101
|
Sperka T, Geißler KJ, Merkel U, Scholl I, Rubio I, Herrlich P, Morrison HL. Activation of Ras requires the ERM-dependent link of actin to the plasma membrane. PLoS One 2011; 6:e27511. [PMID: 22132106 PMCID: PMC3221661 DOI: 10.1371/journal.pone.0027511] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/18/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) participate in a multitude of signaling pathways, some of them via the small G-protein Ras. An important component in the activation of Ras is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. PRINCIPAL FINDINGS We can now demonstrate that the activation of Ras requires, in addition, the essential participation of ezrin, radixin and/or moesin (ERM), a family of actin-binding proteins, and of actin. Disrupting either the interaction of the ERM proteins with co-receptors, down-regulation of ERM proteins by siRNA, expression of dominant-negative mutants of the ERM proteins or disruption of F-actin, abolishes growth factor-induced Ras activation. Ezrin/actin catalyzes the formation of a multiprotein complex consisting of RTK, co-receptor, Grb2, SOS and Ras. We also identify binding sites for both Ras and SOS on ezrin; mutations of these binding sites destroy the interactions and inhibit Ras activation. Finally, we show that the formation of the ezrin-dependent complex is necessary to enhance the catalytic activity of SOS and thereby Ras activation. CONCLUSIONS Taking these findings together, we propose that the ERM proteins are novel scaffolds at the level of SOS activity control, which is relevant for both normal Ras function and dysfunction known to occur in several human cancers.
Collapse
Affiliation(s)
- Tobias Sperka
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
- Herrlich Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Katja J. Geißler
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ulrike Merkel
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ingmar Scholl
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, Friedrich-Schiller-University, Jena, Germany
| | - Peter Herrlich
- Herrlich Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Helen L. Morrison
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
- * E-mail:
| |
Collapse
|
102
|
Rojas JM, Oliva JL, Santos E. Mammalian son of sevenless Guanine nucleotide exchange factors: old concepts and new perspectives. Genes Cancer 2011; 2:298-305. [PMID: 21779500 DOI: 10.1177/1947601911408078] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Son of Sevenless (Sos) factors were originally discovered 2 decades ago as specialized Ras activators in signaling pathways controlling the process of R7 cell development in the eye of Drosophila melanogaster. The 2 known members of the mammalian Sos family (Sos1 and Sos2) code for ubiquitously expressed, highly homologous (69% overall) proteins involved in coupling signals originated by cell surface receptor tyrosine kinases (RTKs) to downstream, Ras-dependent mitogenic signaling pathways. Mechanistically, the Sos proteins function as enzymatic factors interacting with Ras proteins in response to upstream stimuli to promote guanine nucleotide exchange (GDP/GTP) and subsequent formation of the active Ras-GTP complex. In this review, we summarize current knowledge on structural, regulatory, and functional aspects of the Sos family, focusing on specific aspects of Sos biology such as structure-function relationship, crosstalk with different signaling pathways, and in vivo functional significance as deduced from phenotypic characterization of Sos knockout mice and human genetic syndromes caused by germline hSos1 mutations.
Collapse
Affiliation(s)
- José M Rojas
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | |
Collapse
|
103
|
Yu X, Wang F, Liu H, Adams G, Aikhionbare F, Liu D, Cao X, Fan L, Hu G, Chen Y, Frost A, Partridge E, Ding X, Yao X. ACAP4 protein cooperates with Grb2 protein to orchestrate epidermal growth factor-stimulated integrin β1 recycling in cell migration. J Biol Chem 2011; 286:43735-43747. [PMID: 22027826 DOI: 10.1074/jbc.m111.278770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ARF6 GTPase is an important regulator of membrane trafficking and actin-based cytoskeleton dynamics active at the leading edge of migrating cells. The integrin family heterodimeric transmembrane proteins serve as major receptors for extracellular matrix proteins, which play essential roles in cell adhesion and migration. Our recent proteomic analyses of ARF6 effectors have identified a novel ARF6 GTPase-activating protein, ACAP4, essential for EGF-induced cell migration. However, molecular mechanisms underlying ACAP4-mediated cell migration have remained elusive. Here, we show that ACAP4 regulates integrin β1 dynamics during EGF-stimulated cell migration by interaction with Grb2. Our biochemical study shows that EGF stimulation induces phosphorylation of tyrosine 733, which enables ACAP4 to bind Grb2. This interaction of ACAP4 with Grb2 regulates integrin β1 recycling to the plasma membrane. Importantly, knockdown of ACAP4 by siRNA or overexpression of ACAP4 decreased recycling of integrin β1 to the plasma membrane and reduced integrin-mediated cell migration. Taken together, these results suggest a novel function for ACAP4 in the regulation of cell migration through controlling integrin β1 dynamics.
Collapse
Affiliation(s)
- Xue Yu
- Anhui Key Laboratory of Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Fengsong Wang
- Anhui Key Laboratory of Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China; Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310.
| | - Hongsheng Liu
- Anhui Key Laboratory of Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Gregory Adams
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Felix Aikhionbare
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Dong Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Xi'an 710032, China
| | - Xinwang Cao
- Anhui Key Laboratory of Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, Anhui Medical University, Hefei 230027, China
| | - Libin Fan
- School of Life Sciences, Anhui Medical University, Hefei 230027, China
| | - Guohong Hu
- Key Laboratory for Stem Cell Biology, SIBS-SJTU Institute of Health Sciences, Shanghai 200025, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Xi'an 710032, China
| | - Andra Frost
- Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, Alabama 35294
| | - Edward Partridge
- Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, Alabama 35294
| | - Xia Ding
- School of Graduate Studies, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuebiao Yao
- Anhui Key Laboratory of Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China; Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310.
| |
Collapse
|
104
|
Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Mol Cell Endocrinol 2011; 344:1-24. [PMID: 21782884 DOI: 10.1016/j.mce.2011.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/01/2011] [Indexed: 12/13/2022]
Abstract
Cancer database analysis indicates that prostate cancer is one of the most seen cancers in men meanwhile composing the leading cause of morbidity and mortality among developed countries. Current available therapies are surgery, radiotherapy and androgene ablation for prostate carcinoma. The response rate is as high nearly 90% however, most of these recur or become refractory and androgene independent (AI). Therefore recent studies intensified on molecular factors playing role on development of prostate carcinoma and novel treatment strategies targetting these factors and their receptors. Insulin-like growth factor-I (IGF-I) and its primary receptor insulin-like growth factor receptor-I (IGF-IR) are among these factors. Biologic functions and role in malign progression are primarily achieved via IGF-IR which is a type 2 tyrosine kinase receptor. IGF-IR plays an important role in mitogenesis, angiogenesis, transformation, apoptosis and cell motility. It also generates intensive proliferative signals leading to carcinogenesis in prostate tissue. So IGF-IR and its associated signalling system have provoked considerable interest over recent years as a novel therapeutic target in cancer. In this paper it is aimed to sum up the lately published literature searching the relation of IGF-IR and prostate cancer in terms of incidence, pathologic features, and prognosis. This is followed by a discussion of the different possible targets within the IGF-1R system, and drugs developed to interact at each target. A systems-based approach is then used to review the in vitro and in vivo data in the published literature of the following compounds targeting IGF-1R components using specific examples: growth hormone releasing hormone antagonists (e.g. JV-1-38), growth hormone receptor antagonists (e.g. pegvisomant), IGF-1R antibodies (e.g. CP-751,871, AVE1642/EM164, IMC-A12, SCH-717454, BIIB022, AMG 479, MK-0646/h7C10), and IGF-1R tyrosine kinase inhibitors (e.g. BMS-536942, BMS-554417, NVP-AEW541, NVP-ADW742, AG1024, potent quinolinyl-derived imidazo (1,5-a)pyrazine PQIP, picropodophyllin PPP, nordihydroguaiaretic acid Insm-18/NDGA). And the other end point is to yield an overview on the recent progress about usage of this receptor as a novel anticancer agent of targeted therapies in treatment of prostate carcinoma.
Collapse
Affiliation(s)
- Emine Elif Ozkan
- OSM Middle East Health Center, Department of Radiation Oncology, Sanliurfa 63000, Turkey.
| |
Collapse
|
105
|
Sacco E, Farina M, Greco C, Lamperti S, Busti S, Degioia L, Alberghina L, Liberati D, Vanoni M. Regulation of hSos1 activity is a system-level property generated by its multi-domain structure. Biotechnol Adv 2011; 30:154-68. [PMID: 21851854 DOI: 10.1016/j.biotechadv.2011.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/22/2022]
Abstract
The multi-domain protein hSos1 plays a major role in cell growth and differentiation through its Ras-specific guanine nucleotide exchange domain whose complex regulation involves intra-molecular, inter-domain rearrangements. We present a stochastic mathematical model describing intra-molecular regulation of hSos1 activity. The population macroscopic effect is reproduced through a Monte-Carlo approach. Key model parameters have been experimentally determined by BIAcore analysis. Complementation experiments of a Saccharomyces cerevisiae cdc25(ts) strain with Sos deletion mutants provided a comprehensive data set for estimation of unknown parameters and model validation. The model is robust against parameter alteration and describes both the behavior of Sos deletion mutants and modulation of activity of the full length molecule under physiological conditions. By incorporating the calculated effect of amino acid changes at an inter-domain interface, the behavior of a mutant correlating with a developmental syndrome could be simulated, further validating the model. The activation state of Ras-specific guanine nucleotide exchange domain of hSos1 arises as an "emergent property" of its multi-domain structure that allows multi-level integration of a complex network of intra- and inter-molecular signals.
Collapse
Affiliation(s)
- Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms. J Mol Recognit 2011; 24:585-96. [PMID: 21472810 PMCID: PMC3116947 DOI: 10.1002/jmr.1080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 12/29/2022]
Abstract
A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.
Collapse
Affiliation(s)
- Caleb B. McDonald
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kenneth L. Seldeen
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Brian J. Deegan
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Vikas Bhat
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Amjad Farooq
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
107
|
Zhou AY, Ichaso N, Adamarek A, Zila V, Forstova J, Dibb NJ, Dilworth SM. Polyomavirus middle T-antigen is a transmembrane protein that binds signaling proteins in discrete subcellular membrane sites. J Virol 2011; 85:3046-54. [PMID: 21228238 PMCID: PMC3067864 DOI: 10.1128/jvi.02209-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/03/2011] [Indexed: 01/28/2023] Open
Abstract
Murine polyomavirus middle T-antigen (MT) induces tumors by mimicking an activated growth factor receptor. An essential component of this action is a 22-amino-acid hydrophobic region close to the C terminus which locates MT to cell membranes. Here, we demonstrate that this sequence is a transmembrane domain (TMD) by showing that a hemagglutinin (HA) tag added to the MT C terminus is exposed on the outside of the cells, with the N terminus inside. To determine whether this MT TMD is inserted into the endoplasmic reticulum (ER) membrane, we added the ER retention signal KDEL to the MT C terminus (MTKDEL). This mutant protein locates only in the ER, demonstrating that MT does insert into membranes solely at this location. In addition, this ER-located MT failed to transform. Examination of the binding proteins associated with the MTKDEL protein demonstrated that it associates with PP2A and c-Src but fails to interact with ShcA, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLC-γ1), despite being tyrosine phosphorylated. Additional mutant and antibody studies show that MT binding to PP2A is probably required for MT to efficiently exit the ER and migrate to the plasma membrane though the TMD also plays a role in this relocation. Overall, these data, together with previous publications, illustrate that MT associates with signaling proteins at different sites in its maturation pathway. MT binds to PP2A in the cytoplasm, to c-Src at the endoplasmic reticulum, and to ShcA, PI3K, and PLC-γ1 at subsequent locations en route to the plasma membrane.
Collapse
Affiliation(s)
- Alice Y. Zhou
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Natalia Ichaso
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Adam Adamarek
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Vojtech Zila
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Jitka Forstova
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Nicholas J. Dibb
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Stephen M. Dilworth
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|
108
|
Kumar S, Kumar S, Rajendran M, Alam SM, Lin FF, Cheng PW, Lin MF. Steroids up-regulate p66Shc longevity protein in growth regulation by inhibiting its ubiquitination. PLoS One 2011; 6:e15942. [PMID: 21264241 PMCID: PMC3021521 DOI: 10.1371/journal.pone.0015942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background p66Shc, an isoform of Shc adaptor proteins, mediates diverse signals, including cellular stress and mouse longevity. p66Shc protein level is elevated in several carcinomas and steroid-treated human cancer cells. Several lines of evidence indicate that p66Shc plays a critical role in steroid-related carcinogenesis, and steroids play a role in its elevated levels in those cells without known mechanism. Methods and Findings In this study, we investigated the molecular mechanism by which steroid hormones up-regulate p66Shc protein level. In steroid-treated human prostate and ovarian cancer cells, p66Shc protein levels were elevated, correlating with increased cell proliferation. These steroid effects on p66Shc protein and cell growth were competed out by the respective antagonist. Further, actinomycin D and cyclohexamide could only partially block the elevated p66Shc protein level by steroids. Treatment with proteasomal inhibitors, but not lysosomal protease inhibitor, resulted in elevated p66Shc protein levels, even higher than that by steroids. Using prostate cancer cells as a model, immunoprecipitation revealed that androgens and proteasomal inhibitors reduce the ubiquitinated p66Shc proteins. Conclusions The data collectively indicate that functional steroid receptors are required in steroid up-regulation of p66Shc protein levels in prostate and ovarian cancer cells, correlating with cell proliferation. In these steroid-treated cells, elevated p66Shc protein level is apparently in part due to inhibiting its ubiquitination. The results may lead to an impact on advanced cancer therapy via the regulation of p66Shc protein by up-regulating its ubiquitination pathway.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Satyendra Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mythilypriya Rajendran
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Syed Mahfuzul Alam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fen-Fen Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
109
|
Nelson JD, LeBoeuf RC, Bomsztyk K. Direct recruitment of insulin receptor and ERK signaling cascade to insulin-inducible gene loci. Diabetes 2011; 60:127-37. [PMID: 20929976 PMCID: PMC3012164 DOI: 10.2337/db09-1806] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Insulin receptor (IR) translocates to the nucleus, but its recruitment to gene loci has not been demonstrated. Here, we tested the hypothesis that IR and its downstream mitogenic transducers are corecruited to two prototypic insulin-inducible genes: early growth response 1 (egr-1), involved in mitogenic response, and glucokinase (Gck), encoding a key metabolic enzyme. RESEARCH DESIGN AND METHODS We used RNA and chromatin from insulin-treated rat hepatic tumor cell line expressing human insulin receptor (HTC-IR) and livers from lean and insulin-resistant ob/ob glucose-fed mice in quantitative RT-PCR and chromatin immunoprecipitation studies to determine gene expression levels and associated recruitment of RNA polymerase II (Pol II), insulin receptor, and cognate signaling proteins to gene loci, respectively. RESULTS Insulin-induced egr-1 mRNA in HTC-IR cells was associated with corecruitment of IR signaling cascade (IR, SOS, Grb2, B-Raf, MEK, and ERK) to this gene. Recruitment profiles of phosphorylated IR, B-Raf, MEK, and Erk along egr-1 transcribed region were similar to those of elongating Pol II. Glucose-feeding increased Gck mRNA expression in livers of lean but not ob/ob mice. In lean mice, there was glucose feeding-induced recruitment of IR and its transducers to Gck gene synchronized with elongating Pol II. In sharp contrast, in glucose-fed ob/ob mice, the Gck recruitment patterns of active MEK/Erk, IR, and Pol II were asynchronous. CONCLUSIONS IR and its signal transducers recruited to genes coupled to elongating Pol II may play a role in maintaining productive mRNA synthesis of target genes. These studies suggest a possibility that impaired Pol II processivity along genes bearing aberrant levels of IR/signal transducers is a previously unrecognized facet of insulin resistance.
Collapse
Affiliation(s)
- Joel D. Nelson
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington
- UW Medicine Lake Union, University of Washington, Seattle, Washington
| | - Renée C. LeBoeuf
- UW Medicine Lake Union, University of Washington, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington
| | - Karol Bomsztyk
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington
- UW Medicine Lake Union, University of Washington, Seattle, Washington
- Corresponding author: Karol Bomsztyk,
| |
Collapse
|
110
|
Abstract
Ras GTPases are best known for their ability to serve as molecular switches regulating cell growth, differentiation and survival. Gene mutations that result in expression of constitutively active forms of Ras have been linked to oncogenesis in animal models and humans. However, over the past two decades, evidence has gradually accumulated to support a paradoxical role for Ras proteins in the initiation of cell death pathways. In this review we survey the literature pointing to the ability of activated Ras to promote cell death under conditions where cancer cells encounter apoptotic stimuli or Ras is ectopically expressed. In some of these cases Ras acts through known effectors and well defined apoptotic death pathways. However, in other cases it appears that Ras operates by triggering novel non-apoptotic death mechanisms that are just beginning to be characterized. Understanding these mechanisms and the factors that go into changing the nature of Ras signaling from pro-survival to pro-death could set the stage for development of novel therapeutic approaches aimed at manipulating pro-death Ras signaling pathways in cancer.
Collapse
Affiliation(s)
- Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | |
Collapse
|
111
|
Jones KR, Whitmire JM, Merrell DS. A Tale of Two Toxins: Helicobacter Pylori CagA and VacA Modulate Host Pathways that Impact Disease. Front Microbiol 2010; 1:115. [PMID: 21687723 PMCID: PMC3109773 DOI: 10.3389/fmicb.2010.00115] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/27/2010] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a pathogenic bacterium that colonizes more than 50% of the world's population, which leads to a tremendous medical burden. H. pylori infection is associated with such varied diseases as gastritis, peptic ulcers, and two forms of gastric cancer: gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. This association represents a novel paradigm for cancer development; H. pylori is currently the only bacterium to be recognized as a carcinogen. Therefore, a significant amount of research has been conducted to identify the bacterial factors and the deregulated host cell pathways that are responsible for the progression to more severe disease states. Two of the virulence factors that have been implicated in this process are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA), which are cytotoxins that are injected and secreted by H. pylori, respectively. Both of these virulence factors are polymorphic and affect a multitude of host cellular pathways. These combined facts could easily contribute to differences in disease severity across the population as various CagA and VacA alleles differentially target some pathways. Herein we highlight the diverse types of cellular pathways and processes targeted by these important toxins.
Collapse
Affiliation(s)
- Kathleen R Jones
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | | | | |
Collapse
|
112
|
Shen X, Xi G, Radhakrishnan Y, Clemmons DR. Recruitment of Pyk2 to SHPS-1 signaling complex is required for IGF-I-dependent mitogenic signaling in vascular smooth muscle cells. Cell Mol Life Sci 2010; 67:3893-903. [PMID: 20521079 PMCID: PMC11115943 DOI: 10.1007/s00018-010-0411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/30/2010] [Accepted: 05/17/2010] [Indexed: 10/25/2022]
Abstract
In vascular smooth muscle cells, IGF-I stimulates SHPS-1/SHP2/Src complex formation which is required for IGF-I-stimulated cell proliferation. Using SHP2/Src silencing and a Pyk2/Y402F mutant, we showed that Pyk2 was also recruited to the SHPS-1 complex. Pyk2 recruitment to SHPS-1 is mediated via the interaction of Pyk2 Tyr402 and the Src in response to IGF-I. Following Src/Pyk2 association, Src phosphorylates Pyk2 on Tyr881 providing a binding site for Grb2. Cells expressing Pyk2/Y881F showed decreased Grb2 recruitment to SHPS-1 and impaired Shc/Grb2 association. This change led to reduced Erk1/2 (MAP kinase) activation and cell proliferation in response to IGF-I. Our results show that, following its recruitment to the SHPS-1 signaling complex, Pyk2 localizes Grb2 in close proximity to Shc thereby facilitating Shc/Grb2 association which leads to Erk1/2 activation in response to IGF-I. Thus, Pyk2 recruitment to SHPS-1 plays an important role in regulating the IGF-I-stimulated mitogenic response.
Collapse
Affiliation(s)
- Xinchun Shen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Gang Xi
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Yashwanth Radhakrishnan
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - David R. Clemmons
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
- Division of Endocrinology, University of North Carolina at Chapel Hill, CB# 7170, 8024 Burnett-Womack, Chapel Hill, NC 27599-7170 USA
| |
Collapse
|
113
|
Bhanot H, Young AM, Overmeyer JH, Maltese WA. Induction of nonapoptotic cell death by activated Ras requires inverse regulation of Rac1 and Arf6. Mol Cancer Res 2010; 8:1358-74. [PMID: 20713492 DOI: 10.1158/1541-7786.mcr-10-0090] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methuosis is a unique form of nonapoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to which graded expression of active H-Ras(G12V) triggers cytoplasmic vacuolization correlates with the amount of endogenous Rac1 in the active GTP state. Blocking Rac1 activation with the specific Rac inhibitor, EHT 1864, or coexpression of dominant-negative Rac1(T17N), prevents the accumulation of vacuoles induced by H-Ras(G12V). Coincident with Rac1 activation, H-Ras(G12V) causes a decrease in the amount of active Arf6, a GTPase that functions in the recycling of clathrin-independent endosomes. The effect of H-Ras(G12V) on Arf6 is blocked by EHT 1864, indicating that the decrease in Arf6-GTP is directly linked to the activation of Rac1. Constitutively active Rac1(G12V) interacts with GIT1 in immunoprecipitation assays. Ablation of GIT1 by short hairpin RNA prevents the decrease in active Arf6, inhibits vacuolization, and prevents loss of cell viability in cells expressing Rac1(G12V). Together, the results suggest that perturbations of endosome morphology associated with Ras-induced methuosis are due to downstream activation of Rac1 combined with reciprocal inactivation of Arf6. The latter seems to be mediated through Rac1 stimulation of GIT1. Further insights into this pathway could suggest opportunities for the induction of methuosis in cancers that are resistant to apoptotic cell death.
Collapse
Affiliation(s)
- Haymanti Bhanot
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
114
|
Gomez-Cambronero J. New concepts in phospholipase D signaling in inflammation and cancer. ScientificWorldJournal 2010; 10:1356-69. [PMID: 20623096 PMCID: PMC3070604 DOI: 10.1100/tsw.2010.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/16/2010] [Accepted: 05/18/2010] [Indexed: 01/01/2023] Open
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA) and choline. PLD regulation in cells falls into two major signaling categories. One is via growth factors/mitogens, such as EGF, PDGF, insulin, and serum, and implicates tyrosine kinases; the other is via the small GTPase proteins Arf and Rho. We summarize here our lab's and other groups' contributions to those pathways and introduce several novel concepts. For the mitogen-induced signaling, new data indicate that an increase in cell transformation in PLD2-overexpressing cells is due to an increase of de novo DNA synthesis induced by PLD2, with the specific tyrosine residues involved in those functions being Y179 and Y511. Recent research has also implicated Grb2 in tyrosine phosphorylation of PLD2 that also involves Sos and the ERK pathway. The targets of phosphorylation within the PLD2 molecule that are key to its regulation have recently been precisely mapped. They are Y296, Y415, and Y511 and the responsible kinases are, respectively, EGFR, JAK3, and Src. Y296 is an inhibitory site and its phosphorylation explains the low PLD2 activity that exists in low-invasive MCF-7 breast cancer cells. Advances along the small GTPase front have implicated cell migration, as PLD1 and PLD2 cause an increase in chemotaxis of leukocytes and inflammation. PA is necessary for full chemotaxis. PA enriches the localization of the atypical guanine exchange factor (GEF), DOCK2, at the leading edge of polarized neutrophils. Further, extracellular PA serves as a neutrophil chemoattractant; PA enters the cell and activates the mTOR/S6K pathway (specifically, S6K). A clear connection between PLD with the mTOR/S6K pathway has been established, in that PA binds to mTOR and also binds to S6K independently of mTOR. Lastly, there is evidence in the upstream direction of cell signaling that mTOR and S6K keep PLD2 gene expression function down-regulated in basal conditions. In summary, the involvement of PLD2 in cell signaling continues to expand geometrically. It involves gene transcription, mitogenic and cell migration effects as seen in normal growth, tumor development, and inflammation.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, OH, USA.
| |
Collapse
|
115
|
Huang PH, Miraldi ER, Xu AM, Kundukulam VA, Del Rosario AM, Flynn RA, Cavenee WK, Furnari FB, White FM. Phosphotyrosine signaling analysis of site-specific mutations on EGFRvIII identifies determinants governing glioblastoma cell growth. MOLECULAR BIOSYSTEMS 2010; 6:1227-37. [PMID: 20461251 PMCID: PMC3291333 DOI: 10.1039/c001196g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To evaluate the role of individual EGFR phosphorylation sites in activating components of the cellular signaling network we have performed a mass spectrometry-based analysis of the phosphotyrosine network downstream of site-specific EGFRvIII mutants, enabling quantification of network-level effects of site-specific point mutations. Mutation at Y845, Y1068 or Y1148 resulted in diminished receptor phosphorylation, while mutation at Y1173 led to increased phosphorylation on multiple EGFRvIII residues. Altered phosphorylation at the receptor was recapitulated in downstream signaling network activation levels, with Y1173F mutation leading to increased phosphorylation throughout the network. Computational modeling of GBM cell growth as a function of network phosphorylation levels highlights the Erk pathway as crucial for regulating EGFRvIII-driven U87MG GBM cell behavior, with the unexpected finding that Erk1/2 is negatively correlated to GBM cell growth. Genetic manipulation of this pathway supports the model, demonstrating that EGFRvIII-expressing U87MG GBM cells are sensitive to Erk activation levels. Additionally, we developed a model describing glioblastoma cell growth based on a reduced set of phosphoproteins, which represent potential candidates for future development as therapeutic targets for EGFRvIII-positive glioblastoma patients.
Collapse
Affiliation(s)
- Paul H. Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emily R. Miraldi
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alexander M. Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Vibin A. Kundukulam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Amanda M. Del Rosario
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ryan A. Flynn
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, San Diego Branch and Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, CA 92093-0660
| | - Frank B. Furnari
- Ludwig Institute for Cancer Research, San Diego Branch and Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, CA 92093-0660
| | - Forest M. White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
116
|
Abstract
The growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed and evolutionary conserved adapter protein possessing a plethora of described interaction partners for the regulation of signal transduction. In B lymphocytes, the Grb2-mediated scaffolding function controls the assembly and subcellular targeting of activating as well as inhibitory signalosomes in response to ligation of the antigen receptor. Also, integration of simultaneous signals from B-cell coreceptors that amplify or attenuate antigen receptor signal output relies on Grb2. Hence, Grb2 is an essential signal integrator. The key question remains, however, of how pathway specificity can be maintained during signal homeostasis critically required for the balance between immune cell activation and tolerance induction. Here, we summarize the molecular network of Grb2 in B cells and introduce a proteomic approach to elucidate the interactome of Grb2 in vivo.
Collapse
Affiliation(s)
- Konstantin Neumann
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
117
|
Epling-Burnette P, Loughran TP. Suppression of farnesyltransferase activity in acute myeloid leukemia and myelodysplastic syndrome: current understanding and recommended use of tipifarnib. Expert Opin Investig Drugs 2010; 19:689-98. [PMID: 20402600 PMCID: PMC3252817 DOI: 10.1517/13543781003801076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) incidence in the United States increases with age. Given the progressive ageing of the general population, incidence of these diseases is likely to continue to rise in the future. There is an acute need for therapeutic developments because of the poor prognosis of these diseases. Since the knowledge of molecular genetics in AML and MDS has expanded recently, targeted therapeutics should offer an exciting new frontier for advancement. Of all the targeted inhibitors developed, tipifarnib represents one of the few compounds with some activity as a single agent. AREAS COVERED IN THIS REVIEW Described in this review are the molecular targets of tipifarnib, safety and tolerability of the drug, chemistry, and clinical efficacy in AML. WHAT THE READER WILL GAIN The reader will gain a thorough understanding of tipifarnib as it relates to the current and future use of the drug in AML. TAKE HOME MESSAGE The future of tipifarnib, along with other molecularly-targeted drugs, lies in achieving a better understanding of leukemia biology and harnessing the activity of this agent using predictive biomarkers for improved patient selection.
Collapse
Affiliation(s)
| | - Thomas P. Loughran
- Penn State Hershey Cancer Institute Hershey, PA, 17033, USA (717) 531-4034
| |
Collapse
|
118
|
Yasui H, Ito N, Yamamori T, Nakamura H, Okano J, Asanuma T, Nakajima T, Kuwabara M, Inanami O. Induction of neurite outgrowth by α-phenyl-N-tert-butylnitrone through nitric oxide release and Ras-ERK pathway in PC12 cells. Free Radic Res 2010; 44:645-54. [DOI: 10.3109/10715761003692537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
119
|
Gureasko J, Kuchment O, Makino DL, Sondermann H, Bar-Sagi D, Kuriyan J. Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless. Proc Natl Acad Sci U S A 2010; 107:3430-5. [PMID: 20133692 PMCID: PMC2816639 DOI: 10.1073/pnas.0913915107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Membrane-bound Ras is activated by translocation of the Son of Sevenless (SOS) protein to the plasma membrane. SOS is inactive unless Ras is bound to an allosteric site on SOS, and the Dbl homology (DH) and Pleckstrin homology (PH) domains of SOS (the DH-PH unit) block allosteric Ras binding. We showed previously that the activity of SOS at the membrane increases with the density of PIP(2) and the local concentration of Ras-GTP, which synergize to release the DH-PH unit. Here we present a new crystal structure of SOS that contains the N-terminal histone domain in addition to the DH-PH unit and the catalytic unit (SOS(HDFC), residues 1-1049). The structure reveals that the histone domain plays a dual role in occluding the allosteric site and in stabilizing the autoinhibitory conformation of the DH-PH unit. Additional insight is provided by kinetic analysis of the activation of membrane-bound Ras by mutant forms of SOS that contain mutations in the histone and the PH domains (E108K, C441Y, and E433K) that are associated with Noonan syndrome, a disease caused by hyperactive Ras signaling. Our results indicate that the histone domain and the DH-PH unit are conformationally coupled, and that the simultaneous engagement of the membrane by a PH domain PIP(2)-binding interaction and electrostatic interactions between a conserved positively charged patch on the histone domain and the negatively charged membrane coincides with a productive reorientation of SOS at the membrane and increased accessibility of both Ras binding sites on SOS.
Collapse
Affiliation(s)
- Jodi Gureasko
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, CA 94720
| | - Olga Kuchment
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, CA 94720
| | - Debora Lika Makino
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, CA 94720
| | - Holger Sondermann
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, CA 94720
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016; and
| | - John Kuriyan
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
120
|
Ahmed Z, George R, Lin CC, Suen KM, Levitt JA, Suhling K, Ladbury JE. Direct binding of Grb2 SH3 domain to FGFR2 regulates SHP2 function. Cell Signal 2010; 22:23-33. [DOI: 10.1016/j.cellsig.2009.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/21/2009] [Accepted: 08/27/2009] [Indexed: 01/08/2023]
|
121
|
Vikram A, Jena GB, Ramarao P. Increased cell proliferation and contractility of prostate in insulin resistant rats: linking hyperinsulinemia with benign prostate hyperplasia. Prostate 2010; 70:79-89. [PMID: 19790233 DOI: 10.1002/pros.21041] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Obesity, dyslipidemia, Hyperinsulinemia, and insulin resistance (IR) are key features of metabolic syndrome and are considered as risk factors for benign prostatic hyperplasia (BPH) as well as type 2 diabetes. The present study was aimed to determine whether or not IR associated hyperinsulinemia contributes to the BPH. METHODS Sprague-Dawley rats (9 weeks) were used in the study. Rats were kept on high fat diet (HFD) for the induction of hyperinsulinemia while hypoinsulinemia was induced by streptozotocin. Effect of HFD feeding on the testosterone-induced prostatic growth was evaluated. Pioglitazone (PG, 20 mg/kg) was used for the reversal of compensatory hyperinsulinemia and to examine the subsequent effect on the prostatic growth. RESULTS Prostatic enlargement was observed in the HFD-fed rats. Significant increase in the cell proliferation markers confirmed the occurrence of cellular hyperplasia in the prostate of hyperinsulinemic rat. Enhanced alpha-adrenoceptor mediated contraction in the prostate of HFD-fed rats indicates augmented contractility of the gland. Higher level of phosphorylated-ERK suggests enhanced MEK/ERK signaling. HFD feeding has not led to change in the plasma testosterone level. However, testosterone treatment further augmented the prostatic growth in HFD-fed rats. PG treatment led to improved insulin sensitivity, decreased plasma insulin level and prostate weight, indicating the role of compensatory hyperinsulinemia in the prostate growth. CONCLUSIONS The present investigation reports that HFD-feeding induced hyperinsulinemic condition leads to increased cellular proliferation, enhanced alpha-adrenoceptor mediated contraction, and enlargement of the prostate in rats.
Collapse
Affiliation(s)
- A Vikram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | | | | |
Collapse
|
122
|
McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. Arch Biochem Biophys 2009; 494:216-25. [PMID: 20005866 DOI: 10.1016/j.abb.2009.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 11/28/2022]
Abstract
Allostery has evolved as a form of local communication between interacting protein partners allowing them to quickly sense changes in their immediate vicinity in response to external cues. Herein, using isothermal titration calorimetry (ITC) in conjunction with circular dichroism (CD) and macromolecular modeling (MM), we show that the binding of Grb2 adaptor--a key signaling molecule involved in the activation of Ras GTPase--to its downstream partners Sos1 guanine nucleotide exchange factor and Gab1 docker is under tight allosteric regulation. Specifically, our findings reveal that the binding of one molecule of Sos1 to the nSH3 domain allosterically induces a conformational change within Grb2 such that the loading of a second molecule of Sos1 onto the cSH3 domain is blocked and, in so doing, allows Gab1 access to the cSH3 domain in an exclusively non-competitive manner to generate the Sos1-Grb2-Gab1 ternary signaling complex.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
123
|
Henkels KM, Short S, Peng HJ, Di Fulvio M, Gomez-Cambronero J. PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2009; 389:224-8. [PMID: 19715678 DOI: 10.1016/j.bbrc.2009.08.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022]
Abstract
Phospholipase D2 (PLD2) overexpression in mammalian cells results in cell transformation. We have hypothesized that this is due to an increase of de novo DNA synthesis. We show here that overexpression of PLD2-WT leads to an increased DNA synthesis, as measured by the expression levels of the proliferation markers PCNA, p27(KIP1) and phospho-histone-3. The enhancing effect was even higher with phosphorylation-deficient PLD2-Y179F and PLD2-Y511F mutants. The mechanism for this did not involve the enzymatic activity of the lipase, but, rather, the presence of the protein tyrosine phosphatase CD45, as silencing with siRNA for CD45 abrogated the effect. The two Y-->F mutants had in common a YxN consensus site that, in the phosphorylated counterparts, could be recognized by SH2-bearing proteins, such as Grb2. Even though Y179F and Y511F cannot bind Grb2, they could still find other protein partners, one of which, we have reasoned, could be CD45 itself. Affinity purified PLD2 is indeed activated by Grb2 and deactivated by CD45 in vitro. We concluded that phosphorylated PLD2, aided by Grb2, mediates lipase activity, whereas dephosphorylated PLD2 mediates an induction of cell proliferation, and the specific residues involved in this newly discovered regulation of PLD2 are Y(179) and Y(511).
Collapse
Affiliation(s)
- Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
124
|
Cell migration is regulated by platelet-derived growth factor receptor endocytosis. Mol Cell Biol 2009; 29:4508-18. [PMID: 19528233 DOI: 10.1128/mcb.00015-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration requires spatial and temporal processes that detect and transfer extracellular stimuli into intracellular signals. The platelet-derived growth factor (PDGF) receptor is a cell surface receptor on fibroblasts that regulates proliferation and chemotaxis in response to PDGF. How the PDGF signal is transmitted accurately through the receptor into cells is an unresolved question. Here, we report a new intracellular signaling pathway by which DOCK4, a Rac1 guanine exchange factor, and Dynamin regulate cell migration by PDGF receptor endocytosis. We showed by a series of biochemical and microscopy techniques that Grb2 serves as an adaptor protein in the formation of a ternary complex between the PDGF receptor, DOCK4, and Dynamin, which is formed at the leading edge of cells. We found that this ternary complex regulates PDGF-dependent cell migration by promoting PDGF receptor endocytosis and Rac1 activation at the cell membrane. This study revealed a new mechanism by which cell migration is regulated by PDGF receptor endocytosis.
Collapse
|
125
|
Diez FR, Garrido AA, Sharma A, Luke CT, Stone JC, Dower NA, Cline JM, Lorenzo PS. RasGRP1 transgenic mice develop cutaneous squamous cell carcinomas in response to skin wounding: potential role of granulocyte colony-stimulating factor. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:392-9. [PMID: 19497993 DOI: 10.2353/ajpath.2009.090036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Models of epidermal carcinogenesis have demonstrated that Ras is a critical molecule involved in tumor initiation and progression. Previously, we have shown that RasGRP1 increases the susceptibility of mice to skin tumorigenesis when overexpressed in the epidermis by a transgenic approach, related to its ability to activate Ras. Moreover, RasGRP1 transgenic mice develop spontaneous papillomas and cutaneous squamous cell carcinomas, some of which appear to originate in sites of injury, suggesting that RasGRP1 may be responding to signals generated during the wound-healing process. In this study, we examined the response of the RasGRP1 transgenic animals to full-thickness incision wounding of the skin, and demonstrated that they respond by developing tumors along the wounded site. The tumors did not present mutations in the H-ras gene, but Rasgrp1 transgene dosage correlated with tumor susceptibility and size. Analysis of serum cytokines showed increased levels of granulocyte colony-stimulating factor in transgenic animals after wounding. Furthermore, in vitro experiments with primary keratinocytes showed that granulocyte colony-stimulating factor stimulated Ras activation, although RasGRP1 was dispensable for this effect. Since granulocyte colony-stimulating factor has been recently associated with proliferation of skin cancer cells, our results may help in the elucidation of pathways that activate Ras in the epidermis during tumorigenesis in the absence of oncogenic ras mutations.
Collapse
Affiliation(s)
- Federico R Diez
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
McDonald CB, Seldeen KL, Deegan BJ, Farooq A. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner. Biochemistry 2009; 48:4074-85. [PMID: 19323566 PMCID: PMC2710136 DOI: 10.1021/bi802291y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXpsiPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXpsiPXR motifs, designated S1, S2, S3, and S4, the cSH3 domain can only do so at the S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXpsiPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXpsiPXR motifs at S2, S3, and S4 sites, the PXpsiPXR motif at the S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of the cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of the nSH3 domain to the S1 site, but their role is not critical for the recognition of S2, S3, and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXpsiPXR motif at the S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXpsiPXR motif and flanking arginine residues at the S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery.
Collapse
Affiliation(s)
- Caleb B. McDonald
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kenneth L. Seldeen
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Brian J. Deegan
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Amjad Farooq
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
127
|
Woodcock SA, Rooney C, Liontos M, Connolly Y, Zoumpourlis V, Whetton AD, Gorgoulis VG, Malliri A. SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1. Mol Cell 2009; 33:639-53. [PMID: 19285946 DOI: 10.1016/j.molcel.2009.02.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 08/06/2008] [Accepted: 02/16/2009] [Indexed: 11/19/2022]
Abstract
The Rac activator Tiam1 is required for adherens junction (AJ) maintenance, and its depletion results in AJ disassembly. Conversely, the oncoprotein Src potently induces AJ disassembly and epithelial-mesenchymal transition (EMT). Here, we show that Tiam1 is phosphorylated on Y384 by Src. This occurs predominantly at AJs, is required for Src-induced AJ disassembly and cell migration, and creates a docking site on Tiam1 for Grb2. We find that Tiam1 is associated with ERK. Following recruitment of the Grb2-Sos1 complex, ERK becomes activated and triggers the localized degradation of Tiam1 at AJs, likely involving calpain proteases. Furthermore, we demonstrate that, in human tumors, Y384 phosphorylation positively correlates with Src activity, and total Tiam1 levels are inversely correlated. Thus, our data implicate Tiam1 phosphorylation and consequent degradation in Src-mediated EMT and resultant cell motility and establish a paradigm for regulating local concentrations of Rho-GEFs.
Collapse
Affiliation(s)
- Simon A Woodcock
- Cell Signalling Group, Cancer Research UK Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Endothelial cells, which are located at the interface between the blood and the vessel wall, respond dynamically to a variety of stimuli initiating signaling cascades that regulate cardiovascular development, physiology and pathology. These inputs include soluble factors that bind to their receptors, integrin-matrix interactions, cell-cell contacts and mechanical forces due to the flowing blood. While these stimuli can mediate unique downstream signals, it is well-accepted that signaling pathways are highly interwoven into complex signaling networks with several levels of cross-talk, integration and coordination. Recent studies suggest that several signaling networks coalesce at the adaptor protein Shc.
Collapse
Affiliation(s)
- Daniel Timothy Sweet
- Department of Cell and Molecular Physiology and Program in Genetics and Molecular Biology, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
129
|
Ogura K, Shiga T, Yokochi M, Yuzawa S, Burke TR, Inagaki F. Solution structure of the Grb2 SH2 domain complexed with a high-affinity inhibitor. JOURNAL OF BIOMOLECULAR NMR 2008; 42:197-207. [PMID: 18830565 PMCID: PMC3719385 DOI: 10.1007/s10858-008-9272-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/26/2008] [Indexed: 05/21/2023]
Abstract
The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N12 W6, Sapporo, 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Shibata T, Nakahara H, Kita N, Matsubara Y, Han C, Morimitsu Y, Iwamoto N, Kumagai Y, Nishida M, Kurose H, Aoki N, Ojika M, Uchida K. A food-derived synergist of NGF signaling: identification of protein tyrosine phosphatase 1B as a key regulator of NGF receptor-initiated signal transduction. J Neurochem 2008; 107:1248-60. [PMID: 18796006 DOI: 10.1111/j.1471-4159.2008.05686.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neurotrophins, such as the nerve growth factor (NGF), play an essential role in the growth, development, survival and functional maintenance of neurons in the central and peripheral systems. They also prevent neuronal cell death under various stressful conditions, such as ischemia and neurodegenerative disorders. NGF induces cell differentiation and neurite outgrowth by binding with and activating the NGF receptor tyrosine kinase followed by activation of a variety of signaling cascades. We have investigated the NGF-dependent neuritogenesis enhancer potential of a food-derived small molecule contained in Brassica vegetables and identified the protein tyrosine phosphatase (PTP) 1B as a key regulator of the NGF receptor-initiated signal transduction. Based on an extensive screening of Brassica vegetable extracts for the neuritogenic-promoting activity in the rat pheochromocytoma cell line PC12, we found the Japanese horseradish, wasabi (Wasabia japonica, syn. Eutrema wasabi), as the richest source and identified 6-methylsulfinylhexyl isothiocyanate (6-HITC), an analogue of sulforaphane isolated from broccoli, as one of the major neuritogenic enhancers in the wasabi. 6-HITC strongly enhanced the neurite outgrowth and neurofilament expression elicited by a low-concentration of NGF that alone was insufficient to induce neuronal differentiation. 6-HITC also facilitated the sustained-phosphorylation of the extracellular signal-regulated kinase and the autophosphorylation of the NGF receptor TrkA. It was found that PTP1B act as a phosphatase capable of dephosphorylating Tyr-490 of TrkA and was inactivated by 6-HITC in a redox-dependent manner. The identification of PTP1B as a regulator of NGF signaling may provide new clues about the chemoprotective potential of food components, such as isothiocyanates.
Collapse
Affiliation(s)
- Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Conzelmann H, Fey D, Gilles ED. Exact model reduction of combinatorial reaction networks. BMC SYSTEMS BIOLOGY 2008; 2:78. [PMID: 18755034 PMCID: PMC2570670 DOI: 10.1186/1752-0509-2-78] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 08/28/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. RESULTS We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs) to a model with 87 ODEs. CONCLUSION The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.
Collapse
Affiliation(s)
- Holger Conzelmann
- Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr, 1, 39106, Magdeburg, Germany.
| | | | | |
Collapse
|
132
|
McDonald CB, Seldeen KL, Deegan BJ, Farooq A. Structural basis of the differential binding of the SH3 domains of Grb2 adaptor to the guanine nucleotide exchange factor Sos1. Arch Biochem Biophys 2008; 479:52-62. [PMID: 18778683 DOI: 10.1016/j.abb.2008.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/04/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Grb2-Sos1 interaction, mediated by the canonical binding of N-terminal SH3 (nSH3) and C-terminal SH3 (cSH3) domains of Grb2 to a proline-rich sequence in Sos1, provides a key regulatory switch that relays signaling from activated receptor tyrosine kinases to downstream effector molecules such as Ras. Here, using isothermal titration calorimetry in combination with site-directed mutagenesis, we show that the nSH3 domain binds to a Sos1-derived peptide containing the proline-rich consensus motif PPVPPR with an affinity that is nearly threefold greater than that observed for the binding of cSH3 domain. We further demonstrate that such differential binding of nSH3 domain relative to the cSH3 domain is largely due to the requirement of a specific acidic residue in the RT loop of the beta-barrel fold to engage in the formation of a salt bridge with the arginine residue in the consensus motif PPVPPR. While this role is fulfilled by an optimally positioned D15 in the nSH3 domain, the chemically distinct and structurally non-equivalent E171 substitutes in the case of the cSH3 domain. Additionally, our data suggest that salt tightly modulates the binding of both SH3 domains to Sos1 in a thermodynamically distinct manner. Our data further reveal that, while binding of both SH3 domains to Sos1 is under enthalpic control, the nSH3 binding suffers from entropic penalty in contrast to entropic gain accompanying the binding of cSH3, implying that the two domains employ differential thermodynamic mechanisms for Sos1 recognition. Our new findings are rationalized in the context of 3D structural models of SH3 domains in complex with the Sos1 peptide. Taken together, our study provides structural basis of the differential binding of SH3 domains of Grb2 to Sos1 and a detailed thermodynamic profile of this key protein-protein interaction pertinent to cellular signaling and cancer.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | | | | | | |
Collapse
|
133
|
Xi G, Shen X, Clemmons DR. p66shc negatively regulates insulin-like growth factor I signal transduction via inhibition of p52shc binding to Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 leading to impaired growth factor receptor-bound protein-2 membrane recruitment. Mol Endocrinol 2008; 22:2162-75. [PMID: 18606861 DOI: 10.1210/me.2008-0079] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous studies have indicated an essential role of p52shc in mediating IGF-I activation of MAPK in smooth muscle cells (SMC). However, the role of the p66 isoform of shc in IGF-I signal transduction is unclear. In the current study, two approaches were employed to investigate the role of p66shc in mediating IGF-I signaling. Knockdown p66shc by small interfering RNA enhanced IGF-I-stimulated p52shc tyrosine phosphorylation and growth factor receptor-bound protein-2 (Grb2) association, resulting in increased IGF-I-dependent MAPK activation. This was associated with enhanced IGF-I-stimulated cell proliferation. In contrast, knockdown of p66shc did not affect IGF-I-stimulated IGF-I receptor tyrosine phosphorylation. Overexpression of p66shc impaired IGF-I-stimulated p52shc tyrosine phosphorylation and p52shc-Grb2 association. In addition, IGF-I-dependent MAPK activation was also impaired, and SMC proliferation in response to IGF-I was inhibited. IGF-I-dependent cell migration was enhanced by p66shc knockdown and attenuated by p66shc overexpression. Mechanistic studies indicated that p66shc inhibited IGF-I signal transduction via competitively inhibiting the binding of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to SHP substrate-1 (SHPS-1), leading to the disruption of SHPS-1/SHP-2/Src/p52shc complex formation, an event that has been shown previously to be essential for p52shc phosphorylation and Grb2 recruitment. These findings indicate that p66shc functions to negatively regulate the formation of a signaling complex that is required for p52shc activation in response to IGF-I, thus leading to attenuation of IGF-I-stimulated cell proliferation and migration.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
134
|
Ke XQ, Sun WJ, Lu DQ, Fu YT, Chiang H. 50-Hz magnetic field induces EGF-receptor clustering and activates RAS. Int J Radiat Biol 2008; 84:413-20. [PMID: 18464070 DOI: 10.1080/09553000801998875] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE In a previous study, we found that exposure to a 50 Hz magnetic field (MF) could activate stress-activated protein kinase (SAPK) and P38 mitogen-activated protein (MAP) kinase (P38 MAPK) in Chinese hamster lung (CHL) fibroblast cells, and simultaneous exposure to a 'noise' MF of the same intensity inhibited these effects. In order to explore the possible target sites and upstream signal transduction molecules of SAPK and P38 MAPK, and further validate the interference effects of 'noise' MF on 50 Hz MF, the effects of MF exposure on clustering of epidermal growth factor (EGF) receptors and Ras protein activation were investigated. MATERIALS AND METHODS CHL cells were exposed to a 50 Hz sinusoidal MF at 0.4 mT for different durations, and clustering of EGF receptors on cellular membrane and Ras protein activation were analyzed using immunofluorescence confocal microscopy and co-precipitation technology. EGF treatment served as the positive control. RESULTS The results showed that, compared with sham-exposed cells, exposure to a 50 Hz MF at 0.4 mT for 5 min slightly induced EGF receptor clustering, whereas exposure for 15 min enhanced receptor clustering significantly. Corresponding to receptor clustering, Ras protein was also activated after exposure to the 50 Hz MF. Exposure to a 'noise' MF (with frequency ranges from 30 - 90 Hz) at the same intensity and durations, did not significantly affect EGF receptor clustering and Ras protein. However, by superimposing the 'noise' MF, receptor clustering and Ras activation induced by 50 Hz MF were inhibited. CONCLUSION The results suggested that membrane receptors could be one of the most important targets where extremely low frequency (ELF) MF interacts with cells, and Ras may participate in the signal transduction process of 50 Hz MF. Furthermore, a 'noise' MF could inhibit these effects caused by ELF-MF.
Collapse
Affiliation(s)
- X Q Ke
- Department of Hygiene of Children and Adolescents, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
135
|
Abstract
Extensive research on the Ras proteins and their functions in cell physiology over the past 30 years has led to numerous insights that have revealed the involvement of Ras not only in tumorigenesis but also in many developmental disorders. Despite great strides in our understanding of the molecular and cellular mechanisms of action of the Ras proteins, the expanding roster of their downstream effectors and the complexity of the signalling cascades that they regulate indicate that much remains to be learnt.
Collapse
Affiliation(s)
- Antoine E. Karnoub
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Robert A. Weinberg
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
136
|
Grb2 adaptor undergoes conformational change upon dimerization. Arch Biochem Biophys 2008; 475:25-35. [DOI: 10.1016/j.abb.2008.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 11/19/2022]
|
137
|
Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat Struct Mol Biol 2008; 15:452-61. [PMID: 18454158 PMCID: PMC2440660 DOI: 10.1038/nsmb.1418] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/20/2008] [Indexed: 11/08/2022]
Abstract
The kinetics of Ras activation by Son of sevenless (SOS) changes profoundly when Ras is tethered to membranes, instead of being in solution. SOS has two binding sites for Ras, one of which is an allosteric site that is distal to the active site. The activity of the SOS catalytic unit (SOS(cat)) is up to 500-fold higher when Ras is on membranes compared to rates in solution, because the allosteric Ras site anchors SOS(cat) to the membrane. This effect is blocked by the N-terminal segment of SOS, which occludes the allosteric site. We show that SOS responds to the membrane density of Ras molecules, to their state of GTP loading and to the membrane concentration of phosphatidylinositol-4,5-bisphosphate (PIP2), and that the integration of these signals potentiates the release of autoinhibition.
Collapse
Affiliation(s)
- Jodi Gureasko
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
| | - William J. Galush
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Sean Boykevisch
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | - Holger Sondermann
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
138
|
Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC SYSTEMS BIOLOGY 2008; 2:4. [PMID: 18194572 PMCID: PMC2254585 DOI: 10.1186/1752-0509-2-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/14/2008] [Indexed: 12/22/2022]
Abstract
Background The hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of tissues, including epithelial cells, on binding to the receptor tyrosine kinase c-Met. Abnormal c-Met signalling contributes to tumour genesis, in particular to the development of invasive and metastatic phenotypes. The human microbial pathogen Helicobacter pylori can induce chronic gastritis, peptic ulceration and more rarely, gastric adenocarcinoma. The H. pylori effector protein cytotoxin associated gene A (CagA), which is translocated via a type IV secretion system (T4SS) into epithelial cells, intracellularly modulates the c-Met receptor and promotes cellular processes leading to cell scattering, which could contribute to the invasiveness of tumour cells. Using a logical modelling framework, the presented work aims at analysing the c-Met signal transduction network and how it is interfered by H. pylori infection, which might be of importance for tumour development. Results A logical model of HGF and H. pylori induced c-Met signal transduction is presented in this work. The formalism of logical interaction hypergraphs (LIH) was used to construct the network model. The molecular interactions included in the model were all assembled manually based on a careful meta-analysis of published experimental results. Our model reveals the differences and commonalities of the response of the network upon HGF and H. pylori induced c-Met signalling. As another important result, using the formalism of minimal intervention sets, phospholipase Cγ1 (PLCγ1) was identified as knockout target for repressing the activation of the extracellular signal regulated kinase 1/2 (ERK1/2), a signalling molecule directly linked to cell scattering in H. pylori infected cells. The model predicted only an effect on ERK1/2 for the H. pylori stimulus, but not for HGF treatment. This result could be confirmed experimentally in MDCK cells using a specific pharmacological inhibitor against PLCγ1. The in silico predictions for the knockout of two other network components were also verified experimentally. Conclusion This work represents one of the first approaches in the direction of host-pathogen systems biology aiming at deciphering signalling changes brought about by pathogenic bacteria. The suitability of our network model is demonstrated by an in silico prediction of a relevant target against pathogen infection.
Collapse
|
139
|
Busti S, Sacco E, Martegani E, Vanoni M. Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. Curr Genet 2008; 53:153-62. [PMID: 18183397 DOI: 10.1007/s00294-007-0173-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 12/14/2007] [Accepted: 12/15/2007] [Indexed: 01/15/2023]
Abstract
Autophosphorylation of tyrosine residues on the cytoplasmic tail of the epidermal growth factor receptor (EGFR) upon ligand binding leads to recruitment of the Grb2/Sos complex to the activated receptor and to activation of the Ras pathway. The major aim of this study was to ascertain to which extent the EGFR module (receptor, Grb2, hSos1) could work in a lower eukaryote, completely devoid of tyrosine kinase receptors but possessing hortologues to mammalian Ras proteins. We show that the EGFR module can be functionally linked to the Ras/cAMP pathway in a Saccharomyces cerevisiae cdc25 ( ts ) strain, as monitored by several independent biological readouts, including drop of budding index, decrease of cAMP level and acquisition of thermotolerance. Autophosphorylation of the receptor is a necessary step for RTK-dependent activation of the yeast Ras pathway, since genetic and pharmacological downregulation of the EGFR catalytic activity abolish coupling with the Ras/cAMP pathway. Thus, our results newly indicate that a RTK-based signal transduction module can be functionally coupled to the yeast Ras/cAMP pathway and that our system can be a valuable tool for the screen of drugs inhibiting the kinase activity of the receptor.
Collapse
Affiliation(s)
- Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | | | |
Collapse
|
140
|
Bogatkevich GS, Ludwicka-Bradley A, Highland KB, Hant F, Nietert PJ, Singleton CB, Silver RM. Down-regulation of collagen and connective tissue growth factor expression with hepatocyte growth factor in lung fibroblasts from white scleroderma patients via two signaling pathways. ACTA ACUST UNITED AC 2007; 56:3468-77. [PMID: 17907155 DOI: 10.1002/art.22874] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To study the mechanisms by which hepatocyte growth factor (HGF) down-regulates collagen and connective tissue growth factor (CTGF) in scleroderma (systemic sclerosis [SSc]) lung fibroblasts. METHODS CTGF, type I collagen, and IkappaBalpha expression, together with MAPK phosphorylation, were studied by immunoblotting of lung fibroblasts derived from white SSc patients. Matrix metalloproteinase 1 (MMP-1) expression in cell culture medium samples was measured by enzyme-linked immunosorbent assay, MMP-1 activity was studied using an MMP-1 assay, and NF-kappaB DNA binding activity was determined using a transcription factor assay. RESULTS In lung fibroblasts from white SSc patients, HGF activated MAPK (ERK-1/2) signaling pathways and MMP-1, while it inhibited NF-kappaB and significantly down-regulated CTGF and collagen in a time- and dose-dependent manner. Small interfering RNA (siRNA)-mediated depletion of Grb2 expression disrupted c-Met receptor downstream signaling, which resulted in diminished HGF-induced ERK-1/2 phosphorylation and the recovery of HGF-inhibited expression of MMP-1, NF-kappaB, collagen, and CTGF. The MAPK inhibitor, U0126, blocked MMP-1 activity and restored HGF-inhibited collagen and CTGF accumulation. Inhibition of MMP activity by MMP inhibitor GM1489 and inhibition of MMP-1 expression by siRNA did not prevent HGF-induced ERK-1/2 phosphorylation and NF-kappaB activity, but significantly restored HGF-inhibited collagen and CTGF accumulation. NF-kappaB inhibitor BAY 11-7082 did not interfere with MAPK phosphorylation or MMP-1 expression and activation, but significantly inhibited NF-kappaB DNA binding activity and acted synergistically with HGF to completely diminish the expression of CTGF. CONCLUSION In lung fibroblasts from white SSc patients, HGF down-regulates the accumulation of CTGF via MAPK/MMP-1 and NF-kappaB signaling pathways, whereas collagen down-regulation is mediated mainly by a MAPK/MMP-1-dependent pathway.
Collapse
|
141
|
The hamster model of sequential oral oncogenesis. Oral Oncol 2007; 44:315-24. [PMID: 18061531 DOI: 10.1016/j.oraloncology.2007.08.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 06/26/2007] [Accepted: 08/15/2007] [Indexed: 01/25/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer characterised by low survival rate and poor prognosis. The multistep process of oral carcinogenesis is affected by multiple genetic events such as alterations of oncogenes and tumour suppressor genes. The use of appropriate experimental animal models that accurately represent the cellular and molecular changes which are associated with the initiation and progression of human oral cancer is of crucial importance. The Syrian golden hamster cheek pouch oral carcinogenesis model is the best known animal system that closely correlates events involved in the development of premalignant and malignant human oral cancers. Therefore, we established an experimental system of chemically induced oral carcinogenesis in hamsters, in order to study different stages of tumour formation: normal mucosa, hyperkeratosis, hyperplasia, dysplasia, early invasion, well differentiated OSCC and moderately differentiated OSCC. We investigated the expression of oncogenes EGFR, erbB2, erbB3, FGFR-2, FGFR-3, c-myc, N-ras, ets-1, H-ras, c-fos and c-jun, apoptosis markers Bax and Bcl-2, tumour suppressor genes p53 and p16, and cell proliferation marker Ki-67 in the sequential stages of hamster oral oncogenesis. Here, we describe the findings of the experimental model in regard to the involvement of signal transduction pathways in every stage of cancer development. Increased apoptosis and cell proliferation were observed in early stages of oral oncogenesis. Furthermore, the increased expression of transmembrane receptors (EGFR, erbB2, FGFR-2 and FGFR-3) as well as the increased expression of nuclear transcriptional factors in early stages of oral cancer indicates that these molecules may be used as early prognostic factors for the progression of OSCC. Since the expression of both H-ras and N-ras do not seem to affect signal transduction during oral oncogenesis, it can be assumed that a different signalling pathway, such as the PI3K and/or PLCgamma pathway, may be implicated in the pathogenesis of OSCC.
Collapse
|
142
|
Multiple-state reactions between the epidermal growth factor receptor and Grb2 as observed by using single-molecule analysis. Proc Natl Acad Sci U S A 2007; 104:18013-8. [PMID: 17991782 DOI: 10.1073/pnas.0701330104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation of the cytoplasmic tyrosine residues of the epidermal growth factor receptor (EGFR) upon binding of EGF induces recognition of various intracellular signaling molecules, including Grb2. Here, the reaction kinetics between EGFR and Grb2 was analyzed by visualizing single molecules of Grb2 conjugated to the fluorophore Cy3 (Cy3-Grb2). The plasma membrane fraction was purified from human epithelial carcinoma A431 cells after stimulation with EGF and attached to coverslips. Unitary events of association and dissociation of Cy3-Grb2 on the EGFR in the membrane fraction were observed at different concentrations of Grb2 (0.1-100 nM). The dissociation kinetics could be explained by using a multiple-exponential function with a major (>90%) dissociation rate of 8 s(-1) and a few minor components, suggesting the presence of multiple bound states. In contrast, the association kinetics could be described by a stretched exponential function, suggesting the presence of multiple reaction channels from many unbound substates. Transitions between the unbound substates were also suggested. Unexpectedly, the rate of association was not proportional to the Grb2 concentration: an increase in Cy3-Grb2 concentration by a factor of 10 induced an increase in the reaction frequency approximately by a factor of three. This effect can compensate for fluctuation of the signal transduction from EGFR to Grb2 caused by variations in the expression level of Grb2 in living cells.
Collapse
|
143
|
Di Fulvio M, Henkels KM, Gomez-Cambronero J. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis. Biochem Biophys Res Commun 2007; 357:737-42. [PMID: 17445773 PMCID: PMC2247433 DOI: 10.1016/j.bbrc.2007.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/03/2007] [Indexed: 12/12/2022]
Abstract
Grb2 is an SH2-SH3 protein adaptor responsible for linking growth factor receptors with intracellular signaling cascades. To study the role of Grb2 in cell growth, we have generated a new COS7 cell line (COS7(shGrb2)), based on RNAi technology, as null mutations in mammalian Grb2 genes are lethal in early development. This novel cell line continuously expresses a short hairpin RNA that targets endogenous Grb2. Stable COS7(shGrb2) cells had the shGrb2 integrated into the genomic DNA and carried on <10% of normal levels of Grb2. Silencing Grb2 expression reduced, but did not eliminate, basal cell growth rate. This could be reversed by either the addition of neomycin to the cell cultures or by rescuing with an Xpress-Grb2(SiL) construct (made refractory to the shRNA-mediated interference), but not with an SH2-deficient mutant (R86K). Thus, a viable knock-down and rescue protocol has demonstrated that Grb2 is crucial for cell proliferation.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | |
Collapse
|
144
|
Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, Dent P. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 2007; 6:789-801. [PMID: 17363476 DOI: 10.1158/1535-7163.mct-06-0596] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure of tumor cells to clinically relevant doses of ionizing radiation causes DNA damage as well as mitochondria-dependent generation of reactive oxygen species. DNA damage causes activation of ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related protein, which induce cell cycle checkpoints and also modulate the activation of prosurvival and proapoptotic signaling pathways, such as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH(2)-terminal kinase 1/2, respectively. Radiation causes a rapid reactive oxygen species-dependent activation of ERBB family and other tyrosine kinases, leading to activation of RAS proteins and multiple protective downstream signaling pathways (e.g., AKT and ERK1/2), which alter transcription factor function and the apoptotic threshold of cells. The initial radiation-induced activation of ERK1/2 can promote the cleavage and release of paracrine ligands, which cause a temporally delayed reactivation of receptors and intracellular signaling pathways in irradiated and unirradiated bystander cells. Hence, signals from within the cell can promote activation of membrane-associated receptors, which signal back into the cytosol: signaling from inside the cell outward to receptors and then inward again via kinase pathways. However, cytosolic signaling can also cause release of membrane-associated paracrine factors, and thus, paracrine signals from outside of the cell can promote activation of growth factor receptors: signaling from the outside inward. The ultimate consequence of these signaling events after multiple exposures may be to reprogram the irradiated and affected bystander cells in terms of their expression levels of growth-regulatory and cell survival proteins, resulting in altered mitogenic rates and thresholds at which genotoxic stresses cause cell death. Inhibition of signaling in one and/or multiple survival pathways enhances radiosensitivity. Prolonged inhibition of any one of these pathways, however, gives rise to lineages of cells, which have become resistant to the inhibitor drug, by evolutionary selection for the clonal outgrowth of cells with point mutations in the specific targeted protein that make the target protein drug resistant or by the reprogramming of multiple signaling processes within all cells, to maintain viability. Thus, tumor cells are dynamic with respect to their reliance on specific cell signaling pathways to exist and rapidly adapt to repeated toxic challenges in an attempt to maintain tumor cell survival.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Biochemistry, Virginia Commonwealth University, 401 College Street, Box 980035, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Häkkinen L, Csiszar A. Hereditary gingival fibromatosis: characteristics and novel putative pathogenic mechanisms. J Dent Res 2007; 86:25-34. [PMID: 17189459 DOI: 10.1177/154405910708600104] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hereditary gingival fibromatosis (HGF) is a rare condition that can occur as an isolated disease or as part of a syndrome or chromosomal abnormality. In severe cases, the gingival enlargement may cover the crowns of teeth and cause severe functional and esthetic concerns. Histological and cell culture studies have uncovered some of the molecular and cellular changes associated with HGF. However, the pathogenesis of the disease is still largely unknown. Recent studies about the genetic characteristics of HGF have provided novel clues about the potential pathogenic mechanisms. In particular, mutation in the son-of-sevenless (SOS-1) gene has been associated with one form of the disease. However, HGF displays genetic heterogeneity, and mutations in other genes are also likely involved. This review outlines the current knowledge about the histological, cellular, and genetic characteristics of HGF. In addition, the potential role of the SOS-1 molecule and related novel intracellular signaling pathways in the pathogenesis of HGF will be discussed.
Collapse
Affiliation(s)
- L Häkkinen
- University of British Columbia, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, Laboratory of Periodontal Biology, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
146
|
Abstract
Although oncogenes and their transformation mechanisms have been known for 30 years, we are just now using our understanding of protein function to abrogate the activity of these genes to block cancer growth. The advent of specific small-molecule inhibitors has been a tremendous step in the fight against cancer and their main targets are the cellular counterparts of viral oncogenes. The best-known example of a molecular therapeutic is Gleevec (imatinib). In the early 1990s, IFN-alpha treatment produced a sustained cytologic response in approximately 33% of chronic myelogenous leukemia patients. Today, with Gleevec targeting the kinase activity of the proto-oncogene abl, the hematologic response rate in chronic myelogenous leukemia patients is 95% with 89% progression-free survival at 18 months. There are still drawbacks to the new therapies, such as drug resistance after a period of treatment, but the drawbacks are being studied experimentally. New drugs and combination therapies are being designed that will bypass the resistance mechanisms.
Collapse
Affiliation(s)
- Kathleen M Diehl
- Department of Urology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0940, USA
| | | | | |
Collapse
|
147
|
Morrison H, Sperka T, Manent J, Giovannini M, Ponta H, Herrlich P. Merlin/Neurofibromatosis Type 2 Suppresses Growth by Inhibiting the Activation of Ras and Rac. Cancer Res 2007; 67:520-7. [PMID: 17234759 DOI: 10.1158/0008-5472.can-06-1608] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The small G-protein Ras is a tightly controlled regulator of cell fate. Prolonged or persistent arrest in the activated GTP-loaded state by mutation of Ras as in lung cancer or in a Ras-GTPase-activating protein as in neurofibromatosis type 1 promotes tumorigenesis. We now show that the tumor-suppressor protein merlin (mutated in neurofibromatosis type 2) also controls Ras activity. Systematic analysis of growth factor signaling located the step of merlin interference to the activation of Ras and Rac. Merlin independently uncouples both Ras and Rac from growth factor signals. In the case of Ras, merlin acts downstream of the receptor tyrosine kinase-growth factor receptor binding protein 2 (Grb2)-SOS complex. However, merlin does not bind either SOS or Ras, but it counteracts the ERM (ezrin, radixin, moesin)-dependent activation of Ras, which correlates with the formation of a complex comprising ERM proteins, Grb2, SOS, Ras, and filamentous actin. Because efficient signaling from Ras requires Rac-p21-activated kinase-dependent phosphorylations of Raf and mitogen-activated protein/extracellular signal-regulated kinase kinase, merlin can also inhibit signal transfer from dominantly active Ras mutants. We propose that the interference of merlin with Ras- and Rac-dependent signal transfer represents part of the tumor-suppressive action of merlin.
Collapse
Affiliation(s)
- Helen Morrison
- Institute of Age Research, Fritz-Lipmann-Institute, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
148
|
Di Fulvio M, Frondorf K, Henkels KM, Lehman N, Gomez-Cambronero J. The Grb2/PLD2 interaction is essential for lipase activity, intracellular localization and signaling in response to EGF. J Mol Biol 2007; 367:814-24. [PMID: 17276458 PMCID: PMC1861842 DOI: 10.1016/j.jmb.2007.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 12/22/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
The adaptor protein Grb2 associates with phospholipase D2 (PLD2), but it is not known if this interaction is necessary for the functionality of the lipase in vivo. We demonstrate that stable short hairpin RNA (shRNA)-based silencing of Grb2, a critical signal transducer of the epidermal growth factor receptor (EGFR) and linker to the Ras/Erk pathway, resulted in the reduction of PLD2 activity in COS7 cells. Transfection of a Grb2 construct refractory to shGrb2 silencing (XGrb2(SiL)) into the Grb2-knockdown cells (COS7(shGrb2)), resulted in the nearly full rescue of PLD2 activity. However, Grb2-R86K, an SH2-deficient mutant of Grb2 that is incapable of binding to PLD2, failed to induce an enhancement of the impaired PLD2 activity in COS7(shGrb2) cells. Grb2 and PLD2 are directly associated and Grb2 is brought down with anti-myc antibodies irrespective of the presence or absence of EGFR activation. Immunofluorescence microscopy showed that co-transfected PLD2 and Grb2 re-localize to Golgi-like structures after EGF stimulation. Since this was not observed in cotransfection experiments with Grb2 and PLD2-Y169/179F, a lipase mutant that does not bind to Grb2, we inferred that Grb2 serves to hijack PLD2 to the perinuclear Golgi region through its SH2 domain. Supporting this is the finding that the primary cell line HUVEC expresses PLD2 diffusely in the cytoplasm and in the perinuclear Golgi region, where PLD2 and Grb2 colocalize. Such colocalization in primary cells increased after stimulation with EGF. These results demonstrate for the first time that the presence of Grb2 and its interaction with localized intracellular structures is essential for PLD2 activity and signaling in vivo.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
149
|
Li D, Wu LJ, Tashiro SI, Onodera S, Ikejima T. Oridonin-Induced A431 Cell Apoptosis Partially Through Blockage of the Ras/Raf/ERK Signal Pathway. J Pharmacol Sci 2007; 103:56-66. [PMID: 17251686 DOI: 10.1254/jphs.fpj06016x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We have reported that oridonin, a diterpenoid isolated from the plant Rabdosia rubescens, had apoptosis-inducing activities in many cell lines (e.g., human melanoma A375-S2, human cervical cancer HeLa, human breast adenocarcinoma MCF-7, and murine fibrosarcoma L929). In this study, we further investigated signaling events involved in oridonin-induced apoptosis in human epidermoid carcinoma A431 cells. It was found that the total tyrosine kinase activity was inhibited and the protein expressions of epidermal growth factor receptor (EGFR) and phosphorylated EGFR were decreased in oridonin-induced A431 cell apoptosis. Expression of EGFR downstream effector proteins, Grb2, Ras, Raf-1, and extracellular signal-regulated kinase (ERK), was also downregulated by oridonin. Moreover, the oridonin-induced apoptosis was augmented by the Ras inhibitor manumycin A, Raf-1 inhibitor GW5074, or ERK inhibitor PD98059, suggesting that inactivation of Ras, Raf, or ERK participates in oridonin-induced apoptosis. Taken together, oridonin-induced apoptosis in A431 cells might be through blocking EGFR and its downstream Ras/Raf/ERK signal pathway.
Collapse
Affiliation(s)
- Dan Li
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110 016, P.R. China
| | | | | | | | | |
Collapse
|
150
|
Freedman TS, Sondermann H, Friedland GD, Kortemme T, Bar-Sagi D, Marqusee S, Kuriyan J. A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc Natl Acad Sci U S A 2006; 103:16692-7. [PMID: 17075039 PMCID: PMC1629002 DOI: 10.1073/pnas.0608127103] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Ras-specific guanine nucleotide-exchange factors Son of sevenless (Sos) and Ras guanine nucleotide-releasing factor 1 (RasGRF1) transduce extracellular stimuli into Ras activation by catalyzing the exchange of Ras-bound GDP for GTP. A truncated form of RasGRF1 containing only the core catalytic Cdc25 domain is sufficient for stimulating Ras nucleotide exchange, whereas the isolated Cdc25 domain of Sos is inactive. At a site distal to the catalytic site, nucleotide-bound Ras binds to Sos, making contacts with the Cdc25 domain and with a Ras exchanger motif (Rem) domain. This allosteric Ras binding stimulates nucleotide exchange by Sos, but the mechanism by which this stimulation occurs has not been defined. We present a crystal structure of the Rem and Cdc25 domains of Sos determined at 2.0-A resolution in the absence of Ras. Differences between this structure and that of Sos bound to two Ras molecules show that allosteric activation of Sos by Ras occurs through a rotation of the Rem domain that is coupled to a rotation of a helical hairpin at the Sos catalytic site. This motion relieves steric occlusion of the catalytic site, allowing substrate Ras binding and nucleotide exchange. A structure of the isolated RasGRF1 Cdc25 domain determined at 2.2-A resolution, combined with computational analyses, suggests that the Cdc25 domain of RasGRF1 is able to maintain an active conformation in isolation because the helical hairpin has strengthened interactions with the Cdc25 domain core. These results indicate that RasGRF1 lacks the allosteric activation switch that is crucial for Sos activity.
Collapse
Affiliation(s)
- Tanya S. Freedman
- *Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research
| | - Holger Sondermann
- *Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research
| | | | - Tanja Kortemme
- Graduate Group in Biophysics
- Department of Biopharmaceutical Sciences, and California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94143; and
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016
| | - Susan Marqusee
- *Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - John Kuriyan
- *Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research
- **Department of Chemistry, and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|