101
|
Feng Y, Zhang L, Hu T, Shen X, Ding J, Chen K, Jiang H, Liu D. A conserved hydrophobic core at Bcl-xL mediates its structural stability and binding affinity with BH3-domain peptide of pro-apoptotic protein. Arch Biochem Biophys 2009; 484:46-54. [PMID: 19161970 DOI: 10.1016/j.abb.2009.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Bcl-2 family proteins regulate apoptosis through their homo- and heterodimerization. By protein sequence analysis and structural comparison, we have identified a conserved hydrophobic core at the BH1 and BH2 domains of Bcl-2 family proteins. The hydrophobic core is stabilized by hydrophobic interactions among the residues of Trp137, Ile140, Trp181, Ile182, Trp188 and Phe191 in Bcl-x(L). Destabilization of the hydrophobic core can promote the protein unfolding and pore formation in synthetic lipid vesicles. Interestingly, though the hydrophobic core does not participate in binding with BH3 domain of pro-apoptotic proteins, disruption of the hydrophobic core can reduce the affinity of Bcl-x(L) with BH3-domain peptide by changing the conformation of Bcl-x(L) C-terminal residues that are involved in the peptide interaction. The BH3-domain peptide binding affinity and pore forming propensity of Bcl-x(L) were correlated to its death-repressor activity, which provides new information to help study the regulatory mechanism of anti-apoptotic proteins. Meanwhile, as the tryptophans are conserved in the hydrophobic core, in vitro binding assay based on FRET of "Trp-->AEDANS" can be devised to screen for new modulators targeting anti-apoptotic proteins as well as "multi-BH domains" pro-apoptotic proteins.
Collapse
Affiliation(s)
- Yu Feng
- Department of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Campanella M, Szabadkai G, Rizzuto R. Modulation of intracellular Ca2+ signalling in HeLa cells by the apoptotic cell death enhancer PK11195. Biochem Pharmacol 2008; 76:1628-36. [PMID: 18929543 PMCID: PMC2844953 DOI: 10.1016/j.bcp.2008.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/15/2022]
Abstract
1-(2-Chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195) is a proven enhancer of apoptotic cell death in a variety of cellular models. This effect is independent of its established cellular target, the mitochondrial benzodiazepine receptor (mBzR), since it is able to promote cell death also in mBzR knockout cells. Thus recently it was suggested that PK11195 might exert its effect by modulating the expression and function of the oncogene Bcl-2. We have previously demonstrated that Bcl-2 modulates cellular Ca2+ homeostasis as its overexpression reduces the Ca2+ concentration in the endoplasmic reticulum (ER) ([Ca2+](er)), impairing mitochondrial and cytosolic Ca2+ overload during cellular stress and therefore inhibiting the induction of the apoptotic cascade. Here, using ER, mitochondria and cytosolic targeted aequorin probes, we show that cellular treatment with PK11195 induces opposite changes in cellular Ca2+ homeostasis, increasing the [Ca2+](er) and amplifying IP(3) induced Ca2+ transients in mitochondria ([Ca2+](m)) and cytosol ([Ca2+](c)). This work provides evidence for a novel pharmacological effect of PK11195 on Ca2+ signalling which may be linked to its effect on Bcl-2 and account for its role in apoptotic cell death.
Collapse
Affiliation(s)
- Michelangelo Campanella
- Department of Veterinary Basic Science, Royal Veterinary College, Royal College Street, University of London, NW10TU London, UK.
| | | | | |
Collapse
|
103
|
Jeong HS, Choi HY, Choi TW, Kim BW, Kim JH, Lee ER, Cho SG. Differential regulation of the antiapoptotic action of B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma extra long (Bcl-xL) by c-Jun N-terminal protein kinase (JNK) 1-involved pathway in neuroglioma cells. Biol Pharm Bull 2008; 31:1686-90. [PMID: 18758060 DOI: 10.1248/bpb.31.1686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we confirmed that stable expression of B-cell lymphoma-xL (Bcl-xL) in N18TG neuroglioma cells could suppress c-Jun N-terminal protein kinase (JNK) activation, nuclear fragmentation, and cell death caused by etoposide treatment. Moreover, additional overexpression of JNK1 led to partially antagonize the antiapoptotic environment attained by Bcl-xL, implying that JNK1-involved pathway may play a role in down-regulation of the antiapoptotic effect of Bcl-xL. However, the antagonistic effect of JNK1 on the antiapoptotic action of Bcl-xL was significantly weaker than that on the action of Bcl-2. Interestingly, we found that overexpression of JNK1 led to increase of Bcl-xL expression. Thus, these results suggest that Bcl-xL and Bcl-2 may induce its antiapoptotic effect in a different mechanism, provoking the possibility of involvement of JNK1-involved pathway in Bcl-xL expression.
Collapse
Affiliation(s)
- Hyo-Soon Jeong
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
104
|
Díaz-Prieto N, Herrera-Peco I, de Diego AMG, Ruiz-Nuño A, Gallego-Sandín S, López MG, García AG, Cano-Abad MF. Bcl2 mitigates Ca2+ entry and mitochondrial Ca2+ overload through downregulation of L-type Ca2+ channels in PC12 cells. Cell Calcium 2008; 44:339-52. [DOI: 10.1016/j.ceca.2008.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 01/21/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
105
|
Ausili A, Torrecillas A, Martínez-Senac MM, Corbalán-García S, Gómez-Fernández JC. The interaction of the Bax C-terminal domain with negatively charged lipids modifies the secondary structure and changes its way of insertion into membranes. J Struct Biol 2008; 164:146-52. [DOI: 10.1016/j.jsb.2008.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/04/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
|
106
|
Rimessi A, Giorgi C, Pinton P, Rizzuto R. The versatility of mitochondrial calcium signals: from stimulation of cell metabolism to induction of cell death. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:808-16. [PMID: 18573473 PMCID: PMC2532847 DOI: 10.1016/j.bbabio.2008.05.449] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
Abstract
Both the contribution of mitochondria to intracellular calcium (Ca(2+)) signalling and the role of mitochondrial Ca(2+) uptake in shaping the cytoplasmic response and controlling mitochondrial function are areas of intense investigation. These studies rely on the appropriate use of emerging techniques coupled with judicious data interpretation to a large extent. The development of targeted probes based on the molecular engineering of luminescent proteins has allowed the specific measurement of Ca(2+) concentration ([Ca(2+)]) and adenosine trisphosphate concentration ([ATP]) in intracellular organelles or cytoplasmic subdomains. This approach has given novel information on different aspects of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory BioPharmaNet, University of Ferrara, Via Borsari 46, I-44100 Ferrara
| | - Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory BioPharmaNet, University of Ferrara, Via Borsari 46, I-44100 Ferrara
- Vita-Salute San Raffaele University, Center of Excellence in Cell Development, and IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory BioPharmaNet, University of Ferrara, Via Borsari 46, I-44100 Ferrara
| | - Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory BioPharmaNet, University of Ferrara, Via Borsari 46, I-44100 Ferrara
| |
Collapse
|
107
|
Williams B, Dickman M. Plant programmed cell death: can't live with it; can't live without it. MOLECULAR PLANT PATHOLOGY 2008; 9:531-44. [PMID: 18705866 PMCID: PMC6640338 DOI: 10.1111/j.1364-3703.2008.00473.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis.
Collapse
Affiliation(s)
- Brett Williams
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Department of Plant Pathology and Microbiology, College Station, TX 77843, USA
| | | |
Collapse
|
108
|
Chuang YH, Chuang WL, Huang SP, Huang CH. Over-expression of apoptosis-related proteins contributes to muscular damage in the obstructed ureter of the rat. BJU Int 2008. [DOI: 10.1046/j.1464-410x.2002.02554.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
109
|
Abstract
It was recently asserted that the voltage-dependent anion channel (VDAC) serves as a global regulator, or governor, of mitochondrial function (Lemasters and Holmuhamedov, Biochim Biophys Acta 1762:181-190, 2006). Indeed, VDAC, positioned on the interface between mitochondria and the cytosol (Colombini, Mol Cell Biochem 256:107-115, 2004), is at the control point of mitochondria life and death. This large channel plays the role of a "switch" that defines in which direction mitochondria will go: to normal respiration or to suppression of mitochondria metabolism that leads to apoptosis and cell death. As the most abundant protein in the mitochondrial outer membrane (MOM), VDAC is known to be responsible for ATP/ADP exchange and for the fluxes of other metabolites across MOM. It controls them by switching between the open and "closed" states that are virtually impermeable to ATP and ADP. This control has dual importance: in maintaining normal mitochondria respiration and in triggering apoptosis when cytochrome c and other apoptogenic factors are released from the intermembrane space into the cytosol. Emerging evidence indicates that VDAC closure promotes apoptotic signals without direct involvement of VDAC in the permeability transition pore or hypothetical Bax-containing cytochrome c permeable pores. VDAC gating has been studied extensively for the last 30 years on reconstituted VDAC channels. In this review we focus exclusively on physiologically relevant regulators of VDAC gating such as endogenous cytosolic proteins and mitochondrial lipids. Closure of VDAC induced by such dissimilar cytosolic proteins as pro-apoptotic tBid and dimeric tubulin is compared to show that the involved mechanisms are rather distinct. While tBid mostly modulates VDAC voltage gating, tubulin blocks the channel with the efficiency of blockage controlled by voltage. We also discuss how characteristic mitochondrial lipids, phospatidylethanolamine and cardiolipin, could regulate VDAC gating. Overall, we demonstrate that VDAC gating is not just an observation made under artificial conditions of channel reconstitution but is a major mechanism of MOM permeability control.
Collapse
Affiliation(s)
- Tatiana K. Rostovtseva
- Laboratory of Physical and Structural Biology, Program in Physical Biology, NICHD, National Institutes of Health, Bldg. 9, Rm. 1E-106, 9000 Rockville Pike, Bethesda, MD 20892, USA, e-mail:
| | - Sergey M. Bezrukov
- Laboratory of Physical and Structural Biology, Program in Physical Biology, NICHD, National Institutes of Health, Bldg. 9, Rm. 1E-106, 9000 Rockville Pike, Bethesda, MD 20892, USA, e-mail:
| |
Collapse
|
110
|
Abstract
BCL-2 was the first antideath gene discovered, a milestone that effectively launched a new era in cell death research. Since its discovery more than 2 decades ago, multiple members of the human Bcl-2 family of apoptosis-regulating proteins have been identified, including 6 antiapoptotic proteins, 3 structurally similar proapoptotic proteins, and several structurally diverse proapoptotic interacting proteins that operate as upstream agonists or antagonists. Bcl-2-family proteins regulate all major types of cell death, including apoptosis, necrosis, and autophagy. As such, they operate as nodal points at the convergence of multiple pathways with broad relevance to biology and medicine. Bcl-2 derives its name from its original discovery in the context of B-cell lymphomas, where chromosomal translocations commonly activate the BCL-2 protooncogene, endowing B cells with a selective survival advantage that promotes their neoplastic expansion. The concept that defective programmed cell death contributes to malignancy was established by studies of Bcl-2, representing a major step forward in current understanding of tumorigenesis. Experimental therapies targeting Bcl-2 family mRNAs or proteins are currently in clinical testing, raising hopes that a new class of anticancer drugs may be near.
Collapse
|
111
|
Cao X, Bennett RL, May WS. c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem 2008; 283:14490-6. [PMID: 18375382 DOI: 10.1074/jbc.m801107200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Bax following diverse cytotoxic stress has been shown to be an essential gateway to mitochondrial dysfunction and activation of the intrinsic apoptotic pathway characterized by cytochrome c release with caspase-9/-3 activation. Interestingly, c-Myc has been reported to promote apoptosis by destabilizing mitochondrial integrity in a Bax-dependent manner. Stress-induced activation of caspase-2 may also induce permeabilization of mitochondria with activation of the intrinsic death pathway. To test whether c-Myc and caspase-2 cooperate to activate Bax and thereby mediate intrinsic apoptosis, small interfering RNA was used to efficiently knock down the expression of c-Myc, caspase-2, and Apaf-1, an activating component in the apoptosome, in two human cancer cell lines, lung adenocarcinoma A-549 and osteosarcoma U2-OS cells. Under conditions when the expression of endogenous c-Myc, caspase-2, or Apaf-1 is reduced 80-90%, cisplatin (or etoposide)-induced apoptosis is significantly decreased. Biochemical studies reveal that the expression of c-Myc and caspase-2 is crucial for cytochrome c release from mitochondria during cytotoxic stress and that Apaf-1 is only required following cytochrome c release to activate caspases-9/-3. Although knockdown of c-Myc or caspase-2 does not affect Bax expression, caspase-2 is important for cytosolic Bax to integrate into the outer mitochondrial membrane, and c-Myc is critical for oligomerization of Bax once integrated into the membrane.
Collapse
Affiliation(s)
- Xuefang Cao
- University of Florida Shands Cancer Center and Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
112
|
Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 2008; 13:7254-63. [PMID: 18094405 DOI: 10.1158/1078-0432.ccr-07-1598] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis is a morphologically distinct form of programmed cell death essential for normal development and tissue homeostasis. Aberrant regulation of this pathway is linked to multiple human diseases, including cancer, autoimmunity, neurodegenerative disorders, and diabetes. The BCL-2 family of proteins constitutes a critical control point in apoptosis residing immediately upstream of irreversible cellular damage, where family members control the release of apoptogenic factors from mitochondria. The cardinal member of this family, BCL-2, was originally discovered as the defining oncogene in follicular lymphomas, located at one reciprocal breakpoint of the t(14;18) (q32;q21) chromosomal translocation. Since this original discovery, remarkable efforts marshaled by many investigators around the world have advanced our knowledge of the basic biology, molecular mechanisms, and therapeutic targets in the apoptotic pathway. This review highlights findings from many laboratories that have helped uncover some of the critical control points in apoptosis. The emerging picture is that of an intricate cellular machinery orchestrated by tightly regulated molecular interactions and conformational changes within BCL-2 family proteins that ultimately govern the cellular commitment to apoptotic death.
Collapse
Affiliation(s)
- Nika N Danial
- Department of Pathology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
113
|
Hickman JA, Hardwick JM, Kaczmarek LK, Jonas EA. Bcl-xL inhibitor ABT-737 reveals a dual role for Bcl-xL in synaptic transmission. J Neurophysiol 2008; 99:1515-22. [PMID: 18160428 PMCID: PMC2836590 DOI: 10.1152/jn.00598.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A role for BCL-xL in regulating neuronal activity is suggested by its dramatic effects on synaptic function and mitochondrial channel activity. When recombinant BCL-xL is injected into the giant presynaptic terminal of squid stellate ganglion or applied directly to mitochondrial outer membranes within the living terminal, it potentiates synaptic transmission acutely, and it produces mitochondrial channel activity. The squid, however, is a genetically intractable model, making it difficult to apply genetic tools in squid to explore the role of endogenous BCL-xL in synaptic function. Therefore the small molecule inhibitor ABT-737, a mimetic of the BH3-only protein BAD, binding to the BH3-binding domain pocket, was tested in squid, revealing a dual role for BCL-xL. ABT-737 slowed recovery of synaptic responses after repetitive synaptic activity, indicating that endogenous BCL-xL is necessary for timely recovery of rapidly firing synapses. Unexpectedly, however, ABT-737 also protected neurons from hypoxia-induced synaptic rundown and from increased permeability of the mitochondrial outer membrane during hypoxia. This implies that endogenous BCL-xL or a modified form of BCL-xL, such as the N-truncated, proteolytic, pro-apoptotic cleavage product, DeltaN BCL-xL, contributes to injurious responses of the hypoxic synapse. To determine if ABT-737 is also an inhibitor of DeltaN BCL-xL, recombinant DeltaN BCL-xL protein was injected into the synapse. ABT-737 potently inhibited synaptic rundown induced by recombinant DeltaN BCL-xL. These observations support the possibility that endogenous proteolysis or a functionally equivalent modification of BCL-xL is responsible for the deleterious effects of hypoxia on synaptic activity.
Collapse
Affiliation(s)
- John A Hickman
- Institut de Recherches Servier, Croissy sur Seine, France
| | | | | | | |
Collapse
|
114
|
Xu C, Xu W, Palmer AE, Reed JC. BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 2008; 283:11477-84. [PMID: 18299329 DOI: 10.1074/jbc.m708385200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BI-1 (Bax inhibitor-1) is an evolutionarily conserved multitransmembrane protein that resides in the endoplasmic reticulum (ER) and that has documented cytoprotective functions in both animals and plants. Recent studies indicate that BI-1 shares in common with Bcl-2/Bax family proteins the ability to regulate the amounts of Ca(2+) that can be released from the ER by agents, such as the ER-Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG). Using an ER-targeted, Ca(2+) indicator (cameleon), with characteristics optimized for measuring ER Ca(2+) ([Ca(2+)](er)), we studied the effects of BI-1 on [Ca(2+)](er) in resting and TG-treated cells. Similar to cells overexpressing antiapoptotic Bcl-2 or Bcl-X(L), overexpression of BI-1 resulted in lower resting [Ca(2+)](er), with concomitantly less Ca(2+) released into the cytosol upon stimulation by TG and with a higher rate of Ca(2+) leakage from the ER. Co-expression of SERCA restored levels of [Ca(2+)](er) to normal, showing opposing actions of the ER-Ca(2+)ATPase and BI-1 on ER Ca(2+) homeostasis. Conversely, cells with deficient BI-1 have increased [Ca(2+)](er), and release more Ca(2+) into the cytosol when challenged with TG. In BI-1-deficient cells, Bcl-X(L) fails to reduce [Ca(2+)](er), indicating that BI-1 functions downstream of Bcl-X(L). In bax(-/-)bak(-/-) double knock-out cells, both BI-1 and Bcl-X(L) retained their ability to reduce [Ca(2+)](er), suggesting that BI-1 and Bcl-X(L) operate downstream of or parallel to Bax/Bak. The findings reveal a hierarchy of functional interactions of BI-1 with Bcl-2/Bax family proteins in regulating ER Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Chunyan Xu
- Program on Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
115
|
Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G, Atkinson AR, Busso D, Poussin P, Marine JC, Martinou JC, Cavarelli J, Moras D, Amson R, Telerman A. TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 2008; 15:1211-20. [PMID: 18274553 DOI: 10.1038/cdd.2008.18] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a potential target for cancer therapy. It functions as a growth regulating protein implicated in the TSC1-TSC2 -mTOR pathway or a guanine nucleotide dissociation inhibitor for the elongation factors EF1A and EF1Bbeta. Accumulating evidence indicates that TCTP also functions as an antiapoptotic protein, through a hitherto unknown mechanism. In keeping with this, we show here that loss of tctp expression in mice leads to increased spontaneous apoptosis during embryogenesis and causes lethality between E6.5 and E9.5. To gain further mechanistic insights into this apoptotic function, we solved and refined the crystal structure of human TCTP at 2.0 A resolution. We found a structural similarity between the H2-H3 helices of TCTP and the H5-H6 helices of Bax, which have been previously implicated in regulating the mitochondrial membrane permeability during apoptosis. By site-directed mutagenesis we establish the relevance of the H2-H3 helices in TCTP's antiapoptotic function. Finally, we show that TCTP antagonizes apoptosis by inserting into the mitochondrial membrane and inhibiting Bax dimerization. Together, these data therefore further confirm the antiapoptotic role of TCTP in vivo and provide new mechanistic insights into this key function of TCTP.
Collapse
Affiliation(s)
- L Susini
- Molecular Engines Laboratories, 20 rue Bouvier, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 2008; 12:815-33. [PMID: 17294078 DOI: 10.1007/s10495-007-0723-y] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current research on the mitochondrial permeability transition pore (PTP) and its role in cell death faces a paradox. Initially considered as an in vitro artifact of little pathophysiological relevance, in recent years the PTP has received considerable attention as a potential mechanism for the execution of cell death. The recent successful use of PTP desensitizers in several disease paradigms leaves little doubt about its relevance in pathophysiology; and emerging findings that link the PTP to key cellular signalling pathways are increasing the interest on the pore as a pharmacological target. Yet, recent genetic data have challenged popular views on the molecular nature of the PTP, and called into question many early conclusions about its structure. Here we review basic concepts about PTP structure, function and regulation within the framework of intracellular death signalling, and its role in disease pathogenesis.
Collapse
Affiliation(s)
- Andrea Rasola
- CNR Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Viale Giuseppe Colombo 3, I-35121 Padua, Italy.
| | | |
Collapse
|
117
|
Abstract
The crucial step in the intrinsic, or mitochondrial, apoptotic pathway is permeabilization of the mitochondrial outer membrane. Permeabilization triggers release of apoptogenic factors, such as cytochrome c, from the mitochondrial intermembrane space into the cytosol where these factors ensure propagation of the apoptotic cascade and execution of cell death. However, the mechanism(s) underlying permeabilization of the outer membrane remain controversial. Two mechanisms, involving opening of two different mitochondrial channels, have been proposed to be responsible for the permeabilization; the permeability transition pore (PTP) in the inner membrane and the mitochondrial apoptosis-induced channel (MAC) in the outer membrane. Opening of PTP would lead to matrix swelling, subsequent rupture of the outer membrane, and an unspecific release of intermembrane proteins into the cytosol. However, many believe PTP opening is a consequence of apoptosis and this channel is thought to principally play a role in necrosis, not apoptosis. Activation of MAC is exquisitely regulated by Bcl-2 family proteins, which are the sentinels of apoptosis. MAC provides specific pores in the outer membrane for the passage of intermembrane proteins, in particular cytochrome c, to the cytosol. The electrophysiological characteristics of MAC are very similar to Bax channels and depletion of Bax significantly diminishes MAC activity, suggesting that Bax is an essential constituent of MAC in some systems. The characteristics of various mitochondrial channels and Bax are compared. The involvement of MAC and PTP activities in apoptosis of disease and their pharmacology are discussed.
Collapse
Affiliation(s)
- Kathleen W Kinnally
- Department of Basic Sciences, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010, USA.
| | | |
Collapse
|
118
|
Abstract
BCL-2 family proteins, which have either pro- or anti-apoptotic activities, have been studied intensively for the past decade owing to their importance in the regulation of apoptosis, tumorigenesis and cellular responses to anti-cancer therapy. They control the point of no return for clonogenic cell survival and thereby affect tumorigenesis and host-pathogen interactions and regulate animal development. Recent structural, phylogenetic and biological analyses, however, suggest the need for some reconsideration of the accepted organizational principles of the family and how the family members interact with one another during programmed cell death. Although these insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.
Collapse
|
119
|
Song HG, Moon C, Park MH, Moon JI, Moon C. Decrease in Intracellular Glutathione Level Alters Expressions of B-cell CLL/Lymphoma 2 Family Members in the Mouse Retina. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyoung-Gon Song
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Cheil Moon
- Department of Oral Anatomy and Neurobiology Kyungpook National University School of Dentistry
| | - Myoung-Hee Park
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea
| | - Jung-Il Moon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea
| | - Chanil Moon
- Department of Cardiology, Gil Medical Center, Gachon University
| |
Collapse
|
120
|
Design, synthesis, conformational and membrane ion transport studies of proline-adamantane hybrid cyclic depsipeptides. Biopolymers 2008; 89:471-8. [DOI: 10.1002/bip.20903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
121
|
Feng Y, Lin Z, Shen X, Chen K, Jiang H, Liu D. Bcl-xL forms two distinct homodimers at non-ionic detergents: implications in the dimerization of Bcl-2 family proteins. J Biochem 2007; 143:243-52. [PMID: 18006518 DOI: 10.1093/jb/mvm216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As the key regulator of apoptosis, Bcl-2 family protein controls the cell death by forming homo- or heterodimers among anti-apoptotic and pro-apoptotic members of this family. Here we have studied Bcl-x(L) homodimerization at different pH in the presence of various detergents and organic solvents. We found that both acidic and basic pHs are beneficial for Bcl-x(L) dimerization. High concentrations of non-ionic detergents and some organic solvents can significantly promote this event. In addition to non-covalently linked acidic-dimer as that formed at acidic pH, Bcl-x(L) formed disulphide-bonded detergent-dimer at neutral and basic pH when incubated with high concentrations of non-ionic detergents. The acidic-dimer retains the BH3 peptide binding activity, whereas the detergent-dimer does not. The formation of acidic-dimer and detergent-dimer implies that Bcl-x(L) may dimerize via two different pathways under certain conditions. The implications of these findings has been discussed with previous experimental results, which provides some new insight into the events and would help the experiment design and data interpretation when non-ionic detergents are used to study the dimerization and pore formation of Bcl-2 family proteins.
Collapse
Affiliation(s)
- Yu Feng
- Department of Molecular Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
122
|
Mukhopadhyay A, Weiner H. Delivery of drugs and macromolecules to mitochondria. Adv Drug Deliv Rev 2007; 59:729-38. [PMID: 17659805 PMCID: PMC2267434 DOI: 10.1016/j.addr.2007.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 06/12/2007] [Indexed: 01/24/2023]
Abstract
Mitochondria is where the bulk of the cell's ATP is produced. Mutations occur to genes coding for members of the complexes involved in energy production. Some are a result of damages to nuclear coded genes and others to mitochondrial coded genes. This review describes approaches to bring small molecules, proteins and RNA/DNA into mitochondria. The purpose is to repair damaged genes as well as to interrupt mitochondrial function including energy production, oxygen radical formation and the apoptotic pathway.
Collapse
Affiliation(s)
| | - Henry Weiner
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
123
|
Wang Y, Cao R, Liu D, Chervin A, Yuan J, An J, Huang Z. Oligomerization of BH4-truncated Bcl-x(L) in solution. Biochem Biophys Res Commun 2007; 361:1006-11. [PMID: 17692289 DOI: 10.1016/j.bbrc.2007.07.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/21/2007] [Indexed: 11/16/2022]
Abstract
BH4 domain is critical for the anti-apoptotic functions of Bcl-2 and Bcl-x(L) and their binding abilities with other members of the Bcl-2 family. The cleavage of the BH4 domain in Bcl-x(L) and Bcl-2 by caspase 1 or 3 converts the anti-apoptotic Bcl-x(L) and Bcl-2 into pro-apoptotic proteins that potently induce apoptosis. Herein, we report that recombinant Bcl-x(L) proteins without N-terminal 61 residues, His(6)-NDelta61-Bcl-x(L)-CDelta21 and NDelta61-Bcl-x(L)-CDelta21, form oligomers in solution, whereas Bcl-x(L)-CDelta21 exists as a monomer. The oligomerization of the truncated proteins is independent of protein-lipid interaction, protein concentration or the ion strength of the solution. Circular dichroism spectrum shows a significant decrease in the content of alpha-helices upon deletion of N-terminal residues. NDelta61-Bcl-x(L)-CDelta21 also loses its heterodimerization capability with the BH3 peptide derived from Bak. This newly acquired property might be linked to its ability to induce apoptosis in cells.
Collapse
Affiliation(s)
- Youli Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Schmitt E, Paquet C, Beauchemin M, Bertrand R. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B 2007; 8:377-97. [PMID: 17565509 PMCID: PMC1879163 DOI: 10.1631/jzus.2007.b0377] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving "sensor" proteins that sense the damage, and transmit signals to "transducer" proteins, which, in turn, convey the signals to numerous "effector" proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.
Collapse
Affiliation(s)
- Estelle Schmitt
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Claudie Paquet
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Myriam Beauchemin
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Richard Bertrand
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
- Medicine Department, University of Montreal, Montreal (Que) H3C 3J7, Canada
- †E-mail:
| |
Collapse
|
125
|
Voehringer DW, Meyn RE. Reversing drug resistance in bcl-2-expressing tumor cells by depleting glutathione. Drug Resist Updat 2007; 1:345-51. [PMID: 17092816 DOI: 10.1016/s1368-7646(98)80010-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1998] [Revised: 09/16/1998] [Accepted: 09/17/1998] [Indexed: 02/06/2023]
Abstract
The immense research effort in cancer cell physiology has led to an appreciation of the molecular and biochemical pathways that regulate cellular responses to endogenous and exogenous insults. Similarly, in tumor cells, there are multiple overlapping pathways that, once activated, impart resistance to therapeutic intervention. The multi drug resistance pathway is one such pathway. In this review, we will present current ideas concerning a mechanism of tumor cell resistance that involves the inability to undergo apoptosis. The bcl-2 family of proteins are known to regulate apoptosis in response to a wide variety of toxic agents. Additionally, recent evidence points to bcl-2 involvement in the regulation of antioxidant pathways mediated by glutathione. This new information will be discussed in some detail and strategies for overcoming these resistance mechanisms that may have clinical utility will be presented.
Collapse
Affiliation(s)
- D W Voehringer
- Department of Genetics, Stanford University Medical School, Stanford, CA, USA
| | | |
Collapse
|
126
|
Akdemir Ozisik P, Oruckaptan H, Ozdemir Geyik P, Misirlioglu M, Sargon MF, Kilinc K, Ozgen T. Effect of erythropoietin on brain tissue after experimental head trauma in rats. ACTA ACUST UNITED AC 2007; 68:547-55; discussion 555. [PMID: 17586022 DOI: 10.1016/j.surneu.2007.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 01/03/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the effect of EPO on LPO, on ultrastructural findings, and on antiapoptotic bcl-2 and survivin gene expressions after TBI. The authors also compared the activity of EPO with that of MPSS. METHODS Wistar rats were divided into 6 groups: sham-operated, control, moderate TBI-alone (300 g/cm), TBI + EPO-treated (1000 IU/kg), TBI + MPSS-treated (30 mg/kg), and TBI + vehicle-treated (0.4 mL albumin solution) groups. RESULTS Compared with the levels in control and sham-operated animals, LPO was significantly elevated in rats in the trauma-alone group. The administration of EPO and MPSS significantly decreased the LPO levels (P < .05). Trauma also increases the antiapoptotic bcl-2 gene expression significantly at 24 hours postinjury (P < .05), but it has no effect on survivin expression. The EPO and MPSS treatments caused significant elevation in both gene expressions (P < .05). It is also showed that MPSS has more protective effect than EPO on brain ultrastructure, especially on the structure of small- (P < .05) and medium-sized myelinated axons, after TBI. CONCLUSIONS EPO has protective effects after moderate TBI, and this effect seems better than MPSS on antiapoptotic gene expression and LPO. The protection of cerebral subcellular organelles after traumatic injury is more prominent in MPSS-treated animals than EPO-treated animals quantitatively. This experimental study indicates that the benefits of EPO in the management of TBI have promising results and prompts further studies on the difference between EPO and MPSS in histopathological findings at the subcellular level.
Collapse
Affiliation(s)
- Pinar Akdemir Ozisik
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, School of Medicine, Sihhiye, 06100, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
127
|
Grant JR, Moise AR, Jefferies WA. Identification of a novel immunosubversion mechanism mediated by a virologue of the B-lymphocyte receptor TACI. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:907-17. [PMID: 17538121 PMCID: PMC1951057 DOI: 10.1128/cvi.00058-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TACI (transmembrane activator and calcium modulator and cyclophilin ligand [CAML] interactor) is a part of a novel network of ligands and receptors involved in B-cell survival and isotype switching. The TACI protein mediates its effects through CAML, an endoplasmic reticulum (ER)-localized protein that controls Ca(2+) efflux. The adenovirus E3-6.7K protein prevents inflammatory responses and also confers resistance from a variety of apoptotic stimuli and maintains ER Ca(2+) homeostasis; however, the mechanism of action is unknown. Here, we provide evidence that E3-6.7K shares sequence homology with TACI and inhibits apoptosis and ER Ca(2+) efflux through an interaction with CAML, a Ca(2+)-modulating protein. We demonstrate a direct interaction between E3-6.7K and CAML and reveal that the two proteins colocalize in an ER-like compartment. Furthermore, the interaction between the two proteins is localized to the N-terminal domain of CAML and to a 22-amino-acid region near the C terminus of E3-6.7K termed the CAML-binding domain (CBD). Mutational analysis of the CBD showed that an interaction with CAML is required for E3-6.7K to inhibit thapsigargin-induced apoptosis and ER Ca(2+) efflux. E3-6.7K appears to be the first virologue of TACI to be identified. It targets CAML in a novel immunosubversive mechanism to alter ER Ca(2+) homeostasis, which consequently inhibits inflammation and protects infected cells from apoptosis.
Collapse
Affiliation(s)
- Jason R Grant
- The Michael Smith Laboratories, The Biomedical Research Centre, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
128
|
Aisenbrey C, Sudheendra US, Ridley H, Bertani P, Marquette A, Nedelkina S, Lakey JH, Bechinger B. Helix orientations in membrane-associated Bcl-XL determined by 15N-solid-state NMR spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:71-80. [PMID: 17492281 DOI: 10.1007/s00249-007-0165-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/22/2007] [Accepted: 03/31/2007] [Indexed: 11/24/2022]
Abstract
Controlled cell death is fundamental to tissue hemostasis and apoptosis malfunctions can lead to a wide range of diseases. Bcl-x(L) is an anti-apoptotic protein the function of which is linked to its reversible interaction with mitochondrial outer membranes. Its interfacial and intermittent bilayer association makes prediction of its bound structure difficult without using methods able to extract data from dynamic systems. Here we investigate Bcl-x(L) associated with oriented lipid bilayers at physiological pH using solid-state NMR spectroscopy. The data are consistent with a C-terminal transmembrane anchoring sequence and an average alignment of the remaining helices, i.e. including helices 5 and 6, approximately parallel to the membrane surface. Data from several biophysical approaches confirm that after removal of the C-terminus from Bcl-x(L) its membrane interactions are weak. In the presence of membranes Bcl-x(L) can still interact with a Bak BH3 domain peptide suggesting a model where the hydrophobic C-terminus of the protein unfolds and inserts into the membrane. During this conformational change the Bcl-x(L) hydrophobic binding pocket becomes accessible for protein-protein interactions whilst the structure of the N-terminal region remains intact.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de Chimie de Strasbourg, Université Louis Pasteur/CNRS LC3-UMR 7177, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Thuduppathy GR, Terrones O, Craig JW, Basañez G, Hill RB. The N-terminal domain of Bcl-xL reversibly binds membranes in a pH-dependent manner. Biochemistry 2006; 45:14533-42. [PMID: 17128992 PMCID: PMC1764622 DOI: 10.1021/bi0616652] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bcl-xL regulates apoptosis by maintaining the integrity of the mitochondrial outer membrane by adopting both soluble and membrane-associated forms. The membrane-associated conformation does not require a conserved, C-terminal transmembrane domain and appears to be inserted into the bilayer of synthetic membranes as assessed by membrane permeabilization and critical surface pressure measurements. Membrane association is reversible and is regulated by the cooperative binding of approximately two protons to the protein. Two acidic residues, Glu153 and Asp156, that lie in a conserved hairpin of Bcl-xLDeltaTM appear to be important in this process on the basis of a 16% increase in the level of membrane association of the double mutant E153Q/D156N. Contrary to that for the wild type, membrane permeabilization for the mutant is not correlated with membrane association. Monolayer surface pressure measurements suggest that this effect is primarily due to less membrane penetration. These results suggest that E153 and D156 are important for the Bcl-xLDeltaTM conformational change and that membrane binding can be distinct from membrane permeabilization. Taken together, these studies support a model in which Bcl-xL activity is controlled by reversible insertion of its N-terminal domain into the mitochondrial outer membrane. Future studies with Bcl-xL mutants such as E153Q/D156N should allow determination of the relative contributions of membrane binding, insertion, and permeabilization to the regulation of apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - R. Blake Hill
- * To whom correspondence should be addressed: Department of Biology, Mudd Hall, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218. Phone: (410) 516-6783. Fax: (702) 441-2490. E-mail:
| |
Collapse
|
130
|
Peng J, Tan C, Roberts GJ, Nikolaeva O, Zhang Z, Lapolla SM, Primorac S, Andrews DW, Lin J. tBid elicits a conformational alteration in membrane-bound Bcl-2 such that it inhibits Bax pore formation. J Biol Chem 2006; 281:35802-11. [PMID: 17005564 PMCID: PMC2825177 DOI: 10.1074/jbc.m608303200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During initiation of apoptosis, Bcl-2 family proteins regulate the permeability of mitochondrial outer membrane. BH3-only protein, tBid, activates pro-apoptotic Bax to release cytochrome c from mitochondria. tBid also activates anti-apoptotic Bcl-2 in the mitochondrial outer membrane, changing it from a single-spanning to a multispanning conformation that binds the active Bax and inhibits cytochrome c release. However, it is not known whether other mitochondrial proteins are required to elicit the tBid-induced Bcl-2 conformational alteration. To define the minimal components that are required for the functionally important Bcl-2 conformational alteration, we reconstituted the reaction using purified proteins and liposomes. We found that purified tBid was sufficient to induce a conformational alteration in the liposome-tethered, but not cytosolic Bcl-2, resulting in a multispanning form that is similar to the one found in the mitochondrial outer membrane of drug-treated cells. Mutations that abolished tBid/Bcl-2 interaction also abolished the conformational alteration, demonstrating that a direct tBid/Bcl-2 interaction at the membrane is both required and sufficient to elicit the conformational alteration. Furthermore, active Bax also elicited the Bcl-2 conformational alteration. Bcl-2 mutants that displayed increased or decreased activity in the conformational alteration assay showed corresponding activities in inhibiting pore formation by Bax in vitro and in preventing apoptosis in vivo. Thus, there is a strong correlation between the direct interaction of membrane-bound Bcl-2 and tBid with activation of Bcl-2 in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Peng
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - Chibing Tan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - G. Jane Roberts
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Olga Nikolaeva
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - Suzanne M. Lapolla
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - Steve Primorac
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - David W. Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Jialing Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| |
Collapse
|
131
|
Antignani A, Youle RJ. How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 2006; 18:685-9. [PMID: 17046225 DOI: 10.1016/j.ceb.2006.10.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 10/02/2006] [Indexed: 11/23/2022]
Abstract
Bcl-2 family members, like the structurally similar translocation domain of diphtheria toxin, can form ion-selective channels and larger-diameter pores in artificial lipid bilayers. Recent studies show how Bcl-2 family members change topology in membranes during apoptosis and that these different states may either promote or inhibit apoptosis. Binding of BH3-only proteins alters the subcellular localization and/or membrane topology and probably affects the channel formation of Bcl-2, Bcl-xL and Bcl-w. However, it remains unclear how the pore-forming activity functions in cells to regulate mitochondrial membrane permeabilization and cell death. Bcl-2 family members in flies and worms regulate apoptosis by mechanisms seemingly unrelated to membrane permeabilization, leaving a unifying model for the biochemical activity of this protein family unknown. Work linking Bcl-2 family members to mitochondrial morphogenesis in worms and mammals suggests some common functions of Bcl-2 family proteins may exist.
Collapse
Affiliation(s)
- Antonella Antignani
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive MSC 3704, Bethesda, MD 20892, USA
| | | |
Collapse
|
132
|
Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM. Mitochondria as the target of the pro-apoptotic protein Bax. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1301-11. [PMID: 16836974 DOI: 10.1016/j.bbabio.2006.05.032] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/20/2006] [Accepted: 05/23/2006] [Indexed: 11/21/2022]
Abstract
During apoptosis, engagement of the mitochondrial pathway involves the permeabilization of the outer mitochondrial membrane (OMM), which leads to the release of cytochrome c and other apoptogenic proteins such as Smac/DIABLO, AIF, EndoG, Omi/HtraA2 and DDP/TIMM8a. OMM permeabilization depends on activation, translocation and oligomerization of multidomain Bcl-2 family proteins such as Bax or Bak. Factors involved in Bax conformational change and the function(s) of the distinct domains controlling the addressing and the insertion of Bax into mitochondria are described in this review. We also discuss our current knowledge on Bax oligomerization and on the molecular mechanisms underlying the different models accounting for OMM permeabilization during apoptosis.
Collapse
Affiliation(s)
- Emine Er
- UMR 601 INSERM, Université de Nantes, 9 Quai Moncousu F-44035 Nantes, Cedex 01 France
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
Recent data have revealed an unexpected role of Bcl-2 in modulating the steady-state levels and agonist-dependent fluxes of Ca(2+) ions. Direct monitoring of endoplasmic reticulum (ER) Ca(2+) concentration with recombinant probes reveals a lower state of filling in Bcl-2-overexpressing cells and a higher leak rate from the organelle. The broader set of indirect data using cytosolic probes reveals a more complex scenario, as in many cases no difference was detected in the Ca(2+) content of the intracellular pools. At the same time, Ca(2+) signals have been shown to affect important checkpoints of the apoptotic process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the data on the effect of Bcl-2 on [Ca(2+)](er), (ii) the functional significance of the Ca(2+)-signalling alteration and (iii) the current insight into the possible mechanisms of this effect.
Collapse
Affiliation(s)
- P Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, ER-GenTech laboratory and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Italy
| | | |
Collapse
|
134
|
Thuduppathy GR, Craig JW, Schon VKA, Hill RB. Evidence that membrane insertion of the cytosolic domain of Bcl-xL is governed by an electrostatic mechanism. J Mol Biol 2006; 359:1045-58. [PMID: 16650855 PMCID: PMC1785297 DOI: 10.1016/j.jmb.2006.03.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/16/2006] [Accepted: 03/21/2006] [Indexed: 11/30/2022]
Abstract
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization from the cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal transmembrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion (DeltaG degrees x) into lipid vesicles was determined to be -6.5 kcal mol(-1) at pH 4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy-Chapman theory to estimate an electrostatic contribution of DeltaG degrees el approximately -2.5 kcal mol(-1) and a non-electrostatic contribution of DeltaG degrees nel approximately -4.0 kcal mol(-1) to the free energy of insertion, DeltaG degrees x. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed.
Collapse
Affiliation(s)
| | - Jeffrey W. Craig
- Department of Biology, Johns Hopkins University, 3400 N. Charles St,
Baltimore, MD 21218, USA
| | | | | |
Collapse
|
135
|
Abstract
The protein BAX of the Bcl-2-family is felt to be one of the two Bcl-2-family proteins that directly participate in the mitochondrial cytochrome c-translocating pore. We have studied the kinetics, stoichiometry and size of the pore formed by BAX in planar lipid bilayers and synthetic liposomes. Our data indicate that a cytochrome c-competent pore can be formed by in-membrane association of BAX monomers.
Collapse
Affiliation(s)
- P H Schlesinger
- Department of Physiology and Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
136
|
De Chiara G, Marcocci ME, Torcia M, Lucibello M, Rosini P, Bonini P, Higashimoto Y, Damonte G, Armirotti A, Amodei S, Palamara AT, Russo T, Garaci E, Cozzolino F. Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem 2006; 281:21353-21361. [PMID: 16714293 DOI: 10.1074/jbc.m511052200] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The antiapoptotic role of Bcl-2 can be regulated by its phosphorylation in serine and threonine residues located in a nonstructured loop that links BH3 and BH4 domains. p38 MAPK has been identified as one of the kinases able to mediate such phosphorylation, through direct interaction with Bcl-2 protein in the mitochondrial compartment. In this study, we identify, by using mass spectrometry techniques and specific anti-phosphopeptide antibodies, Ser(87) and Thr(56) as the Bcl-2 residues phosphorylated by p38 MAPK and show that phosphorylation of these residues is always associated with a decrease in the antiapoptotic potential of Bcl-2 protein. Furthermore, we obtained evidence that p38 MAPK-induced Bcl-2 phosphorylation plays a key role in the early events following serum deprivation in embryonic fibroblasts. Both cytochrome c release and caspase activation triggered by p38 MAPK activation and Bcl-2 phosphorylation are absent in embryonic fibroblasts from p38alpha knock-out mice (p38alpha(-/-) MEF), whereas they occur within 12 h of serum withdrawal in p38alpha(+/+) MEF; moreover, they can be prevented by p38 MAPK inhibitors and are not associated with the synthesis of the proapoptotic proteins Bax and Fas. Thus, Bcl-2 phosphorylation by activated p38 MAPK is a key event in the early induction of apoptosis under conditions of cellular stress.
Collapse
Affiliation(s)
- Giovanna De Chiara
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy.
| | - Maria Elena Marcocci
- Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata", Via Montpellier 1, I-00133 Rome, Italy
| | - Maria Torcia
- Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, I-50139 Florence, Italy
| | - Maria Lucibello
- Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, I-50139 Florence, Italy; Institute of Neurobiology and Molecular Medicine, National Research Council, Via Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Paolo Rosini
- Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, I-50139 Florence, Italy
| | - Paolo Bonini
- Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, I-50139 Florence, Italy
| | - Yukiro Higashimoto
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Gianluca Damonte
- DIMES Biochemistry Section, Mass Spectrometry Facility, Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 7, I-16132 Genoa, Italy
| | - Andrea Armirotti
- DIMES Biochemistry Section, Mass Spectrometry Facility, Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 7, I-16132 Genoa, Italy
| | - Sarah Amodei
- Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, I-50139 Florence, Italy
| | - Anna Teresa Palamara
- Department of Public Health Science "G. Sanarelli," University of Rome "La Sapienza," Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Tommaso Russo
- CEINGE Biotecnologie Avanzate, Department of Biochemistry and Medical Biotechnologies, University of Naples "Federico II," Via Comunale Margherita 482, I-80131 Naples, Italy
| | - Enrico Garaci
- Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata", Via Montpellier 1, I-00133 Rome, Italy
| | - Federico Cozzolino
- Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, I-50139 Florence, Italy.
| |
Collapse
|
137
|
Thomadaki H, Scorilas A. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 2006; 43:1-67. [PMID: 16531274 DOI: 10.1080/10408360500295626] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the most effective ways to combat different types of cancer is through early diagnosis and administration of effective treatment, followed by efficient monitoring that will allow physicians to detect relapsing disease and treat it at the earliest possible time. Apoptosis, a normal physiological form of cell death, is critically involved in the regulation of cellular homeostasis. Dysregulation of programmed cell death mechanisms plays an important role in the pathogenesis and progression of cancer as well as in the responses of tumours to therapeutic interventions. Many members of the BCL2 (B-cell CLL/lymphoma 2; Bcl-2) family of apoptosis-related genes have been found to be differentially expressed in various malignancies, and some are useful prognostic cancer biomarkers. We have recently cloned a new member of this family, BCL2L12, which was found to be differentially expressed in many tumours. Most of the BCL2 family genes have been found to play a central regulatory role in apoptosis induction. Results have made it clear that a number of coordinating alterations in the BCL2 family of genes must occur to inhibit apoptosis and provoke carcinogenesis in a wide variety of cancers. However, more research is required to increase our understanding of the extent to which and the mechanisms by which they are involved in cancer development, providing the basis for earlier and more accurate cancer diagnosis, prognosis and therapeutic intervention that targets the apoptosis pathways. In the present review, we describe current knowledge of the function and molecular characteristics of a series of classic but also newly discovered genes of the BCL2 family as well as their implications in cancer development, prognosis and treatment.
Collapse
Affiliation(s)
- Hellinida Thomadaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | | |
Collapse
|
138
|
Dejean LM, Martinez-Caballero S, Kinnally KW. Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ 2006; 13:1387-95. [PMID: 16676005 DOI: 10.1038/sj.cdd.4401949] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Apoptosis is a phenomenon fundamental to higher eukaryotes and essential to mechanisms controlling tissue homeostasis. Bcl-2 family proteins tightly control this cell death program by regulating the permeabilization of the mitochondrial outer membrane and, hence, the release of cytochrome c and other proapoptotic factors. Mitochondrial apoptosis-induced channel (MAC) is the mitochondrial apoptosis-induced channel and is responsible for cytochrome c release early in apoptosis. MAC activity is detected by patch clamping mitochondria at the time of cytochrome c release. The Bcl-2 family proteins regulate apoptosis by controlling the formation of MAC. Depending on cell type and apoptotic inducer, Bax and/or Bak are structural component(s) of MAC. Overexpression of the antiapoptotic protein Bcl-2 eliminates MAC activity. The focus of this review is a biophysical characterization of MAC activity and its regulation by Bcl-2 family proteins, and ends with some discussion of therapeutic targets.
Collapse
Affiliation(s)
- L M Dejean
- Department of Basic Sciences, College of Dentistry, New York University, NY 10010, USA
| | | | | |
Collapse
|
139
|
Isenmann S, Stoll G, Schroeter M, Krajewski S, Reed JC, Bähr M. Differential regulation of Bax, Bcl-2, and Bcl-X proteins in focal cortical ischemia in the rat. Brain Pathol 2006; 8:49-62; discussion 62-3. [PMID: 9458166 PMCID: PMC8098325 DOI: 10.1111/j.1750-3639.1998.tb00134.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Focal ischemia in the parietal cortex of the rat results in massive neuronal death in the infarct zone and penumbra between 12 hours and 6 days after photothrombosis. To examine a possible role of Bcl-2 family proteins in this process of cell death, we investigated their expression by immunoblot assays and immunocytochemistry, and correlated expression patterns with TUNEL as well as morphological signs indicative of apoptosis. In the center of the lesion Bax immunostaining was increased in many degenerating neurons between 4 hours and 3 days after the induction of photothrombosis. At all time points examined, Bcl-2 and Bcl-X protein levels were markedly reduced in injured neurons as compared to the unlesioned side. At the border of the ischemic lesion, two areas were distinguished: 1 - 2 days after induction of photothrombosis, pyknotic cells located immediately adjacent to the lesion core displayed nuclear Bcl-X and Bax immunoreactivity. In contrast, large, morphologically intact neurons located more towards the healthy brain parenchyma displayed an increase in cytoplasmic Bcl-2 and Bcl-X proteins. Double staining for each of the Bcl-2 family proteins and TUNEL revealed that DNA strand breaks and nuclear fragmentation seen in cells located in the lesion core were often associated with increased levels of Bax, but not with elevated Bcl-2 or Bcl-X protein levels, suggesting a role for Bax in the induction of apoptotic death in these cells. The upregulation of Bcl-2 and Bcl-X expression in surviving neurons close to the penumbra might reflect an active survival mechanism that protects these neurons from cell death following a sublethal insult.
Collapse
Affiliation(s)
- S Isenmann
- Department of Neurology, University of Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
140
|
Gibson SE, Lecci C. Aminosäurehaltige Makrocyclen – anwendungsnahe Systeme oder nur Syntheseziele? Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503428] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
141
|
Gibson SE, Lecci C. Amino Acid Derived Macrocycles—An Area Driven by Synthesis or Application? Angew Chem Int Ed Engl 2006; 45:1364-77. [PMID: 16444788 DOI: 10.1002/anie.200503428] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthesis, structure, and physical properties of macrocycles have fascinated chemists for many years. Their inherent properties make them useful in areas as diverse as ion transport across membranes, development of new antibiotics, and catalysis. In this Review, the authors examine the chemistry of macrocycles containing non-peptidic amino acid derived molecules; the analysis is discussed in terms of function, rather than structure or synthesis. It is revealed that the diverse and imaginative structures created by synthetic chemists are not being fully exploited in application-driven endeavors.
Collapse
Affiliation(s)
- Susan E Gibson
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AY, UK.
| | | |
Collapse
|
142
|
O'Neill JW, Manion MK, Maguire B, Hockenbery DM. BCL-XL dimerization by three-dimensional domain swapping. J Mol Biol 2006; 356:367-81. [PMID: 16368107 DOI: 10.1016/j.jmb.2005.11.032] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Dimeric interactions among anti- and pro-apoptotic members of the BCL-2 protein family are dynamically regulated and intimately involved in survival and death functions. We report the structure of a BCL-X(L) homodimers a 3D-domain swapped dimer (3DDS). The X-ray crystal structure demonstrates the mutual exchange of carboxy-terminal regions including BH2 (Bcl-2 homology 2) between monomer subunits, with the hinge region occurring at the hairpin turn between the fifth and sixth alpha helices. Both BH3 peptide-binding hydrophobic grooves are unoccupied in the 3DDS dimer and available for BH3 peptide binding, as confirmed by sedimentation velocity analysis. BCL-X(L) 3DDS dimers have increased pore-forming activity compared to monomers, suggesting that 3DDS dimers may act as intermediates in membrane pore formation. Chemical crosslinking studies of Cys-substituted BCL-X(L) proteins demonstrate that 3DDS dimers form in synthetic lipid vesicles.
Collapse
Affiliation(s)
- Jason W O'Neill
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | |
Collapse
|
143
|
Thuduppathy GR, Hill RB. Acid destabilization of the solution conformation of Bcl-xL does not drive its pH-dependent insertion into membranes. Protein Sci 2006; 15:248-57. [PMID: 16385002 PMCID: PMC1752203 DOI: 10.1110/ps.051807706] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/22/2005] [Accepted: 10/22/2005] [Indexed: 10/25/2022]
Abstract
Regulation of programmed cell death by Bcl-xL is dependent on both its solution and integral membrane conformations. A conformational change from solution to membrane is also important in this regulation. This conformational change shows a pH-dependence similar to the translocation domain of diphtheria toxin, where an acid-induced molten globule conformation in the absence of lipid vesicles mediates the change from solution to membrane conformations. By contrast, Bcl-xL deltaTM in the absence of lipid vesicles exhibits no gross conformational changes upon acidification as observed by near- and far-UV circular dichroism spectropolarimetry. Additionally, no significant local conformational changes upon acidification were observed by heteronuclear NMR spectroscopy of Bcl-xL deltaTM. Under conditions that favor the solution conformation (pH 7.4), the free energy of folding for Bcl-xL deltaTM (deltaG(o)) was determined to be 15.8 kcal x mol(-1). Surprisingly, under conditions that favor a membrane conformation (pH 4.9), deltaG(o) was 14.6 kcal x mol(-1). These results differ from those obtained with many other membrane-insertable proteins where acid-induced destabilization is important. Therefore, other contributions must be necessary to destabilize the solution conformation Bcl-xL and favor the membrane conformation at pH 4.9. Such contributions might include the presence of a negatively charged membrane or an electrostatic potential across the membrane. Thus, for proteins that adopt both solution and membrane conformations, an obligatory molten globule intermediate may not be necessary. The absence of a molten globule intermediate might have evolved to protect Bcl-xL from intracellular proteases as it undergoes this conformational change essential for its activity.
Collapse
|
144
|
Thundimadathil J, Roeske RW, Guo L. Conversion of a porin-like peptide channel into a gramicidin-like channel by glycine to D-alanine substitutions. Biophys J 2006; 90:947-55. [PMID: 16272445 PMCID: PMC1367119 DOI: 10.1529/biophysj.105.072751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/19/2005] [Indexed: 11/18/2022] Open
Abstract
The beta-barrel and beta-helix formation, as in porins and gramicidin, respectively, represent two distinct mechanisms for ion channel formation by beta-sheet proteins in membranes. The design of beta-barrel proteins is difficult due to incomplete understanding of the basic principles of folding. The design of gramicidin-like beta-helix relies on an alternating pattern of L- and D-amino acid sequences. Recently we noticed that a short beta-sheet peptide (xSxG)(6), can form porin-like channels via self-association in membranes. Here, we proposed that glycine to D-alanine substitutions of the N-formyl-(xSxG)(6) would transform the porin-like channel into a gramicidin-like beta(12)-helical channel. The requirement of an N-formyl group for channel activity, impermeability to cations with a diameter >4 A, high monovalent cation selectivity, and the absence of either voltage gating or subconductance states upon D-alanine substitution support the idea of a gramicidin-like channel. Moreover, the circular dichroism spectrum in membranes is different, indicating a change in regular beta-sheet backbone structure. The conversion of a complex porin-like channel into a gramicidin-like channel provides a link between two different mechanisms of beta-sheet channel formation in membranes and emphasizes the importance of glycine and D-amino acid residues in protein folding and function and in the engineering of ion channels.
Collapse
Affiliation(s)
- Jyothi Thundimadathil
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
145
|
Ethier MF, Madison JM. IL-4 inhibits calcium transients in bovine trachealis cells by a ryanodine receptor-dependent mechanism. FASEB J 2006; 20:154-6. [PMID: 16280365 PMCID: PMC2043477 DOI: 10.1096/fj.05-4031fje] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IL-4 and IL-13 have important roles in the pathogenesis of asthma. A novel finding was that brief exposure of airway smooth muscle cells to IL-4 inhibited carbachol-stimulated calcium transients. We hypothesized that IL-4 inhibits transients by decreasing calcium store content and tested this by measuring the effects of IL-4 on transients induced by a nonspecific ionophore. Bovine trachealis cells were loaded with fura 2-AM, and cytosolic calcium concentrations ([Ca2+]i) were measured in single cells by digital microscopy. Stimulation (S1) with carbachol (10 microM) caused rapid, transient increases in [Ca2+]i to 1299 +/- 355 nM (n=5). After recovery of calcium stores, stimulation (S2) of the same cells with ionomycin (10 microM), in the absence of extracellular calcium, also increased [Ca2+]i to give S2/S1 ratio of 1.03 +/- 0.29. However, after 20 min of IL-4 (50 ng/ml), but not IL-13, ionomycin transients were decreased to 0.50 +/- 0.16 (S2/S1, P=0.02, n=6). IL-4 did not inhibit transients with ryanodine receptor calcium release channels (RyR) blocked by ryanodine (200 microM) (S2/S1=1.01+/-0.11) but still did in the presence of 8-bromo cyclic ADP-ribose, an antagonist of cyclic ADP-ribose (cADPR) signaling at RyR (S2/S1=0.48+/-0.13). Together, findings suggest that IL-4 decreases intracellular calcium stores by mechanisms dependent on RyR, but not on cADPR signaling.
Collapse
Affiliation(s)
- Michael F Ethier
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
146
|
Gálvez AS, Brunskill EW, Marreez Y, Benner BJ, Regula KM, Kirschenbaum LA, Dorn GW. Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem 2005; 281:1442-8. [PMID: 16291751 DOI: 10.1074/jbc.m509056200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Up-regulation of myocardial Nix and BNip3 is associated with apoptosis in cardiac hypertrophy and ischemia, respectively. To identify mechanisms of gene regulation for these critical cardiac apoptosis effectors, the determinants of Nix and BNip3 promoter activation were elucidated by luciferase reporter gene expression in neonatal rat cardiac myocytes. BNip3 transcription was increased by hypoxia but not by phenylephrine (10 microM), angiotensin II (100 nM), or isoproterenol (10 microM). In contrast, Nix transcription was increased by phenylephrine but not by isoproterenol, angiotensin II, or hypoxia. Since phenylephrine stimulates cardiomyocyte hypertrophy via protein kinase C (PKC), the effects of phorbol myristate acetate (PMA, 10 nM for 24 h) and adenoviral PKC expression were assessed. PMA and PKC alpha, but not PKC epsilon or dominant negative PKC alpha, increased Nix transcription. Multiple Nix promoter GC boxes bound transcription factor Sp-1, and basal and PMA- or PKC alpha-stimulated Nix promoter activity was suppressed by mithramycin inhibition of Sp1-DNA interactions. In vivo determinants of Nix expression were evaluated in Nix promoter-luciferase (NixP) transgenic mice that underwent ischemia-reperfusion (1 h/24 h), transverse aortic coarctation (TAC), or cross-breeding with the G(q) overexpression model of hypertrophy. Luciferase activity increased in G alpha(q)-NixP hearts 3.2 +/- 0.4-fold and in TAC hearts 2.8 +/- 0.4-fold but did not increase with infarction-reperfusion. NixP activity was proportional to the extent of TAC hypertrophy and was inhibited by mithramycin. These studies revealed distinct mechanisms of transcriptional regulation for cardiac Nix and BNip3. BNip3 is hypoxia-inducible, whereas Nix expression was induced by G alpha(q)-mediated hypertrophic stimuli. PKC alpha, a G(q) effector, transduced Nix transcriptional induction via Sp1.
Collapse
Affiliation(s)
- Anita S Gálvez
- Department of Internal Medicine, University of Cincinnati, Cincinnati Ohio 45267-0542, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Chen WY, Wu CC, Lan YH, Chang FR, Teng CM, Wu YC. Goniothalamin induces cell cycle-specific apoptosis by modulating the redox status in MDA-MB-231 cells. Eur J Pharmacol 2005; 522:20-9. [PMID: 16202990 DOI: 10.1016/j.ejphar.2005.08.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/16/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Goniothalamin, a natural occurring styryl-lactone, is a novel compound with putative anticancer activities. In the present study, the mechanism of action of goniothalamin was further investigated in human breast cancer MDA-MB-231 cells. Goniothalamin treatment of cells significantly induced cell cycle arrest at G(2)/M phase and apoptosis. By means of cell cycle synchronization, the G(2)/M phase cells proved to be the most sensitive fraction to goniothalamin-induced apoptosis. Cells treated with goniothalamin revealed an increase in intracellular reactive oxygen species and a decrease in intracellular free thiol contents. The disruption of intracellular redox balance caused by goniothalamin was associated an enhancement of cdc25C degradation. Furthermore, the antioxidant N-acetylcysteine and the glutathione synthesis inhibitor dl-buthionine-(S, R)-sulfoximine, inhibited and enhanced, respectively, the effects of goniothalamin on cell cycle arrest and apoptosis. Taken together, our result demonstrates for the first time that goniothalamin disrupts intracellular redox balance and induces cdc25C degradation, which in turn causes cell cycle arrest and cell death maximally at G(2)/M phase in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Wen-Ying Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | | | | | | | | | | |
Collapse
|
148
|
White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK. The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 2005; 7:1021-8. [PMID: 16179951 PMCID: PMC2893337 DOI: 10.1038/ncb1302] [Citation(s) in RCA: 354] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 08/11/2005] [Indexed: 12/11/2022]
Abstract
Members of the Bcl-2 protein family modulate outer mitochondrial membrane permeability to control apoptosis. However, these proteins also localize to the endoplasmic reticulum (ER), the functional significance of which is controversial. Here we provide evidence that anti-apoptotic Bcl-2 proteins regulate the inositol 1,4,5-trisphosphate receptor (InsP(3)R) ER Ca(2+) release channel resulting in increased cellular apoptotic resistance and enhanced mitochondrial bioenergetics. Anti-apoptotic Bcl-X(L) interacts with the carboxyl terminus of the InsP(3)R and sensitizes single InsP(3)R channels in ER membranes to low [InsP(3)], enhancing Ca(2+) and InsP(3)-dependent regulation of channel activity in vitro and in vivo, reducing ER Ca(2+) content and stimulating mitochondrial energetics. The pro-apoptotic proteins Bax and tBid antagonize this effect by blocking the biochemical interaction of Bcl-X(L) with the InsP(3)R. These data support a novel model in which Bcl-X(L) is a direct effector of the InsP(3)R, increasing its sensitivity to InsP(3) and enabling ER Ca(2+) release to be more sensitively coupled to extracellular signals. As a consequence, cells are protected against apoptosis by a more sensitive and dynamic coupling of ER to mitochondria through Ca(2+)-dependent signal transduction that enhances cellular bioenergetics and preserves survival.
Collapse
Affiliation(s)
- Carl White
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chi Li
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Yang
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nataliya B. Petrenko
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Muniswamy Madesh
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig B. Thompson
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
149
|
Lucken-Ardjomande S, Martinou JC. Regulation of Bcl-2 proteins and of the permeability of the outer mitochondrial membrane. C R Biol 2005; 328:616-31. [PMID: 15992745 DOI: 10.1016/j.crvi.2005.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 05/03/2005] [Indexed: 12/12/2022]
Abstract
In many apoptotic responses, pro-apoptotic members of the Bcl-2 family trigger the permeabilization of the outer mitochondrial membrane, thereby allowing the release of mitochondrial apoptogenic factors that contribute to caspase activation in the cytosol. The mechanisms that lead to the activation of pro-apoptotic Bcl-2 family members and to the permeabilization of the outer mitochondrial membrane are not yet completely understood. Here, we attempt to summarize our current view of the mechanisms that lead to these events, regarding both additional proteins that were recently suggested to be involved, and the roles of lipids.
Collapse
Affiliation(s)
- Safa Lucken-Ardjomande
- Department of Cell Biology, University of Geneva, 30, quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| | | |
Collapse
|
150
|
Jonas EA, Hardwick JM, Kaczmarek LK. Actions of BAX on mitochondrial channel activity and on synaptic transmission. Antioxid Redox Signal 2005; 7:1092-100. [PMID: 16115013 DOI: 10.1089/ars.2005.7.1092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in mitochondrial architecture and permeability facilitate programmed cell death. The BCL-2 family protein BAX is implicated in the formation of large "death channels" in outer mitochondrial membranes. We found that BAX-induced channels on mitochondria may have alternative functions. By patch clamping mitochondrial membranes inside the presynaptic terminal of the living squid giant synapse, we made direct measurements of channel activity produced by BAX application. Only infrequently did BAX application result in large conductance channels similar to those produced by a proapoptotic BCL-xL fragment or by application of a BH3-only peptide. Instead, the majority of outer mitochondrial channels induced by BAX had much smaller conductances than those found previously for the proapoptotic protein. Injection of BAX into the presynaptic terminal did not abolish synaptic transmission, contrary to previous findings with the proapoptotic fragment of BCL-xL. Instead, injection of BAX caused an increase in neurotransmitter release, as has also been found for the full-length antiapoptotic BCL-xL protein. We suggest that BAX can act to enhance synaptic efficacy in a normal physiological setting. Furthermore, the occasional large openings may reflect the function of "activated" BAX either to facilitate cell death or to play a physiological role in decreasing synaptic activity.
Collapse
Affiliation(s)
- Elizabeth A Jonas
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|