101
|
Xu X, Coats JK, Yang CF, Wang A, Ahmed OM, Alvarado M, Izumi T, Shah NM. Modular genetic control of sexually dimorphic behaviors. Cell 2012; 148:596-607. [PMID: 22304924 DOI: 10.1016/j.cell.2011.12.018] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/22/2011] [Accepted: 12/16/2011] [Indexed: 12/18/2022]
Abstract
Sex hormones such as estrogen and testosterone are essential for sexually dimorphic behaviors in vertebrates. However, the hormone-activated molecular mechanisms that control the development and function of the underlying neural circuits remain poorly defined. We have identified numerous sexually dimorphic gene expression patterns in the adult mouse hypothalamus and amygdala. We find that adult sex hormones regulate these expression patterns in a sex-specific, regionally restricted manner, suggesting that these genes regulate sex typical behaviors. Indeed, we find that mice with targeted disruptions of each of four of these genes (Brs3, Cckar, Irs4, Sytl4) exhibit extremely specific deficits in sex specific behaviors, with single genes controlling the pattern or extent of male sexual behavior, male aggression, maternal behavior, or female sexual behavior. Taken together, our findings demonstrate that various components of sexually dimorphic behaviors are governed by separable genetic programs.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Serfőző Z, Lontay B, Kukor Z, Erdődi F. Chronic inhibition of nitric oxide synthase activity by NG-nitro-L-arginine induces nitric oxide synthase expression in the developing rat cerebellum. Neurochem Int 2012; 60:605-15. [PMID: 22391324 DOI: 10.1016/j.neuint.2012.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/18/2012] [Indexed: 01/22/2023]
Abstract
Studies on chronic inhibition of nitric oxide synthase (NOS) in the CNS suggest a plastic change in nitric oxide (NO) synthesis in areas related to motor control, which might protect the animal from the functional and behavioral consequences of NO deficiency. In the present study, the acute and chronic effect of the substrate analogue inhibitor N(G)-nitro-l-arginine (l-NNA) was examined on NO production, NO-sensitive cyclic guanosine monophosphate (cGMP) levels and the expression of NOS isoforms in the developing rat cerebellum. Acute intraperitoneal administration of the inhibitor (5-200mg/kg) to 21-day-old rats reduced NOS activity and NO concentration dose dependently by 70-90% and the tissue cGMP level by 60-80%. By contrast, chronic application of l-NNA between postnatal days 4-21 diminished the total NOS activity and NO concentration only by 30%, and the tissue cGMP level by 10-50%. Chronic treatment of 10mg/kg l-NNA induced neuronal (n)NOS expression in granule cells, as revealed by in situ hybridization, NADPH-diaphorase histochemistry and Western-blot, but it had no significant influence on tissue cGMP level or on layer formation of the cerebellum. However, a higher concentration (50mg/kg) of l-NNA decreased the intensity of the NADPH-diaphorase reaction in granule cells, significantly reduced cGMP production, and retarded layer formation and induced inducible (i)NOS expression & activity in glial cells. Treatments did not affect endothelial (e)NOS expression. The administration of the biologically inactive isomer D-NNA (50mg/kg) or saline was ineffective. The present findings suggest the existence of a concentration-dependent compensatory mechanism against experimentally-induced cronich inhibition of NOS, including nNOS or iNOS up-regulation, which might maintain a steady-state NO level in the developing cerebellum.
Collapse
Affiliation(s)
- Zoltán Serfőző
- Department of Experimental Zoology, Balaton Limnological Institute, Center for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary.
| | | | | | | |
Collapse
|
103
|
Bedrosian TA, Fonken LK, Demas GE, Nelson RJ. Photoperiod-dependent effects of neuronal nitric oxide synthase inhibition on aggression in Siberian hamsters. Horm Behav 2012; 61:176-80. [PMID: 22197272 DOI: 10.1016/j.yhbeh.2011.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
Many nontropical species undergo physiological and behavioral adaptations in response to seasonal changes in photoperiod, or day length. In most rodent species, short winter photoperiods reduce testosterone concentrations, which provoke gonadal regression and reduce testosterone-dependent behaviors such as mating and aggression. Seasonally-breeding Siberian hamsters, however, are paradoxically more aggressive in short-days, despite much reduced reproductive activity and testosterone concentrations. Nitric oxide (NO) signaling has been proposed as part of an alternate mechanism underlying this phenomenon. A reduction in neuronal nitric oxide synthase (nNOS), the enzyme responsible for synthesizing NO in the brain, is associated with increased aggression in male short-day hamsters. In the present study, we hypothesized that pharmacological inhibition of nNOS would increase aggressive behavior in long days, but not in short days because nNOS is already reduced. Adult male Siberian hamsters were housed in either long (LD 16:8h) or short (LD 8:16h) photoperiods for 8weeks, then treated with either the selective nNOS inhibitor, 3-bromo-7-nitroindazole (3BrN) or oil vehicle, and subsequently tested for aggression in a resident-intruder test. Treatment with 3BrN increased attack frequency and duration in long days, but had no effect in short days. Short days also reduced testosterone concentrations, without any effect of treatment. These data provide further evidence linking reduced nNOS to elevated short-day aggression and support a role for NO signaling in this phenomenon.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- Department of Neuroscience, The Ohio State University, Columbus, OH 43201, USA.
| | | | | | | |
Collapse
|
104
|
A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci U S A 2012; 109:621-6. [PMID: 22190495 DOI: 10.1073/pnas.1109237109] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes.
Collapse
|
105
|
Promoter microsatellites as modulators of human gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:41-54. [PMID: 23560304 DOI: 10.1007/978-1-4614-5434-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsatellites in and around genes have been shown to modulate levels of gene expression in multiple organisms, ranging from bacteria to humans. Here we will discuss promoter microsatellites known to modulate gene expression, with a few key examples related to the human brain. Many of the microsatellites we discuss are highly conserved in mammals, indicating that selection may favor their retention as "tuning knobs" of gene expression. We will also discuss the mechanisms by which microsatellites in promoters can alter gene expression as they expand and contract, with particular attention to secondary structures like Z-DNA and H-DNA. We suggest that promoter microsatellites, especially those that are highly conserved, may be an important source of human phenotypic variation.
Collapse
|
106
|
Gotti S, Caricati E, Panzica G. Alterations of brain circuits in Down syndrome murine models. J Chem Neuroanat 2011; 42:317-26. [DOI: 10.1016/j.jchemneu.2011.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
|
107
|
Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 2011; 100:25-32. [DOI: 10.1016/j.pbb.2011.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/23/2022]
|
108
|
Jiang Z, Hama Y, Yamaguchi K, Oda T. Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages. J Biochem 2011; 151:65-74. [DOI: 10.1093/jb/mvr115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
109
|
Shin MS, Ko IG, Kim SE, Kim BK, Kim CJ, Kim DH, Yoon SJ, Kim KH. Effect of vardenafil on nitric oxide synthase expression in the paraventricular nucleus of rats without sexual stimulation. Andrologia 2011; 44 Suppl 1:56-67. [PMID: 21950284 DOI: 10.1111/j.1439-0272.2010.01138.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vardenafil hydrochloride (HCl) is a potent and selective phosphodiesterase type-5 (PDE-5) inhibitor that enhances nitric oxide (NO)-mediated relaxation of human corpus cavernosum and NO-induced rabbit penile erection, and enhances erectile function in patients. In the present study, the effect of vardenafil on nitric oxide synthase (NOS) and neuronal NOS expressions in the paraventricular nucleus (PVN) of rats without sexual stimulation was investigated using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal NOS (nNOS) immunohistochemistry and western blot analysis. The present results showed that NOS and nNOS expression in the PVN was increased by vardenafil treatment as the dose- and duration-dependently without sexual stimulation. The phosphodiesterase type-5 inhibitor, vardenafil, augmented NOS expression in the brain without sexual stimulation. The present study suggests that sexual behaviour can be directly modulated by neurotransmitters such as nitric oxide.
Collapse
Affiliation(s)
- M-S Shin
- Department of Urology, Gachon University Gil Hospital, Gachon University of Medicine and Science, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Epistasis and pleiotropy feature prominently in the genetic architecture of quantitative traits but are difficult to assess in outbred populations. We performed a diallel cross among coisogenic Drosophila P-element mutations associated with hyperaggressive behavior and showed extensive epistatic and pleiotropic effects on aggression, brain morphology, and genome-wide transcript abundance in head tissues. Epistatic interactions were often of greater magnitude than homozygous effects, and the topology of epistatic networks varied among these phenotypes. The transcriptional signatures of homozygous and double heterozygous genotypes derived from the six mutations imply a large mutational target for aggressive behavior and point to evolutionarily conserved genetic mechanisms and neural signaling pathways affecting this universal fitness trait.
Collapse
|
111
|
Potter LR. Guanylyl cyclase structure, function and regulation. Cell Signal 2011; 23:1921-6. [PMID: 21914472 DOI: 10.1016/j.cellsig.2011.09.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 02/08/2023]
Abstract
Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies.
Collapse
Affiliation(s)
- Lincoln R Potter
- Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
112
|
Workman JL, Weber MD, Nelson RJ. Dietary arginine depletion reduces depressive-like responses in male, but not female, mice. Behav Brain Res 2011; 223:81-7. [DOI: 10.1016/j.bbr.2011.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 01/12/2023]
|
113
|
Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor. J Neurosci 2011; 31:7579-90. [PMID: 21613472 DOI: 10.1523/jneurosci.0004-11.2011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The molecular mechanisms underlying the behavioral effects of glucocorticoids are poorly understood. We report here that hippocampal neuronal nitric oxide synthase (nNOS) is a crucial mediator. Chronic mild stress and glucocorticoids exposures caused hippocampal nNOS overexpression via activating mineralocorticoid receptor. In turn, hippocampal nNOS-derived nitric oxide (NO) significantly downregulated local glucocorticoid receptor expression through both soluble guanylate cyclase (sGC)/cGMP and peroxynitrite (ONOO(-))/extracellular signal-regulated kinase signal pathways, and therefore elevated hypothalamic corticotrophin-releasing factor, a peptide that governs the hypothalamic-pituitary-adrenal axis. More importantly, nNOS deletion or intrahippocampal nNOS inhibition and NO-cGMP signaling blockade (using NO scavenger or sGC inhibitor) prevented the corticosterone-induced behavioral modifications, suggesting that hippocampal nNOS is necessary for the role of glucocorticoids in mediating depressive behaviors. In addition, directly delivering ONOO(-) donor into hippocampus caused depressive-like behaviors. Our findings reveal a role of hippocampal nNOS in regulating the behavioral effects of glucocorticoids.
Collapse
|
114
|
Walton JC, Weil ZM, Nelson RJ. Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 2011; 32:303-19. [PMID: 21156187 PMCID: PMC3139743 DOI: 10.1016/j.yfrne.2010.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/26/2023]
Abstract
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
115
|
Cho YJ, Lee JC, Kang BG, An J, Song HS, Son O, Nam DH, Cha CI, Joo KM. Immunohistochemical study on the expression of calcium binding proteins (calbindin-D28k, calretinin, and parvalbumin) in the cerebral cortex and in the hippocampal region of nNOS knock-out(-/-) mice. Anat Cell Biol 2011; 44:106-15. [PMID: 21829754 PMCID: PMC3145839 DOI: 10.5115/acb.2011.44.2.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/06/2011] [Accepted: 05/24/2011] [Indexed: 01/31/2023] Open
Abstract
Nitric oxide (NO) modulates the activities of various channels and receptors to participate in the regulation of neuronal intracellular Ca(2+) levels. Ca(2+) binding protein (CaBP) expression may also be altered by NO. Accordingly, we examined expression changes in calbindin-D28k, calretinin, and parvalbumin in the cerebral cortex and hippocampal region of neuronal NO synthase knockout(-/-) (nNOS(-/-)) mice using immunohistochemistry. For the first time, we demonstrate that the expression of CaBPs is specifically altered in the cerebral cortex and hippocampal region of nNOS(-/-) mice and that their expression changed according to neuronal type. As changes in CaBP expression can influence temporal and spatial intracellular Ca(2+) levels, it appears that NO may be involved in various functions, such as modulating neuronal Ca(2+) homeostasis, regulating synaptic transmission, and neuroprotection, by influencing the expression of CaBPs. Therefore, these results suggest another mechanism by which NO participates in the regulation of neuronal Ca(2+) homeostasis. However, the exact mechanisms of this regulation and its functional significance require further investigation.
Collapse
Affiliation(s)
- Yu Jin Cho
- Department of Anatomy, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Yeh KY, Wu CH, Tsai YF. Ginkgo biloba treatment increases copulation but not nNOS activity in the medial preoptic area in male rats. Neurosci Lett 2011; 500:182-6. [PMID: 21723370 DOI: 10.1016/j.neulet.2011.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/28/2011] [Accepted: 06/15/2011] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is an important messenger in the central nervous system to mediate male copulatory behavior. EGb 761, a standardized extract of Gingko biloba, has been reported to facilitate male copulation in rats. The present study is to determine the effects of neuronal nitric oxide synthase (nNOS) in the medial preoptic area (MPOA) on copulation in male rats following EGb 761 treatment. Adult male rats were treated with 50mg/kg of EGb 761 or distilled water by oral gavage for 14 consecutive days. The animals were sacrificed approximately 14h after the last behavioral test and MPOA brain tissues were collected for nNOS immunohistochemistry. EGb 761 treatment for 14 days significantly increased the intromission frequency compared to the vehicle-treated controls on day 14. An increase in ejaculation frequency was also seen in the EGb 761-treated group compared to the vehicle-treated controls on day 14 and to the same group on day 0. However, EGb 761 treatment did not influence the number of nNOS-immunoreactive cells in the MPOA. These results suggest that enhanced male copulatory performance in sexually experienced rats administered EGb 761 may not be related to central nNOS activity in the MPOA.
Collapse
Affiliation(s)
- Kuei-Ying Yeh
- Department of Physical Therapy, HungKuang University, No. 34 Chung-Chie Road, Sha Lu, Taichung 443, Taiwan, ROC.
| | | | | |
Collapse
|
117
|
Abstract
Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius "Julie" Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the "high" that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes.
Collapse
Affiliation(s)
- Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
118
|
Cui H, Supriyanto I, Sasada T, Shiroiwa K, Fukutake M, Shirakawa O, Asano M, Ueno Y, Nagasaki Y, Hishimoto A. Association study of EP1 gene polymorphisms with suicide completers in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1108-11. [PMID: 21447366 DOI: 10.1016/j.pnpbp.2011.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 03/01/2011] [Accepted: 03/20/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Both environmental and genetic factors have been reported to be involved in suicidal behaviors. Considerable evidence indicates that impulsive aggression is one of the important risk factors that contribute to suicide. A recent study has shown that prostaglandin E2 type 1 receptor (EP1) signaling regulates impulsive-aggressive behaviors in mice under both social and environmental stresses. To test the possible involvement of the EP1 gene in suicide, we carried out an association study of EP1 gene polymorphisms with suicide completers in the Japanese population. METHODS We studied 5 SNPs including one SNP in exon 2 (rs3745459) and four SNPs in the potential promoter region of the EP1 gene (rs3810255, rs3810254, rs3810253 and rs10416814) in 374 healthy control and 287 completed suicide victims using standard Taqman probe genotyping assays. RESULTS No significant differences of the genotypic distribution, allelic frequency or haplotype distribution between controls and suicide completers were found. Gender based analysis revealed that genotypic, allelic and haplotypic distributions of rs3810255, rs3810254, rs3810253 and rs10416814 SNPs were significantly different between the female control and female suicide groups, although the differences did not withstand correction for multiple comparisons. CONCLUSION We could not find an association of EP1 gene with suicide in the Japanese population. Because several SNPs in the promoter region of the EP1 gene were nominally significantly associated with suicide in the female, further studies with a larger sample size and different population are needed to confirm this result.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Zoubovsky SP, Pogorelov VM, Taniguchi Y, Kim SH, Yoon P, Nwulia E, Sawa A, Pletnikov MV, Kamiya A. Working memory deficits in neuronal nitric oxide synthase knockout mice: potential impairments in prefrontal cortex mediated cognitive function. Biochem Biophys Res Commun 2011; 408:707-12. [PMID: 21539806 DOI: 10.1016/j.bbrc.2011.04.097] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/15/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) forms nitric oxide (NO), which functions as a signaling molecule via S-nitrosylation of various proteins and regulation of soluble guanylate cyclase (cGC)/cyclic guanosine monophosphate (cGMP) pathway in the central nervous system. nNOS signaling regulates diverse cellular processes during brain development and molecular mechanisms required for higher brain function. Human genetics have identified nNOS and several downstream effectors of nNOS as risk genes for schizophrenia. Besides the disease itself, nNOS has also been associated with prefrontal cortical functioning, including cognition, of which disturbances are a core feature of schizophrenia. Although mice with genetic deletion of nNOS display various behavioral deficits, no studies have investigated prefrontal cortex-associated behaviors. Here, we report that nNOS knockout (KO) mice exhibit hyperactivity and impairments in contextual fear conditioning, results consistent with previous reports. nNOS KO mice also display mild impairments in object recognition memory. Most importantly, we report for the first time working memory deficits, potential impairments in prefrontal cortex mediated cognitive function in nNOS KO mice. Furthermore, we demonstrate Disrupted-in-Schizophrenia 1 (DISC1), another genetic risk factor for schizophrenia that plays roles for cortical development and prefrontal cortex functioning, including working memory, is a novel protein binding partner of nNOS in the developing cerebral cortex. Of note, genetic deletion of nNOS appears to increase the binding of DISC1 to NDEL1, regulating neurite outgrowth as previously reported. These results suggest that nNOS KO mice are useful tools in studying the role of nNOS signaling in cortical development and prefrontal cortical functioning.
Collapse
Affiliation(s)
- Sandra P Zoubovsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Krohmer R, Lutterschmidt D. Environmental and Neuroendorcrine Control of Reproduction in Snakes. REPRODUCTIVE BIOLOGY AND PHYLOGENY OF SNAKES 2011. [DOI: 10.1201/b10879-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
121
|
Reif A, Kiive E, Kurrikoff T, Paaver M, Herterich S, Konstabel K, Tulviste T, Lesch KP, Harro J. A functional NOS1 promoter polymorphism interacts with adverse environment on functional and dysfunctional impulsivity. Psychopharmacology (Berl) 2011; 214:239-48. [PMID: 20589495 DOI: 10.1007/s00213-010-1915-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/07/2010] [Indexed: 11/26/2022]
Abstract
RATIONALE Neuronal nitric oxide synthase (NOS1) knockout results in increased impulsive aggression in mice under adverse housing conditions. In line with this, we have previously shown that a functional promoter polymorphism of NOS1, termed NOS1 ex1f-VNTR, is associated with impulsivity-related traits and related disorders. OBJECTIVE This study aims to examine whether adverse environment interacts with the risk allele on impulsivity-related measures. METHODS We here studied a population-based cohort of Estonian pupils, recruited at the age of 9 years and followed up for another 9 years. For 435 subjects, measures on impulsivity (Adaptive and Maladaptive Impulsivity Scale, BIS-11, Stop Signal data, and Visual Comparison Test, VCT), environmental conditions (stressful life events and family environment), and NOS1 ex1f-VNTR genotype were available. RESULTS We found a genotype main effect in that presence of a short NOS1 ex1f-VNTR allele was associated with higher levels of adaptive impulsivity, especially in males, but also worse performance in the VCT and the Stop Signal test. Both stressful life events as well as adverse family environment interacted with the risk genotype to increase maladaptive impulsivity. CONCLUSIONS This study provides further evidence that short alleles of NOS1 ex1f-VNTR go along with impulsive behavior. In the absence of adverse environmental conditions, this may lead to a beneficial effect as functional forms of impulsivity are affected. This however is reversed under negative conditions, as dysfunctional impulsivity is increased under these circumstances. This data provides evidence that NOS1 ex1f-VNTR is subject to balancing selection potentially explaining persistence of the risk allele in the population.
Collapse
Affiliation(s)
- Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
O'Connell LA, Matthews BJ, Crews D. Neuronal nitric oxide synthase as a substrate for the evolution of pseudosexual behaviour in a parthenogenetic whiptail lizard. J Neuroendocrinol 2011; 23:244-53. [PMID: 21126273 PMCID: PMC4509676 DOI: 10.1111/j.1365-2826.2010.02099.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolution of neuroendocrine mechanisms governing sex-typical behaviour is poorly understood. An outstanding animal model is the whiptail lizard (Cnemidophorus) because both the ancestral and descendent species still exist. The ancestral little striped whiptail, Cnemidophorus inornatus, consists of males and females, which exhibit sex-specific mating behaviours. The descendent desert grassland whiptail, Cnemidophorus uniparens, consists only of females that alternately exhibit both female-like and male-like pseudosexual behaviour. Castrated male C. inornatus will mount a conspecific in response to exogenous androgen, although some are also sensitive to progesterone. This polymorphism in progesterone sensitivity in the ancestral species may have been involved in evolution of progesterone-mediated male-typical behaviour in the descendant unisexual lizards. We tested whether progesterone activates a typically androgenic signalling pathway by investigating hormonal regulation of neuronal nitric oxide synthase (nNOS) using in situ hybridisation and NADPH diaphorase histochemistry, a stain for nNOS protein. NADPH diaphorase is widely distributed throughout the brain of both species, although only in the periventricular nucleus of the preoptic area (pvPOA) are there differences between mounting and non-mounting individuals. The number of cells expressing nNOS mRNA and NADPH diaphorase is higher in the pvPOA of individuals that mount in response to progesterone or androgen. Furthermore, the nNOS promoter has both androgen and progesterone response elements, and NADPH diaphorase colocalises with the progesterone receptor in the pvPOA. These data suggest that a polymorphism in progesterone sensitivity in the sexual ancestor reflects a differential regulation of nNOS and may account for the male-typical behaviour in unisexual whiptail lizards.
Collapse
Affiliation(s)
- Lauren A. O'Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | - Bryan J. Matthews
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
- All correspondence and requests for reprints should to addressed to: David Crews Section of Integrative Biology University of Texas at Austin, Austin, TX 78712 Phone: 512-471-1113
| |
Collapse
|
123
|
Dow HC, Kreibich AS, Kaercher KA, Sankoorikal GMV, Pauley ED, Lohoff FW, Ferraro TN, Li H, Brodkin ES. Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice. GENES, BRAIN, AND BEHAVIOR 2011; 10:57-68. [PMID: 20731721 PMCID: PMC3017637 DOI: 10.1111/j.1601-183x.2010.00640.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggressive behaviors are disabling, treatment refractory, and sometimes lethal symptoms of several neuropsychiatric disorders. However, currently available treatments for patients are inadequate, and the underlying genetics and neurobiology of aggression is only beginning to be elucidated. Inbred mouse strains are useful for identifying genomic regions, and ultimately the relevant gene variants (alleles) in these regions, that affect mammalian aggressive behaviors, which, in turn, may help to identify neurobiological pathways that mediate aggression. The BALB/cJ inbred mouse strain exhibits relatively high levels of intermale aggressive behaviors and shows multiple brain and behavioral phenotypes relevant to neuropsychiatric syndromes associated with aggression. The A/J strain shows very low levels of aggression. We hypothesized that a cross between BALB/cJ and A/J inbred strains would reveal genomic loci that influence the tendency to initiate intermale aggressive behavior. To identify such loci, we conducted a genomewide scan in an F2 population of 660 male mice bred from BALB/cJ and A/J inbred mouse strains. Three significant loci on chromosomes 5, 10 and 15 that influence aggression were identified. The chromosome 5 and 15 loci are completely novel, and the chromosome 10 locus overlaps an aggression locus mapped in our previous study that used NZB/B1NJ and A/J as progenitor strains. Haplotype analysis of BALB/cJ, NZB/B1NJ and A/J strains showed three positional candidate genes in the chromosome 10 locus. Future studies involving fine genetic mapping of these loci as well as additional candidate gene analysis may lead to an improved biological understanding of mammalian aggressive behaviors.
Collapse
Affiliation(s)
- Holly C. Dow
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403 USA
| | - Arati Sadalge Kreibich
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403 USA
| | - Kristin A. Kaercher
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403 USA
| | - Geena Mary V. Sankoorikal
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403 USA
| | - Eric D. Pauley
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403 USA
| | - Falk W. Lohoff
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403 USA
| | - Thomas N. Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403 USA
| | - Hongzhe Li
- Statistical Genetics and Genomics Laboratory, Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021 USA
| | - Edward S. Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403 USA
| |
Collapse
|
124
|
Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology (Berl) 2011; 213:183-212. [PMID: 20938650 PMCID: PMC3684010 DOI: 10.1007/s00213-010-2000-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/09/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. OBJECTIVE We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. RESULTS New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT(1A), 5-HT(1B) and 5-HT(2A/2C) receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT(1A) and 5-HT(1B) receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT(1B), 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. CONCLUSIONS Feedback to autoreceptors of the 5-HT(1) family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT(2) family expression may cause escalated aggression, whereas the phasic increase of 5-HT(2) receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment.
Collapse
|
125
|
Donato J, Elias CF. The ventral premammillary nucleus links metabolic cues and reproduction. Front Endocrinol (Lausanne) 2011; 2:57. [PMID: 22649378 PMCID: PMC3355867 DOI: 10.3389/fendo.2011.00057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/04/2011] [Indexed: 11/15/2022] Open
Abstract
The amount of body fat and the energy balance are important factors that influence the timing of puberty and the normal reproductive function. Leptin is a key hormone that conveys to the central nervous system information about the individual energy reserve and modulates the hypothalamus-pituitary-gonad (HPG) axis. Recent findings suggest that the ventral premammillary nucleus (PMV) mediates the effects of leptin as a permissive factor for the onset of puberty and the coordinated secretion of luteinizing hormone during conditions of negative energy balance. In this review, we will summarize the existing literature about the potential role played by PMV neurons in the regulation of the HPG axis.
Collapse
Affiliation(s)
- Jose Donato
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
- *Correspondence: Jose Donato Jr., Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Y6.206, Dallas, TX 75390, USA. e-mail:
| | - Carol Fuzeti Elias
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
126
|
Takahashi A, Quadros IM, de Almeida RMM, Miczek KA. Behavioral and pharmacogenetics of aggressive behavior. Curr Top Behav Neurosci 2011; 12:73-138. [PMID: 22297576 DOI: 10.1007/7854_2011_191] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of aspecific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to "phasic" effects of pharmacological agents versus "trait"-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene-environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT (e.g., MAOA) determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsalraphe nucleus by GABA, glutamate and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides(arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly[e.g., BDNF, neuronal nitric oxide (nNOS), aCaMKII, Neuropeptide Y].The future agenda delineates specific receptor subpopulations for GABA, glutamate and neuropeptides as they modulate the canonical aminergic neurotransmitters in brainstem, limbic and cortical regions with the ultimate outcome of attenuating or escalating aggressive behavior.
Collapse
|
127
|
Staschewski J, Kulisch C, Albrecht D. Different isoforms of nitric oxide synthase are involved in angiotensin-(1-7)-mediated plasticity changes in the amygdala in a gender-dependent manner. Neuroendocrinology 2011; 94:191-9. [PMID: 21606640 DOI: 10.1159/000328128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 04/02/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND The amygdala receives afferent sensory input and processes information related to hydromineral balance. Angiotensin acts on and through the amygdala to stimulate thirst and sodium appetite. In addition, different angiotensins seem to play a role in cognition and learning mechanisms by acting on and through the amygdala. Recently, we showed that angiotensin-(1-7) (Ang-(1-7)) enhances the magnitude of long-term potentiation (LTP) in the lateral nucleus of the amygdala (LA) via the Mas receptor. METHODS Extracellular field potentials were measured in the LA. RESULTS LA-LTP induced by stimulation of the external capsule was nitric oxide (NO)-dependent because the NO synthase (NOS) inhibitor L-NAME reduced LA-LTP. The LA-LTP was also reduced in both male and female nNOS and eNOS knockout mice. In male eNOS(-/-) mice, Ang-(1-7) enhanced LA-LTP, whereas the LTP-enhancing effect of Ang-(1-7) was missing in female eNOS(-/-) mice. Therefore, the LTP-enhancing effect of Ang-(1-7) was mediated by eNOS in females. In contrast, Ang-(1-7) strongly enhanced the LTP in nNOS(-/-) females, whereas the effect of Ang-(1-7) was missing in nNOS(-/-) males. Thus, Ang-(1-7) induced an increase in the magnitude of LTP via the involvement of nNOS in males. CONCLUSION Our data support not only the hypothesis that NO contributes to plasticity changes in the lateral amygdala, but also show for the first time a gender-dependent involvement of different isoforms of NOS in the mediation of Ang-(1-7) on LTP in the amygdala.
Collapse
Affiliation(s)
- Jörg Staschewski
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
128
|
Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 2010; 16:1439-43. [PMID: 21102461 DOI: 10.1038/nm.2245] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/20/2010] [Indexed: 02/08/2023]
Abstract
Stroke is a major public health problem leading to high rates of death and disability in adults. Excessive stimulation of N-methyl-D-aspartate receptors (NMDARs) and the resulting neuronal nitric oxide synthase (nNOS) activation are crucial for neuronal injury after stroke insult. However, directly inhibiting NMDARs or nNOS can cause severe side effects because they have key physiological functions in the CNS. Here we show that cerebral ischemia induces the interaction of nNOS with postsynaptic density protein-95 (PSD-95). Disrupting nNOS-PSD-95 interaction via overexpressing the N-terminal amino acid residues 1-133 of nNOS (nNOS-N(1-133)) prevented glutamate-induced excitotoxicity and cerebral ischemic damage. Given the mechanism of nNOS-PSD-95 interaction, we developed a series of compounds and discovered a small-molecular inhibitor of the nNOS-PSD-95 interaction, ZL006. This drug blocked the ischemia-induced nNOS-PSD-95 association selectively, had potent neuroprotective activity in vitro and ameliorated focal cerebral ischemic damage in mice and rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion. Moreover, it readily crossed the blood-brain barrier, did not inhibit NMDAR function, catalytic activity of nNOS or spatial memory, and had no effect on aggressive behaviors. Thus, this new drug may serve as a treatment for stroke, perhaps without major side effects.
Collapse
|
129
|
Donato J, Frazão R, Fukuda M, Vianna CR, Elias CF. Leptin induces phosphorylation of neuronal nitric oxide synthase in defined hypothalamic neurons. Endocrinology 2010; 151:5415-27. [PMID: 20881244 PMCID: PMC2954713 DOI: 10.1210/en.2010-0651] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies have indicated that the neurotransmitter nitric oxide (NO) mediates leptin's effects in the neuroendocrine reproductive axis. However, the neurons involved in these effects and their regulation by leptin is still unknown. We aimed to determine whether NO neurons are direct targets of leptin and by which mechanisms leptin may influence neuronal NO synthase (nNOS) activity. Nicotinamide adenine dinucleotide phosphate diaphorase activity and leptin-induced phosphorylation of signal transducer and activator of transcription-3 immunoreactivity were coexpressed in subsets of neurons of the medial preoptic area, the paraventricular nucleus of the thalamus, the arcuate nucleus (Arc), the dorsomedial nucleus of the hypothalamus (DMH), the posterior hypothalamic area, the ventral premammillary nucleus (PMV), the parabrachial nucleus, and the dorsal motor nucleus of the vagus nerve. Fasting blunted nNOS mRNA expression in the medial preoptic area, Arc, DMH, PMV, and posterior hypothalamic area, and this effect was not restored by acute leptin administration. No difference in the number of neurons expressing nNOS immunoreactivity was noticed comparing hypothalamic sections of fed (wild type and ob/ob), fasted, and fasted leptin-treated mice. However, we found that in states of low leptin levels, as in fasting, or lack of leptin, as in ob/ob mice, the number of neurons expressing the phosphorylated form of nNOS is decreased in the Arc, DMH, and PMV. Notably, acute leptin administration to fasted wild-type mice restored the number of phosphorylated form of nNOS neurons to that observed in fed wild-type mice. Herein we identified the first-order neurons potentially involved in NO-mediated effects of leptin and demonstrate that leptin regulates nNOS activity predominantly through posttranslational mechanisms.
Collapse
Affiliation(s)
- Jose Donato
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
130
|
Sachser N, Hennessy MB, Kaiser S. Adaptive modulation of behavioural profiles by social stress during early phases of life and adolescence. Neurosci Biobehav Rev 2010; 35:1518-33. [PMID: 20854842 DOI: 10.1016/j.neubiorev.2010.09.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/12/2010] [Accepted: 09/10/2010] [Indexed: 01/19/2023]
Abstract
The development of individual behavioural profiles can be powerfully influenced by stressful social experiences. Using a comparative approach, we focus on the role of social stressors for the modulation of behavioural profile during early phases of life and adolescence. For gregarious species, the stability of the social environment in which the pregnant and lactating female lives is of major importance for foetal brain development and the behavioural profile of the offspring in later life. Social instability during these critical periods of development generally brings about a behavioural and neuroendocrine masculinisation in daughters and a less pronounced expression of male-typical traits in sons. Moreover, when mothers live in a socially threatening world during this time, anxiety-like behaviour of their offspring often is elevated in adulthood. These effects of the social environment are likely to be mediated by maternal hormones and/or maternal behaviour. In addition, they can be modulated significantly by offspring genotype. We favour the hypothesis that the behavioural effects of social stress during this phase of life are not necessarily "pathological" (nonadaptive) consequences or constraints of adverse social conditions. Rather, mothers could be adjusting the offspring to their environment in an adaptive way. Adolescence is another period in which behavioural development is particularly susceptible to social influences. There is some evidence that stressful social events experienced at this time alter and canalize behaviour in an adaptive fashion, so that earlier influences on behavioural profile development can be complemented and readjusted, if necessary, to meet current environmental conditions. In terms of underlying neuroendocrine mechanism, a central role for the interaction of testosterone and stress hormones is suggested. In summary, the modulation of behavioural profiles by social stress from the prenatal phase through adolescence appears to represent an effective mechanism for repeated and rapid adaptation.
Collapse
Affiliation(s)
- Norbert Sachser
- Department of Behavioural Biology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany.
| | | | | |
Collapse
|
131
|
Filby AL, Paull GC, Hickmore TF, Tyler CR. Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 2010; 11:498. [PMID: 20846403 PMCID: PMC2996994 DOI: 10.1186/1471-2164-11-498] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/16/2010] [Indexed: 01/12/2023] Open
Abstract
Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors. Conclusions Thus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model.
Collapse
Affiliation(s)
- Amy L Filby
- School of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, Devon EX4 4PS, UK.
| | | | | | | |
Collapse
|
132
|
Cui H, Supriyanto I, Asano M, Ueno Y, Nagasaki Y, Nishiguchi N, Shirakawa O, Hishimoto A. A common polymorphism in the 3'-UTR of the NOS1 gene was associated with completed suicides in Japanese male population. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:992-6. [PMID: 20470850 DOI: 10.1016/j.pnpbp.2010.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/05/2010] [Accepted: 04/27/2010] [Indexed: 01/19/2023]
Abstract
BACKGROUND Suicidal behavior has been widely accepted as familial. Its transmission cannot be explained by the transmission of psychiatric disorder alone and seems to be partly explained by the transmission of impulsive-aggressive behavior. Studies in laboratory animal have shown that mice lacking NOS1 manifest significant aggressive behavior. Further, several polymorphisms of neuronal nitric oxide synthase (NOS1) gene have been reported to be associated with impulsivity, aggression and suicide attempts. To further clarify the possible involvement of NOS1 with suicide, we carried out an association study of NOS1 gene polymorphisms with completed suicide. METHODS We examined 7 single nucleotide polymorphisms (SNPs) of the NOS1 gene which were previously studied in several neuropsychiatric disorders (rs2682826, rs6490121, rs3782206, rs561712, rs3782219, rs3782221, and rs41279104), in age and gender matched 287 healthy control subjects and 284 completed suicides using the TaqMan probe assays. RESULTS We found that both the genotypic distribution and the allelic frequencies of rs2682826 SNP were significantly different between the completed suicide and control groups (P=0.0007 and 0.0005, respectively). The odd ratio for the minor allele of the SNP was 0.653 (95% CI 0.513-0.832). The significance was remained even after correction for multiple testing. Gender-based analysis showed that the significances were appeared in males only. CONCLUSION Our study raises a possibility that a genetic variation of NOS1 may be implicated in the pathophysiology of suicide in Japanese population, especially in males. Further studies on more NOS1 genetic variants are needed to confirm our observations.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Luciano M, Houlihan LM, Harris SE, Gow AJ, Hayward C, Starr JM, Deary IJ. Association of existing and new candidate genes for anxiety, depression and personality traits in older people. Behav Genet 2010; 40:518-32. [PMID: 20052609 DOI: 10.1007/s10519-009-9326-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 12/07/2009] [Indexed: 01/13/2023]
Abstract
Genetic variants that have previously been associated with personality traits and/or psychological distress, or inflammatory marker levels were investigated for their relationship to self-rated personality traits, anxiety, and depression in two elderly Scottish cohorts. Ten genes (29 SNPs) were investigated in the Lothian Birth Cohort 1936 (approximately 70 years, N = 1,091). Four of these genes and seven others (35 SNPs) were tested in the Lothian Birth Cohort 1921 who were measured on the same traits and states on two occasions (approximately 80 years, N = 550; 87 years, N = 229). For previously investigated candidate genes, some support (at a nominal significance level of 0.05/0.01) was found for association between NOS1 and personality traits (especially extraversion), PSEN1 and depression/neuroticism, and GRIK3 and depression. Of the inflammatory marker candidate genes, TF showed some association with psychological distress. No SNPs withstood the correction to significance level for multiple testing. Nevertheless, the results will be of importance to future meta-analyses of these candidate genes in relation to psychological distress and personality.
Collapse
Affiliation(s)
- Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
134
|
Sucher R, Gehwolf P, Oberhuber R, Hermann M, Margreiter C, Werner ER, Obrist P, Schneeberger S, Ollinger R, Margreiter R, Brandacher G. Tetrahydrobiopterin protects the kidney from ischemia-reperfusion injury. Kidney Int 2010; 77:681-9. [PMID: 20164829 DOI: 10.1038/ki.2010.7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for the nitric oxide (NO) synthases and represents a critical determinant of NO production. BH4 depletion during ischemia leads to the uncoupling of the synthases, thus contributing to reperfusion injury due to increased superoxide formation. To examine whether BH4 supplementation attenuates ischemia-reperfusion injury, we clamped the left renal arteries of male Lewis rats immediately following right-side nephrectomy. BH4 tissue levels significantly decreased after 45 min of warm ischemia compared with levels in non-ischemic controls. Histopathology demonstrated significant tubular damage and increased peroxynitrite formation. Intravital fluorescent microscopy found perfusion deficits in the microvasculature and leakage of the capillary mesh. Supplemental BH4 treatment before ischemia significantly reduced ischemia-induced renal dysfunction, and decreased tubular histologic injury scores and peroxynitrite generation. BH4 also significantly improved microcirculatory parameters such as functional capillary density and diameter. These protective effects of BH4 on microvasculature were significantly correlated with its ability to abolish peroxynitrite formation. We suggest that BH4 significantly protects against acute renal failure following ischemia reperfusion. Whether BH4 has a therapeutic potential will require more direct testing in humans.
Collapse
Affiliation(s)
- Robert Sucher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Laas K, Reif A, Herterich S, Eensoo D, Lesch KP, Harro J. The effect of a functional NOS1 promoter polymorphism on impulsivity is moderated by platelet MAO activity. Psychopharmacology (Berl) 2010; 209:255-61. [PMID: 20186396 DOI: 10.1007/s00213-010-1793-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/03/2010] [Indexed: 01/23/2023]
Abstract
RATIONALE Platelet monoamine oxidase (MAO) activity is associated with impulsivity in clinical samples. Recently, a functional promoter polymorphism of neuronal nitric oxide synthase (NOS1) termed NOS1 ex1f-VNTR was found to have an effect on impulsivity-related traits and resulting psychopathology. OBJECTIVE The study aims to explore the effect of both platelet MAO activity and NOS1 ex1f-VNTR genotype on impulsivity in a population-derived sample. METHODS This study was on a non-clinical sample of adult male subjects, previously used to investigate the effect of platelet MAO activity on impulsivity-related behaviour (Paaver et al., Psychopharmacology 186:32-40, 2006). Six hundred thirty-seven male subjects were genotyped for the NOS1 ex1f-VNTR promoter polymorphism. Impulsivity was self-reported. Effects of age and smoking, known to affect platelet MAO activity, were controlled for. RESULTS No main effect of either NOS1 genotype or platelet MAO activity was present. However, significant interactions were found between effects of the NOS1 genotype and platelet MAO activity on impulsivity measures. Impulsivity and in particular the aspects of adaptive impulsivity (e.g. fast decision-making and excitement-seeking behaviour) were higher in subjects with the NOS1 ex1f-VNTR short/short genotype if they belonged to the platelet MAO medium activity (interquartile) range. CONCLUSIONS This study supports evidence for higher impulsivity in the NOS1 short/short genotype subjects and further suggests that this is present in the subset of subjects who have close to average platelet MAO activity.
Collapse
Affiliation(s)
- Kariina Laas
- Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, 50410, Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
136
|
Lee JC, Chung YH, Cho YJ, Kim J, Kim N, Cha CI, Joo KM. Immunohistochemical study on the expression of calcium binding proteins (calbindin-D28k, calretinin, and parvalbumin) in the cerebellum of the nNOS knock-out(-/-) mice. Anat Cell Biol 2010; 43:64-71. [PMID: 21190006 PMCID: PMC2998781 DOI: 10.5115/acb.2010.43.1.64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 11/27/2022] Open
Abstract
Nitric Oxide (NO) actively participates in the regulation of neuronal intracellular Ca2+ levels by modulating the activity of various channels and receptors. To test the possibility that modulation of Ca2+ buffer protein expression level by NO participates in this regulatory effect, we examined expression of calbindin-D28k, calretinin, and parvalbumin in the cerebellum of neuronal NO synthase knock-out (nNOS(-/-)) mice using immunohistochemistry. We observed that in the cerebellar cortex of the nNOS(-/-) mice, expression of calbindin-D28k and parvalbumin were significantly increased while expression of calretinin was significantly decreased. These results suggest another mechanism by which NO can participate in the regulation of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Jae Chul Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
137
|
Neumann ID, Veenema AH, Beiderbeck DI. Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 2010; 4:12. [PMID: 20407578 PMCID: PMC2854527 DOI: 10.3389/fnbeh.2010.00012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 03/07/2010] [Indexed: 01/29/2023] Open
Abstract
Psychopathologies such as anxiety- and depression-related disorders are often characterized by impaired social behaviours including excessive aggression and violence. Excessive aggression and violence likely develop as a consequence of generally disturbed emotional regulation, such as abnormally high or low levels of anxiety. This suggests an overlap between brain circuitries and neurochemical systems regulating aggression and anxiety. In this review, we will discuss different forms of male aggression, rodent models of excessive aggression, and neurobiological mechanisms underlying male aggression in the context of anxiety. We will summarize our attempts to establish an animal model of high and abnormal aggression using rats selected for high (HAB) vs. low (LAB) anxiety-related behaviour. Briefly, male LAB rats and, to a lesser extent, male HAB rats show high and abnormal forms of aggression compared with non-selected (NAB) rats, making them a suitable animal model for studying excessive aggression in the context of extremes in innate anxiety. In addition, we will discuss differences in the activity of the hypothalamic–pituitary–adrenal axis, brain arginine vasopressin, and the serotonin systems, among others, which contribute to the distinct behavioural phenotypes related to aggression and anxiety. Further investigation of the neurobiological systems in animals with distinct anxiety phenotypes might provide valuable information about the link between excessive aggression and disturbed emotional regulation, which is essential for understanding the social and emotional deficits that are characteristic of many human psychiatric disorders.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg Regensburg, Germany
| | | | | |
Collapse
|
138
|
Metabolic syndrome: Aggression control mechanisms gone out of control. Med Hypotheses 2010; 74:578-89. [DOI: 10.1016/j.mehy.2009.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/07/2009] [Indexed: 01/13/2023]
|
139
|
Donato J, Cavalcante JC, Silva RJ, Teixeira AS, Bittencourt JC, Elias CF. Male and female odors induce Fos expression in chemically defined neuronal population. Physiol Behav 2010; 99:67-77. [PMID: 19857504 DOI: 10.1016/j.physbeh.2009.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 07/14/2009] [Accepted: 10/19/2009] [Indexed: 12/21/2022]
Abstract
Olfactory information modulates innate and social behaviors in rodents and other species. Studies have shown that the medial nucleus of the amygdala (MEA) and the ventral premammillary nucleus (PMV) are recruited by conspecific odor stimulation. However, the chemical identity of these neurons is not determined. We exposed sexually inexperienced male rats to female or male odors and assessed Fos immunoreactivity (Fos-ir) in neurons expressing NADPH diaphorase activity (NADPHd, a nitric oxide synthase), neuropeptide urocortin 3, or glutamic acid decarboxylase mRNA (GAD-67, a GABA-synthesizing enzyme) in the MEA and PMV. Male and female odors elicited Fos-ir in the MEA and PMV neurons, but the number of Fos-immunoreactive neurons was higher following female odor exposure, in both nuclei. We found no difference in odor induced Fos-ir in the MEA and PMV comparing fed and fasted animals. In the MEA, NADPHd neurons colocalized Fos-ir only in response to female odors. In addition, urocortin 3 neurons comprise a distinct population and they do not express Fos-ir after conspecific odor stimulation. We found that 80% of neurons activated by male odors coexpressed GAD-67 mRNA. Following female odor, 50% of Fos neurons coexpressed GAD-67 mRNA. The PMV expresses very little GAD-67, and virtually no colocalization with Fos was observed. We found intense NADPHd activity in PMV neurons, some of which coexpressed Fos-ir after exposure to both odors. The majority of the PMV neurons expressing NADPHd colocalized cocaine- and amphetamine-regulated transcript (CART). Our findings suggest that female and male odors engage distinct neuronal populations in the MEA, thereby inducing contextualized behavioral responses according to olfactory cues. In the PMV, NADPHd/CART neurons respond to male and female odors, suggesting a role in neuroendocrine regulation in response to olfactory cues.
Collapse
Affiliation(s)
- Jose Donato
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | | | | | | | | | |
Collapse
|
140
|
Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase. J Hypertens 2010; 27:1929-40. [PMID: 19587610 DOI: 10.1097/hjh.0b013e32832e8ddf] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide formed by neuronal nitric oxide synthase (nNOS) in the brain, autonomic inhibitory (nitrergic) nerves, and heart plays important roles in the control of blood pressure. Activation of nitrergic nerves innervating the systemic vasculature elicits vasodilatation, decreases peripheral resistance, and lowers blood pressure. Impairment of nitrergic nerve function, as well as endothelial dysfunction, results in systemic and pulmonary hypertension and decreased regional blood flow. Blockade of nNOS activity in the brain, particularly the medulla and hypothalamus, causes systemic hypertension. Under hypertensive states, such as those in spontaneously hypertensive and Dahl salt-sensitive rats, the expression of the nNOS gene in the brain is increased; this appears to counteract the activated sympathetic function in the vasomotor center. The present article summarizes information concerning the modulation of systemic and pulmonary hypertension through nNOS-derived nitric oxide produced in the brain and periphery.
Collapse
|
141
|
Abstract
Nitric oxide (NO) and carbon monoxide (CO) are well established as messenger molecules throughout the body, gasotransmitters, based on striking alterations in mice lacking the appropriate biosynthetic enzymes. Hydrogen sulfide (H(2)S) is even more chemically reactive, but until recently there was little definitive evidence for its physiologic formation. Cystathionine beta-synthase (EC 4.2.1.22), and cystathionine gamma-lyase (CSE; EC 4.4.1.1), also known as cystathionine, can generate H(2)S from cyst(e)ine. Very recent studies with mice lacking these enzymes have established that CSE is responsible for H(2)S formation in the periphery, while in the brain cystathionine beta-synthase is the biosynthetic enzyme. Endothelial-derived relaxing factor activity is reduced 80% in the mesenteric artery of mice with deletion of CSE, establishing H(2)S as a major physiologic endothelial-derived relaxing factor. H(2)S appears to signal predominantly by S-sulfhydrating cysteines in its target proteins, analogous to S-nitrosylation by NO. Whereas S-nitrosylation typically inhibits enzymes, S-sulfhydration activates them. S-nitrosylation basally affects 1-2% of its target proteins, while 10-25% of H(2)S target proteins are S-sulfhydrated. In summary, H(2)S appears to be a physiologic gasotransmitter of comparable importance to NO and carbon monoxide.
Collapse
Affiliation(s)
- Moataz M Gadalla
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105, USA
| | | |
Collapse
|
142
|
|
143
|
Retz W, Reif A, Freitag CM, Retz-Junginger P, Rösler M. Association of a functional variant of neuronal nitric oxide synthase gene with self-reported impulsiveness, venturesomeness and empathy in male offenders. J Neural Transm (Vienna) 2009; 117:321-4. [DOI: 10.1007/s00702-009-0352-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/24/2009] [Indexed: 11/29/2022]
|
144
|
Pilgram GSK, Potikanond S, Baines RA, Fradkin LG, Noordermeer JN. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol 2009; 41:1-21. [PMID: 19899002 PMCID: PMC2840664 DOI: 10.1007/s12035-009-8089-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/15/2009] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. A number of Duchenne patients also present with mental retardation. The dystrophin protein is part of the highly conserved dystrophin-associated glycoprotein complex (DGC) which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems. Many years of research into the roles of the DGC in muscle have revealed its structural function in stabilizing the sarcolemma. In addition, the DGC also acts as a scaffold for various signaling pathways. Here, we discuss recent advances in understanding DGC roles in the nervous system, gained from studies in both vertebrate and invertebrate model systems. From these studies, it has become clear that the DGC is important for the maturation of neurotransmitter receptor complexes and for the regulation of neurotransmitter release at the NMJ and central synapses. Furthermore, roles for the DGC have been established in consolidation of long-term spatial and recognition memory. The challenges ahead include the integration of the behavioral and mechanistic studies and the use of this information to identify therapeutic targets.
Collapse
Affiliation(s)
- Gonneke S K Pilgram
- Department of Molecular and Cell Biology, Leiden University Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
145
|
Klempan TA, Rujescu D, Mérette C, Himmelman C, Sequeira A, Canetti L, Fiori LM, Schneider B, Bureau A, Turecki G. Profiling brain expression of the spermidine/spermine N1-acetyltransferase 1 (SAT1) gene in suicide. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:934-43. [PMID: 19152344 DOI: 10.1002/ajmg.b.30920] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Altered stress reactivity is considered to be a risk factor for both major depressive disorder and suicidal behavior. The authors have sought to expand their previous findings implicating altered expression of spermidine/spermine N(1)-acetyltransferase 1 (SAT1), the rate-limiting enzyme involved in catabolism of the polyamines spermidine and spermine in the polyamine stress response (PSR), across multiple brain regions between control individuals and depressed individuals who have died by suicide. Microarray expression of probesets annotated to SAT1 were examined across 17 brain regions in 13 controls and 26 individuals who have died by suicide (16 with a diagnosis of major depression and 10 without), all of French-Canadian origin. Profiling conducted on the Affymetrix U133A/B chipset was further examined on a second chipset (U133 Plus 2.0) using RT-PCR, and analyzed in a second, independent sample. A reduction in SAT1 expression identified through multiple probesets was observed across 12 cortical regions in depressed individuals who have died by suicide compared with controls. Of these, five cortical regions showed statistically significant reductions which were supported by RT-PCR and analysis on the additional chipset. SAT1 cortical expression levels were also found to be significantly lower in an independent sample of German subjects with major depression who died by suicide in comparison with controls. These findings suggest that downregulation of SAT1 expression may play a role in depression and suicidality, possibly by impeding the normal PSR program or through compensation for the increased polyamine metabolism accompanying the psychological distress associated with depressive disorders.
Collapse
Affiliation(s)
- Timothy A Klempan
- McGill Group for Suicide Studies, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Role of nitric oxide in pheromone-mediated intraspecific communication in mice. Physiol Behav 2009; 98:608-13. [PMID: 19799918 DOI: 10.1016/j.physbeh.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/20/2022]
Abstract
Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.
Collapse
|
147
|
Sica M, Martini M, Viglietti-Panzica C, Panzica G. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice. BMC Neurosci 2009; 10:78. [PMID: 19604366 PMCID: PMC2717099 DOI: 10.1186/1471-2202-10-78] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/15/2009] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS) is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir) neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. RESULTS Changes were observed in the medial preoptic area (MPA) (significantly higher number in estrus) and in the arcuate nucleus (Arc) (significantly higher number in proestrus). In the ventrolateral part of the ventromedial nucleus (VMHvl) and in the bed nucleus of the stria terminalis (BST) no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle) in the VMHvl and in the BST (when considering only the less intensely stained elements). In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. CONCLUSION These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.
Collapse
Affiliation(s)
- Monica Sica
- University of Torino, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), Laboratory of Neuroendocrinology, , C.so M. D'Azeglio 52, 10126 Torino, Italy
| | - Mariangela Martini
- University of Torino, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), Laboratory of Neuroendocrinology, , C.so M. D'Azeglio 52, 10126 Torino, Italy
| | - Carla Viglietti-Panzica
- University of Torino, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), Laboratory of Neuroendocrinology, , C.so M. D'Azeglio 52, 10126 Torino, Italy
- National Institute of Neuroscience-Italy (INN), Torino, Italy
| | - GianCarlo Panzica
- University of Torino, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), Laboratory of Neuroendocrinology, , C.so M. D'Azeglio 52, 10126 Torino, Italy
- National Institute of Neuroscience-Italy (INN), Torino, Italy
| |
Collapse
|
148
|
Sica M, Martini M, Viglietti-Panzica C, Panzica G. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice. BMC Neurosci 2009. [PMID: 19604366 DOI: 10.1186/1471-2202-10-78-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS) is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir) neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. RESULTS Changes were observed in the medial preoptic area (MPA) (significantly higher number in estrus) and in the arcuate nucleus (Arc) (significantly higher number in proestrus). In the ventrolateral part of the ventromedial nucleus (VMHvl) and in the bed nucleus of the stria terminalis (BST) no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle) in the VMHvl and in the BST (when considering only the less intensely stained elements). In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. CONCLUSION These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.
Collapse
Affiliation(s)
- Monica Sica
- University of Torino, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), Laboratory of Neuroendocrinology, Torino, Italy.
| | | | | | | |
Collapse
|
149
|
Lemmer B, Arraj M. Effect of NO Synthase Inhibition on Cardiovascular Circadian Rhythms in Wild‐Type and eNOS‐Knock‐Out Mice. Chronobiol Int 2009; 25:501-10. [DOI: 10.1080/07420520802257695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
150
|
Tanda K, Nishi A, Matsuo N, Nakanishi K, Yamasaki N, Sugimoto T, Toyama K, Takao K, Miyakawa T. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice. Mol Brain 2009; 2:19. [PMID: 19538708 PMCID: PMC2711944 DOI: 10.1186/1756-6606-2-19] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/18/2009] [Indexed: 12/26/2022] Open
Abstract
Background Neuronal nitric oxide synthase (nNOS) is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO) mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.
Collapse
Affiliation(s)
- Koichi Tanda
- Genetic Engineering and Functional Genomics Group, Horizontal Medical Research Organization, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|