101
|
Che A, Truong DT, Fitch RH, LoTurco JJ. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex. Cereb Cortex 2015; 26:3705-3718. [PMID: 26250775 DOI: 10.1093/cercor/bhv168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.
Collapse
Affiliation(s)
- Alicia Che
- Department of Physiology and Neurobiology.,Current address: Weill Cornell Medical College, Brain & Mind Research Institute, New York, NY 10021, USA
| | - Dongnhu T Truong
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.,Current address: Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | - R Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
102
|
Enhanced Firing in NTS Induced by Short-Term Sustained Hypoxia Is Modulated by Glia-Neuron Interaction. J Neurosci 2015; 35:6903-17. [PMID: 25926465 DOI: 10.1523/jneurosci.4598-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Humans ascending to high altitudes are submitted to sustained hypoxia (SH), activating peripheral chemoreflex with several autonomic and respiratory responses. Here we analyzed the effect of short-term SH (24 h, FIO210%) on the processing of cardiovascular and respiratory reflexes using an in situ preparation of rats. SH increased both the sympatho-inhibitory and bradycardiac components of baroreflex and the sympathetic and respiratory responses of peripheral chemoreflex. Electrophysiological properties and synaptic transmission in the nucleus tractus solitarius (NTS) neurons, the first synaptic station of afferents of baroreflexes and chemoreflexes, were evaluated using brainstem slices and whole-cell patch-clamp. The second-order NTS neurons were identified by previous application of fluorescent tracer onto carotid body for chemoreceptor afferents or onto aortic depressor nerve for baroreceptor afferents. SH increased the intrinsic excitability of NTS neurons. Delayed excitation, caused by A-type potassium current (IKA), was observed in most of NTS neurons from control rats. The IKA amplitude was higher in identified second-order NTS neurons from control than in SH rats. SH also blunted the astrocytic inhibition of IKA in NTS neurons and increased the synaptic transmission in response to afferent fibers stimulation. The frequency of spontaneous excitatory currents was also increased in neurons from SH rats, indicating that SH increased the neurotransmission by presynaptic mechanisms. Therefore, short-term SH changed the glia-neuron interaction, increasing the excitability and excitatory transmission of NTS neurons, which may contribute to the observed increase in the reflex sensitivity of baroreflex and chemoreflex in in situ preparation.
Collapse
|
103
|
The LGI1-ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function. Proc Natl Acad Sci U S A 2015; 112:E4129-37. [PMID: 26178195 DOI: 10.1073/pnas.1511910112] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synapse development is coordinated by a number of transmembrane and secreted proteins that come together to form synaptic organizing complexes. Whereas a variety of synaptogenic proteins have been characterized, much less is understood about the molecular networks that support the maintenance and functional maturation of nascent synapses. Here, we demonstrate that leucine-rich, glioma-inactivated protein 1 (LGI1), a secreted protein previously shown to modulate synaptic AMPA receptors, is a paracrine signal released from pre- and postsynaptic neurons that acts specifically through a disintegrin and metalloproteinase protein 22 (ADAM22) to set postsynaptic strength. We go on to describe a novel role for ADAM22 in maintaining excitatory synapses through PSD-95/Dlg1/zo-1 (PDZ) domain interactions. Finally, we show that in the absence of LGI1, the mature synapse scaffolding protein PSD-95, but not the immature synapse scaffolding protein SAP102, is unable to modulate synaptic transmission. These results indicate that LGI1 and ADAM22 form an essential synaptic organizing complex that coordinates the maturation of excitatory synapses by regulating the functional incorporation of PSD-95.
Collapse
|
104
|
Edelmann E, Cepeda-Prado E, Franck M, Lichtenecker P, Brigadski T, Leßmann V. Theta Burst Firing Recruits BDNF Release and Signaling in Postsynaptic CA1 Neurons in Spike-Timing-Dependent LTP. Neuron 2015; 86:1041-1054. [DOI: 10.1016/j.neuron.2015.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/25/2015] [Accepted: 03/31/2015] [Indexed: 01/28/2023]
|
105
|
George J, Soares C, Montersino A, Beique JC, Thomas GM. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity. eLife 2015; 4:e06327. [PMID: 25884247 PMCID: PMC4429338 DOI: 10.7554/elife.06327] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/16/2015] [Indexed: 12/04/2022] Open
Abstract
Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions. DOI:http://dx.doi.org/10.7554/eLife.06327.001 Neurons transmit information from one cell to the next by passing signals across junctions called synapses. For the neurons that receive these signals, these junctions are found on fine branch-like structures called dendrites that stick out of the cell. Dendrites themselves are decorated with smaller structures called dendritic spines, which typically receive information from one other neuron via a single synapse. Dendritic spines form in response to the signaling activity of the neuron, and problems with forming these spines have been linked to conditions such as autism and schizophrenia. Dendritic spines are created by the cell's cytoskeleton—a network of proteins that creates a constantly changing internal scaffold that shapes cells. One cytoskeleton protein called actin exists as thin filaments that can be extended or broken up by other proteins. It is not fully understood how actin is regulated in the dendritic spines. However, some researchers thought that the proteins that control the formation of the actin filaments would need to be localized to the dendritic spines to ensure that the spines form correctly. Some proteins can be made to localize to cell membranes by attaching a molecule called palmitic acid to them. Previous research has suggested that this ‘palmitoylation’ process is particularly important in neurons. Through a combination of experimental techniques, George et al. now show that palmitoylation is required to localize a protein called LIMK1, which regulates the construction of actin filaments, to the tips of dendritic spines. Further experiments showed that blocking the palmitoylation of LIMK1 alters how actin filaments form, makes spines unstable and causes synapses to be lost. George et al. also discovered that palmitoylation is necessary for LIMK1 to be activated by another protein that is found at dendritic spine membranes. This ‘dual-control’ mechanism makes it possible to precisely control where actin filaments form within dendritic spines. In addition to LIMK1, several other enzymes are also modified by palmitoylation. It will therefore be interesting to determine whether this dual control mechanism is broadly used by neurons to precisely regulate the structure and function of individual spines and synapses. DOI:http://dx.doi.org/10.7554/eLife.06327.002
Collapse
Affiliation(s)
- Joju George
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
| | - Cary Soares
- Heart and Stroke Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Audrey Montersino
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
| | - Jean-Claude Beique
- Heart and Stroke Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
| |
Collapse
|
106
|
Parameshwaran K, Irwin MH, Steliou K, Suppiramaniam V, Pinkert CA. Antioxidant-Mediated Reversal of Oxidative Damage in Mouse Modeling of Complex I Inhibition. Drug Dev Res 2015; 76:72-81. [DOI: 10.1002/ddr.21242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 12/17/2022]
Affiliation(s)
| | - Michael H. Irwin
- Department of Pathobiology, College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - Kosta Steliou
- PhenoMatriX, Inc., Boston, MA, and Cancer Research Center; Boston University School of Medicine; Boston MA USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy; Auburn University; Auburn AL USA
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine; Auburn University; Auburn AL USA
- Department of Biological Sciences; University of Alabama; Tuscaloosa AL USA
| |
Collapse
|
107
|
Zhang H, Dong H, Lei S. Neurotensinergic augmentation of glutamate release at the perforant path-granule cell synapse in rat dentate gyrus: Roles of L-Type Ca²⁺ channels, calmodulin and myosin light-chain kinase. Neuropharmacology 2015; 95:252-60. [PMID: 25842242 DOI: 10.1016/j.neuropharm.2015.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/12/2023]
Abstract
Neurotensin (NT) serves as a neuromodulator in the brain where it is involved in modulating a variety of physiological functions including nociception, temperature, blood pressure and cognition, and many neurological diseases such as Alzheimer's disease, schizophrenia and Parkinson's disease. Whereas there is compelling evidence demonstrating that NT facilitates cognitive processes, the underlying cellular and molecular mechanisms have not been fully determined. Because the dentate gyrus expresses high densities of NT and NT receptors, we examined the effects of NT on the synaptic transmission at the synapse formed between the perforant path (PP) and granule cells (GC) in the rats. Our results demonstrate that NT persistently increased the amplitude of the AMPA receptor-mediated EPSCs at the PP-GC synapse. NT-induced increases in AMPA EPSCs were mediated by presynaptic NTS1 receptors. NT reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that NT facilitates presynaptic glutamate release. NT increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. NT-mediated augmentation of glutamate release required the influx of Ca(2+) via L-type Ca(2+) channels and the functions of calmodulin and myosin light chain kinase. Our results provide a cellular and molecular mechanism to explain the roles of NT in the hippocampus.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA; Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
108
|
Lawrence JJ, Haario H, Stone EF. Presynaptic cholinergic neuromodulation alters the temporal dynamics of short-term depression at parvalbumin-positive basket cell synapses from juvenile CA1 mouse hippocampus. J Neurophysiol 2015; 113:2408-19. [PMID: 25632072 DOI: 10.1152/jn.00167.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022] Open
Abstract
Parvalbumin-positive basket cells (PV BCs) of the CA1 hippocampus are active participants in theta (5-12 Hz) and gamma (20-80 Hz) oscillations in vivo. When PV BCs are driven at these frequencies in vitro, inhibitory postsynaptic currents (IPSCs) in synaptically connected CA1 pyramidal cells exhibit paired-pulse depression (PPD) and multiple-pulse depression (MPD). Moreover, PV BCs express presynaptic muscarinic acetylcholine receptors (mAChRs) that may be activated by synaptically released acetylcholine during learning behaviors in vivo. Using acute hippocampal slices from the CA1 hippocampus of juvenile PV-GFP mice, we performed whole cell recordings from synaptically connected PV BC-CA1 pyramidal cell pairs to investigate how bath application of 10 μM muscarine impacts PPD and MPD at CA1 PV BC-pyramidal cell synapses. In accordance with previous studies, PPD and MPD magnitude increased with stimulation frequency. mAChR activation reduced IPSC amplitude and transiently reduced PPD, but MPD was largely maintained. Consistent with a reduction in release probability (pr), MPD and mAChR activation increased both the coefficient of variation of IPSC amplitudes and the fraction of failures. Using variance-mean analysis, we converted MPD trains to pr functions and developed a kinetic model that optimally fit six distinct pr conditions. The model revealed that vesicular depletion caused MPD and that recovery from depression was dependent on calcium. mAChR activation reduced the presynaptic calcium transient fourfold and initial pr twofold, thereby reducing PPD. However, mAChR activation slowed calcium-dependent recovery from depression during sustained repetitive activity, thereby preserving MPD. Thus the activation of presynaptic mAChRs optimally protects PV BCs from vesicular depletion during short bursts of high-frequency activity.
Collapse
Affiliation(s)
- J Josh Lawrence
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana;
| | - Heikki Haario
- Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Emily F Stone
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana; Department of Mathematical Sciences, University of Montana, Missoula, Montana; and
| |
Collapse
|
109
|
Galván EJ, Pérez-Rosello T, Gómez-Lira G, Lara E, Gutiérrez R, Barrionuevo G. Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons. Neuroscience 2015; 290:332-45. [PMID: 25637803 DOI: 10.1016/j.neuroscience.2015.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/28/2022]
Abstract
Inhibitory interneurons with somata in strata radiatum and lacunosum-molecular (SR/L-M) of hippocampal area CA3 receive excitatory input from pyramidal cells via the recurrent collaterals (RCs), and the dentate gyrus granule cells via the mossy fibers (MFs). Here we demonstrate that Hebbian long-term potentiation (LTP) at RC synapses on SR/L-M interneurons requires the concomitant activation of calcium-impermeable AMPARs (CI-AMPARs) and N-methyl-d-aspartate receptors (NMDARs). RC LTP was prevented by voltage clamping the postsynaptic cell during high-frequency stimulation (HFS; 3 trains of 100 pulses delivered at 100 Hz every 10s), with intracellular injections of the Ca(2+) chelator BAPTA (20mM), and with the NMDAR antagonist D-AP5. In separate experiments, RC and MF inputs converging onto the same interneuron were sequentially activated. We found that RC LTP induction was blocked by inhibitors of the calcium/calmodulin-dependent protein kinase II (CaMKII; KN-62, 10 μM or KN-93, 10 μM) but MF LTP was CaMKII independent. Conversely, the application of the protein kinase A (PKA) activators forskolin/IBMX (50 μM/25 μM) potentiated MF EPSPs but not RC EPSPs. Together these data indicate that the aspiny dendrites of SR/L-M interneurons compartmentalize synapse-specific Ca(2+) signaling required for LTP induction at RC and MF synapses. We also show that the two signal transduction cascades converge to activate a common effector, protein kinase C (PKC). Specifically, LTP at RC and MF synapses on the same SR/LM interneuron was blocked by postsynaptic injections of chelerythrine (10 μM). These data indicate that both forms of LTP share a common mechanism involving PKC-dependent signaling modulation.
Collapse
Affiliation(s)
- E J Galván
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico.
| | - T Pérez-Rosello
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - G Gómez-Lira
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico
| | - E Lara
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico
| | - R Gutiérrez
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico
| | - G Barrionuevo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
110
|
Munc13-3 superprimes synaptic vesicles at granule cell-to-basket cell synapses in the mouse cerebellum. J Neurosci 2015; 34:14687-96. [PMID: 25355221 DOI: 10.1523/jneurosci.2060-14.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Munc13-3 is a presynaptic protein implicated in vesicle priming that is strongly expressed in cerebellar granule cells (GCs). Mice deficient of Munc13-3 (Munc13-3(-/-)) show an increased paired-pulse ratio (PPR), which led to the hypothesis that Munc13-3 increases the release probability (pr) of vesicles. In the present study, we analyzed unitary synaptic connections between GCs and basket cells in acute cerebellar slices from wild-type and Munc13-3(-/-) mice. Unitary EPSCs recorded from Munc13-3(-/-) GCs showed normal kinetics and synaptic latency but a significantly increased PPR and fraction of synaptic failures. A quantal analysis revealed that neither the charge of single quanta nor the binominal parameter N were affected by loss of Munc13-3 but that pr was almost halved in Munc13-3(-/-). Neither presynaptic Ca(2+) influx was affected by deletion of Munc13-3 nor replenishment of the readily releasable vesicle pool. However, a high concentration of EGTA led to a reduction in EPSCs that was significantly stronger in Munc13-3(-/-). We conclude that Munc13-3 is responsible for an additional step of molecular and/or positional "superpriming" that substantially increases the efficacy of Ca(2+)-triggered release.
Collapse
|
111
|
Booker SA, Song J, Vida I. Whole-cell patch-clamp recordings from morphologically- and neurochemically-identified hippocampal interneurons. J Vis Exp 2014:e51706. [PMID: 25350149 DOI: 10.3791/51706] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.
Collapse
Affiliation(s)
- Sam A Booker
- Institute of Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité Universitätmedizin
| | - Jie Song
- Institute of Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité Universitätmedizin
| | - Imre Vida
- Institute of Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité Universitätmedizin;
| |
Collapse
|
112
|
Fourie C, Kiraly M, Madison DV, Montgomery JM. Paired whole cell recordings in organotypic hippocampal slices. J Vis Exp 2014:51958. [PMID: 25285945 DOI: 10.3791/51958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pair recordings involve simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling not only direct electrophysiological characterization of the synaptic connections between individual neurons, but also pharmacological manipulation of either the presynaptic or the postsynaptic neuron. When carried out in organotypic hippocampal slice cultures, the probability that two neurons are synaptically connected is significantly increased. This preparation readily enables identification of cell types, and the neurons maintain their morphology and properties of synaptic function similar to that in native brain tissue. A major advantage of paired whole cell recordings is the highly precise information it can provide on the properties of synaptic transmission and plasticity that are not possible with other more crude techniques utilizing extracellular axonal stimulation. Paired whole cell recordings are often perceived as too challenging to perform. While there are challenging aspects to this technique, paired recordings can be performed by anyone trained in whole cell patch clamping provided specific hardware and methodological criteria are followed. The probability of attaining synaptically connected paired recordings significantly increases with healthy organotypic slices and stable micromanipulation allowing independent attainment of pre- and postsynaptic whole cell recordings. While CA3-CA3 pyramidal cell pairs are most widely used in the organotypic slice hippocampal preparation, this technique has also been successful in CA3-CA1 pairs and can be adapted to any neurons that are synaptically connected in the same slice preparation. In this manuscript we provide the detailed methodology and requirements for establishing this technique in any laboratory equipped for electrophysiology.
Collapse
Affiliation(s)
- Chantelle Fourie
- Department of Physiology and Centre for Brain Research, University of Auckland
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University
| | | |
Collapse
|
113
|
Chen T, Lu JS, Song Q, Liu MG, Koga K, Descalzi G, Li YQ, Zhuo M. Pharmacological rescue of cortical synaptic and network potentiation in a mouse model for fragile X syndrome. Neuropsychopharmacology 2014; 39:1955-67. [PMID: 24553731 PMCID: PMC4059905 DOI: 10.1038/npp.2014.44] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 12/29/2022]
Abstract
Fragile X syndrome, caused by the mutation of the Fmr1 gene, is characterized by deficits of attention and learning ability. In the hippocampus of Fmr1 knockout mice (KO), long-term depression is enhanced whereas long-term potentiation (LTP) including late-phase LTP (L-LTP) is reduced or unaffected. Here we examined L-LTP in the anterior cingulate cortex (ACC) in Fmr1 KO mice by using a 64-electrode array recording system. In wild-type mice, theta-burst stimulation induced L-LTP that does not occur in all active electrodes/channels within the cingulate circuit and is typically detected in ∼75% of active channels. Furthermore, L-LTP recruited new responses from previous inactive channels. Both L-LTP and the recruitment of inactive responses were blocked in the ACC slices of Fmr1 KO mice. Bath application of metabotropic glutamate receptor 5 (mGluR5) antagonist or glycogen synthase kinase-3 (GSK3) inhibitors rescued the L-LTP and network recruitment. Our results demonstrate that loss of FMRP will greatly impair L-LTP and recruitment of cortical network in the ACC that can be rescued by pharmacological inhibition of mGluR5 or GSK3. This study is the first report of the network properties of L-LTP in the ACC, and provides basic mechanisms for future treatment of cortex-related cognitive defects in fragile X patients.
Collapse
Affiliation(s)
- Tao Chen
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Song
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming-Gang Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giannina Descalzi
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yun-Qing Li
- Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an, China,Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an 710032, China, Tel: +86 29 84774501, Fax: +86 29 83283229, E-mail:
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada, Tel: +1 416 978 4018, Fax: +1 416 978 7398, E-mail:
| |
Collapse
|
114
|
Park K, Song B, Kim J, Hong I, Song S, Lee J, Park S, Kim J, An B, Lee HW, Lee S, Kim H, Lee JC, Lee S, Choi S. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala. PLoS One 2014; 9:e100108. [PMID: 24925360 PMCID: PMC4055738 DOI: 10.1371/journal.pone.0100108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022] Open
Abstract
Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the GluA2-lacking AMPAR activity and GluA1 phosphorylation at Ser831 are required for ABA renewal.
Collapse
Affiliation(s)
- Kyungjoon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
| | - Beomjong Song
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
| | - Jeongyeon Kim
- Center for Neural Science and Center for Connectomics, Korea Institute of Science and Technology, Seoul, Korea (ROK)
| | - Ingie Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
| | - Sangho Song
- Center for Neural Science and Center for Connectomics, Korea Institute of Science and Technology, Seoul, Korea (ROK)
| | - Junuk Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
| | - Sungmo Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
| | - Jihye Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
| | - Bobae An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
| | - Hyun Woo Lee
- Department of Anatomy and Brain Korea 21 Biomedical Science program, Korea University, College of Medicine, Seoul, Korea (ROK)
| | - Seungbok Lee
- Department of Cell and Developmental Biology, Dental Research Institute, Seoul National University, Seoul, Korea (ROK)
| | - Hyun Kim
- Department of Anatomy and Brain Korea 21 Biomedical Science program, Korea University, College of Medicine, Seoul, Korea (ROK)
| | - Justin C. Lee
- Center for Neural Science and Center for Connectomics, Korea Institute of Science and Technology, Seoul, Korea (ROK)
| | - Sukwon Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
- * E-mail: (SC); (SL)
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (ROK)
- * E-mail: (SC); (SL)
| |
Collapse
|
115
|
Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M. Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci 2014; 34:8197-209. [PMID: 24920624 PMCID: PMC6608234 DOI: 10.1523/jneurosci.5433-13.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/21/2022] Open
Abstract
Hippocampal GABAergic cells are highly heterogeneous, but the functional significance of this diversity is not fully understood. By using paired recordings of synaptically connected interneurons in slice preparations of the rat and mouse dentate gyrus (DG), we show that morphologically identified interneurons form complex neuronal networks. Synaptic inhibitory interactions exist between cholecystokinin (CCK)-expressing hilar commissural associational path (HICAP) cells and among somatostatin (SOM)-containing hilar perforant path-associated (HIPP) interneurons. Moreover, both interneuron types inhibit parvalbumin (PV)-expressing perisomatic inhibitory basket cells (BCs), whereas BCs and HICAPs rarely target HIPP cells. HICAP and HIPP cells produce slow, weak, and unreliable inhibition onto postsynaptic interneurons. The time course of inhibitory signaling is defined by the identity of the presynaptic and postsynaptic cell. It is the slowest for HIPP-HIPP, intermediately slow for HICAP-HICAP, but fast for BC-BC synapses. GABA release at interneuron-interneuron synapses also shows cell type-specific short-term dynamics, ranging from multiple-pulse facilitation at HICAP-HICAP, biphasic modulation at HIPP-HIPP to depression at BC-BC synapses. Although dendritic inhibition at HICAP-BC and HIPP-BC synapses appears weak and slow, channelrhodopsin 2-mediated excitation of SOM terminals demonstrates that they effectively control the activity of target interneurons. They markedly reduce the discharge probability but sharpen the temporal precision of action potential generation. Thus, dendritic inhibition seems to play an important role in determining the activity pattern of GABAergic interneuron populations and thereby the flow of information through the DG circuitry.
Collapse
Affiliation(s)
- Shakuntala Savanthrapadian
- Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| | - Thomas Meyer
- Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| | - Claudio Elgueta
- Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| | - Sam A Booker
- Institute for Integrative Neuroanatomy and NeuroCure Cluster, Charité Berlin, 10115 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy and NeuroCure Cluster, Charité Berlin, 10115 Berlin, Germany
| | - Marlene Bartos
- Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| |
Collapse
|
116
|
MacDougall MJ, Fine A. The expression of long-term potentiation: reconciling the preists and the postivists. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130135. [PMID: 24298138 DOI: 10.1098/rstb.2013.0135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus has been investigated in great detail over the past 40 years. Where and how LTP is actually expressed, however, remain controversial issues. Considerable evidence has been offered to support both pre- and postsynaptic contributions to LTP expression. Though it is widely held that postsynaptic expression mechanisms are the primary contributors to LTP expression, evidence for that conclusion is amenable to alternative explanations. Here, we briefly review some key contributions to the 'locus' debate and describe data that support a dominant role for presynaptic mechanisms. Recognition of the state-dependency of expression mechanisms, and consideration of the consequences of the spatial relationship between postsynaptic glutamate receptors and presynaptic vesicular release sites, lead to a model that may reconcile views from both sides of the synapse.
Collapse
Affiliation(s)
- Matthew J MacDougall
- Department of Physiology and Biophysics, Dalhousie University Faculty of Medicine, , Halifax, Nova Scotia, Canada , B3H 4R2
| | | |
Collapse
|
117
|
Ovarian hormone loss impairs excitatory synaptic transmission at hippocampal CA3-CA1 synapses. J Neurosci 2013; 33:16158-69. [PMID: 24107948 DOI: 10.1523/jneurosci.2001-13.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Premature and long-term ovarian hormone loss following ovariectomy (OVX) is associated with cognitive impairment. This condition is prevented by estradiol (E2) therapy when initiated shortly following OVX but not after substantial delay. To determine whether these clinical findings are correlated with changes in synaptic functions, we used adult OVX rats to evaluate the consequences of short-term (7-10 d, OVXControl) and long-term (∼5 months, OVXLT) ovarian hormone loss, as well as subsequent in vivo E2 treatment, on excitatory synaptic transmission at the hippocampal CA3-CA1 synapses important for learning and memory. The results show that ovarian hormone loss was associated with a marked decrease in synaptic strength. E2 treatment increased synaptic strength in OVXControl but not OVXLT rats, demonstrating a change in the efficacy for E2 5 months following OVX. E2 also had a more rapid effect: within minutes of bath application, E2 acutely increased synaptic strength in all groups except OVXLT rats that did not receive in vivo E2 treatment. E2's acute effect was mediated postsynaptically, and required Ca(2+) influx through the voltage-gated Ca(2+) channels. Despite E2's acute effect, synaptic strength of OVXLT rats remained significantly lower than that of OVXControl rats. Thus, changes in CA3-CA1 synaptic transmission associated with ovarian hormone loss cannot be fully reversed with delayed E2 treatment. Given that synaptic strength at CA3-CA1 synapses is related to the ability to learn hippocampus-dependent tasks, these findings provide additional insights for understanding cognitive impairment-associated long-term ovarian hormone loss and ineffectiveness for delayed E2 treatment to maintain cognitive functions.
Collapse
|
118
|
Dopamine-dependent long-term depression at subthalamo-nigral synapses is lost in experimental parkinsonism. J Neurosci 2013; 33:14331-41. [PMID: 24005286 DOI: 10.1523/jneurosci.1681-13.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Impairments of synaptic plasticity are a hallmark of several neurological disorders, including Parkinson's disease (PD) which results from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading to abnormal activity within the basal ganglia (BG) network and pathological motor symptoms. Indeed, disrupted plasticity at corticostriatal glutamatergic synapses, the gateway of the BG, is correlated to the onset of PD-related movement disorders and thus has been proposed to be a key neural substrate regulating information flow and motor function in BG circuits. However, a critical question is whether similar plasticity impairments could occur at other glutamatergic connections within the BG that would also affect the inhibitory influence of the network on the motor thalamus. Here, we show that long-term plasticity at subthalamo-nigral glutamatergic synapses (STN-SNr) sculpting the activity patterns of nigral neurons, the main output of the network, is also affected in experimental parkinsonism. Using whole-cell patch-clamp in acute rat brain slices, we describe a molecular pathway supporting an activity-dependent long-term depression of STN-SNr synapses through an NMDAR-and D1/5 dopamine receptor-mediated endocytosis of synaptic AMPA glutamate receptors. We also show that this plastic property is lost in an experimental rat model of PD but can be restored through the recruitment of dopamine D1/5 receptors. Altogether, our findings suggest that pathological impairments of subthalamo-nigral plasticity may enhance BG outputs and thereby contribute to PD-related motor dysfunctions.
Collapse
|
119
|
Long-term inhibitory plasticity in visual cortical layer 4 switches sign at the opening of the critical period. Proc Natl Acad Sci U S A 2013; 110:E4540-7. [PMID: 24191045 DOI: 10.1073/pnas.1319571110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sensory microcircuits are refined by experience during windows of heightened plasticity termed "critical periods" (CPs). In visual cortex the effects of visual deprivation change dramatically at the transition from the pre-CP to the CP, but the cellular plasticity mechanisms that underlie this change are poorly understood. Here we show that plasticity at unitary connections between GABAergic Fast Spiking (FS) cells and Star Pyramidal (SP) neurons within layer 4 flips sign at the transition between the pre-CP and the CP. During the pre-CP, coupling FS firing with SP depolarization induces long-term depression of inhibition at this synapse, whereas the same protocol induces long-term potentiation of inhibition at the opening of the CP. Despite being of opposite sign, both forms of plasticity share expression characteristics--a change in coefficient of variation with no change in paired-pulse ratio--and depend on GABAB receptor signaling. Finally, we show that the reciprocal SP → FS synapse also acquires the ability to undergo long-term potentiation at the pre-CP to CP transition. Thus, at the opening of the CP, there are coordinated changes in plasticity that allow specific patterns of activity within layer 4 to potentiate feedback inhibition by boosting the strength of FS ↔ SP connections.
Collapse
|
120
|
Babayan AH, Kramár EA. Rapid effects of oestrogen on synaptic plasticity: interactions with actin and its signalling proteins. J Neuroendocrinol 2013; 25:1163-72. [PMID: 24112361 PMCID: PMC3989941 DOI: 10.1111/jne.12108] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 01/02/2023]
Abstract
Oestrogen rapidly enhances fast excitatory postsynaptic potentials, facilitates long-term potentiation (LTP) and increases spine numbers. Each effect likely contributes to the influence of the steroid on cognition and memory. In the present review, we first describe a model for the substrates of LTP that includes an outline of the synaptic events occurring during induction, expression and consolidation. Briefly, critical signalling pathways involving the small GTPases RhoA and Rac/Cdc42 are activated by theta burst-induced calcium influx and initiate actin filament assembly via phosphorylation (inactivation) of cofilin. Reorganisation of the actin cytoskeleton changes spine and synapse morphology, resulting in increased concentrations of AMPA receptors at stimulated contacts. We then use the synaptic model to develop a specific hypothesis about how oestrogen affects both baseline transmission and plasticity. Brief infusions of 17β-oestradiol (E2 ) reversibly stimulate the RhoA, cofilin phosphorylation and actin polymerisation cascade of the LTP machinery; blocking this eliminates the effects of the steroid on transmission. We accordingly propose that E2 induces a weak form of LTP and thereby increases synaptic responses, a hypothesis that also accounts for how it markedly enhances theta burst induced potentiation. Although the effects of E2 on the cytoskeleton could be a result of the direct activation of small GTPases by oestrogen receptors on the synaptic membrane, the hormone also activates tropomyosin-related kinase B receptors for brain-derived neurotrophic factor, a neurotrophin that engages the RhoA-cofilin sequence and promotes LTP. The latter observations raise the possibility that E2 produces its effects on synaptic physiology via transactivation of neighbouring receptors that have prominent roles in the management of spine actin, synaptic physiology and plasticity.
Collapse
Affiliation(s)
- A H Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | | |
Collapse
|
121
|
Hardingham N, Dachtler J, Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci 2013; 7:190. [PMID: 24198758 PMCID: PMC3813972 DOI: 10.3389/fncel.2013.00190] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/05/2013] [Indexed: 11/13/2022] Open
Abstract
Since the observation that nitric oxide (NO) can act as an intercellular messenger in the brain, the past 25 years have witnessed the steady accumulation of evidence that it acts pre-synaptically at both glutamatergic and GABAergic synapses to alter release-probability in synaptic plasticity. NO does so by acting on the synaptic machinery involved in transmitter release and, in a coordinated fashion, on vesicular recycling mechanisms. In this review, we examine the body of evidence for NO acting as a retrograde factor at synapses, and the evidence from in vivo and in vitro studies that specifically establish NOS1 (neuronal nitric oxide synthase) as the important isoform of NO synthase in this process. The NOS1 isoform is found at two very different locations and at two different spatial scales both in the cortex and hippocampus. On the one hand it is located diffusely in the cytoplasm of a small population of GABAergic neurons and on the other hand the alpha isoform is located discretely at the post-synaptic density (PSD) in spines of pyramidal cells. The present evidence is that the number of NOS1 molecules that exist at the PSD are so low that a spine can only give rise to modest concentrations of NO and therefore only exert a very local action. The NO receptor guanylate cyclase is located both pre- and post-synaptically and this suggests a role for NO in the coordination of local pre- and post-synaptic function during plasticity at individual synapses. Recent evidence shows that NOS1 is also located post-synaptic to GABAergic synapses and plays a pre-synaptic role in GABAergic plasticity as well as glutamatergic plasticity. Studies on the function of NO in plasticity at the cellular level are corroborated by evidence that NO is also involved in experience-dependent plasticity in the cerebral cortex.
Collapse
Affiliation(s)
| | | | - Kevin Fox
- School of Biosciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
122
|
Yang Y, Calakos N. Presynaptic long-term plasticity. Front Synaptic Neurosci 2013; 5:8. [PMID: 24146648 PMCID: PMC3797957 DOI: 10.3389/fnsyn.2013.00008] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/09/2013] [Indexed: 01/01/2023] Open
Abstract
Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Stanford University School of Medicine Stanford, CA, USA
| | | |
Collapse
|
123
|
Ahumada J, de Sevilla DF, Couve A, Buño W, Fuenzalida M. Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors. Hippocampus 2013; 23:1439-52. [DOI: 10.1002/hipo.22196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Ahumada
- Centro de Neurobiología y Plasticidad Cerebral; Departamento de Fisiología; Facultad de Ciencias, Universidad Valparaíso; Chile
| | - David Fernández de Sevilla
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal; CSIC; Av. Dr. Arce 37 28002 Madrid Spain
- Departamento de Anatomía; Histología y Neurociencia, Facultad de Medicina. UAM; Madrid Spain
| | - Alejandro Couve
- Centro de Neurobiología y Plasticidad Cerebral; Departamento de Fisiología; Facultad de Ciencias, Universidad Valparaíso; Chile
| | - Washington Buño
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal; CSIC; Av. Dr. Arce 37 28002 Madrid Spain
| | - Marco Fuenzalida
- Centro de Neurobiología y Plasticidad Cerebral; Departamento de Fisiología; Facultad de Ciencias, Universidad Valparaíso; Chile
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal; CSIC; Av. Dr. Arce 37 28002 Madrid Spain
| |
Collapse
|
124
|
GluA1 phosphorylation at serine 831 in the lateral amygdala is required for fear renewal. Nat Neurosci 2013; 16:1436-44. [DOI: 10.1038/nn.3491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/12/2013] [Indexed: 02/08/2023]
|
125
|
Chung C. NMDA receptor as a newly identified member of the metabotropic glutamate receptor family: clinical implications for neurodegenerative diseases. Mol Cells 2013; 36:99-104. [PMID: 23740429 PMCID: PMC3887951 DOI: 10.1007/s10059-013-0113-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Recent reports have proposed a novel function for the N-methyl-D-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the "metabotropic" action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer's disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the "metabotropic" action of NMDARs.
Collapse
Affiliation(s)
- ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
126
|
Medrihan L, Cesca F, Raimondi A, Lignani G, Baldelli P, Benfenati F. Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nat Commun 2013; 4:1512. [PMID: 23443540 PMCID: PMC3586721 DOI: 10.1038/ncomms2515] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/18/2013] [Indexed: 01/05/2023] Open
Abstract
In the central nervous system, most synapses show a fast mode of neurotransmitter release known as synchronous release followed by a phase of asynchronous release, which extends over tens of milliseconds to seconds. Synapsin II (SYN2) is a member of the multigene synapsin family (SYN1/2/3) of synaptic vesicle phosphoproteins that modulate synaptic transmission and plasticity, and are mutated in epileptic patients. Here we report that inhibitory synapses of the dentate gyrus of Syn II knockout mice display an upregulation of synchronous neurotransmitter release and a concomitant loss of delayed asynchronous release. Syn II promotes γ-aminobutyric acid asynchronous release in a Ca2+-dependent manner by a functional interaction with presynaptic Ca2+ channels, revealing a new role in synaptic transmission for synapsins. The arrival of action potentials at nerve terminals often leads to synchronous neurotransmitter release. Medrihan and colleagues use electrophysiology on mouse hippocampal neurons to show that the vesicle protein Synapsin II promotes GABAergic asynchronous release by interacting with calcium channels.
Collapse
Affiliation(s)
- Lucian Medrihan
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
127
|
Andrade-Talavera Y, Duque-Feria P, Sihra TS, Rodríguez-Moreno A. Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca(2+) -calmodulin at thalamocortical synapses. J Neurochem 2013; 126:565-78. [PMID: 23692284 DOI: 10.1111/jnc.12310] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/24/2013] [Accepted: 05/17/2013] [Indexed: 12/01/2022]
Abstract
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre-synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca(2+) -calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G-protein involvement.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | | | | | | |
Collapse
|
128
|
Roggenhofer E, Fidzinski P, Shor O, Behr J. Reduced threshold for induction of LTP by activation of dopamine D1/D5 receptors at hippocampal CA1-subiculum synapses. PLoS One 2013; 8:e62520. [PMID: 23626827 PMCID: PMC3633881 DOI: 10.1371/journal.pone.0062520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022] Open
Abstract
The phasic release of dopamine in the hippocampal formation has been shown to facilitate the encoding of novel information. There is evidence that the subiculum operates as a detector and distributor of sensory information, which incorporates the novelty and relevance of signals received from CA1. The subiculum acts as the final hippocampal relay station for outgoing information. Subicular pyramidal cells have been classified as regular- and burst-spiking neurons. The goal of the present study was to study the effect of dopamine D1/D5 receptor activation on synaptic transmission and plasticity in the subicular regular-spiking neurons of 4–6 week old Wistar rats. We demonstrate that prior activation of D1/D5 receptors reduces the threshold for the induction of long-term potentiation (LTP) in subicular regular-spiking neurons. Our results indicate that D1/D5 receptor activation facilitates a postsynaptic form of LTP in subicular regular-spiking cells that is NMDA receptor-dependent, relies on postsynaptic Ca2+ signaling, and requires the activation of protein kinase A. The enhanced propensity of subicular regular-spiking cells to express postsynaptic LTP after activation of D1/D5 receptors provides an intriguing mechanism for the encoding of hippocampal output information.
Collapse
Affiliation(s)
- Elisabeth Roggenhofer
- Department of Psychiatry and Psychotherapy, Charite, Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
129
|
Aiba I, West AK, Sheline CT, Shuttleworth CW. Intracellular dialysis disrupts Zn2+ dynamics and enables selective detection of Zn2+ influx in brain slice preparations. J Neurochem 2013; 125:822-31. [PMID: 23517525 DOI: 10.1111/jnc.12246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 01/06/2023]
Abstract
We examined the impact of intracellular dialysis on fluorescence detection of neuronal intracellular Zn(2+) accumulation. Comparison between two dialysis conditions (standard; 20 min, brief; 2 min) by standard whole-cell clamp revealed a high vulnerability of intracellular Zn(2+) buffers to intracellular dialysis. Thus, low concentrations of zinc-pyrithione generated robust responses in neurons with standard dialysis, but signals were smaller in neurons with short dialysis. Release from oxidation-sensitive Zn(2+) pools was reduced by standard dialysis, when compared with responses in neurons with brief dialysis. The dialysis effects were partly reversed by inclusion of recombinant metallothionein-3 in the dialysis solution. These findings suggested that extensive dialysis could be exploited for selective detection of transmembrane Zn(2+) influx. Different dialysis conditions were then used to probe responses to synaptic stimulation. Under standard dialysis conditions, synaptic stimuli generated significant FluoZin-3 signals in wild-type (WT) preparations, but responses were almost absent in preparations lacking vesicular Zn(2+) (ZnT3-KO). In contrast, under brief dialysis conditions, intracellular Zn(2+) transients were very similar in WT and ZnT3-KO preparations. This suggests that both intracellular release and transmembrane flux can contribute to intracellular Zn(2+) accumulation after synaptic stimulation. These results demonstrate significant confounds and potential use of intracellular dialysis to investigate intracellular Zn(2+) accumulation mechanisms.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | |
Collapse
|
130
|
Wang S, Kurada L, Cilz NI, Chen X, Xiao Z, Dong H, Lei S. Adenosinergic depression of glutamatergic transmission in the entorhinal cortex of juvenile rats via reduction of glutamate release probability and the number of releasable vesicles. PLoS One 2013; 8:e62185. [PMID: 23614032 PMCID: PMC3628342 DOI: 10.1371/journal.pone.0062185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/19/2013] [Indexed: 02/05/2023] Open
Abstract
Adenosine is an inhibitory neuromodulator that exerts antiepileptic effects in the brain and the entorhinal cortex (EC) is an essential structure involved in temporal lobe epilepsy. Whereas microinjection of adenosine into the EC has been shown to exert powerful antiepileptic effects, the underlying cellular and molecular mechanisms in the EC have not been determined yet. We tested the hypothesis that adenosine-mediated modulation of synaptic transmission contributes to its antiepileptic effects in the EC. Our results demonstrate that adenosine reversibly inhibited glutamatergic transmission via activation of adenosine A1 receptors without effects on GABAergic transmission in layer III pyramidal neurons in the EC. Adenosine-induced depression of glutamatergic transmission was mediated by inhibiting presynaptic glutamate release probability and decreasing the number of readily releasable vesicles. Bath application of adenosine also reduced the frequency of the miniature EPSCs recorded in the presence of TTX suggesting that adenosine may interact with the exocytosis processes downstream of Ca2+ influx. Both Gαi/o proteins and the protein kinase A pathway were required for adenosine-induced depression of glutamatergic transmission. We further showed that bath application of picrotoxin to the EC slices induced stable epileptiform activity and bath application of adenosine dose-dependently inhibited the epileptiform activity in this seizure model. Adenosine-mediated depression of epileptiform activity was mediated by activation of adenosine A1 receptors and required the functions of Gαi/o proteins and protein kinase A pathway. Our results suggest that the depression of glutamatergic transmission induced by adenosine contributes to its antiepileptic effects in the EC.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Nicholas I. Cilz
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xiaotong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Emergency Medicine, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhaoyang Xiao
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
131
|
Nicoll RA, Roche KW. Long-term potentiation: peeling the onion. Neuropharmacology 2013; 74:18-22. [PMID: 23439383 DOI: 10.1016/j.neuropharm.2013.02.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/19/2022]
Abstract
Since the discovery of long-term potentiation (LTP), thousands of papers have been published on this phenomenon. With this massive amount of information, it is often difficult, especially for someone not directly involved in the field, not to be overwhelmed. The goal of this review is to peel away as many layers as possible, and probe the core properties of LTP. We would argue that the many dozens of proteins that have been implicated in the phenomenon are not essential, but rather modulate, often in indirect ways, the threshold and/or magnitude of LTP. What is required is NMDA receptor activation followed by CaMKII activation. The consequence of CaMKII activation is the rapid recruitment of AMPA receptors to the synapse. This recruitment is independent of AMPA receptor subunit type, but absolutely requires an adequate pool of surface receptors. An important unresolved issue is how exactly CaMKII activation leads to modifications in the PSD to allow rapid enrichment. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-2140, USA.
| | | |
Collapse
|
132
|
Chronic intermittent hypoxia depresses afferent neurotransmission in NTS neurons by a reduction in the number of active synapses. J Neurosci 2013; 32:16736-46. [PMID: 23175827 DOI: 10.1523/jneurosci.2654-12.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term synaptic plasticity has been recently described in brainstem areas associated to visceral afferent sensory integration. Chronic intermittent hypoxia (CIH), an animal model for studying obstructive sleep apnea in humans, depresses the afferent neurotransmission in nucleus tractus solitarii (NTS) neurons, which affect respiratory and autonomic regulation. Here we identified the synaptic mechanisms of CIH-induced depression of the afferent neurotransmission in NTS neurons in juvenile rats. We verified that CIH reduced the amplitude of both NMDA and non-NMDA glutamatergic excitatory currents (eEPSCs) evoked by tractus solitarii stimulation (TS-eEPSC) of second-order neurons in the NTS. No changes were observed in release probability, evidenced by absence of any CIH-elicited effects on short-term depression and failures in EPSCs evoked in low calcium. CIH also produced no changes in TS-eEPSC quantal size, since the amplitudes of both low calcium-evoked EPSCs and asynchronous TS-eEPSCs (evoked in the presence of Sr(2+)) were unchanged. Using single TS afferent fiber stimulation in slices from control and CIH rats we clearly show that CIH reduced the quantal content of the TS-eEPSCs without affecting the quantal size or release probability, suggesting a reduction in the number of active synapses as the mechanism of CIH induced TS-eEPSC depression. In accordance with this concept, the input-output relationship of stimulus intensity and TS-eEPSC amplitude shows an early saturation in CIH animals. These findings open new perspectives for a better understanding of the mechanisms underlying the synaptic plasticity in the brainstem sensory neurons under challenges such as those produced by CIH in experimental and pathological conditions.
Collapse
|
133
|
Experience-dependent switch in sign and mechanisms for plasticity in layer 4 of primary visual cortex. J Neurosci 2012; 32:10562-73. [PMID: 22855806 DOI: 10.1523/jneurosci.0622-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits are extensively refined by sensory experience during postnatal development. How the maturation of recurrent cortical synapses may contribute to events regulating the postnatal refinement of neocortical microcircuits remains controversial. Here we show that, in the main input layer of rat primary visual cortex, layer 4 (L4), recurrent excitatory synapses are endowed with multiple, developmentally regulated mechanisms for induction and expression of excitatory synaptic plasticity. Maturation of L4 synapses and visual experience lead to a sharp switch in sign and mechanisms for plasticity at recurrent excitatory synapses in L4 at the onset of the critical period for visual cortical plasticity. The state of maturation of excitatory pyramidal neurons allows neurons to engage different mechanisms for plasticity in response to the same induction paradigm. Experience is determinant for the maturation of L4 synapses, as well as for the transition between forms of plasticity and the mechanisms they may engage. These results indicate a tight correlation between the effects of sensory drive and maturation on cortical neurons and provide a new set of cellular mechanisms engaged in the postnatal refinement of cortical circuits.
Collapse
|
134
|
Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Rev Neurosci 2012; 3:217-31. [PMID: 21561267 DOI: 10.1515/revneuro.1992.3.3.217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
135
|
Nuñez A, Domínguez S, Buño W, Fernández de Sevilla D. Cholinergic-mediated response enhancement in barrel cortex layer V pyramidal neurons. J Neurophysiol 2012; 108:1656-68. [PMID: 22723675 DOI: 10.1152/jn.00156.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions, but the underlying cellular mechanisms are largely unknown. We analyzed the effects of acetylcholine (ACh) on synaptic transmission and cell excitability in rat "barrel cortex" layer V (L5) pyramidal neurons in vitro. ACh through nicotinic and M1 muscarinic receptors enhanced excitatory postsynaptic currents and through nicotinic and M2 muscarinic receptors reduced inhibitory postsynaptic currents. These effects increased excitability and contributed to the generation of Ca(2+) spikes and bursts of action potentials (APs) when inputs in basal dendrites were stimulated. Ca(2+) spikes were mediated by activation of NMDA receptors (NMDARs) and L-type voltage-gated Ca(2+) channels. Additionally, we demonstrate in vivo that basal forebrain stimulation induced an atropine-sensitive increase of L5 AP responses evoked by vibrissa deflection, an effect mainly due to the enhancement of an NMDAR component. Therefore, ACh modified the excitatory/inhibitory balance and switched L5 pyramidal neurons to a bursting mode that caused a potent and sustained response enhancement with possible fundamental consequences for the function of the barrel cortex.
Collapse
Affiliation(s)
- Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
136
|
Mayford M, Siegelbaum SA, Kandel ER. Synapses and memory storage. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005751. [PMID: 22496389 DOI: 10.1101/cshperspect.a005751] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The synapse is the functional unit of the brain. During the last several decades we have acquired a great deal of information on its structure, molecular components, and physiological function. It is clear that synapses are morphologically and molecularly diverse and that this diversity is recruited to different functions. One of the most intriguing findings is that the size of the synaptic response in not invariant, but can be altered by a variety of homo- and heterosynaptic factors such as past patterns of use or modulatory neurotransmitters. Perhaps the most difficult challenge in neuroscience is to design experiments that reveal how these basic building blocks of the brain are put together and how they are regulated to mediate the information flow through neural circuits that is necessary to produce complex behaviors and store memories. In this review we will focus on studies that attempt to uncover the role of synaptic plasticity in the regulation of whole-animal behavior by learning and memory.
Collapse
Affiliation(s)
- Mark Mayford
- The Scripps Research Institute, Department of Cell Biology, La Jolla, California 92037, USA
| | | | | |
Collapse
|
137
|
LIM domain only 4 (LMO4) regulates calcium-induced calcium release and synaptic plasticity in the hippocampus. J Neurosci 2012; 32:4271-83. [PMID: 22442089 DOI: 10.1523/jneurosci.6271-11.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The LIM domain only 4 (LMO4) transcription cofactor activates gene expression in neurons and regulates key aspects of network formation, but the mechanisms are poorly understood. Here, we show that LMO4 positively regulates ryanodine receptor type 2 (RyR2) expression, thereby suggesting that LMO4 regulates calcium-induced calcium release (CICR) in central neurons. We found that CICR modulation of the afterhyperpolarization in CA3 neurons from mice carrying a forebrain-specific deletion of LMO4 (LMO4 KO) was severely compromised but could be restored by single-cell overexpression of LMO4. In line with these findings, two-photon calcium imaging experiments showed that the potentiation of RyR-mediated calcium release from internal stores by caffeine was absent in LMO4 KO neurons. The overall facilitatory effect of CICR on glutamate release induced during trains of action potentials was likewise defective in LMO4 KO, confirming that CICR machinery is severely compromised in these neurons. Moreover, the magnitude of CA3-CA1 long-term potentiation was reduced in LMO4 KO mice, a defect that appears to be secondary to an overall reduced glutamate release probability. These cellular phenotypes in LMO4 KO mice were accompanied with deficits in hippocampus-dependent spatial learning as determined by the Morris water maze test. Thus, our results establish LMO4 as a key regulator of CICR in central neurons, providing a mechanism for LMO4 to modulate a wide range of neuronal functions and behavior.
Collapse
|
138
|
Lecca S, Melis M, Luchicchi A, Muntoni AL, Pistis M. Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 2012; 37:1164-76. [PMID: 22169942 PMCID: PMC3306878 DOI: 10.1038/npp.2011.302] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The rostromedial tegmental nucleus (RMTg), a structure located just posterior to the ventral tegmental area (VTA), is an important site involved in aversion processes. The RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding dopamine (DA) neurons in the VTA. Here, we studied how RMTg neurons regulate both spontaneous firing of DA cells and their response to the cannabinoid agonist WIN55212-2 (WIN), morphine, cocaine, and nicotine. We utilized single-unit extracellular recordings in anesthetized rats and whole-cell patch clamp recordings in brain slices to study RMTg-induced inhibition of DA cells and inhibitory postsynaptic currents (IPSCs) evoked by stimulation of caudal afferents, respectively. The electrical stimulation of the RMTg elicited a complete suppression of spontaneous activity in approximately half of the DA neurons examined. RMTg-induced inhibition correlated with firing rate and pattern of DA neurons and with their response to a noxious stimulus, highlighting that inhibitory inputs from the RMTg strongly control spontaneous activity of DA cells. Both morphine and WIN depressed RMTg-induced inhibition of DA neurons in vivo and IPSCs evoked by RMTg stimulation in brain slices with presynaptic mechanisms. Conversely, neither cocaine nor nicotine modulated DA neuron responses to RMTg stimulation. Our results further support the role of the RMTg as one of the main inhibitory afferents to DA cells and suggest that cannabinoids and opioids might disinhibit DA neurons by profoundly influencing synaptic responses evoked by RMTg activation.
Collapse
Affiliation(s)
- Salvatore Lecca
- BB Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy
| | - Miriam Melis
- BB Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy
| | - Antonio Luchicchi
- BB Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy
| | - Anna Lisa Muntoni
- Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Monserrato, Italy,CNR Neuroscience Institute-Cagliari, University of Cagliari, Monserrato, Italy
| | - Marco Pistis
- BB Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy,Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Monserrato, Italy,CNR Neuroscience Institute-Cagliari, University of Cagliari, Monserrato, Italy,BB Brodie Department of Neuroscience, Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Cittadella Universitaria, Monserrato, CA 09042, Italy, Tel: +39 070 675 4324, Fax: +39 070 675 4320, E-mail:
| |
Collapse
|
139
|
Wu X, Shi M, Wei C, Yang M, Liu Y, Liu Z, Zhang X, Ren W. Potentiation of synaptic strength and intrinsic excitability in the nucleus accumbens after 10 days of morphine withdrawal. J Neurosci Res 2012; 90:1270-83. [PMID: 22388870 DOI: 10.1002/jnr.23025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/29/2011] [Accepted: 12/08/2011] [Indexed: 11/11/2022]
Abstract
Neuroadaptations in the nucleus accumbens (NAc) are associated with the development of drug addiction. Plasticity in synaptic strength and intrinsic excitability of NAc medium spiny neurons (MSNs) play critical roles in addiction induced by different classes of abused drugs. However, it is unknown whether morphine exposure influences synaptic strength, intrinsic excitability or both in NAc. Here we show that chronic withdrawal (10 days after the last injection) from repeated morphine exposure elicited potentiation in both glutamatergic synaptic strength and intrinsic excitability of MSNs in NAc shell (NAcSh). The potentiation of synaptic strength was demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs), a decrease in the paired-pulse ratio (PPR), and an increase in the ratio of α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR)- to N-methyl-D-aspartate receptors (NMDAR)-mediated currents. The potentiation of intrinsic excitability was mediated by inhibition of the sustained potassium currents via extrasynaptic NMDAR activation. The function of the presynaptic group II metabotropic glutamate receptors (mGluR2/3) was downregulated, enhancing the probability of glutamate release on synaptic terminals during chronic morphine withdrawal. Pretreatment with the mGluR2/3 agonist LY379268 completely blocked potentiation of both synaptic strength and intrinsic excitability. These results suggest that chronic morphine withdrawal downregulates mGluR2/3 to induce potentiation of MSN glutamatergic synapse via increased glutamate release, leading to potentiation of intrinsic excitability. Such potentiation of both synaptic strength and intrinsic excitability might contribute to neuroadaptations induced by morphine application.
Collapse
Affiliation(s)
- Xiaobo Wu
- Key Laboratory of Modern Teaching Technology and College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Kullmann DM. The Mother of All Battles 20 years on: is LTP expressed pre- or postsynaptically? J Physiol 2012; 590:2213-6. [PMID: 22351632 DOI: 10.1113/jphysiol.2011.221127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The early 1990s saw an intense debate over the locus of expression of NMDA receptor-dependent LTP. This provided an impetus for intense research into the mechanisms of modulation and trafficking of glutamate receptors and presynaptic vesicles. As new forms of LTP are discovered at different synapses, a simple resolution of the pre- versus postsynaptic debate seems increasingly remote.
Collapse
Affiliation(s)
- Dimitri M Kullmann
- UCL Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
141
|
Bradley CA, Peineau S, Taghibiglou C, Nicolas CS, Whitcomb DJ, Bortolotto ZA, Kaang BK, Cho K, Wang YT, Collingridge GL. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci 2012; 5:13. [PMID: 22363262 PMCID: PMC3279748 DOI: 10.3389/fnmol.2012.00013] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/31/2012] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD) that is induced by the synaptic activation of N-methyl-D-aspartate receptors (NMDARs). In the present article we summarize what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarize its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders.
Collapse
|
142
|
Lü N, Cheng LZ, Zhang YQ, Lü BC, Li YQ, Zhao ZQ. Involvement of ryanodine receptors in tetanic sciatic stimulation-induced long-term potentiation of spinal dorsal horn and persistent pain in rats. J Neurosci Res 2012; 90:1096-104. [PMID: 22315169 DOI: 10.1002/jnr.22799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 01/03/2023]
Abstract
Tetanic stimulation of the sciatic nerve induces long-term potentiation (LTP) of C-fiber-evoked field potentials in the spinal dorsal horn and persistent pain, suggesting that spinal LTP may be a substrate for central sensitization of the pain pathway. However, its cellular mechanism remains unclear. The present study provides electrophysiological and behavioral evidence for the involvement of ryanodine receptor (RyR) in the induction of spinal LTP and persistent pain in rats. The specific inhibitor of ryanodine receptor, ryanodine and dantrolene, dose dependently blocked the induction, but not maintenance, of spinal LTP and reduced persistent pain behaviors induced by tetanic sciatic stimulation. Both cyclic ADP ribose (cADPR), an endogenous agonist of RyR, and (±)-1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluromethyl)-phenyl]-3-pyridine carboxylic acid methyl ester (Bay K 8644), an agonist of L-type calcium channel, attenuated ryanodine-induced inhibition. Immunohistochemistry and electron microscopic observation showed that RyR subtypes RyR1 and RyR3 were located in the spinal dorsal horn. The results suggest that RyRs are involved in synaptic plasticity of the spinal pain pathway and may be a novel target for treating pain. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ning Lü
- Institute of Neurobiology, Institutes of Brain Science and State Key laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
143
|
Kobayashi M, Takei H, Yamamoto K, Hatanaka H, Koshikawa N. Kinetics of GABAB autoreceptor-mediated suppression of GABA release in rat insular cortex. J Neurophysiol 2011; 107:1431-42. [PMID: 22190629 DOI: 10.1152/jn.00813.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Release of GABA is controlled by presynaptic GABA receptor type B (GABA(B)) autoreceptors at GABAergic terminals. However, there is no direct evidence that GABA(B) autoreceptors are activated by GABA release from their own terminals, and precise profiles of GABA(B) autoreceptor-mediated suppression of GABA release remain unknown. To explore these issues, we performed multiple whole-cell, patch-clamp recordings from layer V rat insular cortex. Both unitary inhibitory and excitatory postsynaptic currents (uIPSCs and uEPSCs, respectively) were recorded by applying a five-train depolarizing pulse injection at 20 Hz. In connections from both fast-spiking (FS) and non-FS interneurons to pyramidal cells, the GABA(B) receptor antagonist CGP 52432 had little effect on the initial uIPSC amplitude. However, uIPSCs, responding to later pulses, were effectively facilitated. This CGP 52432-induced facilitation was prominent in the fourth uIPSCs, which were evoked 150 ms after the first uIPSC. The facilitation of uIPSCs was accompanied by an increase in the paired-pulse ratio. In addition, analysis of the coefficient of variation suggests the involvement of presynaptic mechanisms in CGP 52432-induced uIPSC facilitation. Paired-pulse stimulation (interstimulus interval = 150 ms) of presynaptic FS cells revealed that the second uIPSC was also facilitated by CGP 52432, which had little effect on the amplitude and interevent interval of miniature IPSCs. In contrast, uEPSCs, responding to all five stimulations of a presynaptic pyramidal cell, were less affected by CGP 52432. These results suggest that a single presynaptic action potential is sufficient to activate GABA(B) autoreceptors and to suppress GABA release in the cerebral cortex.
Collapse
|
144
|
Kohnomi S, Koshikawa N, Kobayashi M. D(2)-like dopamine receptors differentially regulate unitary IPSCs depending on presynaptic GABAergic neuron subtypes in rat nucleus accumbens shell. J Neurophysiol 2011; 107:692-703. [PMID: 22049335 DOI: 10.1152/jn.00281.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the nucleus accumbens (NAc), a medium spiny (MS) neuron receives GABAergic inputs from two major sources: fast-spiking (FS) neurons and other, adjacent MS neurons. These two types of inhibitory synapses are considered to play different roles in output activities, i.e., FS→MS connections suppress output from the NAc whereas MS→MS connections contribute to lateral inhibition. In the present study, we focused on the electrophysiological properties of unitary inhibitory postsynaptic currents (uIPSCs) obtained from MS→MS connections and FS→MS connections and examined the effects of quinpirole, a dopamine D(2)-like receptor agonist, on uIPSCs with multiple whole cell patch-clamp recording. Application of quinpirole (1 μM) reliably suppressed the amplitude of uIPSCs by 29.6% in MS→MS connections, with increases in paired-pulse ratio and failure rate. The suppressive effects of quinpirole on uIPSCs were mimicked by 1 μM PD128907, a D(2/3) receptor agonist, whereas quinpirole-induced suppression of uISPCs was blocked by preapplication of 1 μM sulpiride or 10 μM nafadotride, both D(2/3) receptor antagonists. On the other hand, quinpirole (1 μM) had divergent effects on FS→MS connections, i.e., quinpirole increased uIPSC amplitude in 38.1% of FS→MS connections and 23.8% of FS→MS connections were suppressed by quinpirole. Analysis of coefficient of variation in uIPSC amplitude implied the involvement of presynaptic mechanisms in quinpirole-induced effects on uIPSCs. These results suggest that activation of D(2)-like receptors facilitates outputs from MS neurons in the NAc by reducing lateral inhibition during a dormant period of FS neuron activities.
Collapse
Affiliation(s)
- Shuntaro Kohnomi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | |
Collapse
|
145
|
Zaitsev AV, Anwyl R. Inhibition of the slow afterhyperpolarization restores the classical spike timing-dependent plasticity rule obeyed in layer 2/3 pyramidal cells of the prefrontal cortex. J Neurophysiol 2011; 107:205-15. [PMID: 21975445 DOI: 10.1152/jn.00452.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The induction of long-term potentiation (LTP) and long-term depression (LTD) of excitatory postsynaptic currents was investigated in proximal synapses of layer 2/3 pyramidal cells of the rat medial prefrontal cortex. The spike timing-dependent plasticity (STDP) induction protocol of negative timing, with postsynaptic leading presynaptic stimulation of action potentials (APs), induced LTD as expected from the classical STDP rule. However, the positive STDP protocol of presynaptic leading postsynaptic stimulation of APs predominantly induced a presynaptically expressed LTD rather than the expected postsynaptically expressed LTP. Thus the induction of plasticity in layer 2/3 pyramidal cells does not obey the classical STDP rule for positive timing. This unusual STDP switched to a classical timing rule if the slow Ca(2+)-dependent, K(+)-mediated afterhyperpolarization (sAHP) was inhibited by the selective blocker N-trityl-3-pyridinemethanamine (UCL2077), by the β-adrenergic receptor agonist isoproterenol, or by the cholinergic agonist carbachol. Thus we demonstrate that neuromodulators can affect synaptic plasticity by inhibition of the sAHP. These findings shed light on a fundamental question in the field of memory research regarding how environmental and behavioral stimuli influence LTP, thereby contributing to the modulation of memory.
Collapse
Affiliation(s)
- Aleksey V Zaitsev
- Dept. of Physiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | | |
Collapse
|
146
|
Hong I, Kim J, Lee J, Park S, Song B, Kim J, An B, Park K, Lee HW, Lee S, Kim H, Park SH, Eom KD, Lee S, Choi S. Reversible plasticity of fear memory-encoding amygdala synaptic circuits even after fear memory consolidation. PLoS One 2011; 6:e24260. [PMID: 21949700 PMCID: PMC3176280 DOI: 10.1371/journal.pone.0024260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
It is generally believed that after memory consolidation, memory-encoding synaptic circuits are persistently modified and become less plastic. This, however, may hinder the remaining capacity of information storage in a given neural circuit. Here we consider the hypothesis that memory-encoding synaptic circuits still retain reversible plasticity even after memory consolidation. To test this, we employed a protocol of auditory fear conditioning which recruited the vast majority of the thalamic input synaptic circuit to the lateral amygdala (T-LA synaptic circuit; a storage site for fear memory) with fear conditioning-induced synaptic plasticity. Subsequently the fear memory-encoding synaptic circuits were challenged with fear extinction and re-conditioning to determine whether these circuits exhibit reversible plasticity. We found that fear memory-encoding T-LA synaptic circuit exhibited dynamic efficacy changes in tight correlation with fear memory strength even after fear memory consolidation. Initial conditioning or re-conditioning brought T-LA synaptic circuit near the ceiling of their modification range (occluding LTP and enhancing depotentiation in brain slices prepared from conditioned or re-conditioned rats), while extinction reversed this change (reinstating LTP and occluding depotentiation in brain slices prepared from extinguished rats). Consistently, fear conditioning-induced synaptic potentiation at T-LA synapses was functionally reversed by extinction and reinstated by subsequent re-conditioning. These results suggest reversible plasticity of fear memory-encoding circuits even after fear memory consolidation. This reversible plasticity of memory-encoding synapses may be involved in updating the contents of original memory even after memory consolidation.
Collapse
Affiliation(s)
- Ingie Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections, is not known. We found that Wnt-5a acutely and specifically upregulates synaptic NMDAR currents in rat hippocampal slices, facilitating induction of long-term potentiation, a cellular model of learning and memory. This effect requires an increase in postsynaptic Ca(2+) and activation of noncanonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator of the canonical Wnt signaling pathway, has no effect on NMDAR-mediated synaptic transmission. Moreover, endogenous Wnt ligands are necessary to maintain basal NMDAR synaptic transmission, adjusting the threshold for synaptic potentiation. This novel role for Wnt ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development and in the mature organism.
Collapse
|
148
|
Abstract
Pyramidal cells in the neocortex are differentiated into several subgroups based on their extracortical projection targets. However, little is known regarding the relative intracortical connectivity of pyramidal neurons specialized for these specific output channels. We used paired recordings and quantitative morphological analysis to reveal distinct synaptic transmission properties, connection patterns, and morphological differentiation correlated with heterogeneous thalamic input to two different groups of pyramidal cells residing in layer 5 (L5) of rat frontal cortex. Retrograde tracers were used to label two projection subtypes in L5: crossed-corticostriatal (CCS) cells projecting to both sides of the striatum, and corticopontine (CPn) cells projecting to the ipsilateral pons. Although CPn/CPn and CCS/CCS pairs had similar connection probabilities, CPn/CPn pairs exhibited greater reciprocal connectivity, stronger unitary synaptic transmission, and more facilitation of paired-pulse responses. These synaptic characteristics were strongly correlated to the projection subtype of the presynaptic neuron. CPn and CCS cells were further differentiated according to their somatic position (L5a and L5b, the latter denser thalamic afferent fibers) and their dendritic/axonal arborizations. Together, our data demonstrate that the pyramidal projection system is segregated into different output channels according to subcortical target and thalamic input, and that information flow within and between these channels is selectively organized.
Collapse
|
149
|
Wang S, Chen X, Kurada L, Huang Z, Lei S. Activation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability. Cereb Cortex 2011; 22:584-94. [PMID: 21677028 DOI: 10.1093/cercor/bhr131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glutamate interacts with ionotropic and metabotropic glutamate receptors (mGluRs). Whereas the entorhinal cortex (EC) is a principal structure involved in learning and memory, the roles of mGluRs in synaptic transmission in the EC have not been completely determined. Here, we show that activation of group II mGluRs (mGluR II) induced robust depression of glutamatergic transmission in the EC. The mGluR II-induced depression was due to a selective reduction of presynaptic release probability without alterations of the quantal size and the number of release sites. The mechanisms underlying mGluR II-mediated suppression of glutamate release included the inhibition of presynaptic release machinery and the depression of presynaptic P/Q-type Ca(2+) channels. Whereas mGluR II-induced depression required the function of Gα(i/o) proteins, protein kinase A (PKA) pathway was only involved in mGluR II-mediated inhibition of release machinery and thereby partially required for mGluR II-induced inhibition of glutamate release. Presynaptic stimulation at 5 Hz for 10 min also induced depression of glutamatergic transmission via activation of presynaptic mGluR II suggesting an endogenous role for mGluR II in modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
150
|
Gβγ and the C terminus of SNAP-25 are necessary for long-term depression of transmitter release. PLoS One 2011; 6:e20500. [PMID: 21633701 PMCID: PMC3102109 DOI: 10.1371/journal.pone.0020500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/04/2011] [Indexed: 11/19/2022] Open
Abstract
Background Short-term presynaptic inhibition mediated by G protein-coupled receptors involves a direct interaction between G proteins and the vesicle release machinery. Recent studies implicate the C terminus of the vesicle-associated protein SNAP-25 as a molecular binding target of Gβγ that transiently reduces vesicular release. However, it is not known whether SNAP-25 is a target for molecular modifications expressing long-term changes in transmitter release probability. Methodology/Principal Findings This study utilized two-photon laser scanning microscopy for real-time imaging of action potential-evoked [Ca2+] increases, in single Schaffer collateral presynaptic release sites in in vitro hippocampal slices, plus simultaneous recording of Schaffer collateral-evoked synaptic potentials. We used electroporation to infuse small peptides through CA3 cell bodies into presynaptic Schaffer collateral terminals to selectively study the presynaptic effect of scavenging the G-protein Gβγ. We demonstrate here that the C terminus of SNAP-25 is necessary for expression of LTD, but not long-term potentiation (LTP), of synaptic strength. Using type A botulinum toxin (BoNT/A) to enzymatically cleave the 9 amino acid C-terminus of SNAP-25 eliminated the ability of low frequency synaptic stimulation to induce LTD, but not LTP, even if release probability was restored to pre-BoNT/A levels by elevating extracellular [Ca2+]. Presynaptic electroporation infusion of the 14-amino acid C-terminus of SNAP-25 (Ct-SNAP-25), to scavenge Gβγ, reduced both the transient presynaptic inhibition produced by the group II metabotropic glutamate receptor stimulation, and LTD. Furthermore, presynaptic infusion of mSIRK, a second, structurally distinct Gβγ scavenging peptide, also blocked the induction of LTD. While Gβγ binds directly to and inhibit voltage-dependent Ca2+ channels, imaging of presynaptic [Ca2+] with Mg-Green revealed that low-frequency stimulation only transiently reduced presynaptic Ca2+ influx, an effect not altered by infusion of Ct-SNAP-25. Conclusions/Significance The C-terminus of SNAP-25, which links synaptotagmin I to the SNARE complex, is a binding target for Gβγ necessary for both transient transmitter-mediated presynaptic inhibition, and the induction of presynaptic LTD.
Collapse
|