101
|
Tian Y, Voineagu I, Paşca SP, Won H, Chandran V, Horvath S, Dolmetsch RE, Geschwind DH. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med 2014; 6:75. [PMID: 25360157 PMCID: PMC4213483 DOI: 10.1186/s13073-014-0075-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Common genetic variation and rare mutations in genes encoding calcium channel subunits have pleiotropic effects on risk for multiple neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia. To gain further mechanistic insights by extending previous gene expression data, we constructed co-expression networks in Timothy syndrome (TS), a monogenic condition with high penetrance for ASD, caused by mutations in the L-type calcium channel, Cav1.2. METHODS To identify patient-specific alterations in transcriptome organization, we conducted a genome-wide weighted co-expression network analysis (WGCNA) on neural progenitors and neurons from multiple lines of induced pluripotent stem cells (iPSC) derived from normal and TS (G406R in CACNA1C) individuals. We employed transcription factor binding site enrichment analysis to assess whether TS associated co-expression changes reflect calcium-dependent co-regulation. RESULTS We identified reproducible developmental and activity-dependent gene co-expression modules conserved in patient and control cell lines. By comparing cell lines from case and control subjects, we also identified co-expression modules reflecting distinct aspects of TS, including intellectual disability and ASD-related phenotypes. Moreover, by integrating co-expression with transcription factor binding analysis, we showed the TS-associated transcriptional changes were predicted to be co-regulated by calcium-dependent transcriptional regulators, including NFAT, MEF2, CREB, and FOXO, thus providing a mechanism by which altered Ca(2+) signaling in TS patients leads to the observed molecular dysregulation. CONCLUSIONS We applied WGCNA to construct co-expression networks related to neural development and depolarization in iPSC-derived neural cells from TS and control individuals for the first time. These analyses illustrate how a systems biology approach based on gene networks can yield insights into the molecular mechanisms of neural development and function, and provide clues as to the functional impact of the downstream effects of Ca(2+) signaling dysregulation on transcription.
Collapse
Affiliation(s)
- Yuan Tian
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- />Interdepartmental Ph.D. Program in Bioinformatics, University of California, Los Angeles, CA 90095 USA
| | - Irina Voineagu
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Sergiu P Paşca
- />Department of Psychiatry & Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Hyejung Won
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Vijayendran Chandran
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Steve Horvath
- />Department of Human Genetics, David Geffen Sch. of Medicine, UCLA, Los Angeles, CA USA
| | - Ricardo E Dolmetsch
- />Department of Neurobiology, Stanford University, Stanford, CA 94305-5345 USA
- />Novartis Institutes for Biomedical Research, Cambridge, MA 02139 USA
| | - Daniel H Geschwind
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- />Interdepartmental Ph.D. Program in Bioinformatics, University of California, Los Angeles, CA 90095 USA
- />Department of Human Genetics, David Geffen Sch. of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|
102
|
Nonaka M, Kim R, Sharry S, Matsushima A, Takemoto-Kimura S, Bito H. Towards a better understanding of cognitive behaviors regulated by gene expression downstream of activity-dependent transcription factors. Neurobiol Learn Mem 2014; 115:21-9. [PMID: 25173698 DOI: 10.1016/j.nlm.2014.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
In the field of molecular and cellular neuroscience, it is not a trivial task to see the forest for the trees, where numerous, and seemingly independent, molecules often work in concert to control critical steps of synaptic plasticity and signalling. Here, we will first summarize our current knowledge on essential activity-dependent transcription factors (TFs) such as CREB, MEF2, Npas4 and SRF, then examine how various transcription cofactors (TcoFs) also contribute to defining the transcriptional outputs during learning and memory. This review finally attempts a provisory synthesis that sheds new light on some of the emerging principles of neuronal circuit dynamics driven by activity-regulated gene transcription to help better understand the intricate relationship between activity-dependent gene expression and cognitive behavior.
Collapse
Affiliation(s)
- Mio Nonaka
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
| | - Ryang Kim
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST-Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Stuart Sharry
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayano Matsushima
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST-Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST-Japan Science and Technology Agency, Tokyo 102-0076, Japan.
| |
Collapse
|
103
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
104
|
Wang Y, He H, Li S, Liu D, Lan B, Hu M, Cao Y, Wang C. All-optical regulation of gene expression in targeted cells. Sci Rep 2014; 4:5346. [PMID: 24939233 PMCID: PMC4061554 DOI: 10.1038/srep05346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022] Open
Abstract
Controllable gene expression is always a challenge and of great significance to biomedical research and clinical applications. Recently, various approaches based on extra-engineered light-sensitive proteins have been developed to provide optogenetic actuators for gene expression. Complicated biomedical techniques including exogenous genes engineering, transfection, and material delivery are needed. Here we present an all-optical method to regulate gene expression in targeted cells. Intrinsic or exogenous genes can be activated by a Ca(2+)-sensitive transcription factor nuclear factor of activated T cells (NFAT) driven by a short flash of femtosecond-laser irradiation. When applied to mesenchymal stem cells, expression of a differentiation regulator Osterix can be activated by this method to potentially induce differentiation of them. A laser-induced "Ca(2+)-comb" (LiCCo) by multi-time laser exposure is further developed to enhance gene expression efficiency. This noninvasive method hence provides an encouraging advance of gene expression regulation, with promising potential of applying in cell biology and stem-cell science.
Collapse
Affiliation(s)
- Yisen Wang
- Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Hao He
- Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P.R. China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200030, P.R. China
| | - Shiyang Li
- Key Laboratory of microbial functional genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300072, P.R. China
- Current address: Department of Microbiology-Immunology, Feiberg School of Medicine, Northwestern University
| | - Dayong Liu
- Department of Endodontics, School of Stomatology, Tianjin Medical University, Tianjin, 300072, P.R. China
| | - Bei Lan
- Key Laboratory of microbial functional genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300072, P.R. China
| | - Minglie Hu
- Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Youjia Cao
- Key Laboratory of microbial functional genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300072, P.R. China
| | - Chingyue Wang
- Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P.R. China
| |
Collapse
|
105
|
Yuan XX, Yang LP, Yang ZL, Xiao WL, Sun HD, Wu GS, Luo HR. Effect of nigranoic acid on Ca²⁺ influx and its downstream signal mechanism in NGF-differentiated PC12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:725-731. [PMID: 24674947 DOI: 10.1016/j.jep.2014.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis has a long history of use as a famous traditional Chinese medicine. The plants of genus Schisandra, especially Schisandra neglecta, Schisandra rubriflora, and Schisandra sphaerandra are used in the same way as Schisandra chinensis in the folk medicine to treat insomnia, fatigue, increasing intelligence, and tranquilizing. Many studies showed that lignans were the major active components of Schisandra genus, whereas the bioactivity of abundant triterpenoids in Schisandra genus, such as nigranoic acid (SBB1, 3,4-secocycloartene triterpenoid), has not been examined yet in neuropathology. MATERIALS AND METHODS After treating with SBB1, intracellular Ca(2+) concentration was analyzed by Ca(2+) fluorescent indicator (Fluo-4 AM) in NGF-differentiated PC12 cells. Intracellular nitric oxide (NO) level was analyzed using NO fluorescent indicator (DAF-FM). The expression of extracellular signal regulated kinase 1 and 2 (ERK1/2) was analyzed by western blotting, and the temporal mRNA for BDNF and c-fos was analyzed using reverse transcription quantitative PCR. RESULT We found that SBB1 induced Ca(2+) influx in a time- and concentration-dependent manner, which was significantly attenuated in Ca(2+) free media. SBB1 promoted the intracellular NO production which depended on increasing cytoplasmic Ca(2+) level. Moreover, SBB1 stimulated activation of ERK1/2 through Ca(2+)-CaMKII pathway. In addition, we found that SBB1 increased the expression of BDNF and c-fos mRNA. CONCLUSION These results suggest that SBB1 is able to promote NO production and stimulate phosphorylation of ERK1/2 through Ca(2+) influx, further impact expression of BDNF and c-fos, which provides evidence for the effects of SBB1 that may be benefit to enhance mental and intellectual functions.
Collapse
Affiliation(s)
- Xiao-Xi Yuan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Li-Ping Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100039, China; Yunnan Institute of Traditional Chinese Medicine and Materia Medica, Kunming 650223, Yunnan, China
| | - Zhong-Lin Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei-Lie Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
106
|
Welsh DJ, Peacock AJ. Cellular responses to hypoxia in the pulmonary circulation. High Alt Med Biol 2014; 14:111-6. [PMID: 23795730 DOI: 10.1089/ham.2013.1016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hypoxia can be defined as a reduction in available oxygen, whether in a whole organism or in a tissue or cell. It is a real life cause of pulmonary hypertension in humans both in terms of patients with chronic hypoxic lung disease and people living at high altitude. The effect of hypoxia on the pulmonary vasculature can be described in two ways; Hypoxic pulmonary vasoconstriction (HPV) (resulting from smooth muscle cell contraction) and pulmonary vascular remodelling (PVR) (resulting from pulmonary vascular cell proliferation). The pulmonary artery is made up of three resident cell types, the endothelial (intima), smooth muscle (media) and fibroblast (adventitia) cells. This review will examine the effects of hypoxia on the cells of the pulmonary vasculature and give an insight into the possible underlying mechanisms.
Collapse
Affiliation(s)
- David J Welsh
- Scottish Pulmonary Vascular Unit, Regional Heart and Lung Center, Glasgow, United Kingdom
| | | |
Collapse
|
107
|
Bilican B, Livesey MR, Haghi G, Qiu J, Burr K, Siller R, Hardingham GE, Wyllie DJA, Chandran S. Physiological normoxia and absence of EGF is required for the long-term propagation of anterior neural precursors from human pluripotent cells. PLoS One 2014; 9:e85932. [PMID: 24465796 PMCID: PMC3895023 DOI: 10.1371/journal.pone.0085932] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/03/2013] [Indexed: 12/23/2022] Open
Abstract
Widespread use of human pluripotent stem cells (hPSCs) to study neuronal physiology and function is hindered by the ongoing need for specialist expertise in converting hPSCs to neural precursor cells (NPCs). Here, we describe a new methodology to generate cryo-preservable hPSC-derived NPCs that retain an anterior identity and are propagatable long-term prior to terminal differentiation, thus abrogating regular de novo neuralization. Key to achieving passagable NPCs without loss of identity is the combination of both absence of EGF and propagation in physiological levels (3%) of O2. NPCs generated in this way display a stable long-term anterior forebrain identity and importantly retain developmental competence to patterning signals. Moreover, compared to NPCs maintained at ambient O2 (21%), they exhibit enhanced uniformity and speed of functional maturation, yielding both deep and upper layer cortical excitatory neurons. These neurons display multiple attributes including the capability to form functional synapses and undergo activity-dependent gene regulation. The platform described achieves long-term maintenance of anterior neural precursors that can give rise to forebrain neurones in abundance, enabling standardised functional studies of neural stem cell maintenance, lineage choice and neuronal functional maturation for neurodevelopmental research and disease-modelling.
Collapse
Affiliation(s)
- Bilada Bilican
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew R. Livesey
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ghazal Haghi
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jing Qiu
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Burr
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Rick Siller
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E. Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. A. Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DJAW); (SC)
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DJAW); (SC)
| |
Collapse
|
108
|
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2013; 115:157-88. [PMID: 24361499 DOI: 10.1016/j.pneurobio.2013.11.006] [Citation(s) in RCA: 780] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.
Collapse
Affiliation(s)
- Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, 40402 Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan.
| | - Shu Zhang
- Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan; Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada
| | - Yu Tian Wang
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada.
| |
Collapse
|
109
|
Abstract
Intracellular free Ca(2+) ([Ca(2+)]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca(2+) signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca(2+) signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca(2+) signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca(2+)]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca(2+) signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca(2+) signaling in the liver, and the role of Ca(2+) signaling in liver disease.
Collapse
Affiliation(s)
- Maria Jimena Amaya
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
110
|
Sookruksawong S, Pongsomboon S, Tassanakajon A. Genomic organization of the cytosolic manganese superoxide dismutase gene from the Pacific white shrimp, Litopenaeus vannamei, and its response to thermal stress. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1395-1405. [PMID: 23994278 DOI: 10.1016/j.fsi.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Cytosolic manganese superoxide dismutase (cMnSOD) is an important antioxidant enzyme which catalyzes the conversion of superoxides to oxygen and hydrogen peroxide in several organisms. In the Pacific white shrimp, Litopenaeus vannamei, three cMnSOD genes (LvcMnSOD1-3) have previously been characterized. Here, the genomic structure of LvcMnSOD2 and its mRNA expression in response to thermal stress was examined. Analysis of the nucleotide sequence demonstrated that LvcMnSOD2 is comprised of 2392 bp spanning from the ATG translation start site to the stop codon and contains six exons interrupted by five introns. The 5' region upstream of the LvcMnSOD2 gene contains several putative regulatory elements but lacks the accepted TATA sequence. The putative transcription factor binding elements that may be involved in LvcMnSOD2 mRNA expression level include activator protein-1 (AP-1), cAMP response element binding protein (CREB), upstream stimulatory factor (USF), CAAT-enhancer binding protein (C/EBP), nuclear factor-κB (NF-κB) and heat shock regulatory element (HSE). In addition, we compared the 5' upstream sequences of the LvcMnSOD2 gene between two shrimp strains that are resistant or susceptible to Taura syndrome virus (TSV), respectively, which revealed the absence of the USF and C/EBP elements at positions -2125 and -1986, respectively, in the TSV-susceptible shrimp line. Moreover, genomic variations between the two shrimp strains were detected in some of the putative C/EBP, USF, HSE and NF-κB transcription factor binding elements. That these genomic variations might be involved in the TSV resistance as well as in stress responses remains to be evaluated. The presence of 15 putative HSEs suggests that the expression of LvcMnSOD2 is regulated under thermal stress. Here, we found that in response to a 1 or 3 h thermal stress (35 °C), the mRNA expression levels of LvcMnSOD2 were significantly increased and then gradually decreased in the recovering phase at room temperature (25 °C) to control levels by 3 h after the heat shock. Thus, the antioxidant system may be induced to protect cells from the oxidative damage caused by thermal stress. The genomic organization of LvcMnSOD2 likely provides a clue to the mechanisms that might regulate the antioxidant defense pathway in shrimps and so potentially in marine invertebrates.
Collapse
Affiliation(s)
- Suchonma Sookruksawong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; Biotechnology Program, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | |
Collapse
|
111
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
112
|
Cruz FC, Koya E, Guez-Barber DH, Bossert JM, Lupica CR, Shaham Y, Hope BT. New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat Rev Neurosci 2013; 14:743-54. [PMID: 24088811 DOI: 10.1038/nrn3597] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. In addition, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches--Daun02 inactivation, FACS sorting of activated neurons and Fos-GFP transgenic rats--that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools--Fos-tTA transgenic mice and inactivation of CREB-overexpressing neurons--that have been used to study the role of neuronal ensembles in conditioned fear.
Collapse
Affiliation(s)
- Fabio C Cruz
- Intramural Research Program, National Institute on Drug Abuse-National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Synaptic activity initiates biochemical processes that have various outcomes, including the formation of memories, increases in neuronal survival and the development of chronic pain and addiction. Virtually all activity-induced, long-lasting adaptations of brain functions require a dialogue between synapses and the nucleus that results in changes in gene expression. Calcium signals that are induced by synaptic activity and propagate into the nucleus are a major route for synapse-to-nucleus communication. Recent findings indicate that diverse forms of neuroadaptation require calcium transients in the nucleus to switch on the necessary genomic programme. Deficits in nuclear calcium signalling as a result of a reduction in synaptic activity or increased extrasynaptic NMDA receptor signalling may underlie the aetiologies of various diseases, including neurodegeneration and cognitive dysfunction.
Collapse
Affiliation(s)
- Hilmar Bading
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany. Hilmar.Bading@ uni-hd.de
| |
Collapse
|
114
|
Melo CSB, Arantes Faria JAQ, Corrêa NCR, de Andrade C, Carvalho JL, Goes AM, Rodrigues MA, Gomes DA. Cytoplasmic-targeted parvalbumin blocks the proliferation of multipotent mesenchymal stromal cells in prophase. Stem Cell Res Ther 2013; 4:92. [PMID: 23928293 PMCID: PMC3854775 DOI: 10.1186/scrt291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 08/02/2013] [Indexed: 02/01/2023] Open
Abstract
Introduction Multipotent mesenchymal stromal cells (MSCs) have gained considerable interest because of their potential use in the treatment of a variety of diseases and injuries. Although remarkable advancements have been made in clinical studies, substantial concerns still regard the safety of MSCs. Some evidence suggests that MSCs can spontaneously generate a population of cells with tumorigenic potential. Thus, studying the molecular mechanisms that control the proliferation of MSCs may be a necessary step toward the development of strategies for safe clinical practice. Ca2+ is a second messenger that mediates a wide range of cellular responses, including the regulation of cell proliferation, but little is known about its function in MSCs. The aim of this study was to investigate the effects of targeted Ca2+ buffering on MSCs proliferation in vitro. Methods Here, we used an adenoviral (Ad) vector encoding the Ca2+ chelator protein parvalbumin (PV) fused to a nuclear exclusion signal (NES) and the Discosoma red fluorescent protein (DsRed) to investigate the function of cytoplasmic Ca2+ signals on MSC proliferation. Confocal microscopy was used to demonstrate that PV-NES-DsRed was expressed in the cytoplasm. Ca2+ signaling was monitored by using Fluo-4-AM. Fluorescence-activated cell sorting (FACS) analysis of cells that were stained with propidium iodide was used as a quantitative measure of cell death. The mitotic index was assessed by immunofluorescence, and the expression of cyclins was examined with Western blot. Results Our results show that the Ad-PV-NES-DsRed fusion protein decreased serum-induced Ca2+ signaling and blocked the proliferation of rat adipose-derived MSCs (AT-MSCs) in prophase. FACS analysis revealed that Ad-PV-NES-DsRed did not induce cell death in AT-MSCs. Furthermore, Western blot analysis demonstrated that Ad-PV-NES-DsRed reduced extracellular signal-regulated kinase (Erk1/2) phosphorylation and cyclin B1 expression. Buffering cytosolic Ca2+ did not alter the expression of cyclins A/D1/D2/D3/E and E2. Conclusions Our results show that cytoplasmic Ca2+ signals are important for AT-MSCs progression beyond prophase because of their effects on Erk phosphorylation and cyclin B1 expression.
Collapse
|
115
|
Geng D, Kang L, Su Y, Jia J, Ma J, Li S, Du J, Cui H. Protective effects of EphB2 on Aβ1-42 oligomer-induced neurotoxicity and synaptic NMDA receptor signaling in hippocampal neurons. Neurochem Int 2013; 63:283-90. [PMID: 23831214 DOI: 10.1016/j.neuint.2013.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized pathologically by the abnormal deposition of extracellular amyloid-β (Aβ) oligomers. However, the nature and precise mechanism of the toxicity of Aβ oligomers are not clearly understood. Aβ oligomers have been previously shown to cause a major loss of EphB2, a member of the EphB family of receptor tyrosine kinases. To determine the effect of EphB2 on Aβ oligomer-induced neurotoxicity and the underlying molecular mechanisms, we examined the EphB2 gene in cultured hippocampal neurons. Using a cellular model of AD, Aβ1-42 oligomers were confirmed to induce neurotoxicity in a time-dependent manner and result in a major decrease of EphB2. EphB2 overexpression could prevent the neurotoxicity of hippocampal neurons from exposure to Aβ1-42 oligomers for 1h. Further analysis revealed that EphB2 overexpression increased synaptic NR1 and NR2B expression in Aβ1-42 oligomer-treated neurons. Moreover, EphB2 overexpression prevented Aβ1-42 oligomer-induced downregulation of dephosphorylated p38 MAPK and phosphorylated CREB. Together, these results suggest that EphB2 is a factor which protects hippocampal neurons against the toxicity of Aβ1-42 oligomers, and we infer that the protection of EphB2 is achieved by increasing the synaptic NMDA receptor level and downstream p38 MAPK and CREB signaling in hippocampal neurons. This study provides new molecular insights into the neuroprotective effect of EphB2 and highlights its potential therapeutic role in the management of AD.
Collapse
Affiliation(s)
- Dandan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Weislogel JM, Bengtson CP, Müller MK, Hörtzsch JN, Bujard M, Schuster CM, Bading H. Requirement for nuclear calcium signaling in Drosophila long-term memory. Sci Signal 2013; 6:ra33. [PMID: 23652205 DOI: 10.1126/scisignal.2003598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.
Collapse
Affiliation(s)
- Jan-Marek Weislogel
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
117
|
Chen CC, Wang KY, Shen CKJ. DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J Biol Chem 2013; 288:9084-91. [PMID: 23393137 PMCID: PMC3610981 DOI: 10.1074/jbc.m112.445585] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/06/2013] [Indexed: 01/19/2023] Open
Abstract
Methylation at the 5-position of DNA cytosine on the vertebrate genomes is accomplished by the combined catalytic actions of three DNA methyltransferases (DNMTs), the de novo enzymes DNMT3A and DNMT3B and the maintenance enzyme DNMT1. Although several metabolic routes have been suggested for demethylation of the vertebrate DNA, whether active DNA demethylase(s) exist has remained elusive. Surprisingly, we have found that the mammalian DNMTs, and likely the vertebrates DNMTs in general, can also act as Ca(2+) ion- and redox state-dependent active DNA demethylases. This finding suggests new directions for reinvestigation of the structures and functions of these DNMTs, in particular their roles in Ca(2+) ion-dependent biological processes, including the genome-wide/local DNA demethylation during early embryogenesis, cell differentiation, neuronal activity-regulated gene expression, and carcinogenesis.
Collapse
Affiliation(s)
- Chun-Chang Chen
- From the Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112 and
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Keh-Yang Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
118
|
NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons. Neurosci Lett 2013; 543:95-100. [PMID: 23518152 PMCID: PMC3725411 DOI: 10.1016/j.neulet.2013.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/28/2013] [Accepted: 03/10/2013] [Indexed: 12/23/2022]
Abstract
Thanks to the development of efficient differentiation strategies, human pluripotent stem cells (HPSC) offer the opportunity for modelling neuronal injury and dysfunction in human neurons in vitro. Critically, the effective use of HPSC-derived neural cells in disease-modelling and potentially cell replacement therapies hinges on an understanding of the biology of these cells, specifically their development, subtype specification and responses to neurotoxic signalling mediators. Here, we generated neurons from human embryonic stem cells and characterised the development of vulnerability to glutamate excitotoxicity, a key contributor to neuronal injury in several acute and chronic neurodegenerative disorders. Over two months of differentiation we observed a gradual increase in responsiveness of neurons to glutamate-induced Ca(2+) influx, attributable to NMDA receptor activity. This increase was concomitant with an increase in expression of mRNA encoding NMDA and AMPA receptor subunits. Differentiated neurons were vulnerable to glutamate excitotoxicity in a dose-dependent manner, which was reduced by NMDA receptor antagonists.
Collapse
|
119
|
Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, Kuner R. Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 2013; 77:43-57. [PMID: 23312515 DOI: 10.1016/j.neuron.2012.10.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 12/17/2022]
Abstract
Persistent pain induced by noxious stimuli is characterized by the transition from normosensitivity to hypersensitivity. Underlying mechanisms are not well understood, although gene expression is considered important. Here, we show that persistent nociceptive-like activity triggers calcium transients in neuronal nuclei within the superficial spinal dorsal horn, and that nuclear calcium is necessary for the development of long-term inflammatory hypersensitivity. Using a nucleus-specific calcium signal perturbation strategy in vivo complemented by gene profiling, bioinformatics, and functional analyses, we discovered a pain-associated, nuclear calcium-regulated gene program in spinal excitatory neurons. This includes C1q, a modulator of synaptic spine morphogenesis, which we found to contribute to activity-dependent spine remodelling on spinal neurons in a manner functionally associated with inflammatory hypersensitivity. Thus, nuclear calcium integrates synapse-to-nucleus communication following noxious stimulation and controls a spinal genomic response that mediates the transition between acute and long-term nociceptive sensitization by modulating functional and structural plasticity.
Collapse
Affiliation(s)
- Manuela Simonetti
- Institute for Pharmacology, University of Heidelberg, Im Neuenheimer Feld, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Ronjat M, Kiyonaka S, Barbado M, De Waard M, Mori Y. Nuclear life of the voltage-gated Cacnb4 subunit and its role in gene transcription regulation. Channels (Austin) 2013; 7:119-25. [PMID: 23511121 DOI: 10.4161/chan.23895] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pore-forming subunit of voltage-gated calcium channels is associated to auxiliary subunits among which the cytoplasmic β subunit. The different isoforms of this subunit control both the plasma membrane targeting and the biophysical properties of the channel moiety. In a recent study, we demonstrated that the Cacnb4 (β 4) isoform is at the center of a new signaling pathway that connects neuronal excitability and gene transcription. This mechanism relies on nuclear targeting of β 4 triggered by neuronal electrical stimulation. This re-localization of β 4 is promoted by its interaction with Ppp2r5d a regulatory subunit of PP2A in complex with PP2A itself. The formation, as well as the nuclear translocation, of the β 4/ Ppp2r5d/ PP2A complex is totally impaired by the premature R482X stops mutation of β 4 that has been previously associated with juvenile epilepsy. Taking as a case study the tyrosine hydroxylase gene that is strongly upregulated in brain of lethargic mice, deficient for β 4 expression, we deciphered the molecular steps presiding to this signaling pathway. Here we show that expression of wild-type β 4 in HEK293 cells results in the regulation of several genes, while expression of the mutated β 4 (β 1-481) produces a different set of gene regulation. Several genes regulated by β 4 in HEK293 cells were also regulated upon neuronal differentiation of NG108-15 cells that induces nuclear translocation of β 4 suggesting a link between β 4 nuclear targeting and gene regulation.
Collapse
Affiliation(s)
- Michel Ronjat
- Unité Inserm U836, Grenoble Institute of Neuroscience, La Tronche, France.
| | | | | | | | | |
Collapse
|
121
|
Resende RR, Andrade LM, Oliveira AG, Guimarães ES, Guatimosim S, Leite MF. Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Commun Signal 2013; 11:14. [PMID: 23433362 PMCID: PMC3599436 DOI: 10.1186/1478-811x-11-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 02/12/2013] [Indexed: 01/19/2023] Open
Abstract
Calcium (Ca2+) is an essential signal transduction element involved in the regulation of several cellular activities and it is required at various key stages of the cell cycle. Intracellular Ca2+ is crucial for the orderly cell cycle progression and plays a vital role in the regulation of cell proliferation. Recently, it was demonstrated by in vitro and in vivo studies that nucleoplasmic Ca2+ regulates cell growth. Even though the mechanism by which nuclear Ca2+ regulates cell proliferation is not completely understood, there are reports demonstrating that activation of tyrosine kinase receptors (RTKs) leads to translocation of RTKs to the nucleus to generate localized nuclear Ca2+ signaling which are believed to modulate cell proliferation. Moreover, nuclear Ca2+ regulates the expression of genes involved in cell growth. This review will describe the nuclear Ca2+ signaling machinery and its role in cell proliferation. Additionally, the potential role of nuclear Ca2+ as a target in cancer therapy will be discussed.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
122
|
A novel Ca2+ channel antagonist reverses cardiac hypertrophy and pulmonary arteriolar remodeling in experimental pulmonary hypertension. Eur J Pharmacol 2013; 702:316-22. [PMID: 23399770 DOI: 10.1016/j.ejphar.2013.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 11/22/2022]
Abstract
This work investigates the actions of LASSBio-1289, (E)-N-methyl-N'-(thiophen-3-methylene)benzo[d][1,3]dioxole-5-carbohydrazide, on monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Two weeks following the MCT injection, LASSBio-1289 (50 or 75mg/kg, p.o.) or vehicle was administrated once daily for 14 days. LASSBio-1289 (75 mg/kg) treatment caused a significant decrease in right ventricular systolic pressure (31.89±0.82 mmHg) compared to the MCT-vehicle group (52.74±6.19 mmHg; P<0.05). Oral treatment with LASSBio-1289 (50 or 75 mg/kg) effectively decreased pulmonary artery diameter and right ventricle (RV) area, assessed by echocardiography. LASSBio-1289 (75 mg/kg) reduced RV area (10.00±0.58 mm(2)) compared to the MCT-vehicle group (20.50±1.44 mm(2); P<0.05). LASSBio-1289 (75 mg/kg) also partially recovered the pulmonary artery acceleration time in MCT-treated rats. Oral treatment with LASSBio-1289 (50mg/kg) decreased the pulmonary arteriolar wall thickness (68.57±2.21%) compared to the MCT-vehicle group (81.07±1.92%; P<0.05). In experiments with isolated pulmonary arteries, the concentration of LASSBio-1289 necessary to produce 50% relaxation in the phenylephrine- or KCl-induced contraction was 27.31±6.94 and 2.72±0.99 μM, respectively, P<0.05. In the presence of LASSBio-1289 (50 μM), the maximal contraction induced by 10mM CaCl2 was reduced to 36.00±8.28% of the maximal contraction of the control curve (P<0.05). LASSBio-1289 was effective in attenuating MCT-induced PAH in rats, and its beneficial effects were likely mediated by the inhibition of extracellular Ca(2+) influx through L-type voltage-gated Ca(2+) channels in the pulmonary artery.
Collapse
|
123
|
Schlumm F, Mauceri D, Freitag HE, Bading H. Nuclear calcium signaling regulates nuclear export of a subset of class IIa histone deacetylases following synaptic activity. J Biol Chem 2013; 288:8074-8084. [PMID: 23364788 DOI: 10.1074/jbc.m112.432773] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In neurons, dynamic changes in the subcellular localization of histone deacetylases (HDACs) are thought to contribute to signal-regulated gene expression. Here we show that in mouse hippocampal neurons, synaptic activity-dependent nucleo-cytoplasmic shuttling is a common feature of all members of class IIa HDACs, which distinguishes them from other classes of HDACs. Nuclear calcium, a key regulator in neuronal gene expression, is required for the nuclear export of a subset of class IIa HDACs. We found that inhibition of nuclear calcium signaling using CaMBP4 or increasing the nuclear calcium buffering capacity by means of expression of a nuclear targeted version of parvalbumin (PV.NLS-mC) led to a build-up of HDAC4 and HDAC5 in the cell nucleus, which in the case of PV.NLS-mC can be reversed by nuclear calcium transients triggered by bursts of action potential firing. A similar nuclear accumulation of HDAC4 and HDAC5 was observed in vivo in the mouse hippocampus following stereotaxic delivery of recombinant adeno-associated viruses expressing either CaMBP4 or PV.NLS-mC. The modulation of HDAC4 activity either by RNA interference-mediated reduction of HDAC4 protein levels or by expression of a constitutively nuclear localized mutant of HDAC4 leads to changes in the mRNA levels of several nuclear calcium-regulated genes with known functions in acquired neuroprotection (atf3, serpinb2), memory consolidation (homer1, arc), and the development of chronic pain (ptgs2, c1qc). These results identify nuclear calcium as a regulator of nuclear export of HDAC4 and HDAC5. The reduction of nuclear localized HDACs represents a novel transcription-promoting pathway stimulated by nuclear calcium.
Collapse
Affiliation(s)
- Friederike Schlumm
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364 69120 Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364 69120 Heidelberg, Germany
| | - H Eckehard Freitag
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364 69120 Heidelberg, Germany.
| |
Collapse
|
124
|
Bengtson CP, Kaiser M, Obermayer J, Bading H. Calcium responses to synaptically activated bursts of action potentials and their synapse-independent replay in cultured networks of hippocampal neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1672-9. [PMID: 23360982 DOI: 10.1016/j.bbamcr.2013.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/29/2022]
Abstract
Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- C Peter Bengtson
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
125
|
Bambico FR, Belzung C. Novel insights into depression and antidepressants: a synergy between synaptogenesis and neurogenesis? Curr Top Behav Neurosci 2013; 15:243-291. [PMID: 23271325 DOI: 10.1007/7854_2012_234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Major depressive disorder has been associated with manifold pathophysiological changes. These include metabolic abnormalities in discreet brain areas; modifications in the level of stress hormones, neurotransmitters, and neurotrophic factors; impaired spinogenesis and synaptogenesis in crucial brain areas, such as the prefrontal cortex and the hippocampus; and impaired neurogenesis in the hippocampus. Antidepressant therapy facilitates remission by reversing most of these disturbances, indicating that these dysfunctions may participate causally in depressive symptomatology. However, few attempts have been made to integrate these different pathophysiologies into one model. The present chapter endeavors (1) to review the extant literature in the field, with particular focus on the role of neurogenesis and synaptogenesis in depression; (2) and to suggest a possible interplay between these two processes, as well as, describe the ways by which improving both neurogenesis and synaptogenesis may enable effective recovery by acting on a larger neuronal network.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Neuroimaging Division, Center for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada,
| | | |
Collapse
|
126
|
Abstract
Calcium is important in controlling nuclear gene expression through the activation of multiple signal-transduction pathways in neurons. Compared with other voltage-gated calcium channels, CaV1 channels demonstrate a considerable advantage in signalling to the nucleus. In this review, we summarize the recent progress in elucidating the mechanisms involved. CaV1 channels, already advantaged in their responsiveness to depolarization, trigger communication with the nucleus by attracting colocalized clusters of activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). CaV2 channels lack this ability, but must work at a distance of >1 μm from the CaV1-CaMKII co-clusters, which hampers their relative efficiency for a given rise in bulk [Ca2+]i (intracellular [Ca2+]). Moreover, Ca2+ influx from CaV2 channels is preferentially buffered by the ER (endoplasmic reticulum) and mitochondria, further attenuating their effectiveness in signalling to the nucleus.
Collapse
|
127
|
Ibarra C, Vicencio JM, Estrada M, Lin Y, Rocco P, Rebellato P, Munoz JP, Garcia-Prieto J, Quest AFG, Chiong M, Davidson SM, Bulatovic I, Grinnemo KH, Larsson O, Szabadkai G, Uhlén P, Jaimovich E, Lavandero S. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res 2012; 112:236-45. [PMID: 23118311 DOI: 10.1161/circresaha.112.273839] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE The ability of a cell to independently regulate nuclear and cytosolic Ca(2+) signaling is currently attributed to the differential distribution of inositol 1,4,5-trisphosphate receptor channel isoforms in the nucleoplasmic versus the endoplasmic reticulum. In cardiac myocytes, T-tubules confer the necessary compartmentation of Ca(2+) signals, which allows sarcomere contraction in response to plasma membrane depolarization, but whether there is a similar structure tunneling extracellular stimulation to control nuclear Ca(2+) signals locally has not been explored. OBJECTIVE To study the role of perinuclear sarcolemma in selective nuclear Ca(2+) signaling. METHODS AND RESULTS We report here that insulin-like growth factor 1 triggers a fast and independent nuclear Ca(2+) signal in neonatal rat cardiac myocytes, human embryonic cardiac myocytes, and adult rat cardiac myocytes. This fast and localized response is achieved by activation of insulin-like growth factor 1 receptor signaling complexes present in perinuclear invaginations of the plasma membrane. The perinuclear insulin-like growth factor 1 receptor pool connects extracellular stimulation to local activation of nuclear Ca(2+) signaling and transcriptional upregulation through the perinuclear hydrolysis of phosphatidylinositol 4,5-biphosphate inositol 1,4,5-trisphosphate production, nuclear Ca(2+) release, and activation of the transcription factor myocyte-enhancing factor 2C. Genetically engineered Ca(2+) buffers--parvalbumin--with cytosolic or nuclear localization demonstrated that the nuclear Ca(2+) handling system is physically and functionally segregated from the cytosolic Ca(2+) signaling machinery. CONCLUSIONS These data reveal the existence of an inositol 1,4,5-trisphosphate-dependent nuclear Ca(2+) toolkit located in direct apposition to the cell surface, which allows the local control of rapid and independent activation of nuclear Ca(2+) signaling in response to an extracellular ligand.
Collapse
Affiliation(s)
- Cristian Ibarra
- Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Galva C, Artigas P, Gatto C. Nuclear Na+/K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis. J Cell Sci 2012; 125:6137-47. [PMID: 23077175 DOI: 10.1242/jcs.114959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Na(+)/K(+)-ATPase, an integral membrane protein, has been studied for over a half century with respect to its transporter function in the plasma membrane, where it expels three Na(+) ions from the cell in exchange for two K(+) ions. In this study, we demonstrate a functioning Na(+)/K(+)-ATPase within HEK293 cell nuclei. This subcellular localization was confirmed by western blotting, ouabain-sensitive ATPase activity of the nuclear membrane fraction, immunocytochemistry and delivery of fluorescently tagged Na(+)/K(+)-ATPase α- and β-subunits. In addition, we observed an overlap between nuclear Na(+)/K(+)-ATPase and Na/Ca-exchanger (NCX) when nuclei were immunostained with commercially available Na(+)/K(+)-ATPase and NCX antibodies, suggesting a concerted physiological coupling between these transporters. In keeping with this, we observed an ATP-dependent, strophanthidin-sensitive Na(+) flux into the nuclear envelope (NE) lumen loaded with the Na-sensitive dye, CoroNa-Green. Analogous experiments using Fluo-5N, a low affinity Ca(2+) indicator, demonstrated a similar ATP-dependent and strophanthidin-sensitive Ca(2+) flux into the NE lumen. Our results reveal an intracellular physiological role for the coordinated efforts of the Na(+)/K(+)-ATPase and NCX to actively remove Ca(2+) from the nucleoplasm into the NE lumen (i.e. the nucleoplasmic reticulum).
Collapse
Affiliation(s)
- Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | | | | |
Collapse
|
129
|
Gatfield J, Mueller Grandjean C, Sasse T, Clozel M, Nayler O. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells. PLoS One 2012; 7:e47662. [PMID: 23077657 PMCID: PMC3471877 DOI: 10.1371/journal.pone.0047662] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/14/2012] [Indexed: 02/06/2023] Open
Abstract
Two endothelin receptor antagonists (ERAs), bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH), a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC). The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP1) assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with Kb values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt1/2) compared to bosentan and ambrisentan (ROt1/2∶17 minutes versus 70 seconds and 40 seconds, respectively). Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP1 assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1) concentrations. However, prolongation of the ET-1 stimulation time beyond ROt1/2 rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive ERA with significantly slower receptor dissociation kinetics than the currently approved ERAs. Slow dissociation caused insurmountable antagonism in functional PASMC-based assays and this could contribute to an enhanced pharmacological activity of macitentan in ET-1-dependent pathologies.
Collapse
Affiliation(s)
- John Gatfield
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.
| | | | | | | | | |
Collapse
|
130
|
Pathogenic role of store-operated and receptor-operated ca(2+) channels in pulmonary arterial hypertension. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:951497. [PMID: 23056939 PMCID: PMC3465915 DOI: 10.1155/2012/951497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/31/2022]
Abstract
Pulmonary circulation is an important circulatory system in which the body brings in oxygen. Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that predominantly affects women. Sustained pulmonary vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness are the major causes for the elevated pulmonary vascular resistance (PVR) in patients with PAH. The elevated PVR causes an increase in afterload in the right ventricle, leading to right ventricular hypertrophy, right heart failure, and eventually death. Understanding the pathogenic mechanisms of PAH is important for developing more effective therapeutic approach for the disease. An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC migration and proliferation which lead to pulmonary vascular wall thickening and remodeling. It is thus pertinent to define the pathogenic role of Ca2+ signaling in pulmonary vasoconstriction and PASMC proliferation to develop new therapies for PAH. [Ca2+]cyt in PASMC is increased by Ca2+ influx through Ca2+ channels in the plasma membrane and by Ca2+ release or mobilization from the intracellular stores, such as sarcoplasmic reticulum (SR) or endoplasmic reticulum (ER). There are two Ca2+ entry pathways, voltage-dependent Ca2+ influx through voltage-dependent Ca2+ channels (VDCC) and voltage-independent Ca2+ influx through store-operated Ca2+ channels (SOC) and receptor-operated Ca2+ channels (ROC). This paper will focus on the potential role of VDCC, SOC, and ROC in the development and progression of sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in PAH.
Collapse
|
131
|
Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M. Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 2012; 31:3730-44. [PMID: 22892567 DOI: 10.1038/emboj.2012.226] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/17/2012] [Indexed: 12/11/2022] Open
Abstract
Calcium current through voltage-gated calcium channels (VGCC) controls gene expression. Here, we describe a novel signalling pathway in which the VGCC Cacnb4 subunit directly couples neuronal excitability to transcription. Electrical activity induces Cacnb4 association to Ppp2r5d, a regulatory subunit of PP2A phosphatase, followed by (i) nuclear translocation of Cacnb4/Ppp2r5d/PP2A, (ii) association with the tyrosine hydroxylase (TH) gene promoter through the nuclear transcription factor thyroid hormone receptor alpha (TRα), and (iii) histone binding through association of Cacnb4 with HP1γ concomitantly with Ser(10) histone H3 dephosphorylation by PP2A. This signalling cascade leads to TH gene repression by Cacnb4 and is controlled by the state of interaction between the SH3 and guanylate kinase (GK) modules of Cacnb4. The human R482X CACNB4 mutation, responsible for a form of juvenile myoclonic epilepsy, prevents association with Ppp2r5 and nuclear targeting of the complex by altering Cacnb4 conformation. These findings demonstrate that an intact VGCC subunit acts as a repressor recruiting platform to control neuronal gene expression.
Collapse
Affiliation(s)
- Abir Tadmouri
- Unité Inserm U, Grenoble Institute of Neuroscience, Université Joseph Fourier, La Tronche, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
|
133
|
Bkaily G, Avedanian L, Al-Khoury J, Ahmarani L, Perreault C, Jacques D. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions. Can J Physiol Pharmacol 2012; 90:953-65. [DOI: 10.1139/y2012-077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation–contraction coupling, excitation–secretion coupling, and excitation – gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Levon Avedanian
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Johny Al-Khoury
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Lena Ahmarani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Claudine Perreault
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
134
|
Müller I, Lipp P, Thiel G. Ca2+ signaling and gene transcription in glucose-stimulated insulinoma cells. Cell Calcium 2012; 52:137-51. [DOI: 10.1016/j.ceca.2012.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
135
|
Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, Tsien RW. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 2012; 149:1112-24. [PMID: 22632974 DOI: 10.1016/j.cell.2012.03.041] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/11/2011] [Accepted: 03/07/2012] [Indexed: 12/23/2022]
Abstract
Activity-dependent gene expression triggered by Ca(2+) entry into neurons is critical for learning and memory, but whether specific sources of Ca(2+) act distinctly or merely supply Ca(2+) to a common pool remains uncertain. Here, we report that both signaling modes coexist and pertain to Ca(V)1 and Ca(V)2 channels, respectively, coupling membrane depolarization to CREB phosphorylation and gene expression. Ca(V)1 channels are advantaged in their voltage-dependent gating and use nanodomain Ca(2+) to drive local CaMKII aggregation and trigger communication with the nucleus. In contrast, Ca(V)2 channels must elevate [Ca(2+)](i) microns away and promote CaMKII aggregation at Ca(V)1 channels. Consequently, Ca(V)2 channels are ~10-fold less effective in signaling to the nucleus than are Ca(V)1 channels for the same bulk [Ca(2+)](i) increase. Furthermore, Ca(V)2-mediated Ca(2+) rises are preferentially curbed by uptake into the endoplasmic reticulum and mitochondria. This source-biased buffering limits the spatial spread of Ca(2+), further attenuating Ca(V)2-mediated gene expression.
Collapse
Affiliation(s)
- Damian G Wheeler
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Buchthal B, Lau D, Weiss U, Weislogel JM, Bading H. Nuclear calcium signaling controls methyl-CpG-binding protein 2 (MeCP2) phosphorylation on serine 421 following synaptic activity. J Biol Chem 2012; 287:30967-74. [PMID: 22822052 DOI: 10.1074/jbc.m112.382507] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The function of MeCP2, a methylated DNA-interacting protein that may act as a global chromatin modifier, is controlled by its phosphorylation on serine 421. Here we show that in hippocampal neurons, nuclear calcium signaling controls synaptic activity-induced phosphorylation of MeCP2 on serine 421. Pharmacological inhibition of calcium/calmodulin-dependent protein (CaM)kinases blocked activity-induced MeCP2 serine 421 phosphorylation. CaM kinase II (CaMKII) but not CaMKIV, the major nuclear CaM kinase in hippocampal neurons, appeared to mediate this phosphorylation event. Biochemical subcellular fractionations and immunolocalization studies revealed that several isoforms of CaMKII (i.e. CaMKIIα, -β, -γ, and -δ) are expressed in the cytosol but are also detectable in the cell nucleus of hippocampal neurons, suggesting that nuclear CaMKII catalyzes MeCP2 serine 421 phosphorylation. Thus, in addition to the classical nuclear calcium-CaMKIV-CREB/CBP (cAMP-response element-binding protein/CREB-binding protein) pathway that regulates transcription of specific target genes, nuclear calcium may also modulate genome-wide the chromatin state in response to synaptic activity via nuclear CaMKII-MeCP2 signaling.
Collapse
Affiliation(s)
- Bettina Buchthal
- Department of Neurobiology and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
137
|
Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nat Neurosci 2012; 15:1111-3. [PMID: 22751036 DOI: 10.1038/nn.3151] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/04/2012] [Indexed: 12/14/2022]
Abstract
Cognitive abilities decline in normal aging, yet the underlying molecular mechanisms are poorly understood. We found that aging was associated with a decrease in the expression of the DNA methyltransferase Dnmt3a2 in the hippocampus and that rescuing Dnmt3a2 levels restored cognitive functions. Moreover, we found that Dnmt3a2 is an activity-regulated immediate early gene that is partly dependent on nuclear calcium signaling and that hippocampal Dnmt3a2 levels determine cognitive abilities in both young adult and aged mice.
Collapse
|
138
|
Koltsova SV, Trushina Y, Haloui M, Akimova OA, Tremblay J, Hamet P, Orlov SN. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca(2+)i-independent excitation-transcription coupling. PLoS One 2012; 7:e38032. [PMID: 22666440 PMCID: PMC3362528 DOI: 10.1371/journal.pone.0038032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/29/2012] [Indexed: 12/21/2022] Open
Abstract
Stimulus-dependent elevation of intracellular Ca2+ ([Ca2+]i) affects the expression of numerous genes – a phenomenon known as excitation-transcription coupling. Recently, we found that increases in [Na+]i trigger c-Fos expression via a novel Ca2+i-independent pathway. In the present study, we identified ubiquitous and tissue-specific [Na+]i/[K+]i-sensitive transcriptomes by comparative analysis of differentially expressed genes in vascular smooth muscle cells from rat aorta (RVSMC), the human adenocarcinoma cell line HeLa, and human umbilical vein endothelial cells (HUVEC). To augment [Na+]i and reduce [K+]i, cells were treated for 3 hrs with the Na+,K+-ATPase inhibitor ouabain or placed for the same time in the K+-free medium. Employing Affymetrix-based technology, we detected changes in expression levels of 684, 737 and 1839 transcripts in HeLa, HUVEC and RVSMC, respectively, that were highly correlated between two treatments (p<0.0001; R2>0.62). Among these Na+i/K+i-sensitive genes, 80 transcripts were common for all three types of cells. To establish if changes in gene expression are dependent on increases in [Ca2+]i, we performed identical experiments in Ca2+-free media supplemented with extracellular and intracellular Ca2+ chelators. Surprisingly, this procedure elevated rather than decreased the number of ubiquitous and cell-type specific Na+i/K+i-sensitive genes. Among the ubiquitous Na+i/K+i-sensitive genes whose expression was regulated independently of the presence of Ca2+ chelators by more than 3-fold, we discovered several transcription factors (Fos, Jun, Hes1, Nfkbia), interleukin-6, protein phosphatase 1 regulatory subunit, dual specificity phosphatase (Dusp8), prostaglandin-endoperoxide synthase 2, cyclin L1, whereas expression of metallopeptidase Adamts1, adrenomedulin, Dups1, Dusp10 and Dusp16 was detected exclusively in Ca2+-depleted cells. Overall, our findings indicate that Ca2+i-independent mechanisms of excitation-transcription coupling are involved in transcriptomic alterations triggered by elevation of the [Na+]i/[K+]i ratio. There results likely have profound implications for normal and pathological regulation of mammalian cells, including sustained excitation of neuronal cells, intensive exercise and ischemia-triggered disorders.
Collapse
Affiliation(s)
- Svetlana V. Koltsova
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) – Technopôle Angus, Montreal, PQ, Canada
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Yulia Trushina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mounsif Haloui
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) – Technopôle Angus, Montreal, PQ, Canada
| | - Olga A. Akimova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Johanne Tremblay
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) – Technopôle Angus, Montreal, PQ, Canada
- Department of Medicine, Université de Montréal, Montreal, PQ, Canada
| | - Pavel Hamet
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) – Technopôle Angus, Montreal, PQ, Canada
- Department of Medicine, Université de Montréal, Montreal, PQ, Canada
| | - Sergei N. Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) – Technopôle Angus, Montreal, PQ, Canada
- Department of Medicine, Université de Montréal, Montreal, PQ, Canada
- * E-mail:
| |
Collapse
|
139
|
Zampese E, Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 2012; 69:1077-104. [PMID: 21968921 PMCID: PMC11114864 DOI: 10.1007/s00018-011-0845-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
140
|
Guo A, Cala SE, Song LS. Calsequestrin accumulation in rough endoplasmic reticulum promotes perinuclear Ca2+ release. J Biol Chem 2012; 287:16670-80. [PMID: 22457350 DOI: 10.1074/jbc.m112.340927] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular mechanisms underlying Ca(2+) regulation by perinuclear endoplasmic/sarcoplasmic reticulum (ER/SR) cisternae in cardiomyocytes remain obscure. To investigate the mechanisms of changes in cardiac calsequestrin (CSQ2) trafficking on perinuclear Ca(2+) signaling, we manipulated the subcellular distribution of CSQ2 by overexpression of CSQ2-DsRed, which specifically accumulates in the perinuclear rough ER. Adult ventricular myocytes were infected with adenoviruses expressing CSQ2-DsRed, CSQ2-WT, or empty vector. We found that perinuclear enriched CSQ2-DsRed, but not normally distributed CSQ2-WT, enhanced nuclear Ca(2+) transients more potently than cytosolic Ca(2+) transients. Overexpression of CSQ2-DsRed produced more actively propagating Ca(2+) waves from perinuclear regions than did CSQ2-WT. Activities of the SR/ER Ca(2+)-ATPase and ryanodine receptor type 2, but not inositol 1,4,5-trisphosphate receptor type 2, were required for the generation of these perinuclear initiated Ca(2+) waves. In addition, CSQ2-DsRed was more potent than CSQ2-WT in inducing cellular hypertrophy in cultured neonatal cardiomyocytes. Our data demonstrate for the first time that CSQ2 retention in the rough ER/perinuclear region promotes perinuclear Ca(2+) signaling and predisposes to ryanodine receptor type 2-mediated Ca(2+) waves from CSQ2-enriched perinuclear compartments and myocyte hypotrophy. These findings provide new insights into the mechanism of CSQ2 in Ca(2+) homeostasis, suggesting that rough ER-localized Ca(2+) stores can operate independently in raising levels of cytosolic/nucleoplasmic Ca(2+) as a source of Ca(2+) for Ca(2+)-dependent signaling in health and disease.
Collapse
Affiliation(s)
- Ang Guo
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
141
|
Gupta R, Ezashi T, Roberts RM. Squelching of ETS2 transactivation by POU5F1 silences the human chorionic gonadotropin CGA subunit gene in human choriocarcinoma and embryonic stem cells. Mol Endocrinol 2012; 26:859-72. [PMID: 22446105 DOI: 10.1210/me.2011-1146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The subunit genes encoding human chorionic gonadotropin, CGA, and CGB, are up-regulated in human trophoblast. However, they are effectively silenced in choriocarcinoma cells by ectopically expressed POU domain class 5 transcription factor 1 (POU5F1). Here we show that POU5F1 represses activity of the CGA promoter through its interactions with ETS2, a transcription factor required for both placental development and human chorionic gonadotropin subunit gene expression, by forming a complex that precludes ETS2 from interacting with the CGA promoter. Mutation of a POU5F1 binding site proximal to the ETS2 binding site does not alter the ability of POU5F1 to act as a repressor but causes a drop in basal promoter activity due to overlap with the binding site for DLX3. DLX3 has only a modest ability to raise basal CGA promoter activity, but its coexpression with ETS2 can up-regulate it 100-fold or more. The two factors form a complex, and both must bind to the promoter for the combination to be transcriptionally effective, a synergy compromised by POU5F1. Similarly, in human embryonic stem cells, which express ETS2 but not CGA, ETS2 does not occupy its binding site on the CGA promoter but is found instead as a soluble complex with POU5F1. When human embryonic stem cells differentiate in response to bone morphogenetic protein-4 and concentrations of POU5F1 fall and hCG and DLX3 rise, ETS2 then occupies its binding site on the CGA promoter. Hence, a squelching mechanism underpins the transcriptional silencing of CGA by POU5F1 and could have general relevance to how pluripotency is maintained and how the trophoblast lineage emerges from pluripotent precursor cells.
Collapse
Affiliation(s)
- Rangan Gupta
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
142
|
Horner KA, Hebbard JC, Logan AS, Vanchipurakel GA, Gilbert YE. Activation of mu opioid receptors in the striatum differentially augments methamphetamine-induced gene expression and enhances stereotypic behavior. J Neurochem 2012; 120:779-94. [PMID: 22150526 DOI: 10.1111/j.1471-4159.2011.07620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. To further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with d-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1 μg/μL), treated with methamphetamine (0.5 mg/kg) and killed at 45 min or 2 h later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pre-treatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine.
Collapse
Affiliation(s)
- Kristen A Horner
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
| | | | | | | | | |
Collapse
|
143
|
Kuhr FK, Smith KA, Song MY, Levitan I, Yuan JXJ. New mechanisms of pulmonary arterial hypertension: role of Ca²⁺ signaling. Am J Physiol Heart Circ Physiol 2012; 302:H1546-62. [PMID: 22245772 DOI: 10.1152/ajpheart.00944.2011] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive disease that usually culminates in right heart failure and death if left untreated. Although there have been substantial improvements in our understanding and significant advances in the management of this disease, there is a grim prognosis for patients in the advanced stages of PAH. A major cause of PAH is increased pulmonary vascular resistance, which results from sustained vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness. In addition to other signal transduction pathways, Ca(2+) signaling in pulmonary artery smooth muscle cells (PASMCs) plays a central role in the development and progression of PAH because of its involvement in both vasoconstriction, through its pivotal effect of PASMC contraction, and vascular remodeling, through its stimulatory effect on PASMC proliferation. Altered expression, function, and regulation of ion channels and transporters in PASMCs contribute to an increased cytosolic Ca(2+) concentration and enhanced Ca(2+) signaling in patients with PAH. This review will focus on the potential pathogenic role of Ca(2+) mobilization, regulation, and signaling in the development and progression of PAH.
Collapse
Affiliation(s)
- Frank K Kuhr
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
144
|
|
145
|
Network, cellular, and molecular mechanisms underlying long-term memory formation. Curr Top Behav Neurosci 2012; 15:73-115. [PMID: 22976275 DOI: 10.1007/7854_2012_229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.
Collapse
|
146
|
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a membrane bound lipid molecule with capabilities to affect a wide array of signaling pathways to regulate very different cellular processes. PIP(2) is used as a precursor to generate the second messengers PIP(3), DAG and IP(3), indispensable molecules for signaling events generated by membrane receptors. However, PIP(2) can also directly regulate a vast array of proteins and is emerging as a crucial messenger with the potential to distinctly modulate biological processes critical for both normal and pathogenic cell physiology. PIP(2) directly associates with effector proteins via unique phosphoinositide binding domains, altering their localization and/or enzymatic activity. The spatial and temporal generation of PIP(2) synthesized by the phosphatidylinositol phosphate kinases (PIPKs) tightly regulates the activation of receptor signaling pathways, endocytosis and vesicle trafficking, cell polarity, focal adhesion dynamics, actin assembly and 3' mRNA processing. Here we discuss our current understanding of PIPKs in the regulation of cellular processes from the plasma membrane to the nucleus.
Collapse
|
147
|
Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein. Neuroscience 2012; 202:17-28. [DOI: 10.1016/j.neuroscience.2011.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/29/2011] [Accepted: 12/03/2011] [Indexed: 11/24/2022]
|
148
|
Ranty B, Cotelle V, Galaud JP, Mazars C. Nuclear Calcium Signaling and Its Involvement in Transcriptional Regulation in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1123-43. [DOI: 10.1007/978-94-007-2888-2_51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
149
|
Abstract
After partial hepatectomy (PH) the initial mass of the organ is restored through a complex network of cellular interactions that orchestrate both proliferative and hepatoprotective signalling cascades. Among agonists involved in this network many of them drive Ca(2+) movements. During liver regeneration in the rat, hepatocyte cytosolic Ca(2+) signalling has been shown on the one hand to be deeply remodelled and on the other hand to enhance progression of hepatocytes through the cell cycle. Mechanisms through which cytosolic Ca(2+) signals impact on hepatocyte cell cycle early after PH are not completely understood, but at least they include regulation of immediate early gene transcription and ERK and CREB phosphorylation. In addition to cytosolic Ca(2+), there is also evidence that mitochondrial Ca(2+) and also nuclear Ca(2+) may be critical for the regulation of liver regeneration. Finally, Ca(2+) movements in hepatocytes, and possibly in other liver cells, not only impact hepatocyte progression in the cell cycle but more generally may regulate cellular homeostasis after PH.
Collapse
|
150
|
Tonelli FMP, Santos AK, Gomes DA, da Silva SL, Gomes KN, Ladeira LO, Resende RR. Stem cells and calcium signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:891-916. [PMID: 22453975 DOI: 10.1007/978-94-007-2888-2_40] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca(2+) concentration [Ca(2+)](i). Acting as an intracellular messenger, Ca(2+) has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca(2+)-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Nanomaterials Laboratory, Department of Physics, Insitute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|