101
|
Polymorphisms in mitotic checkpoint-related genes can influence survival outcomes of early-stage non-small cell lung cancer. Oncotarget 2017; 8:61777-61785. [PMID: 28977903 PMCID: PMC5617463 DOI: 10.18632/oncotarget.18693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate the association between variants in mitotic checkpoint-related genes and clinical outcomes of non-small cell lung cancer (NSCLC). A total of 766 patients with NSCLC who underwent curative surgery were enrolled. Among the 73 variants evaluated, 4 variants were related with survival outcomes. BUB3 rs7897156C>T was associated with worse overall survival under a recessive model (adjusted hazard ratio = 1.58, 95% confidence interval = 1.07–2.33, P = 0.02). AURKB rs1059476G>A was associated with better overall survival under a recessive model (adjusted hazard ratio = 0.64, 95% confidence interval = 0.41–0.99, P = 0.05). PTTG1 rs1895320T>C and RAD21 rs1374297C>G were associated with worse disease-free survival. In the functional study, relative luciferase activity was higher at the BUB3 rs7897156T allele compared to that at the C allele. Western blot showed that the phosphorylation of AKT and mTOR in the AURKB variant-type (M298) was significantly lower than in the AURKB wild-type (T298). We found that 4 variants of mitotic checkpoint-related genes were associated with survival outcomes in patients with surgically resected NSCLC. Particularly, our results suggest that BUB3 rs7897156C>T and AURKB rs1059476G>A are functional variants.
Collapse
|
102
|
McClelland SE. Role of chromosomal instability in cancer progression. Endocr Relat Cancer 2017; 24:T23-T31. [PMID: 28696210 DOI: 10.1530/erc-17-0187] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Cancer cells often display chromosomal instability (CIN), a defect that involves loss or rearrangement of the cell's genetic material - chromosomes - during cell division. This process results in the generation of aneuploidy, a deviation from the haploid number of chromosomes, and structural alterations of chromosomes in over 90% of solid tumours and many haematological cancers. This trait is unique to cancer cells as normal cells in the body generally strictly maintain the correct number and structure of chromosomes. This key difference between cancer and normal cells has led to two important hypotheses: (i) cancer cells have had to overcome inherent barriers to changes in chromosomes that are not tolerated in non-cancer cells and (ii) CIN represents a cancer-specific target to allow the specific elimination of cancer cells from the body. To exploit these hypotheses and design novel approaches to treat cancer, a full understanding of the mechanisms driving CIN and how CIN contributes to cancer progression is required. Here, we will discuss the possible mechanisms driving chromosomal instability, how CIN may contribute to the progression at multiple stages of tumour evolution and possible future therapeutic directions based on targeting cancer chromosomal instability.
Collapse
|
103
|
Xu B, Xu T, Liu H, Min Q, Wang S, Song Q. MiR-490-5p Suppresses Cell Proliferation and Invasion by Targeting BUB1 in Hepatocellular Carcinoma Cells. Pharmacology 2017; 100:269-282. [PMID: 28810242 DOI: 10.1159/000477667] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To verify that miR-490-5p could influence hepatocellular carcinoma (HCC) cells' proliferation, invasion, cycle, and apoptosis by targeting BUB1. METHODS Quantitative real time-PCR (QRT-PCR) was used to determine the miR-490-5p expression. Immunohistochemistry, qRT-PCR, and Western blot were employed to detect BUB1 and transforming growth factor-beta (TGFβ/Smad) signaling-related proteins expression in hepatic tissues and cells. The luciferase assay was used to confirm the targeting relationship between miR-490-5p and BUB1. The Cell Counting Kit-8, colony formation, Transwell invasion, scratch healing assays, and flow cytometry analysis were conducted to evaluate HCC cells proliferation, invasion, migration, and apoptosis alteration after transfection. RESULTS In HCC tissues and cells, lower expression of miR-490-5p was detected, while BUB1 was overexpressed than controls. The upregulation of miR-490-5p inhibited BUB1 expression and the overexpression of miR-490-5p or the under-expression of BUB1 inhibited HCC cells proliferation, migration, invasion, and increased the apoptosis rate. CONCLUSION MiR-490-5p could regulate TGFβ/Smad signaling pathways by inhibiting BUB1, which could then inhibit HCC cells proliferation, invasion, and migration as well as decrease cell viability and increase apoptosis.
Collapse
Affiliation(s)
- Bin Xu
- Department of Oncology I, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
104
|
He GF, Yang LL, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S, Sun QY. The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology 2017; 102:67-74. [PMID: 28750296 DOI: 10.1016/j.theriogenology.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/16/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
Abstract
Calcium ion fluctuation is closely related to the transformation of cell cycle. However, little is known about the function of L-type calcium channel in mammalian oocyte and embryo development. We thus studied the roles of L-type calcium channel in mouse oocyte meiotic maturation, parthenogenetic activation and early embryonic development. We used the antagonist Amlodipine to block L-type calcium channel. Oocytes or zygotes were cultured to different time points with 0 μM, 10 μM, 30 μM and 50 μM Amlodipine. Then we checked the rate of first polar body extrusion, spindle formation, asymmetric division parthenogenetic activation and early embryo cleavage. The results showed that Amlodipine treatment did not affect germinal vesicle breakdown, but caused disruption of cytoskeleton organization, symmetric division, formation of mature oocytes with a large polar body, or reduced the first polar body extrusion, depending on its concentrations. Amlodipine treatment also resulted in decreased parthenogenetic activation and arrested early embryonic development. Overall, these data suggest that proper function of L-type calcium channel is critical for oocyte maturation, activation, and early embryonic development.
Collapse
Affiliation(s)
- Gui-Fang He
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; College of Life Science, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Qing-Yuan Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
105
|
McCoy RC. Mosaicism in Preimplantation Human Embryos: When Chromosomal Abnormalities Are the Norm. Trends Genet 2017; 33:448-463. [PMID: 28457629 DOI: 10.1016/j.tig.2017.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 11/15/2022]
Abstract
Along with errors in meiosis, mitotic errors during post-zygotic cell division contribute to pervasive aneuploidy in human embryos. Relatively little is known, however, about the genesis of these errors or their fitness consequences. Rapid technological advances are helping to close this gap, revealing diverse molecular mechanisms contributing to mitotic error. These include altered cell cycle checkpoints, aberrations of the centrosome, and failed chromatid cohesion, mirroring findings from cancer biology. Recent studies are challenging the idea that mitotic error is abnormal, emphasizing that the fitness impacts of mosaicism depend on its scope and severity. In light of these findings, technical and philosophical limitations of various screening approaches are discussed, along with avenues for future research.
Collapse
Affiliation(s)
- Rajiv C McCoy
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
106
|
Maleki SS, Röcken C. Chromosomal Instability in Gastric Cancer Biology. Neoplasia 2017; 19:412-420. [PMID: 28431273 PMCID: PMC5397576 DOI: 10.1016/j.neo.2017.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer in the world and accounts for 7% of the total cancer incidence. The prognosis of GC is dismal in Western countries due to late diagnosis: approximately 70% of the patients die within 5 years following initial diagnosis. Recently, integrative genomic analyses led to the proposal of a molecular classification of GC into four subtypes, i.e.,microsatellite-instable, Epstein-Barr virus–positive, chromosomal-instable (CIN), and genomically stable GCs. Molecular classification of GC advances our knowledge of the biology of GC and may have implications for diagnostics and patient treatment. Diagnosis of microsatellite-instable GC and Epstein-Barr virus–positive GC is more or less straightforward. Microsatellite instability can be tested by immunohistochemistry (MLH1, PMS2, MSH2, and MSH6) and/or molecular-biological analysis. Epstein-Barr virus–positive GC can be tested by in situ hybridization (Epstein-Barr virus encoded small RNA). However, with regard to CIN, testing may be more complicated and may require a more in-depth knowledge of the underlying mechanism leading to CIN. In addition, CIN GC may not constitute a distinct subgroup but may rather be a compilation of a more heterogeneous group of tumors. In this review, we aim to clarify the definition of CIN and to point out the molecular mechanisms leading to this molecular phenotype and the challenges faced in characterizing this type of cancer.
Collapse
Affiliation(s)
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
107
|
Pajtler KW, Sadowski N, Ackermann S, Althoff K, Schönbeck K, Batzke K, Schäfers S, Odersky A, Heukamp L, Astrahantseff K, Künkele A, Deubzer HE, Schramm A, Sprüssel A, Thor T, Lindner S, Eggert A, Fischer M, Schulte JH. The GSK461364 PLK1 inhibitor exhibits strong antitumoral activity in preclinical neuroblastoma models. Oncotarget 2017; 8:6730-6741. [PMID: 28036269 PMCID: PMC5351666 DOI: 10.18632/oncotarget.14268] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that promotes G2/M-phase transition, is expressed in elevated levels in high-risk neuroblastomas and correlates with unfavorable patient outcome. Recently, we and others have presented PLK1 as a potential drug target for neuroblastoma, and reported that the BI2536 PLK1 inhibitor showed antitumoral actvity in preclinical neuroblastoma models. Here we analyzed the effects of GSK461364, a competitive inhibitor for ATP binding to PLK1, on typical tumorigenic properties of preclinical in vitro and in vivo neuroblastoma models. GSK461364 treatment of neuroblastoma cell lines reduced cell viability and proliferative capacity, caused cell cycle arrest and massively induced apoptosis. These phenotypic consequences were induced by treatment in the low-dose nanomolar range, and were independent of MYCN copy number status. GSK461364 treatment strongly delayed established xenograft tumor growth in nude mice, and significantly increased survival time in the treatment group. These preclinical findings indicate PLK1 inhibitors may be effective for patients with high-risk or relapsed neuroblastomas with upregulated PLK1 and might be considered for entry into early phase clinical trials in pediatric patients.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Republic of Korea
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK Core Center Heidelberg), Germany
| | - Natalie Sadowski
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Sandra Ackermann
- Department of Pediatric Oncology and Hematology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Kristina Althoff
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Kerstin Schönbeck
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Katharina Batzke
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Simon Schäfers
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Andrea Odersky
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Lukas Heukamp
- NEO New Oncology, Cologne, Germany
- Institute for Hematopathology, Hamburg, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Annika Sprüssel
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
| | - Theresa Thor
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK Essen), Germany
- Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
108
|
López-García C, Sansregret L, Domingo E, McGranahan N, Hobor S, Birkbak NJ, Horswell S, Grönroos E, Favero F, Rowan AJ, Matthews N, Begum S, Phillimore B, Burrell R, Oukrif D, Spencer-Dene B, Kovac M, Stamp G, Stewart A, Danielsen H, Novelli M, Tomlinson I, Swanton C. BCL9L Dysfunction Impairs Caspase-2 Expression Permitting Aneuploidy Tolerance in Colorectal Cancer. Cancer Cell 2017; 31:79-93. [PMID: 28073006 PMCID: PMC5225404 DOI: 10.1016/j.ccell.2016.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/05/2016] [Accepted: 10/28/2016] [Indexed: 01/03/2023]
Abstract
Chromosomal instability (CIN) contributes to cancer evolution, intratumor heterogeneity, and drug resistance. CIN is driven by chromosome segregation errors and a tolerance phenotype that permits the propagation of aneuploid genomes. Through genomic analysis of colorectal cancers and cell lines, we find frequent loss of heterozygosity and mutations in BCL9L in aneuploid tumors. BCL9L deficiency promoted tolerance of chromosome missegregation events, propagation of aneuploidy, and genetic heterogeneity in xenograft models likely through modulation of Wnt signaling. We find that BCL9L dysfunction contributes to aneuploidy tolerance in both TP53-WT and mutant cells by reducing basal caspase-2 levels and preventing cleavage of MDM2 and BID. Efforts to exploit aneuploidy tolerance mechanisms and the BCL9L/caspase-2/BID axis may limit cancer diversity and evolution.
Collapse
Affiliation(s)
- Carlos López-García
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Laurent Sansregret
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Enric Domingo
- Oxford Centre for Cancer Gene Research, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK; Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Nicholas McGranahan
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Translational Cancer Therapeutics Laboratory, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC2E 6DD, UK
| | - Sebastijan Hobor
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolai Juul Birkbak
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Translational Cancer Therapeutics Laboratory, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC2E 6DD, UK
| | - Stuart Horswell
- Bioinformatics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eva Grönroos
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Francesco Favero
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer System Biology, Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby 2800, Denmark
| | - Andrew J Rowan
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicholas Matthews
- Advanced Sequencing Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sharmin Begum
- Advanced Sequencing Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin Phillimore
- Advanced Sequencing Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca Burrell
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dahmane Oukrif
- Research Department of Pathology, University College London Medical School, University Street, London WC1E 6JJ, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michal Kovac
- Oxford Centre for Cancer Gene Research, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Gordon Stamp
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Havard Danielsen
- Institute for Cancer Genetics and Informatics, Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway
| | - Marco Novelli
- Research Department of Pathology, University College London Medical School, University Street, London WC1E 6JJ, UK
| | - Ian Tomlinson
- Oxford Centre for Cancer Gene Research, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Translational Cancer Therapeutics Laboratory, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC2E 6DD, UK.
| |
Collapse
|
109
|
Hahn MM, de Voer RM, Hoogerbrugge N, Ligtenberg MJL, Kuiper RP, van Kessel AG. The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery. Cell Oncol (Dordr) 2016; 39:491-510. [PMID: 27279102 PMCID: PMC5121185 DOI: 10.1007/s13402-016-0284-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a cumulative term applied to a clinically and genetically heterogeneous group of neoplasms that occur in the bowel. Based on twin studies, up to 45 % of the CRC cases may involve a heritable component. Yet, only in 5-10 % of these cases high-penetrant germline mutations are found (e.g. mutations in APC and DNA mismatch repair genes) that result in a familial aggregation and/or an early onset of the disease. Genome-wide association studies have revealed that another ~5 % of the CRC cases may be explained by a cumulative effect of low-penetrant risk factors. Recent attempts to identify novel genetic factors using whole exome and whole genome sequencing has proven to be difficult since the remaining, yet to be discovered, high penetrant CRC predisposing genes appear to be rare. In addition, most of the moderately penetrant candidate genes identified so far have not been confirmed in independent cohorts. Based on literature examples, we here discuss how careful patient and cohort selection, candidate gene and variant selection, and corroborative evidence may be employed to facilitate the discovery of novel CRC predisposing genes. CONCLUSIONS The picture emerges that the genetic predisposition to CRC is heterogeneous, involving complex interplays between common and rare (inter)genic variants with different penetrances. It is anticipated, however, that the use of large clinically well-defined patient and control datasets, together with improved functional and technical possibilities, will yield enough power to unravel this complex interplay and to generate accurate individualized estimates for the risk to develop CRC.
Collapse
Affiliation(s)
- M M Hahn
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R M de Voer
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - N Hoogerbrugge
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M J L Ligtenberg
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R P Kuiper
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - A Geurts van Kessel
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
110
|
Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci 2016; 17:E1903. [PMID: 27879682 PMCID: PMC5133901 DOI: 10.3390/ijms17111903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae, on the TNBC cell line MDA-MB-231. METHODS The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. RESULTS Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21WAF1, elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. CONCLUSION Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.
Collapse
Affiliation(s)
- Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Ting Zhang
- The Affiliated Maternity and Children Health Hospital of Nanjing Medical University, Wuxi 214002, China.
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment Cancer Center, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| | - Yongxiang Yin
- Department of Pathology, the Affiliated Maternity and Children Health Hospital of Nanjing Medical University, Wuxi 214002, China.
| | - Fei Xu
- Department of Laboratory Medicine, the Affiliated Maternity and Children Health Hospital of Nanjing Medical University, Wuxi 214002, China.
| |
Collapse
|
111
|
Roussel-Gervais A, Naciri I, Kirsh O, Kasprzyk L, Velasco G, Grillo G, Dubus P, Defossez PA. Loss of the Methyl-CpG-Binding Protein ZBTB4 Alters Mitotic Checkpoint, Increases Aneuploidy, and Promotes Tumorigenesis. Cancer Res 2016; 77:62-73. [PMID: 27815388 DOI: 10.1158/0008-5472.can-16-1181] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/01/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Abstract
Chromosome segregation during mitosis is monitored by the mitotic checkpoint and is dependent upon DNA methylation. ZBTB4 is a mammalian epigenetic regulator with high affinity for methylated CpGs that localizes at pericentromeric heterochromatin and is frequently downregulated in cancer. Here, we report that decreased ZBTB4 expression correlates with high genome instability across many frequent human cancers. In human cell lines, ZBTB4 depletion was sufficient to increase the prevalence of micronuclei and binucleated cells in parallel with aberrant mitotic checkpoint gene expression, a weakened mitotic checkpoint, and an increased frequency of lagging chromosomes during mitosis. To extend these findings, we generated Zbtb4-deficient mice. Zbtb4-/- mice were smaller than their wild-type littermates. Primary cells isolated from Zbtb4-/- mice exhibited diminished mitotic checkpoint activity, increased mitotic defects, aneuploid cells marked by a specific transcriptional signature, and increased genomic instability. Zbtb4-/- mice were also more susceptible to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis. Our results establish the epigenetic regulator ZBTB4 as an essential component in maintaining genomic stability in mammals. Cancer Res; 77(1); 62-73. ©2016 AACR.
Collapse
Affiliation(s)
- Audrey Roussel-Gervais
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Ikrame Naciri
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Olivier Kirsh
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Laetitia Kasprzyk
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Guillaume Velasco
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Giacomo Grillo
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Pierre Dubus
- University Bordeaux, UMR INSERM 1053, Bordeaux, France
| | - Pierre-Antoine Defossez
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France.
| |
Collapse
|
112
|
Guerra E, Cimadamore A, Simeone P, Vacca G, Lattanzio R, Botti G, Gatta V, D'Aurora M, Simionati B, Piantelli M, Alberti S. p53, cathepsin D, Bcl-2 are joint prognostic indicators of breast cancer metastatic spreading. BMC Cancer 2016; 16:649. [PMID: 27538498 PMCID: PMC4991058 DOI: 10.1186/s12885-016-2713-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/11/2016] [Indexed: 02/04/2023] Open
Abstract
Background Traditional prognostic indicators of breast cancer, i.e. lymph node diffusion, tumor size, grading and estrogen receptor expression, are inadequate predictors of metastatic relapse. Thus, additional prognostic parameters appear urgently needed. Individual oncogenic determinants have largely failed in this endeavour. Only a few individual tumor growth drivers, e.g. mutated p53, Her-2, E-cadherin, Trops, did reach some prognostic/predictive power in clinical settings. As multiple factors are required to drive solid tumor progression, clusters of such determinants were expected to become stronger indicators of tumor aggressiveness and malignant progression than individual parameters. To identify such prognostic clusters, we went on to coordinately analyse molecular and histopathological determinants of tumor progression of post-menopausal breast cancers in the framework of a multi-institutional case series/case-control study. Methods A multi-institutional series of 217 breast cancer cases was analyzed. Twenty six cases (12 %) showed disease relapse during follow-up. Relapsed cases were matched with a set of control patients by tumor diameter, pathological stage, tumor histotype, age, hormone receptors and grading. Histopathological and molecular determinants of tumor development and aggressiveness were then analyzed in relapsed versus non-relapsed cases. Stepwise analyses and model structure fitness assessments were carried out to identify clusters of molecular alterations with differential impact on metastatic relapse. Results p53, Bcl-2 and cathepsin D were shown to be coordinately associated with unique levels of relative risk for disease relapse. As many Ras downstream targets, among them matrix metalloproteases, are synergistically upregulated by mutated p53, whole-exon sequence analyses were performed for TP53, Ki-RAS and Ha-RAS, and findings were correlated with clinical phenotypes. Notably, TP53 insertion/deletion mutations were only detected in relapsed cases. Correspondingly, Ha-RAS missense oncogenic mutations were only found in a subgroup of relapsing tumors. Conclusions We have identified clusters of specific molecular alterations that greatly improve prognostic assessment with respect to singularly-analysed indicators. The combined analysis of these multiple tumor-relapse risk factors promises to become a powerful approach to identify patients subgroups with unfavourable disease outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2713-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emanuela Guerra
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | | | - Pasquale Simeone
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Giovanna Vacca
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Rossano Lattanzio
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Gerardo Botti
- Department of Pathology "Foundation G.Pascale", National Cancer Institute, Naples, Italy
| | - Valentina Gatta
- Department of Psychological, Health ad Territorial Sciences, School of Medicine and Life Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Marco D'Aurora
- Department of Psychological, Health ad Territorial Sciences, School of Medicine and Life Sciences, University 'G. D'Annunzio', Chieti, Italy
| | | | - Mauro Piantelli
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy. .,Department of Neurosciences, Imaging and Clinical Sciences, University 'G. D'Annunzio', Chieti, Italy.
| |
Collapse
|
113
|
Kudryavtseva AV, Lipatova AV, Zaretsky AR, Moskalev AA, Fedorova MS, Rasskazova AS, Shibukhova GA, Snezhkina AV, Kaprin AD, Alekseev BY, Dmitriev AA, Krasnov GS. Important molecular genetic markers of colorectal cancer. Oncotarget 2016; 7:53959-53983. [PMID: 27276710 PMCID: PMC5288236 DOI: 10.18632/oncotarget.9796] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/21/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) ranks third in the incidences of cancer morbidity and mortality worldwide. CRC is rather heterogeneous with regard to molecular genetic characteristics and pathogenic pathways. A wide spectrum of biomarkers is used for molecular subtype determination, prognosis, and estimation of sensitivity to different drugs in practice. These biomarkers can include germline and somatic mutations, chromosomal aberrations, genomic abnormalities, gene expression alterations at mRNA or protein level and changes in DNA methylation status. In the present review we discuss the most important and well-studied CRC biomarkers, and their potential clinical significance and current approaches to molecular classification of colorectal tumors.
Collapse
Affiliation(s)
- Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrew R. Zaretsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Galina A. Shibukhova
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Andrey D. Kaprin
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
114
|
Sun X, Suo J, Yan J. Immunotherapy in human colorectal cancer: Challenges and prospective. World J Gastroenterol 2016; 22:6362-6372. [PMID: 27605872 PMCID: PMC4968118 DOI: 10.3748/wjg.v22.i28.6362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/02/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Human colorectal cancer (CRC) is the third most commonly diagnosed malignancies and the prognosis for patients with recurrent or metastatic disease is extremely poor. Although new chemotherapeutic regimen improves survival rates, therapy with better efficacy and less adverse effects is drastically needed. Immunotherapy has been investigated in human CRC for decades with limited success. However, recent developments of immunotherapy, particularly immune checkpoint inhibitor therapy, have achieved promising clinical benefits in many types of cancer and revived the hope for utilizing such therapy in human CRC. In this review, we will discuss important immunological landscape within the CRC microenvironment and introduce immunoscore system to better describe immunophenotyping in CRC. We will also discuss different immunotherapeutic approaches currently utilized in different phases of clinical trials. Some of those completed or ongoing trials are summarized. Finally, we provide a brief prospective on the future human CRC immunotherapy.
Collapse
|
115
|
Spindle Assembly Checkpoint as a Potential Target in Colorectal Cancer: Current Status and Future Perspectives. Clin Colorectal Cancer 2016; 16:1-8. [PMID: 27435760 DOI: 10.1016/j.clcc.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC), one of the most common malignancies worldwide, is often diagnosed at an advanced stage, and resistance to chemotherapeutic and existing targeted therapy is a major obstacle to its successful treatment. New targets that offer alternative clinical options are therefore urgently needed. Recently, perturbation of the spindle assembly checkpoint (SAC), the surveillance mechanism that maintains anaphase inhibition until all chromosomes reach the metaphase plate, has been regarded as a promising target to fight cancer cells, either alone or in combination regimens. Consistent with this strategy, many cancers, including CRC, exhibit altered expression of SAC genes. In this article, we review our current knowledge on SAC activity status in CRC, and on current anti-CRC strategies and future therapeutic perspectives on the basis of SAC targeting experiments in vitro and in animal models.
Collapse
|
116
|
Chromosomal instability: A common feature and a therapeutic target of cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:64-75. [PMID: 27345585 DOI: 10.1016/j.bbcan.2016.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/31/2023]
Abstract
Most cancer cells are aneuploid, containing abnormal numbers of chromosomes, mainly caused by elevated levels of chromosome missegregation, known as chromosomal instability (CIN). These well-recognized, but poorly understood, features of cancers have recently been studied extensively, unraveling causal relationships between CIN and cancer. Here we review recent findings regarding how CIN and aneuploidy occur, how they affect cellular functions, how cells respond to them, and their relevance to diseases, especially cancer. Aneuploid cells are under various kinds of stresses that result in reduced cellular fitness. Nevertheless, genetic heterogeneity derived from CIN allows the selection of cells better adapted to their environment, which supposedly facilitates generation and progression of cancer. We also discuss how we can exploit the properties of cancer cells exhibiting CIN for effective cancer therapy.
Collapse
|
117
|
Lorenz VN, Schön MP, Seitz CS. c-Rel in Epidermal Homeostasis: A Spotlight on c-Rel in Cell Cycle Regulation. J Invest Dermatol 2016; 136:1090-1096. [PMID: 27032306 DOI: 10.1016/j.jid.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Abstract
To maintain proper skin barrier function, epidermal homeostasis requires a subtly governed balance of proliferating and differentiating keratinocytes. While differentiation takes place in the suprabasal layers, proliferation, including mitosis, is usually restricted to the basal layer. Only recently identified as an important regulator of epidermal homeostasis, c-Rel, an NF-κB transcription factor subunit, affects the viability and proliferation of epidermal keratinocytes. In human keratinocytes, decreased expression of c-Rel causes a plethora of dysregulated cellular functions including impaired cell viability, increased apoptosis, and abnormalities during mitosis and cell cycle regulation. On the other hand, c-Rel shows aberrant expression in many epidermal tumors. Here, in the context of its role in different cell types and compared with other NF-κB subunits, we discuss the putative function of c-Rel as a regulator of epidermal homeostasis and mitotic progression. In addition, implications for disease pathophysiology with perturbed c-Rel function and abnormal homeostasis, such as epidermal carcinogenesis, will be discussed.
Collapse
Affiliation(s)
- Verena N Lorenz
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany.
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| | - Cornelia S Seitz
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| |
Collapse
|
118
|
High and low dose radiation effects on mammary adenocarcinoma cells - an epigenetic connection. Oncoscience 2016; 3:88-97. [PMID: 27226982 PMCID: PMC4872647 DOI: 10.18632/oncoscience.298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/01/2016] [Indexed: 01/04/2023] Open
Abstract
The successful treatment of cancer, including breast cancer, depends largely on radiation therapy and proper diagnostics. The effect of ionizing radiation on cells and tissues depends on the radiation dose and energy level, but there is insufficient evidence concerning how tumor cells respond to the low and high doses of radiation that are often used in medical diagnostic and treatment modalities. The purpose of this study was to investigate radiation-induced gene expression changes in the MCF-7 breast adenocarcinoma cell line. Using microarray technology tools, we were able to screen the differential gene expressions profiles between various radiation doses applied to MCF-7 cells. Here, we report the substantial alteration in the expression level of genes after high-dose treatment. In contrast, no dramatic gene expression alterations were noticed after the application of low and medium doses of radiation. In response to a high radiation dose, MCF-7 cells exhibited down-regulation of biological pathways such as cell cycle, DNA replication, and DNA repair and activation of the p53 pathway. Similar dose-dependent responses were seen on the epigenetic level, which was tested by a microRNA expression analysis. MicroRNA analysis showed dose-dependent radiation-induced microRNA expression alterations that were associated with cell cycle arrest and cell death. An increased rate of apoptosis was determined by an Annexin V assay. The results of this study showed that high doses of radiation affect gene expression genetically and epigenetically, leading to alterations in cell cycle, DNA replication, and apoptosis.
Collapse
|
119
|
Lee JK, Choi YL, Kwon M, Park PJ. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:283-312. [PMID: 26907526 DOI: 10.1146/annurev-pathol-012615-044446] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During tumor evolution, cancer cells can accumulate numerous genetic alterations, ranging from single nucleotide mutations to whole-chromosomal changes. Although a great deal of progress has been made in the past decades in characterizing genomic alterations, recent cancer genome sequencing studies have provided a wealth of information on the detailed molecular profiles of such alterations in various types of cancers. Here, we review our current understanding of the mechanisms and consequences of cancer genome instability, focusing on the findings uncovered through analysis of exome and whole-genome sequencing data. These analyses have shown that most cancers have evidence of genome instability, and the degree of instability is variable within and between cancer types. Importantly, we describe some recent evidence supporting the idea that chromosomal instability could be a major driving force in tumorigenesis and cancer evolution, actively shaping the genomes of cancer cells to maximize their survival advantage.
Collapse
Affiliation(s)
- June-Koo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea;
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul 06351, South Korea;
| | - Mijung Kwon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115;
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
120
|
Corkery DP, Le Page C, Meunier L, Provencher D, Mes-Masson AM, Dellaire G. PRP4K is a HER2-regulated modifier of taxane sensitivity. Cell Cycle 2015; 14:1059-69. [PMID: 25602630 PMCID: PMC4612451 DOI: 10.1080/15384101.2015.1007775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The taxanes are used alone or in combination with anthracyclines or platinum drugs to treat breast and ovarian cancer, respectively. Taxanes target microtubules in cancer cells and modifiers of taxane sensitivity have been identified in vitro, including drug efflux and mitotic checkpoint proteins. Human epidermal growth factor receptor 2 (HER2/ERBB2) gene amplification is associated with benefit from taxane therapy in breast cancer yet high HER2 expression also correlates with poor survival in both breast and ovarian cancer. The pre-mRNA splicing factor 4 kinase PRP4K (PRPF4B), which we identified as a component of the U5 snRNP also plays a role in regulating the spindle assembly checkpoint (SAC) in response to microtubule-targeting drugs. In this study, we found a positive correlation between PRP4K expression and HER2 status in breast and ovarian cancer patient tumors, which we determined was a direct result of PRP4K regulation by HER2 signaling. Knock-down of PRP4K expression reduced the sensitivity of breast and ovarian cancer cell lines to taxanes, and low PRP4K levels correlated with in vitro-derived and patient acquired taxane resistance in breast and ovarian cancer. Patients with high-grade serous ovarian cancer and high HER2 levels had poor overall survival; however, better survival in the low HER2 patient subgroup treated with platinum/taxane-based therapy correlated positively with PRP4K expression (HR = 0.37 [95% CI 0.15-0.88]; p = 0.03). Thus, PRP4K functions as a HER2-regulated modifier of taxane sensitivity that may have prognostic value as a marker of better overall survival in taxane-treated ovarian cancer patients.
Collapse
Affiliation(s)
- Dale P Corkery
- a Department of Biochemistry & Molecular Biology ; Dalhousie University ; Halifax , NS Canada
| | | | | | | | | | | |
Collapse
|
121
|
Tissue Regeneration in the Chronically Inflamed Tumor Environment: Implications for Cell Fusion Driven Tumor Progression and Therapy Resistant Tumor Hybrid Cells. Int J Mol Sci 2015; 16:30362-81. [PMID: 26703575 PMCID: PMC4691180 DOI: 10.3390/ijms161226240] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
The biological phenomenon of cell fusion in a cancer context is still a matter of controversial debates. Even though a plethora of in vitro and in vivo data have been published in the past decades the ultimate proof that tumor hybrid cells could originate in (human) cancers and could contribute to the progression of the disease is still missing, suggesting that the cell fusion hypothesis is rather fiction than fact. However, is the lack of this ultimate proof a valid argument against this hypothesis, particularly if one has to consider that appropriate markers do not (yet) exist, thus making it virtually impossible to identify a human tumor cell clearly as a tumor hybrid cell. In the present review, we will summarize the evidence supporting the cell fusion in cancer concept. Moreover, we will refine the cell fusion hypothesis by providing evidence that cell fusion is a potent inducer of aneuploidy, genomic instability and, most likely, even chromothripsis, suggesting that cell fusion, like mutations and aneuploidy, might be an inducer of a mutator phenotype. Finally, we will show that "accidental" tissue repair processes during cancer therapy could lead to the origin of therapy resistant cancer hybrid stem cells.
Collapse
|
122
|
Arora S, Yan H, Cho I, Fan HY, Luo B, Gai X, Bodian DL, Vockley JG, Zhou Y, Handorf EA, Egleston BL, Andrake MD, Nicolas E, Serebriiskii IG, Yen TJ, Hall MJ, Golemis EA, Enders GH. Genetic Variants That Predispose to DNA Double-Strand Breaks in Lymphocytes From a Subset of Patients With Familial Colorectal Carcinomas. Gastroenterology 2015; 149:1872-1883.e9. [PMID: 26344056 PMCID: PMC4663158 DOI: 10.1053/j.gastro.2015.08.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 07/29/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS DNA structural lesions are prevalent in sporadic colorectal cancer. Therefore, we proposed that gene variants that predispose to DNA double-strand breaks (DSBs) would be found in patients with familial colorectal carcinomas of an undefined genetic basis (UFCRC). METHODS We collected primary T cells from 25 patients with UFCRC and matched patients without colorectal cancer (controls) and assayed for DSBs. We performed exome sequence analyses of germline DNA from 20 patients with UFCRC and 5 undiagnosed patients with polyposis. The prevalence of identified variants in genes linked to DNA integrity was compared with that of individuals without a family history of cancer. The effects of representative variants found to be associated with UFCRC was confirmed in functional assays with HCT116 cells. RESULTS Primary T cells from most patients with UFCRC had increased levels of the DSB marker γ(phosphorylated)histone2AX (γH2AX) after treatment with DNA damaging agents, compared with T cells from controls (P < .001). Exome sequence analysis identified a mean 1.4 rare variants per patient that were predicted to disrupt functions of genes relevant to DSBs. Controls (from public databases) had a much lower frequency of variants in the same genes (P < .001). Knockdown of representative variant genes in HCT116 CRC cells increased γH2AX. A detailed analysis of immortalized patient-derived B cells that contained variants in the Werner syndrome, RecQ helicase-like gene (WRN, encoding T705I), and excision repair cross-complementation group 6 (ERCC6, encoding N180Y) showed reduced levels of these proteins and increased DSBs, compared with B cells from controls. This phenotype was rescued by exogenous expression of WRN or ERCC6. Direct analysis of the recombinant variant proteins confirmed defective enzymatic activities. CONCLUSIONS These results provide evidence that defects in suppression of DSBs underlie some cases of UFCRC; these can be identified by assays of circulating lymphocytes. We specifically associated UFCRC with variants in WRN and ERCC6 that reduce the capacity for repair of DNA DSBs. These observations could lead to a simple screening strategy for UFCRC, and provide insight into the pathogenic mechanisms of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Sanjeevani Arora
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Hong Yan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Iltaeg Cho
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hua-Ying Fan
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Biao Luo
- Institute for Personalized Medicine, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xiaowu Gai
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Dale L Bodian
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia
| | - Joseph G Vockley
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia
| | - Yan Zhou
- Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Brian L Egleston
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mark D Andrake
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Kazan Federal University, Kazan, Russia
| | - Timothy J Yen
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J Hall
- Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Greg H Enders
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Medicine, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
123
|
Affected chromosome homeostasis and genomic instability of clonal yeast cultures. Curr Genet 2015; 62:405-18. [PMID: 26581629 PMCID: PMC4826422 DOI: 10.1007/s00294-015-0537-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Abstract
Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events—disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair.
Collapse
|
124
|
Increased expression of ESCO1 is correlated with poor patient survival and its role in human bladder cancer. Tumour Biol 2015; 37:5165-70. [PMID: 26547586 DOI: 10.1007/s13277-015-4375-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence suggesting that establishment of sister chromatid cohesion N-acetyltransferase 1 (ESCO1) was involved in tumorigenesis. However, its role in bladder cancer remains unclear. In this study, we aimed to study the clinical correlation and biological significance of ESCO1 in bladder cancer. Our results showed that ESCO1 was significantly over-expressed in bladder cancer tissues compared with that in adjacent normal tissues. And, increased ESCO1 expression was significantly associated with higher grade (P < 0.001), higher tumor stage (P = 0.014), and multifocality (P = 0.042). Kaplan-Meier analysis and Cox proportional hazards model were performed to determine the prognostic significance of ESCO1, and the results showed that ESCO1 is a useful prognostic marker for bladder cancer patients. Moreover, we found that ESCO1 knockdown inhibited the growth, migration, and invasion of bladder cancer cells. In conclusion, our findings indicated that ESCO1 may play an important role in human bladder cancer, and ESCO1 might serve as a novel target and prognosis factor for human bladder cancer.
Collapse
|
125
|
Elliott EN, Kaestner KH. Epigenetic regulation of the intestinal epithelium. Cell Mol Life Sci 2015; 72:4139-56. [PMID: 26220502 PMCID: PMC4607638 DOI: 10.1007/s00018-015-1997-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium is an ideal model system for the study of normal and pathological differentiation processes. The mammalian intestinal epithelium is a single cell layer comprising proliferative crypts and differentiated villi. The crypts contain both proliferating and quiescent stem cell populations that self-renew and produce all the differentiated cell types, which are replaced every 3-5 days. The genetics of intestinal development, homeostasis, and disease are well defined, but less is known about the contribution of epigenetics in modulating these processes. Epigenetics refers to heritable phenotypic traits, including gene expression, which are independent of mutations in the DNA sequence. We have known for several decades that human colorectal cancers contain hypomethylated DNA, but the causes and consequences of this phenomenon are not fully understood. In contrast, tumor suppressor gene promoters are often hypermethylated in colorectal cancer, resulting in decreased expression of the associated gene. In this review, we describe the role that epigenetics plays in intestinal homeostasis and disease, with an emphasis on results from mouse models. We highlight the importance of producing and analyzing next-generation sequencing data detailing the epigenome from intestinal stem cell to differentiated intestinal villus cell.
Collapse
Affiliation(s)
- Ellen N Elliott
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, 12-126 Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, 12-126 Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
126
|
Mongan AM, Lynam-Lennon N, Casey R, Maher S, Pidgeon G, Reynolds JV, O'Sullivan J. Visceral obesity stimulates anaphase bridge formation and spindle assembly checkpoint dysregulation in radioresistant oesophageal adenocarcinoma. Clin Transl Oncol 2015; 18:632-40. [PMID: 26474871 DOI: 10.1007/s12094-015-1411-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE Oesophageal adenocarcinoma is an exemplar model of obesity-associated cancer. Locally advanced disease is treated with neoadjuvant chemoradiotherapy, and survival rates are highest in patients demonstrating a pathological response following neoadjuvant therapy. Given that 55 % of oesophageal adenocarcinoma patients are obese, uncovering the effect of adipose tissue on radioresponse is clinically relevant. This study investigates if adipose tissue activates genomic instability events in radioresponsive (OE33P) and radioresistant (OE33R) oesophageal cancer cell lines and tumour samples. METHODS OE33R and OE33P were cultured with adipose-conditioned media derived from oesophageal adenocarcinoma patients (n = 10). Anaphase bridges, a marker of genomic instability, were enumerated in both cell lines following treatment with adipose media, and normalised to cell number. Genomic instability is regulated by the spindle assembly complex. Expression of two spindle assembly complex genes (MAD2L2, BUB1B) was assessed using qPCR, and validated in patient tumour specimens from viscerally obese (n = 46) and nonobese patients (n = 41). RESULTS Adipose-conditioned media increased anaphase bridging in OE33R (p < 0.0001), with a threefold increase in OE33R compared to OE33P (p < 0.01). Levels of anaphase bridges in OE33R cells correlated with visceral obesity status as measured by waist circumference (R = 0.709, p = 0.03) and visceral fat area (R = 0.794, p = 0.006). Adipose tissue altered expression of MAD2L2 in vitro. In vivo, MAD2L2 expression was higher in viscerally obese oesophageal adenocarcinoma patients compared with nonobese patients (p < 0.05). CONCLUSIONS Anaphase bridge levels are influenced by obesity and radiosensitivity status in oesophageal adenocarcinoma. Furthermore, visceral adipose-conditioned media stimulates dysregulation of the spindle assembly complex in oesophageal adenocarcinoma patients.
Collapse
Affiliation(s)
- A M Mongan
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - N Lynam-Lennon
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - R Casey
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - S Maher
- Cancer Biology & Therapeutics Lab, School of Biological, Biomedical & Environmental Sciences, University of Hull, Cottingham road, Hull, HU6 76X, UK
| | - G Pidgeon
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - J V Reynolds
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - J O'Sullivan
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
127
|
Abstract
The evolutionary conserved chromosomal passenger complex (CPC) is essential for faithful transmission of the genome during cell division. Perturbation of this complex in cultured cells gives rise to chromosome segregation errors and cytokinesis failure and as a consequence the ploidy status of the next generation of cells is changed. Aneuploidy and chromosomal instability (CIN) is observed in many human cancers, but whether this may be caused by deregulation of the CPC is unknown. In the present review, we discuss if and how a dysfunctional CPC could contribute to CIN in cancer.
Collapse
|
128
|
Bargiela-Iparraguirre J, Prado-Marchal L, Pajuelo-Lozano N, Jiménez B, Perona R, Sánchez-Pérez I. Mad2 and BubR1 modulates tumourigenesis and paclitaxel response in MKN45 gastric cancer cells. Cell Cycle 2015; 13:3590-601. [PMID: 25483095 DOI: 10.4161/15384101.2014.962952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aneuploidy and chromosomal instability (CIN) are common features of gastric cancer (GC), but their contribution to carcinogenesis and antitumour therapy response is still poorly understood. Failures in the mitotic checkpoint induced by changes in expression levels of the spindle assembly checkpoint (SAC) proteins cause the missegregation of chromosomes in mitosis as well as aneuploidy. To evaluate the possible contribution of SAC to GC, we analyzed the expression levels of proteins of the mitotic checkpoint complex in a cohort of GC cell lines. We found that the central SAC proteins, Mad2 and BubR1, were the more prominently expressed members in disseminated GC cell lines. Silencing of Mad2 and BubR1 in MKN45 and ST2957 cells decreased their cell proliferation, migration and invasion abilities, indicating that Mad2 and BubR1 could contribute to cellular transformation and tumor progression in GC. We next evaluated whether silencing of SAC proteins could affect the response to microtubule poisons. We discovered that paclitaxel treatment increased cell survival in MKN45 cells interfered for Mad2 or BubR1 expression. However, apoptosis (assessed by caspase-3 activation, PARP proteolysis and levels of antiapoptotic Bcl 2-family members), the DNA damage response (assessed by H2Ax phosphorylation) and exit from mitosis (assessed by Cyclin B degradation and Cdk1 regulation) were activated equally between cells, independently of Mad2 or BubR1-protein levels. In contrast, we observed that the silencing of Mad2 or BubR1 in MKN45 cells showed the induction of a senescence-like phenotype accompanied by cell enlargement, increased senescence-associated β-galactosidase activity and increased IL-6 and IL-8 expression. In addition, the senescent phenotype is highly increased after treatment with PTX, indicating that senescence could prevent tumorigenesis in GC. In conclusion, the results presented here suggest that Mad2 and BubR1 could be used as prognostic markers of tumor progression and new pharmacological targets in the treatment for GC.
Collapse
Key Words
- BMC, bleomycin
- BubR1
- BubR1, budding uninhibited by benzimidazoles 1 homolog B protein (gene BUB1B)
- CDDP, cisplatin
- CIN, chromosome instability
- DDR, DNA damage response
- Mad2
- Mad2, mitotic arrest deficient-like-1 protein (gene Mad2L1)
- Monopolar Spindle kinase, MPS1
- PTX, paclitaxel
- SAC, spindle assembly checkpoint
- SASP, senescence associate secretory phenotype
- apoptosis
- gastric cancer
- mitosis
- paclitaxel
- senescence
- γH2AX, phosphorylated H2AX
Collapse
|
129
|
Combined analysis identifies six genes correlated with augmented malignancy from non-small cell to small cell lung cancer. Tumour Biol 2015; 37:2193-207. [PMID: 26349752 DOI: 10.1007/s13277-015-3938-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 12/30/2022] Open
Abstract
With increased malignancy, lung cancer can be classified into adenocarcinoma (ADC), squamous cell carcinoma (SQC), large cell carcinoma (LCC), and the small cell subtype (SCLC); yet, elucidations to this augmented malignancy has not been addressed. In this study, we elucidated the molecular diversity among these subtypes by investigating large-scale sequencing datasets. Among genes upregulated from normal, ADC, SQC, LCC to SCLC, six hub genes were found closely correlated with adverse clinical outcome and were testified on cellular or tissue level with quantitative RT-PCR. Cox regression model was then built to generate a risk signature. The possible linkages among these genes were also explored. Transcript levels of BUB1, E2F1, ESPL1, GTSE1, RAB3B, and U2AF2 were found significantly elevated from normal, ADC, SQC, LCC to SCLC. Overexpression of one or multiple of these genes was correlated with adverse overall survival (OS) and relapse-free survival (RFS) in the whole patient cohort or groups stratified according to clinical variables, while most of all six genes were independent prognostic factors. When used as a six-gene risk signature, patients with high signature score displayed more unfavorable clinical variables and poorer outcome. Tight regulative relationships were found within these genes, while BUB1 and E2F1 were likely to be the drivers. We considered the augmented malignancy from non-small cell lung cancer (NSCLC) to SCLC might be due to the elevation of these six genes. We believe these genes were powerful cancer prognostic markers and potential therapeutic targets in lung cancer; moreover, changes of their level might be correlated with lung cancer phenotype plasticity.
Collapse
|
130
|
Jung YS, Chun HY, Yoon MH, Park BJ. Elevated estrogen receptor-α in VHL-deficient condition induces microtubule organizing center amplification via disruption of BRCA1/Rad51 interaction. Neoplasia 2015; 16:1070-81. [PMID: 25499220 PMCID: PMC4309251 DOI: 10.1016/j.neo.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023] Open
Abstract
Since loss of VHL is frequently detected early phase genetic event in human renal cell carcinoma, pVHL is assumed to be indispensable for suppression of tumor initiation step. However, induction of HIF-1α, target of pVHL E3 ligase, is more adequate to angiogenesis step after tumor mass formation. Concerning this, it has been reported that pVHL is involved in centrosome location during metaphase and regulates ER-α signaling. Here, we provide the evidences that pVHL-mediated ER-α suppression is critical for microtubule organizing center (MTOC) maintaining and elevated ER-α promotes MTOC amplification through disruption of BRCA1-Rad51 interaction. In fact, numerous MTOC in VHL- or BRCA1-deficient cells are reduced by Fulvestrant, inhibitor of ER-α expression as well as antagonist. In addition, we reveal that activation of ER signaling can increase γ-tubulin, core factor of TuRC and render the resistance to Taxol. Thus, Fulvestrant but not Tamoxifen, antagonist against ER-α, can restore the Taxol sensitivity in VHL- or BRCA1-deficient cells. Our results suggest that pVHL-mediated ER-α suppression is important for regulation of MTOC as well as drug resistance.
Collapse
Affiliation(s)
- Youn-Sang Jung
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Ho-Young Chun
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
131
|
Zhong R, Chen X, Chen X, Zhu B, Lou J, Li J, Shen N, Yang Y, Gong Y, Zhu Y, Yuan J, Xia X, Miao X. MAD1L1 Arg558His and MAD2L1 Leu84Met interaction with smoking increase the risk of colorectal cancer. Sci Rep 2015; 5:12202. [PMID: 26183163 PMCID: PMC4505328 DOI: 10.1038/srep12202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022] Open
Abstract
The spindle assembly checkpoint (SAC) has been established as an important mechanism of driving aneuploidy, which occurs at a high frequency in the colorectal tumorigenesis. Two important components of SAC are MAD1L1 and MAD2L1, which function together in an interactive manner to initiate the checkpoint signal. We hypothesize that genetic variants in the binding domains of MAD1L1 and MAD2L1 may modulate protein structures and eventually contribute to CRC susceptibility. A case-control study including 710 CRC cases and 735 controls was performed to examine MAD1L1 Arg558His and MAD2L1 Leu84Met’s conferring susceptibility to CRC. Cytokinesis-block micronucleus cytome assays were applied to assess the effect of two functional variants on chromosomal instability (CIN). Significant associations with CRC risk were observed for MAD1L1 Arg558His (OR = 1.38,95% CI: 1.09–1.75) and MAD2L1 Leu84Met in a dominant model (OR = 1.48,95% CI: 1.09–2.01). Moreover, significant multiplicative gene-smoking interactions were found in MAD1L1 Arg558His (P = 0.019) and MAD2L184 Leu/Met (P = 0.016) to enhance CRC risk. Additionally, the frequencies of lymphocytic micro-nucleated binucleated cells for MAD1L1 Arg558His polymorphism were significantly different in the exposed group (P = 0.013), but not in the control group. The study emphasized that MAD1L1 Arg558His and MAD2L1 Leu84Met can significantly interact with smoking to enhance CRC risk, and the genetic effects of MAD1L1Arg558His on CIN need to be further clarified in follow-up studies.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaohua Chen
- 1] Department of Laboratory Medicine, No 161 Hospital of PLA, Wuhan 430010, China [2] Department of Medical Genetics, school of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Xueqin Chen
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Beibei Zhu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Na Shen
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaoping Xia
- Clinical Laboratory of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
132
|
Liu Q, Dai SJ, Li H, Dong L, Peng YP. Silencing of NUF2 inhibits tumor growth and induces apoptosis in human hepatocellular carcinomas. Asian Pac J Cancer Prev 2015; 15:8623-9. [PMID: 25374179 DOI: 10.7314/apjcp.2014.15.20.8623] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As an important component of the NDC80 kinetochore complex, NUF2 is essential for kinetochore-microtubule attachment and chromosome segregation. Previous studies also suggested its involvement in development of various kinds of human cancers, however, its expression and functions in human hepatocellular carcinoma (HCC) are still unclear. MATERIALS AND METHODS In the present study, we aimed to test the hypothesis that NUF2 is aberrant in human HCCs and associated with cell growth. RESULTS Our results showed significantly elevated expression of NUF2 in human HCC tissues compared to adjacent normal tissues, and high expression of NUF2 in HCC cell lines. Using lentivirus-mediated silencing of NUF2 in HepG2 human HCC cells, we found that NUF2 depletion markedly suppressed proliferation and colony formation capacity in vitro, and dramatically hampered tumor growth of xenografts in vivo. Moreover, NUF2 silencing could induce cell cycle arrest and trigger cell apoptosis. Additionally, altered levels of cell cycle and apoptosis related proteins including cyclin B1, Cdc25A, Cdc2, Bad and Bax were also observed. CONCLUSIONS In conclusion, these results demonstrate that NUF2 plays a critical role in the regulation of HCC cell proliferation and apoptosis, indicating that NUF2 may serve as a potential molecular target for therapeutic approaches.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Radiology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China E-mail :
| | | | | | | | | |
Collapse
|
133
|
Swanton C, McGranahan N, Starrett GJ, Harris RS. APOBEC Enzymes: Mutagenic Fuel for Cancer Evolution and Heterogeneity. Cancer Discov 2015; 5:704-12. [PMID: 26091828 PMCID: PMC4497973 DOI: 10.1158/2159-8290.cd-15-0344] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Deep sequencing technologies are revealing the complexities of cancer evolution, casting light on mutational processes fueling tumor adaptation, immune escape, and treatment resistance. Understanding mechanisms driving cancer diversity is a critical step toward developing strategies to attenuate tumor evolution and adaptation. One emerging mechanism fueling tumor diversity and subclonal evolution is genomic DNA cytosine deamination catalyzed by APOBEC3B and at least one other APOBEC family member. Deregulation of APOBEC3 enzymes causes a general mutator phenotype that manifests as diverse and heterogeneous tumor subclones. Here, we summarize knowledge of the APOBEC DNA deaminase family in cancer, and their role as driving forces for intratumor heterogeneity and a therapeutic target to limit tumor adaptation. SIGNIFICANCE APOBEC mutational signatures may be enriched in tumor subclones, suggesting APOBEC cytosine deaminases fuel subclonal expansions and intratumor heterogeneity. APOBEC family members might represent a new class of drug target aimed at limiting tumor evolution, adaptation, and drug resistance.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, United Kingdom. UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, United Kingdom.
| | - Nicholas McGranahan
- The Francis Crick Institute, London, United Kingdom. Centre for Mathematics & Physics in the Life Sciences & Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
134
|
Klinke OK, Mizani T, Baldwin G, Bancel B, Devouassoux-Shisheboran M, Scoazec JY, Bringuier PP, Feederle R, Jauch A, Hinderhofer K, Taniere P, Delecluse HJ. KIT Mutation and Loss of 14q May Be Sufficient for the Development of Clinically Symptomatic Very Low-Risk GIST. PLoS One 2015; 10:e0130149. [PMID: 26102504 PMCID: PMC4477893 DOI: 10.1371/journal.pone.0130149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/18/2015] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to determine the minimal set of genetic alterations required for the development of a very low risk clinically symptomatic gastro-intestinal stromal tumour within the stomach wall. We studied the genome of a very low-risk gastric gastro-intestinal stromal tumour by whole-genome sequencing, comparative genomic hybridisation and methylation profiling. The studied tumour harboured two typical genomic lesions: loss of the long arm of chromosome 14 and an activating mutation in exon 11 of KIT. Besides these genetic lesions, only two point mutations that may affect tumour progression were identified: A frame-shift deletion in RNF146 and a missense mutation in a zinc finger of ZNF407. Whilst the frameshift deletion in RNF146 seemed to be restricted to this particular tumour, a similar yet germline mutation in ZNF407 was found in a panel of 52 gastro-intestinal stromal tumours from different anatomical sites and different categories. Germline polymorphisms in the mitotic checkpoint proteins Aurora kinase A and BUB1 kinase B may have furthered tumour growth. The epigenetic profile of the tumour matches that of other KIT-mutant tumours. We have identified mutations in three genes and loss of the long arm of chromosome 14 as the so far minimal set of genetic abnormalities sufficient for the development of a very low risk clinically symptomatic gastric stromal tumour.
Collapse
Affiliation(s)
- Olaf Karl Klinke
- German Cancer Research Centre (DKFZ) Unit F100, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| | - Tuba Mizani
- German Cancer Research Centre (DKFZ) Unit F100, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| | - Gouri Baldwin
- Histopathology Cellular Pathology–University Hospitals Birmingham, NHS Foundation, Trust Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston Birmingham, B15 2WB, England
| | - Brigitte Bancel
- Service d’Anatomie et Cytologie pathologiques, Hôpital de la Croix Rousse, 103 Grande-Rue-de-la-Croix-Rousse, Lyon cedex 04, France
| | - Mojgan Devouassoux-Shisheboran
- Service d’Anatomie et Cytologie pathologiques, Hôpital de la Croix Rousse, 103 Grande-Rue-de-la-Croix-Rousse, Lyon cedex 04, France
| | - Jean-Yves Scoazec
- Service d’Anatomie Pathologique, Hôpital Édouard-Herriot, 5, place d’Arsonval, 69437 Lyon cedex 03, France
| | - Pierre-Paul Bringuier
- Service d’Anatomie Pathologique, Hôpital Édouard-Herriot, 5, place d’Arsonval, 69437 Lyon cedex 03, France
| | - Regina Feederle
- German Cancer Research Centre (DKFZ) Unit F100, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University Heidelberg, Heidelberg, Germany
| | | | - Philippe Taniere
- Histopathology Cellular Pathology–University Hospitals Birmingham, NHS Foundation, Trust Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston Birmingham, B15 2WB, England
| | - Henri-Jacques Delecluse
- German Cancer Research Centre (DKFZ) Unit F100, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
135
|
Kapanidou M, Lee S, Bolanos-Garcia VM. BubR1 kinase: protection against aneuploidy and premature aging. Trends Mol Med 2015; 21:364-72. [DOI: 10.1016/j.molmed.2015.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
|
136
|
Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity. Mol Aspects Med 2015; 45:3-13. [PMID: 26024970 DOI: 10.1016/j.mam.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor's perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor's inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor's proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies.
Collapse
|
137
|
How C, Bruce J, So J, Pintilie M, Haibe-Kains B, Hui A, Clarke BA, Hedley DW, Hill RP, Milosevic M, Fyles A, Liu FF. Chromosomal instability as a prognostic marker in cervical cancer. BMC Cancer 2015; 15:361. [PMID: 25944123 PMCID: PMC4433070 DOI: 10.1186/s12885-015-1372-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023] Open
Abstract
Background Cervical cancer is the third most common cancer in women globally, and despite treatment, distant metastasis and nodal recurrence will still develop in approximately 30% of patients. The ability to predict which patients are likely to experience distant relapse would allow clinicians to better tailor treatment. Previous studies have investigated the role of chromosomal instability (CIN) in cancer, which can promote tumour initiation and growth; a hallmark of human malignancies. In this study, we sought to examine the published CIN70 gene signature in a cohort of cervical cancer patients treated at the Princess Margaret (PM) Cancer Centre and an independent cohort of The Cancer Genome Atlas (TCGA) cervical cancer patients, to determine if this CIN signature associated with patient outcome. Methods Cervical cancer samples were collected from 79 patients, treated between 2000–2007 at the PM, prior to undergoing curative chemo-radiation. Total RNA was extracted from each patient sample and analyzed using the GeneChip Human Genome U133 Plus 2.0 array (Affymetrix). Results High CIN70 scores were significantly related to increased chromosomal alterations in TCGA cervical cancer patients, including a higher percentage of genome altered and a higher number of copy number alterations. In addition, this same CIN70 signature was shown to be predictive of para-aortic nodal relapse in the PM Cancer Centre cohort. Conclusions These findings demonstrate that chromosomal instability plays an important role in cervical cancer, and is significantly associated with patient outcome. For the first time, this CIN70 gene signature provided prognostic value for patients with cervical cancer.
Collapse
Affiliation(s)
- Christine How
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Jeff Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Jonathan So
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| | - Melania Pintilie
- Division of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Medical Biophysics Department, University of Toronto, Toronto, ON, Canada.
| | - Angela Hui
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Blaise A Clarke
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| | - David W Hedley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| | - Richard P Hill
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Michael Milosevic
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| | - Anthony Fyles
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
138
|
Abstract
The majority of human cancer cells are highly aneuploid harboring chromosome numbers deviating from the modal number of 46. In cancer, aneuploidy is a consequence of an increased rate of whole chromosome missegregation during mitosis, a process known as chromosomal instability (CIN). In fact, CIN is a hallmark of human cancer and is thought to contribute to tumorigenesis, tumor progression, and the development of therapy resistance by providing a high genetic variability that might foster rapid adaptation processes. However, the molecular mechanisms that cause chromosome missegregation in cancer cells are still poorly understood. So far, several mechanisms underlying CIN have been proposed and some of them are indeed detectable in human cancer cells exhibiting CIN. Examples include, for instance, weakened spindle checkpoint signaling, supernumerary centrosomes, defects in chromatid cohesion, abnormal kinetochore-microtubule attachments and increased spindle microtubule dynamics. Here, the mechanisms leading to CIN in human cancer cells are summarized.
Collapse
Affiliation(s)
- Holger Bastians
- Goettingen Center for Molecular Biosciences (GZMB), University Medical Center, Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany.
| |
Collapse
|
139
|
Zhao F, Siu MKY, Jiang L, Tam KF, Ngan HYS, Le XF, Wong OGW, Wong ESY, Gomes AR, Bella L, Khongkow P, Lam EWF, Cheung ANY. Overexpression of forkhead box protein M1 (FOXM1) in ovarian cancer correlates with poor patient survival and contributes to paclitaxel resistance. PLoS One 2014; 9:e113478. [PMID: 25411964 PMCID: PMC4239070 DOI: 10.1371/journal.pone.0113478] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 10/28/2014] [Indexed: 02/05/2023] Open
Abstract
Aim Deregulation of FOXM1 has been documented in various cancers. The aim of this study was to evaluate the role of FOXM1 in ovarian cancer tumorigenesis and paclitaxel resistance. Experimental Design Expression of FOXM1 was examined in 119 clinical samples by immunohistochemistry and correlated with clinicopathological parameters. Effects of FOXM1 knockdown on ovarian cancer cell migration, invasion and mitotic catastrophe were also studied. qPCR and ChIP-qPCR were used to establish KIF2C as a novel FOXM1 target gene implicated in chemoresistance. Results High nuclear FOXM1 expression in ovarian cancer patient samples was significantly associated with advanced stages (P = 0.035), shorter overall (P = 0.019) and disease-free (P = 0.014) survival. Multivariate analysis confirmed FOXM1 expression as an independent prognostic factor for ovarian cancer. FOXM1 knockdown significantly inhibited migration and invasion of ovarian cancer cells and enhanced paclitaxel-mediated cell death and mitotic catastrophe in a p53-independent manner. Bioinformatics analysis suggested a number of potential transcription targets of FOXM1. One of the potential targets, KIF2C, exhibited similar expression pattern to FOXM1 in chemosensitive and chemoresistant cells in response to paclitaxel treatment. FOXM1 could be detected at the promoter of KIF2C and FOXM1 silencing significantly down-regulated KIF2C. Conclusion Our findings suggest that FOXM1 is associated with poor patient outcome and contributes to paclitaxel resistance by blocking mitotic catastrophe. KIF2C is identified as a novel FOXM1 transcriptional target that may be implicated in the acquisition of chemoresistance. FOXM1 should be further investigated as a potential prognostic marker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Fung Zhao
- Department of Pathology, The University of Hong Kong, HKSAR, China; Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Michelle K Y Siu
- Obstetrics and Gynaecology, The University of Hong Kong, HKSAR, China
| | - LiLi Jiang
- Department of Pathology, West China Hospital, Sichuang University, Chengdu, China
| | - Kar Fai Tam
- Department of Pathology, The University of Hong Kong, HKSAR, China
| | - Hextan Y S Ngan
- Obstetrics and Gynaecology, The University of Hong Kong, HKSAR, China
| | - Xiao Feng Le
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Texas, United States of America
| | - Oscar G W Wong
- Department of Pathology, The University of Hong Kong, HKSAR, China
| | - Esther S Y Wong
- Department of Pathology, The University of Hong Kong, HKSAR, China
| | - Ana R Gomes
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Laura Bella
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Pasarat Khongkow
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, HKSAR, China; Department of Pathology, The University of Hong Kong -Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
140
|
Abstract
Genomic instability is a hallmark of cancer that leads to an increase in genetic alterations, thus enabling the acquisition of additional capabilities required for tumorigenesis and progression. Substantial heterogeneity in the amount and type of instability (nucleotide, microsatellite, or chromosomal) exists both within and between cancer types, with epithelial tumors typically displaying a greater degree of instability than hematological cancers. While high-throughput sequencing studies offer a comprehensive record of the genetic alterations within a tumor, detecting the rate of instability or cell-to-cell viability using this and most other available methods remains a challenge. Here, we discuss the different levels of genomic instability occurring in human cancers and touch on the current methods and limitations of detecting instability. We have applied one such approach to the surveying of public tumor data to provide a cursory view of genome instability across numerous tumor types.
Collapse
Affiliation(s)
- Larissa Pikor
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, Canada, V5Z 1L3,
| | | | | | | |
Collapse
|
141
|
Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model. Oncogene 2014; 34:4368-78. [PMID: 25362854 PMCID: PMC4417661 DOI: 10.1038/onc.2014.367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 09/01/2014] [Accepted: 09/27/2014] [Indexed: 12/12/2022]
Abstract
MCPH1, also known as BRIT1, has recently been identified as a novel key regulatory gene of the DNA damage response pathway. MCPH1 is located on human chromosome 8p23.1, where human cancers frequently show loss of heterozygosity. As such, MCPH1 is aberrantly expressed in many malignancies, including breast and ovarian cancers, and the function of MCPH1 has been implicated in tumor suppression. However, it remains poorly understood whether MCPH1 deficiency leads to tumorigenesis. Here we generated and studied both Mcph1(-/-) and Mcph1(-/-)p53(-/-) mice; we showed that Mcph1(-/-) mice developed tumors with long latency, and that primary lymphoma developed significantly earlier in Mcph1(-/-)p53(-/-) mice than in Mcph11(+/+)p53(-/-) and Mcph1(+/-)p53(-/-) mice. The Mcph1(-/-)p53(-/-) lymphomas and derived murine embryonic fibroblasts (MEFs) were both more sensitive to irradiation. Mcph1 deficiency resulted in remarkably increased chromosome and chromatid breaks in Mcph1(-/-)p53(-/-) lymphomas and MEFs, as determined by metaphase spread assay and spectral karyotyping analysis. In addition, Mcph1 deficiency significantly enhanced aneuploidy as well as abnormal centrosome multiplication in Mcph1(-/-)p53(-/-) cells. Meanwhile, Mcph1 deficiency impaired double strand break (DSB) repair in Mcph1(-/-)p53(-/-) MEFs as demonstrated by neutral Comet assay. Compared with Mcph1(+/+)p53(-/-) MEFs, homologous recombination and non-homologous end-joining activities were significantly decreased in Mcph1(-/-)p53(-/-) MEFs. Notably, reconstituted MCPH1 rescued the defects of DSB repair and alleviated chromosomal aberrations in Mcph1(-/-)p53(-/-) MEFs. Taken together, our data demonstrate MCPH1 deficiency promotes genomic instability and increases cancer susceptibility. Our study using knockout mouse models provides convincing genetic evidence that MCPH1 is a bona fide tumor suppressor gene. Its deficiency leading to defective DNA repair in tumors can be used to develop novel targeted cancer therapies in the future.
Collapse
|
142
|
Roylance R, Endesfelder D, Jamal-Hanjani M, Burrell RA, Gorman P, Sander J, Murphy N, Birkbak NJ, Hanby AM, Speirs V, Johnston SRD, Kschischo M, Swanton C. Expression of regulators of mitotic fidelity are associated with intercellular heterogeneity and chromosomal instability in primary breast cancer. Breast Cancer Res Treat 2014; 148:221-9. [PMID: 25288231 DOI: 10.1007/s10549-014-3153-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023]
Abstract
Regulators of transition through mitosis such as SURVIVIN and Aurora kinase A (AURKA) have been previously implicated in the initiation of chromosomal instability (CIN), a driver of intratumour heterogeneity. We investigate the relationship between protein expression of these genes and directly quantified CIN, and their prognostic utility in breast cancer. The expression of SURVIVIN and AURKA was determined by immunohistochemistry in a cohort of 426 patients with primary breast cancer. The association between protein expression and histopathological characteristics, clinical outcome and CIN status, as determined by centromeric FISH and defined by modal centromere deviation, was analysed. Significantly poorer clinical outcome was observed in patients with high AURKA expression levels. Expression of SURVIVIN was elevated in ER-negative relative to ER-positive breast cancer. Both AURKA and SURVIVIN increased expression were significantly associated with breast cancer grade. There was a significant association between increased CIN and both increased AURKA and SURVIVIN expression. AURKA gene amplification was also associated with increased CIN. To our knowledge this is the largest study assessing CIN status in parallel with the expression of the mitotic regulators AURKA and SURVIVIN. These data suggest that elevated expression of AURKA and SURVIVIN, together with AURKA gene amplification, are associated with increased CIN in breast cancer, and may be used as a proxy for CIN in breast cancer samples in the absence of more advanced molecular measurements.
Collapse
Affiliation(s)
- Rebecca Roylance
- Cancer Research UK, London Research Institute, London, WC2A 3LY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Kazami T, Nie H, Satoh M, Kuga T, Matsushita K, Kawasaki N, Tomonaga T, Nomura F. Nuclear accumulation of annexin A2 contributes to chromosomal instability by coilin-mediated centromere damage. Oncogene 2014; 34:4177-89. [PMID: 25347736 DOI: 10.1038/onc.2014.345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022]
Abstract
Most human cancers show chromosomal instability (CIN), but the precise mechanisms remain uncertain. Annexin A2 is frequently overexpressed in human cancers, and its relationship to tumorigenesis is poorly understood. We found that annexin A2 is overexpressed in the nuclei of CIN cells compared with cells with microsatellite instability (MIN). Ectopic annexin A2 expression in MIN cells results in a high level of aneuploidy and induces lagging chromosomes; suppression of annexin A2 in CIN cells reduces such CIN signatures with apoptosis of highly aneuploid cells. Ectopic expression of annexin A2 in MIN cells reduces the expression of centromere proteins. Conversely, annexin A2-knockdown in CIN cells increases the expression of centromere proteins. Moreover, the endogenous expression levels of centromere proteins in CIN cells were greatly reduced compared with MIN cell lines. The reduced expression of centromere proteins likely occurred due to aberrant centromere localization of coilin, a major component of the Cajal bodies. These results suggest that nuclear accumulation of annexin A2 has a crucial role in CIN by disrupting centromere function.
Collapse
Affiliation(s)
- T Kazami
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - H Nie
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - M Satoh
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - T Kuga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki City, Osaka, Japan
| | - K Matsushita
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - N Kawasaki
- 1] Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan [2] Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki City, Osaka, Japan
| | - T Tomonaga
- 1] Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan [2] Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki City, Osaka, Japan
| | - F Nomura
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
144
|
Varetti G, Pellman D, Gordon DJ. Aurea mediocritas: the importance of a balanced genome. Cold Spring Harb Perspect Biol 2014; 6:a015842. [PMID: 25237130 DOI: 10.1101/cshperspect.a015842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aneuploidy, defined as an abnormal number of chromosomes, is a hallmark of cancer. Paradoxically, aneuploidy generally has a negative impact on cell growth and fitness in nontransformed cells. In this work, we review recent progress in identifying how aneuploidy leads to genomic and chromosomal instability, how cells can adapt to the deleterious effects of aneuploidy, and how aneuploidy contributes to tumorigenesis in different genetic contexts. Finally, we also discuss how aneuploidy might be a target for anticancer therapies.
Collapse
Affiliation(s)
- Gianluca Varetti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789
| | - David J Gordon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| |
Collapse
|
145
|
Bakhoum SF, Silkworth WT, Nardi IK, Nicholson JM, Compton DA, Cimini D. The mitotic origin of chromosomal instability. Curr Biol 2014; 24:R148-9. [PMID: 24556433 DOI: 10.1016/j.cub.2014.01.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Samuel F Bakhoum
- Department of Biochemistry and the Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Internal Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA
| | - William T Silkworth
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Chemistry and Biochemistry, UCLA, CA 90095, USA
| | - Isaac K Nardi
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908, USA
| | - Joshua M Nicholson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Duane A Compton
- Department of Biochemistry and the Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Daniela Cimini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
146
|
Herman JA, Toledo CM, Olson JM, DeLuca JG, Paddison PJ. Molecular pathways: regulation and targeting of kinetochore-microtubule attachment in cancer. Clin Cancer Res 2014; 21:233-9. [PMID: 25104085 DOI: 10.1158/1078-0432.ccr-13-0645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Kinetochores are large protein structures assembled on centromeric DNA during mitosis that bind to microtubules of the mitotic spindle to orchestrate and power chromosome movements. Deregulation of kinetochore-microtubule (KT-MT) attachments has been implicated in driving chromosome instability and cancer evolution; however, the nature and source of KT-MT attachment defects in cancer cells remain largely unknown. Here, we highlight recent findings suggesting that oncogene-driven changes in kinetochore regulation occur in glioblastoma multiforme (GBM) and possibly other cancers exhibiting chromosome instability, giving rise to novel therapeutic opportunities. In particular, we consider the GLE2p-binding sequence domains of BubR1 and the newly discovered BuGZ, two kinetochore-associated proteins, as candidate therapeutic targets for GBM.
Collapse
Affiliation(s)
- Jacob A Herman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Chad M Toledo
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Molecular and Cellular Biology Program, University of Washington, Seattle, Washington
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Molecular and Cellular Biology Program, University of Washington, Seattle, Washington.
| |
Collapse
|
147
|
Bakhoum SF, Swanton C. Chromosomal instability, aneuploidy, and cancer. Front Oncol 2014; 4:161. [PMID: 24995162 PMCID: PMC4062911 DOI: 10.3389/fonc.2014.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Affiliation(s)
- Samuel F. Bakhoum
- Department of Internal Medicine, Mount Auburn Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Charles Swanton
- Cancer Research UK London Research Institute, London, UK
- University College London Cancer Institute, London, UK
| |
Collapse
|
148
|
Expression and function analysis of mitotic checkpoint genes identifies TTK as a potential therapeutic target for human hepatocellular carcinoma. PLoS One 2014; 9:e97739. [PMID: 24905462 PMCID: PMC4048189 DOI: 10.1371/journal.pone.0097739] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
The mitotic spindle checkpoint (SAC) genes have been considered targets of anticancer therapies. Here, we sought to identify the attractive mitotic spindle checkpoint genes appropriate for human hepatocellular carcinoma (HCC) therapies. Through expression profile analysis of 137 selected mitotic spindle checkpoint genes in the publicly available microarray datasets, we showed that 13 genes were dramatically up-regulated in HCC tissues compared to normal livers and adjacent non-tumor tissues. A role of the 13 genes in proliferation was evaluated by knocking them down via small interfering RNA (siRNA) in HCC cells. As a result, several mitotic spindle checkpoint genes were required for maintaining the proliferation of HCC cells, demonstrated by cell viability assay and soft agar colony formation assay. Then we established sorafenib-resistant sublines of HCC cell lines Huh7 and HepG2. Intriguingly, increased TTK expression was significantly associated with acquired sorafenib-resistance in Huh7, HepG2 cells. More importantly, TTK was observably up-regulated in 46 (86.8%) of 53 HCC specimens. A series of in vitro and in vivo functional experiment assays showed that TTK overexpression promoted cell proliferation, anchor-dependent colony formation and resistance to sorafenib of HCC cells; TTK knockdown restrained cell growth, soft agar colony formation and resistance to sorafenib of HCC cells. Collectively, TTK plays an important role in proliferation and sorafenib resistance and could act as a potential therapeutic target for human hepatocellular carcinoma.
Collapse
|
149
|
Zhang J, Kong LM, Zhan R, Ye ZN, Pu JX, Sun HD, Li Y. Two Natural ent-kauranoids as Novel Wnt Signaling Inhibitors. NATURAL PRODUCTS AND BIOPROSPECTING 2014; 4:135-140. [PMID: 24955294 PMCID: PMC4050307 DOI: 10.1007/s13659-014-0016-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Constitutively active Wnt signaling frequently occurs in most colon cancers. Therefore, inhibitors of Wnt signaling pathway could provide rational therapeutic effects for colorectal malignancy. Within this paper, we identified two inhibitors of Wnt signaling pathway, rabdoternin B and maoecrystal I from a natural ent-kauranoid library by a dual-luciferase reporter gene assay. The two compounds inhibited Wnt signaling pathway in a concentration-dependent manner and exhibited selective cytotoxicity toward a number of colon carcinoma cell lines SW480, HCT116, and HT29, with only weak cytotoxicity towards the normal colonic epithelial cell line CCD-841-CoN. Rabdoternin B and maoecrystal I treatment induced G2/M phase arrest efficiently in SW480 cells as revealed by flow cytometry analysis. A further study found that maoecrystal I decreased the expression of Wnt signaling target genes, including c-myc, cyclin D1, survivin and Axin2 in colon cancer cells. Collectively our data suggests that rabdoternin B and maoecrystal I are novel inhibitors of canonical Wnt signaling pathway and may possess potentials for colon cancer therapy.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Phytochemistry and Plant resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- University of Chinese Academy of Science, Beijing, 100049 China
| | - Ling-Mei Kong
- State Key Laboratory of Phytochemistry and Plant resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- University of Chinese Academy of Science, Beijing, 100049 China
| | - Rui Zhan
- State Key Laboratory of Phytochemistry and Plant resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Zhen-Nan Ye
- State Key Laboratory of Phytochemistry and Plant resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- University of Chinese Academy of Science, Beijing, 100049 China
| | - Jian-Xin Pu
- State Key Laboratory of Phytochemistry and Plant resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| |
Collapse
|
150
|
Wood LM, Paterson Y. Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect Microbiol 2014; 4:51. [PMID: 24860789 PMCID: PMC4026700 DOI: 10.3389/fcimb.2014.00051] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/04/2014] [Indexed: 12/17/2022] Open
Abstract
For over a century, inactivated or attenuated bacteria have been employed in the clinic as immunotherapies to treat cancer, starting with the Coley's vaccines in the 19th century and leading to the currently approved bacillus Calmette-Guérin vaccine for bladder cancer. While effective, the inflammation induced by these therapies is transient and not designed to induce long-lasting tumor-specific cytolytic T lymphocyte (CTL) responses that have proven so adept at eradicating tumors. Therefore, in order to maintain the benefits of bacteria-induced acute inflammation but gain long-lasting anti-tumor immunity, many groups have constructed recombinant bacteria expressing tumor-associated antigens (TAAs) for the purpose of activating tumor-specific CTLs. One bacterium has proven particularly adept at inducing powerful anti-tumor immunity, Listeria monocytogenes (Lm). Lm is a gram-positive bacterium that selectively infects antigen-presenting cells wherein it is able to efficiently deliver tumor antigens to both the MHC Class I and II antigen presentation pathways for activation of tumor-targeting CTL-mediated immunity. Lm is a versatile bacterial vector as evidenced by its ability to induce therapeutic immunity against a wide-array of TAAs and specifically infect and kill tumor cells directly. It is for these reasons, among others, that Lm-based immunotherapies have delivered impressive therapeutic efficacy in preclinical models of cancer for two decades and are now showing promise clinically. In this review, we will provide an overview of the history leading up to the development of current Lm-based immunotherapies, the advantages and mechanisms of Lm as a therapeutic vaccine vector, the preclinical experience with Lm-based immunotherapies targeting a number of malignancies, and the recent findings from clinical trials along with concluding remarks on the future of Lm-based tumor immunotherapies.
Collapse
Affiliation(s)
- Laurence M Wood
- Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center Abilene, TX, USA
| | - Yvonne Paterson
- Microbiology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA ; University of Pennsylvania School of Nursing Philadelphia, PA, USA
| |
Collapse
|