized NET release (also called NETosis) in pure neutrophil cultures in vitro. The situation is surely more complex in vivo as neutrophils constantly sample not only pathogens and soluble mediators but also signals from cellular partners, including platelets and endothelial cells. This complexity is beginning to be explored by studies utilizing in vitro co-culture, as well as animal models of sepsis, infective endocarditis, lung injury, and thrombosis. Indeed, various selectins, integrins, and surface glycoproteins have been implicated in platelet–neutrophil interactions that promote NETosis, albeit with disparate results across studies. NETosis can also clearly be regulated by soluble mediators derived from platelets, such as eicosanoids, chemokines, and alarmins. Beyond platelets, the role of the endothelium in modulating NETosis is being increasingly revealed, with adhesive interactions likely priming neutrophils toward NETosis. The fact that the same selectins and surface glycoproteins may be expressed by both platelets and endothelial cells complicates the interpretation of in vivo data. In summary, we suggest in this review that the engagement of neutrophils with activated cellular partners provides an important in vivo signal or “hit” toward NETosis. Studies should, therefore, increasingly consider the triumvirate of neutrophils, platelets, and the endothelium when exploring NETosis, especially in disease states.
Collapse
Affiliation(s)
- Nayef M Kazzaz
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| | - Gautam Sule
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| | - Jason S Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
150
|
French SL, Paramitha AC, Moon MJ, Dickins RA, Hamilton JR. Humanizing the Protease-Activated Receptor (PAR) Expression Profile in Mouse Platelets by Knocking PAR1 into the Par3 Locus Reveals PAR1 Expression Is Not Tolerated in Mouse Platelets. PLoS One 2016; 11:e0165565. [PMID: 27788223 PMCID: PMC5082849 DOI: 10.1371/journal.pone.0165565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022] Open
Abstract
Anti-platelet drugs are the mainstay of pharmacotherapy for heart attack and stroke prevention, yet improvements are continually sought. Thrombin is the most potent activator of platelets and targeting platelet thrombin receptors (protease-activated receptors; PARs) is an emerging anti-thrombotic approach. Humans express two PARs on their platelets–PAR1 and PAR4. The first PAR1 antagonist was recently approved for clinical use and PAR4 antagonists are in early clinical development. However, pre-clinical studies examining platelet PAR function are challenging because the platelets of non-primates do not accurately reflect the PAR expression profile of human platelets. Mice, for example, express Par3 and Par4. To address this limitation, we aimed to develop a genetically modified mouse that would express the same repertoire of platelet PARs as humans. Here, human PAR1 preceded by a lox-stop-lox was knocked into the mouse Par3 locus, and then expressed in a platelet-specific manner (hPAR1-KI mice). Despite correct targeting and the predicted loss of Par3 expression and function in platelets from hPAR1-KI mice, no PAR1 expression or function was detected. Specifically, PAR1 was not detected on the platelet surface nor internally by flow cytometry nor in whole cell lysates by Western blot, while a PAR1-activating peptide failed to induce platelet activation assessed by either aggregation or surface P-selectin expression. Platelets from hPAR1-KI mice did display significantly diminished responsiveness to thrombin stimulation in both assays, consistent with a Par3-/- phenotype. In contrast to the observations in hPAR1-KI mouse platelets, the PAR1 construct used here was successfully expressed in HEK293T cells. Together, these data suggest ectopic PAR1 expression is not tolerated in mouse platelets and indicate a different approach is required to develop a small animal model for the purpose of any future preclinical testing of PAR antagonists as anti-platelet drugs.
Collapse
Affiliation(s)
- Shauna L. French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | | | - Mitchell J. Moon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Ross A. Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R. Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|