101
|
Src regulates amino acid-mediated mTORC1 activation by disrupting GATOR1-Rag GTPase interaction. Nat Commun 2018; 9:4351. [PMID: 30341294 PMCID: PMC6195609 DOI: 10.1038/s41467-018-06844-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell survival and autophagy, and its activity is regulated by amino acid availability. Rag GTPase-GATOR1 interactions inhibit mTORC1 in the absence of amino acids, and GATOR1 release and activation of RagA/B promotes mTORC1 activity in the presence of amino acids. However, the factors that play a role in Rag-GATOR1 interaction are still poorly characterized. Here, we show that the tyrosine kinase Src is crucial for amino acid-mediated activation of mTORC1. Src acts upstream of the Rag GTPases by promoting dissociation of GATOR1 from the Rags, thereby determining mTORC1 recruitment and activation at the lysosomal surface. Accordingly, amino acid-mediated regulation of Src/mTORC1 modulates autophagy and cell size expansion. Finally, Src hyperactivation overrides amino acid signaling in the activation of mTORC1. These results shed light on the mechanisms underlying pathway dysregulation in many cancer types.
Collapse
|
102
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
103
|
Milanetti E, Trandafir AG, Alba J, Raimondo D, D’Abramo M. Efficient and Accurate Modeling of Conformational Transitions in Proteins: The Case of c-Src Kinase. J Phys Chem B 2018; 122:8853-8860. [DOI: 10.1021/acs.jpcb.8b07155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edoardo Milanetti
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | | | | | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | | |
Collapse
|
104
|
Dandoulaki M, Petsalaki E, Sumpton D, Zanivan S, Zachos G. Src activation by Chk1 promotes actin patch formation and prevents chromatin bridge breakage in cytokinesis. J Cell Biol 2018; 217:3071-3089. [PMID: 29954829 PMCID: PMC6122982 DOI: 10.1083/jcb.201802102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 06/03/2018] [Indexed: 12/23/2022] Open
Abstract
In cytokinesis with chromatin bridges, cells delay abscission and retain actin patches at the intercellular canal to prevent chromosome breakage. In this study, we show that inhibition of Src, a protein-tyrosine kinase that regulates actin dynamics, or Chk1 kinase correlates with chromatin breakage and impaired formation of actin patches but not with abscission in the presence of chromatin bridges. Chk1 is required for optimal localization and complete activation of Src. Furthermore, Chk1 phosphorylates human Src at serine 51, and phosphorylated Src localizes to actin patches, the cell membrane, or the nucleus. Nonphosphorylatable mutation of S51 to alanine reduces Src catalytic activity and impairs formation of actin patches, whereas expression of a phosphomimicking Src-S51D protein rescues actin patches and prevents chromatin breakage in Chk1-deficient cells. We propose that Chk1 phosphorylates Src-S51 to fully induce Src kinase activity and that phosphorylated Src promotes formation of actin patches and stabilizes chromatin bridges. These results identify proteins that regulate formation of actin patches in cytokinesis.
Collapse
Affiliation(s)
| | - Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - David Sumpton
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, Scotland, UK
| | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
105
|
Yang F, Xiao P, Qu CX, Liu Q, Wang LY, Liu ZX, He QT, Liu C, Xu JY, Li RR, Li MJ, Li Q, Guo XZ, Yang ZY, He DF, Yi F, Ruan K, Shen YM, Yu X, Sun JP, Wang J. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Nat Chem Biol 2018; 14:876-886. [PMID: 30120361 DOI: 10.1038/s41589-018-0115-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022]
Abstract
Signals from 800 G-protein-coupled receptors (GPCRs) to many SH3 domain-containing proteins (SH3-CPs) regulate important physiological functions. These GPCRs may share a common pathway by signaling to SH3-CPs via agonist-dependent arrestin recruitment rather than through direct interactions. In the present study, 19F-NMR and cellular studies revealed that downstream of GPCR activation engagement of the receptor-phospho-tail with arrestin allosterically regulates the specific conformational states and functional outcomes of remote β-arrestin 1 proline regions (PRs). The observed NMR chemical shifts of arrestin PRs were consistent with the intrinsic efficacy and specificity of SH3 domain recruitment, which was controlled by defined propagation pathways. Moreover, in vitro reconstitution experiments and biophysical results showed that the receptor-arrestin complex promoted SRC kinase activity through an allosteric mechanism. Thus, allosteric regulation of the conformational states of β-arrestin 1 PRs by GPCRs and the allosteric activation of downstream effectors by arrestin are two important mechanisms underlying GPCR-to-SH3-CP signaling.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Science, Shandong University, Jinan, Shandong, China
| | - Chang-Xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qi Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Liu-Yang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Zhi-Xin Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chuan Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jian-Ye Xu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Rui-Rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Meng-Jing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Xu-Zhen Guo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China
| | - Zhao-Ya Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Ke Ruan
- Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, China
| | - Yue-Mao Shen
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China. .,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.
| |
Collapse
|
106
|
Sultan MM, Kiss G, Pande VS. Towards simple kinetic models of functional dynamics for a kinase subfamily. Nat Chem 2018; 10:903-909. [PMID: 29988151 DOI: 10.1038/s41557-018-0077-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 05/08/2018] [Indexed: 11/09/2022]
Abstract
Kinases are ubiquitous enzymes involved in the regulation of critical cellular pathways. However, in silico modelling of the conformational ensembles of these enzymes is difficult due to inherent limitations and the cost of computational approaches. Recent algorithmic advances combined with homology modelling and parallel simulations have enabled researchers to address this computational sampling bottleneck. Here, we present the results of molecular dynamics studies for seven Src family kinase (SFK) members: Fyn, Lyn, Lck, Hck, Fgr, Yes and Blk. We present a sequence invariant extension to Markov state models, which allows us to quantitatively compare the structural ensembles of the seven kinases. Our findings indicate that in the absence of their regulatory partners, SFK members have similar in silico dynamics with active state populations ranging from 4 to 40% and activation timescales in the hundreds of microseconds. Furthermore, we observe several potentially druggable intermediate states, including a pocket next to the adenosine triphosphate binding site that could potentially be targeted via a small-molecule inhibitor.
Collapse
Affiliation(s)
| | - Gert Kiss
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Center for Molecular Analysis and Design, Stanford University, Stanford, CA, USA.,Revolution Medicines, Redwood City, CA, USA
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
107
|
The multifaceted allosteric regulation of Aurora kinase A. Biochem J 2018; 475:2025-2042. [PMID: 29946042 PMCID: PMC6018539 DOI: 10.1042/bcj20170771] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Abstract
The protein kinase Aurora A (AurA) is essential for the formation of bipolar mitotic spindles in all eukaryotic organisms. During spindle assembly, AurA is activated through two different pathways operating at centrosomes and on spindle microtubules. Recent studies have revealed that these pathways operate quite differently at the molecular level, activating AurA through multifaceted changes to the structure and dynamics of the kinase domain. These advances provide an intimate atomic-level view of the finely tuned regulatory control operating in protein kinases, revealing mechanisms of allosteric cooperativity that provide graded levels of regulatory control, and a previously unanticipated mechanism for kinase activation by phosphorylation on the activation loop. Here, I review these advances in our understanding of AurA function, and discuss their implications for the use of allosteric small molecule inhibitors to address recently discovered roles of AurA in neuroblastoma, prostate cancer and melanoma.
Collapse
|
108
|
Pitsawong W, Buosi V, Otten R, Agafonov RV, Zorba A, Kern N, Kutter S, Kern G, Pádua RA, Meniche X, Kern D. Dynamics of human protein kinase Aurora A linked to drug selectivity. eLife 2018; 7:36656. [PMID: 29901437 PMCID: PMC6054532 DOI: 10.7554/elife.36656] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinase Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome. Protein kinases are a family of enzymes found in all living organisms. These enzymes help to control many biological processes, including cell division. When particular protein kinases do not work correctly, cells may start to divide uncontrollably, which can lead to cancer. One example is the kinase Aurora A, which is over-active in many common human cancers. As a result, researchers are currently trying to design drugs that reduce the activity of Aurora A in the hope that these could form new anticancer treatments. In general, drugs are designed to be as specific in their action as possible to reduce the risk of harmful side effects to the patient. Designing a drug that affects a single protein kinase, however, is difficult because there are hundreds of different kinases in the body, all with similar structures. Because drugs often work by binding to specific structural features, a drug that targets one protein kinase can often alter the activity of a large number of others too. Gleevec is a successful anti-leukemia drug that specifically works on one target kinase, producing minimal side effects. It was recently discovered that the drug works through a phenomenon called ‘induced fit’. This means that after the drug binds it causes a change in the enzyme’s overall shape that alters the activity of the enzyme. The shape change is complex, and so even small structural differences can change the effect of a particular drug. Do other drugs that target other protein kinases also produce induced fit effects? To find out, Pitsawong, Buosi, Otten, Agafonov et al. studied how three anti-cancer drugs interact with Aurora A: two drugs specifically designed to switch off Aurora A, and Gleevec (which does not target Aurora A). The two drugs that specifically target Aurora A were thought to work by targeting one structural feature of the enzyme. However, the biochemical and biophysical experiments performed by Pitsawong et al. revealed that these drugs instead work through an induced fit effect. By contrast, Gleevec did not trigger an induced fit on Aurora A and so bound less tightly to it. In light of these results, Pitsawong et al. suggest that future efforts to design drugs that target protein kinases should focus on exploiting the induced fit process. This will require more research into the structure of particular kinases.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Vanessa Buosi
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Renee Otten
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Roman V Agafonov
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Adelajda Zorba
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Nadja Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Steffen Kutter
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Gunther Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Ricardo Ap Pádua
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Xavier Meniche
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Dorothee Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| |
Collapse
|
109
|
Cong BB, Gao MH, Li B, Wang B, Zhang B, Wang LN, Zhang SC, Li HQ, Wang Z, Han SY. Overexpression of Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains induces cluster of differentiation 59-mediated apoptosis in Jurkat cells. Exp Ther Med 2018; 15:4139-4148. [PMID: 29725363 PMCID: PMC5920370 DOI: 10.3892/etm.2018.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/25/2017] [Indexed: 11/17/2022] Open
Abstract
Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains (CBP/PAG) is a membrane-bound adaptor protein that downregulates the activation of Src family kinases present in lipid rafts. To elucidate the role of CBP/PAG in human T cell activation, a cell line overexpressing CBP/PAG was constructed and the function of CBP/PAG in Jurkat cells was examined. The present study revealed that increased CBP/PAG expression in T cells significantly enhanced their apoptosis and reduced cellular activation and proliferation. Overexpression of CBP/PAG suppressed the growth of Jurkat cells by recruiting c-Src and its negative regulator, C-terminal Src kinase (CSK), to lipid rafts. The negative regulation of CBP/PAG was enhanced in the presence of anti-cluster of differentiation (CD)59 monoclonal antibodies. In addition, a significant association was revealed between the location of CBP/PAG and CD59, which were co-expressed in the same region of the cell membrane, implicating a potential overlap of the elicited signaling pathways. These results indicate that CBP/PAG functions as a negative regulator of cell signal transduction and suggest that CD59 may strengthen the role of negative feedback regulation.
Collapse
Affiliation(s)
- Bei-Bei Cong
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mei-Hua Gao
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bing Li
- Department of Genetics, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bing Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Li-Na Wang
- Department of Blood Transfusion, Shandong Qilu Hospital, Qingdao, Shandong 266071, P.R. China
| | - Shu-Chao Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hua-Qiao Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhong Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Shu-Yi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
110
|
Amacher JF, Hobbs HT, Cantor AC, Shah L, Rivero M, Mulchand SA, Kuriyan J. Phosphorylation control of the ubiquitin ligase Cbl is conserved in choanoflagellates. Protein Sci 2018; 27:923-932. [PMID: 29498112 PMCID: PMC5916117 DOI: 10.1002/pro.3397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/23/2022]
Abstract
Cbl proteins are E3 ubiquitin ligases specialized for the regulation of tyrosine kinases by ubiquitylation. Human Cbl proteins are activated by tyrosine phosphorylation, thus setting up a feedback loop whereby the activation of tyrosine kinases triggers their own degradation. Cbl proteins are targeted to their substrates by a phosphotyrosine-binding SH2 domain. Choanoflagellates, unicellular eukaryotes that are closely related to metazoans, also contain Cbl. The tyrosine kinase complement of choanoflagellates is distinct from that of metazoans, and it is unclear if choanoflagellate Cbl is regulated similarly to metazoan Cbl. Here, we performed structure-function studies on Cbl from the choanoflagellate species Salpingoeca rosetta and found that it undergoes phosphorylation-dependent activation. We show that S. rosetta Cbl can be phosphorylated by S. rosetta Src kinase, and that it can ubiquitylate S. rosetta Src. We also compared the substrate selectivity of human and S. rosetta Cbl by measuring ubiquitylation of Src constructs in which Cbl-recruitment sites are placed in different contexts with respect to the kinase domain. Our results indicate that for both human and S. rosetta Cbl, ubiquitylation depends on proximity and accessibility, rather than being targeted toward specific lysine residues. Our results point to an ancient interplay between phosphotyrosine and ubiquitin signaling in the metazoan lineage.
Collapse
Affiliation(s)
- Jeanine F. Amacher
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- California Institute for Quantitative Biosciences, University of CaliforniaBerkeleyCalifornia
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyCalifornia
- Present address:
Department of ChemistryWestern Washington UniversityBellinghamWashington.
| | - Helen T. Hobbs
- Department of ChemistryUniversity of CaliforniaBerkeleyCalifornia
| | - Aaron C. Cantor
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- California Institute for Quantitative Biosciences, University of CaliforniaBerkeleyCalifornia
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyCalifornia
| | - Lochan Shah
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyCalifornia
| | - Marco‐Jose Rivero
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyCalifornia
| | - Sarah A. Mulchand
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyCalifornia
| | - John Kuriyan
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- California Institute for Quantitative Biosciences, University of CaliforniaBerkeleyCalifornia
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyCalifornia
- Department of ChemistryUniversity of CaliforniaBerkeleyCalifornia
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| |
Collapse
|
111
|
Shah NH, Löbel M, Weiss A, Kuriyan J. Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. eLife 2018; 7:35190. [PMID: 29547119 PMCID: PMC5889215 DOI: 10.7554/elife.35190] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
The specificity of tyrosine kinases is attributed predominantly to localization effects dictated by non-catalytic domains. We developed a method to profile the specificities of tyrosine kinases by combining bacterial surface-display of peptide libraries with next-generation sequencing. Using this, we showed that the tyrosine kinase ZAP-70, which is critical for T cell signaling, discriminates substrates through an electrostatic selection mechanism encoded within its catalytic domain (Shah et al., 2016). Here, we expand this high-throughput platform to analyze the intrinsic specificity of any tyrosine kinase domain against thousands of peptides derived from human tyrosine phosphorylation sites. Using this approach, we find a difference in the electrostatic recognition of substrates between the closely related Src-family kinases Lck and c-Src. This divergence likely reflects the specialization of Lck to act in concert with ZAP-70 in T cell signaling. These results point to the importance of direct recognition at the kinase active site in fine-tuning specificity.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Mark Löbel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Arthur Weiss
- Department of Medicine, Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
112
|
Huang C, Zhang Z, Chen L, Lee HW, Ayrapetov MK, Zhao TC, Hao Y, Gao J, Yang C, Mehta GU, Zhuang Z, Zhang X, Hu G, Chin YE. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis. Cancer Res 2018. [PMID: 29531159 DOI: 10.1158/0008-5472.can-17-2314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chao Huang
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhang
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lihan Chen
- Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hank W Lee
- Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Marina K Ayrapetov
- Departments of Surgery and Medicine, Brown University School of Medicine-Rhode Island Hospital, Providence, Rhode Island
| | - Ting C Zhao
- Departments of Surgery and Medicine, Brown University School of Medicine-Rhode Island Hospital, Providence, Rhode Island
| | - Yimei Hao
- Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinsong Gao
- Departments of Surgery and Medicine, Brown University School of Medicine-Rhode Island Hospital, Providence, Rhode Island
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Gautam U Mehta
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Xiaoren Zhang
- Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guohong Hu
- Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y Eugene Chin
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
113
|
Tulli L, Cattaneo F, Vinot J, Baldari CT, D'Oro U. Src Family Kinases Regulate Interferon Regulatory Factor 1 K63 Ubiquitination following Activation by TLR7/8 Vaccine Adjuvant in Human Monocytes and B Cells. Front Immunol 2018; 9:330. [PMID: 29545793 PMCID: PMC5837968 DOI: 10.3389/fimmu.2018.00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/06/2018] [Indexed: 12/27/2022] Open
Abstract
Toll-like receptors (TLRs) play a key role in the activation of innate immune cells, in which their engagement leads to production of cytokines and co-stimulatory molecules. TLRs signaling requires recruitment of toll/IL-1R (TIR) domain-containing adaptors, such as MyD88 and/or TRIF, and leads to activation of several transcription factors, such as NF-κB, the AP1 complex, and various members of the interferon regulatory factor (IRF) family, which in turn results in triggering of several cellular functions associated with these receptors. A role for Src family kinases (SFKs) in this signaling pathway has also been established. Our work and that of others have shown that this type of kinases is activated following engagement of several TLRs, and that this event is essential for the initiation of specific downstream cellular response. In particular, we have previously demonstrated that activation of SFKs is required for balanced production of pro-inflammatory cytokines by monocyte-derived dendritic cells after stimulation with R848, an agonist of human TLRs 7/8. We also showed that TLR7/8 triggering leads to an increase in interferon regulatory factor 1 (IRF-1) protein levels and that this effect is abolished by inhibition of SFKs, suggesting a critical role of these kinases in IRF-1 regulation. In this study, we first confirmed the key role of SFKs in TLR7/8 signaling for cytokine production and accumulation of IRF-1 protein in monocytes and in B lymphocytes, two other type of antigen-presenting cells. Then, we demonstrate that TLR7 triggering leads to an increase of K63-linked ubiquitination of IRF-1, which is prevented by SFKs inhibition, suggesting a key role of these kinases in posttranslational regulation of IRF-1 in the immune cells. In order to understand the mechanism that links SFKs activation to IRF-1 K63-linked ubiquitination, we examined SFKs and IRF-1 possible interactors and proved that activation of SFKs is necessary for their interaction with TNFR-associated factor 6 (TRAF6) and promotes the recruitment of both cIAP2 and IRF-1 by TRAF6. Collectively, our data demonstrate that TLR7/8 engagement leads to the formation of a complex that allows the interaction of cIAP2 and IRF-1 resulting in IRF-1 K63-linked ubiquitination, and that active SFKs are required for this process.
Collapse
|
114
|
Ren L, Li C, Wang Y, Teng Y, Sun H, Xing B, Yang X, Jiang Y, He F. In Vivo Phosphoproteome Analysis Reveals Kinome Reprogramming in Hepatocellular Carcinoma. Mol Cell Proteomics 2018; 17:1067-1083. [PMID: 29472430 DOI: 10.1074/mcp.ra117.000421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/10/2018] [Indexed: 12/19/2022] Open
Abstract
Aberrant kinases contribute to cancer survival and proliferation. Here, we quantitatively characterized phosphoproteomic changes in an HBx-transgenic mouse model of hepatocellular carcinoma (HCC) using high-resolution mass spectrometry, profiled 22,539 phosphorylation sites on 5431 proteins. Using a strategy to interpret kinase- substrate relations in HCC and to uncover predominant kinases in tumors, our results, revealed elevated kinase activities of Src family kinases (SFKs), PKCs, MAPKs, and ROCK2 in HCC, representatives of which were further validated in cell models and clinical HBV-positive HCC samples. Inhibitor combinations targeting Src and PKCs or ROCK2 both synergized significantly to inhibit cell growth. In addition, we demonstrated that phosphorylation at Src Ser17 directly affects its kinase activity. Our phosphoproteome data facilitated the construction of a detailed molecular landscape in HCC and should serve as a resource for the cancer community. Our strategy is generally applicable to targeted therapeutics, also highlights potential mechanisms of kinase regulation.
Collapse
Affiliation(s)
- Liangliang Ren
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chaoying Li
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Youliang Wang
- §State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Yan Teng
- §State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Huichuan Sun
- ¶Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baocai Xing
- ‖Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University; Cancer Hospital & Institute, Beijing 100042, China
| | - Xiao Yang
- §State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Ying Jiang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China;
| | - Fuchu He
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China;
| |
Collapse
|
115
|
Ruff EF, Muretta JM, Thompson AR, Lake EW, Cyphers S, Albanese SK, Hanson SM, Behr JM, Thomas DD, Chodera JD, Levinson NM. A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation. eLife 2018; 7:32766. [PMID: 29465396 PMCID: PMC5849412 DOI: 10.7554/elife.32766] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Many eukaryotic protein kinases are activated by phosphorylation on a specific conserved residue in the regulatory activation loop, a post-translational modification thought to stabilize the active DFG-In state of the catalytic domain. Here we use a battery of spectroscopic methods that track different catalytic elements of the kinase domain to show that the ~100 fold activation of the mitotic kinase Aurora A (AurA) by phosphorylation occurs without a population shift from the DFG-Out to the DFG-In state, and that the activation loop of the activated kinase remains highly dynamic. Instead, molecular dynamics simulations and electron paramagnetic resonance experiments show that phosphorylation triggers a switch within the DFG-In subpopulation from an autoinhibited DFG-In substate to an active DFG-In substate, leading to catalytic activation. This mechanism raises new questions about the functional role of the DFG-Out state in protein kinases. The transfer of phosphate groups onto proteins (protein phosphorylation) is one of the most important methods used to send signals inside cells. The enzymes that catalyze this process, called protein kinases, are themselves controlled by the phosphorylation of a flexible region called the activation loop. For many years it had been thought that the purpose of activation loop phosphorylation was to clamp the otherwise flexible activation loop in an active state that allows molecules that need to be phosphorylated to bind to the kinase. This assumption was based on static pictures of protein kinases obtained by X-ray crystallography, in which individual states are trapped and visualized in a crystal lattice. However, new methods and approaches now mean it is possible to visualize how the position of the activation loop changes as it moves in solution. By applying these techniques, Ruff et al. show that the static model is incorrect in a protein kinase called Aurora A. In this enzyme, the phosphorylated activation loop continues to switch back and forth between active and inactive states. Phosphorylation instead enhances the catalytic activity of the active state. Aurora A regulates several important steps in cell division, and plays important roles in several kinds of cancer. The discovery that activated forms of Aurora A can have different dynamic properties raises the possibility that inhibitor molecules could be designed to exploit these differences and block specific activities of Aurora A in cancer cells. To realize this goal we need to better understand how a kinase switching between active and inactive states affects the ability of inhibitors to interact with it.
Collapse
Affiliation(s)
- Emily F Ruff
- Department of Pharmacology, University of Minnesota, Minneapolis, United States
| | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Eric W Lake
- Department of Pharmacology, University of Minnesota, Minneapolis, United States
| | - Soreen Cyphers
- Department of Pharmacology, University of Minnesota, Minneapolis, United States
| | - Steven K Albanese
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States.,Gerstner Sloan Kettering Graduate School, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sonya M Hanson
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Julie M Behr
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States.,Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nicholas M Levinson
- Department of Pharmacology, University of Minnesota, Minneapolis, United States
| |
Collapse
|
116
|
Siveen KS, Prabhu KS, Achkar IW, Kuttikrishnan S, Shyam S, Khan AQ, Merhi M, Dermime S, Uddin S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer 2018; 17:31. [PMID: 29455667 PMCID: PMC5817858 DOI: 10.1186/s12943-018-0788-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Sunitha Shyam
- Medical Research Center, Hamad Medical Corporation, Doha, State of Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| |
Collapse
|
117
|
Sonti R, Hertel-Hering I, Lamontanara AJ, Hantschel O, Grzesiek S. ATP Site Ligands Determine the Assembly State of the Abelson Kinase Regulatory Core via the Activation Loop Conformation. J Am Chem Soc 2018; 140:1863-1869. [PMID: 29319304 DOI: 10.1021/jacs.7b12430] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The constituent SH3, SH2, and kinase domains of the Abl kinase regulatory core can adopt an assembled (inactive) or a disassembled (active) conformation. We show that this assembly state strictly correlates with the conformation of the kinase activation loop induced by a total of 14 ATP site ligands, comprising all FDA-approved Bcr-Abl inhibiting drugs. The disassembly of the core by certain (type II) ligands can be explained by an induced push on the kinase N-lobe via A- and P-loop toward the SH3 domain. A similar sized P-loop motion is expected during nucleotide binding and release, which would be impeded in the assembled state, in agreement with its strongly reduced kinase activity.
Collapse
Affiliation(s)
- Rajesh Sonti
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| | - Ines Hertel-Hering
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| | - Allan Joaquim Lamontanara
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
118
|
Mandalaparthy V, Sanaboyana VR, Rafalia H, Gosavi S. Exploring the effects of sparse restraints on protein structure prediction. Proteins 2017; 86:248-262. [DOI: 10.1002/prot.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Varun Mandalaparthy
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| | - Venkata Ramana Sanaboyana
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| | - Hitesh Rafalia
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
- Manipal University, Madhav Nagar; Manipal 576104 India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| |
Collapse
|
119
|
von Raußendorf F, de Ruiter A, Leonard TA. A switch in nucleotide affinity governs activation of the Src and Tec family kinases. Sci Rep 2017; 7:17405. [PMID: 29234112 PMCID: PMC5727165 DOI: 10.1038/s41598-017-17703-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
The Tec kinases, closely related to Src family kinases, are essential for lymphocyte function in the adaptive immune system. Whilst the Src and Abl kinases are regulated by tail phosphorylation and N-terminal myristoylation respectively, the Tec kinases are notable for the absence of either regulatory element. We have found that the inactive conformations of the Tec kinase Itk and Src preferentially bind ADP over ATP, stabilising both proteins. We demonstrate that Itk adopts the same conformation as Src and that the autoinhibited conformation of Src is independent of its C-terminal tail. Allosteric activation of both Itk and Src depends critically on the disruption of a conserved hydrophobic stack that accompanies regulatory domain displacement. We show that a conformational switch permits the exchange of ADP for ATP, leading to efficient autophosphorylation and full activation. In summary, we propose a universal mechanism for the activation and autoinhibition of the Src and Tec kinases.
Collapse
Affiliation(s)
- Freia von Raußendorf
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Anita de Ruiter
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), 1190, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
120
|
Tsao AS, Lin H, Carter BW, Lee JJ, Rice D, Vaporcyan A, Swisher S, Mehran R, Heymach J, Nilsson M, Fan Y, Nunez M, Diao L, Wang J, Fujimoto J, Wistuba II, Hong WK. Biomarker-Integrated Neoadjuvant Dasatinib Trial in Resectable Malignant Pleural Mesothelioma. J Thorac Oncol 2017; 13:246-257. [PMID: 29313814 DOI: 10.1016/j.jtho.2017.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Window of opportunity trials in malignant pleural mesothelioma (MPM) are challenging but can yield important translational information about a novel agent. METHODS We treated patients with MPM (N = 24) with 4 weeks of oral dasatinib followed by surgery with or without radiotherapy and then an optional 2 years of maintenance dasatinib. The primary end point was biomarker modulation of phosphorylated (p) SrcTyr419. RESULTS For all patients, the median progression-free survival (PFS) was 7.5 months and the median overall survival was 19.1 months. No significant responses were seen after 4 weeks of dasatinib therapy; however, modulation of median p-SrcTyr419 immunohistochemistry (IHC) scores was seen: the median pretreatment score was 70 (interquartile range 37.5-110), and the median posttreatment score was 41.9 (interquartile range 4.2-60) (p = 0.004). A decrease in p-SrcTyr419 levels after dasatinib correlated with improved median PFS (6.9 months versus 0.94 months [p = 0.03]), suggesting that p-SrcTyr419 is a viable pharmacodynamic biomarker for dasatinib in MPM. Platelet-derived growth factor receptor (PDGFR) pathway analysis correlated high PDGFR beta [PDGFRB) level (in the cytoplasm [hazard ratio] (HR) = 2.54, p = 0.05], stroma [HR = 2.79, p = 0.03], and nucleus [HR = 6.79, p = 0.023]) with a shorter PFS. Low (less than the median) cytoplasmic p-PDGFR alpha IHC levels were predictive of a decrease in positron emission tomography/computed tomography standard uptake values levels after dasatinib therapy (p = 0.04), whereas higher-than-median IHC scores of PDGFRB (cytoplasmic [HR = 2.8, p = 0.03] and nuclear [HR = 6.795, p = 0.02]) were correlated with rising standard uptake values levels. CONCLUSIONS In conclusion, there was no significant efficacy signal, and dasatinib monotherapy will not continue to be studied in MPM. However, our study demonstrated that PDGFR subtypes (platelet-derived growth factor receptor alpha and PDGFRB) may have differential roles in prognosis and resistance to antiangiogenic tyrosine kinase inhibitors and are important potential therapeutic targets that require further investigation.
Collapse
Affiliation(s)
- Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| | - Heather Lin
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Brett W Carter
- Department of Diagnostic Radiology Thoracic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - David Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ara Vaporcyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Steven Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Reza Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Monique Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Youhong Fan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Maria Nunez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
121
|
Mitchell J, Kim SJ, Seelmann A, Veit B, Shepard B, Im E, Rhee SH. Src family kinase tyrosine phosphorylates Toll-like receptor 4 to dissociate MyD88 and Mal/Tirap, suppressing LPS-induced inflammatory responses. Biochem Pharmacol 2017; 147:119-127. [PMID: 29175418 DOI: 10.1016/j.bcp.2017.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022]
Abstract
Src family kinases (SFKs) are a family of protein tyrosine kinases containing nine members: Src, Lyn, Fgr, Hck, Lck, Fyn, Blk, Yes, and Ylk. Although SFK activation is a major immediate signaling event in LPS/Toll-like receptor 4 (TLR4) signaling, its precise role has remained elusive due to various contradictory results obtained from a certain SFK member-deficient mice or cells. The observed inconsistencies may be due to the compensation or redundancy by other SFKs upon a SFK deficiency. The chemical rescuing approach was suggested to induce temporal and precise SFK activation in living cells, thereby limiting the chance of cellular adaption to a SFK-deficient condition. Using the rescuing approach, we demonstrate that restoring SFK activity not only induces tyrosine phosphorylation of TLR4, but also inhibits LPS-induced NFκB and JNK1/2 activation and consequently suppresses LPS-induced cytokine production. TLR4 normally recruits TIR domain-containing adaptors in response to LPS, however, temporally restored SFK activation disrupts the LPS-induced association of MyD88 and Mal/Tirap with TLR4. Additionally, using kinase-dead SFK-Lyn (Y397/508F) and constitutively active SFK-Lyn (Y508F), we found that the kinase-dead SFK inhibits TLR4 tyrosine phosphorylation with reduced binding affinity to TLR4, while the kinase-active SFK strongly binds to TLR4 and promotes TLR4 tyrosine phosphorylation, suggesting that SFK kinase activity is required for TLR4 tyrosine phosphorylation and TLR4-SFK interaction. Together, our results demonstrate that SFK activation induces TLR4 tyrosine phosphorylation, consequently dissociating MyD88 and Mal/Tirap from TLR4 and inhibiting LPS-induced inflammatory responses, suggesting a negative feedback loop regulated by SFK-induced tyrosine phosphorylation in TLR4.
Collapse
Affiliation(s)
- Jonathon Mitchell
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Su Jin Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Alexandra Seelmann
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Brendan Veit
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Brooke Shepard
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, South Korea.
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
122
|
Katoh K. Activation of Rho-kinase and focal adhesion kinase regulates the organization of stress fibers and focal adhesions in the central part of fibroblasts. PeerJ 2017; 5:e4063. [PMID: 29158989 PMCID: PMC5694213 DOI: 10.7717/peerj.4063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Specific regulation and activation of focal adhesion kinase (FAK) are thought to be important for focal adhesion formation, and activation of Rho-kinase has been suggested to play a role in determining the effects of FAK on the formation of stress fibers and focal adhesions. To clarify the role of FAK in stress fiber formation and focal adhesion organization, the author examined the formation of new stress fibers and focal adhesions by activation of Rho-kinase in FAK knockout (FAK–/–) fibroblasts. FAK–/– cells were elliptical in shape, and showed reduced numbers of stress fibers and focal adhesions in the central part of the cells along with large focal adhesions in the peripheral regions. Activation of Rho-kinase in FAK–/– cells transiently increased the actin filaments in the cell center, but these did not form typical thick stress fibers. Moreover, only plaque-like structures as the origins of newly formed focal adhesions were observed in the center of the cell. Furthermore, introduction of an exogenous GFP-labeled FAK gene into FAK–/– cells resulted in increased numbers of stress fibers and focal adhesions in the center of the cells, which showed typical fibroblast morphology. These results indicated that FAK plays an important role in the formation of stress fibers and focal adhesions as well as in regulation of cell shape and morphology with the activation of Rho-kinase.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba-city, Ibaraki, Japan
| |
Collapse
|
123
|
Wang J, Deng R, Cui N, Zhang H, Liu T, Dou J, Zhao X, Chen R, Wang Y, Yu J, Huang J. Src SUMOylation Inhibits Tumor Growth Via Decreasing FAK Y925 Phosphorylation. Neoplasia 2017; 19:961-971. [PMID: 29069627 PMCID: PMC5653241 DOI: 10.1016/j.neo.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 01/14/2023] Open
Abstract
Src, a non-receptor tyrosine kinase protein, plays a critical role in cell proliferation and tumorigenesis. SUMOylation, a reversible ubiquitination-like post-translational modification, is vital for tumor progression. Here, we report that the Src protein can be SUMOylated at lysine 318 both in vitro and in vivo. Hypoxia can induce a decrease of Src SUMOylation along with an increase of Y419 phosphorylation, a phosphorylation event required for Src activation. On the other hand, treatment with hydrogen peroxide can enhance Src SUMOylation. Significantly, ectopic expression of SUMO-defective mutation, Src K318R, promotes tumor growth more potently than that of wild-type Src, as determined by migration assay, soft agar assay, and tumor xenograft experiments. Consistently, Src SUMOylation leads to a decrease of Y925 phosphorylation of focal adhesion kinase (FAK), an established regulatory event of cell migration. Our results suggest that SUMOylation of Src at lysine 318 negatively modulate its oncogenic function by, at least partially, inhibiting Src-FAK complex activity.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Nan Cui
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Tianqi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jinzhuo Dou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.
| |
Collapse
|
124
|
Ghanakota P, Carlson HA. Comparing pharmacophore models derived from crystallography and NMR ensembles. J Comput Aided Mol Des 2017; 31:979-993. [PMID: 29047011 DOI: 10.1007/s10822-017-0077-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.
Collapse
Affiliation(s)
- Phani Ghanakota
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI, 48109-1065, USA
| | - Heather A Carlson
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI, 48109-1065, USA.
| |
Collapse
|
125
|
Agnew C, Jura N. Switching on BTK-One Domain at a Time. Structure 2017; 25:1469-1470. [PMID: 28978404 DOI: 10.1016/j.str.2017.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BTK kinase activity is controlled by multiple inhibitory domains, whose coordinated mechanism of action is poorly understood. In this issue of Structure,Joseph et al. (2017) use solution-based approaches to characterize conformational changes associated with the binding of each inhibitory tether, revealing a multi-step activation process and a previously unknown C-terminal autoinhibitory latch.
Collapse
Affiliation(s)
- Christopher Agnew
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
126
|
An iterative compound screening contest method for identifying target protein inhibitors using the tyrosine-protein kinase Yes. Sci Rep 2017; 7:12038. [PMID: 28931921 PMCID: PMC5607274 DOI: 10.1038/s41598-017-10275-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
We propose a new iterative screening contest method to identify target protein inhibitors. After conducting a compound screening contest in 2014, we report results acquired from a contest held in 2015 in this study. Our aims were to identify target enzyme inhibitors and to benchmark a variety of computer-aided drug discovery methods under identical experimental conditions. In both contests, we employed the tyrosine-protein kinase Yes as an example target protein. Participating groups virtually screened possible inhibitors from a library containing 2.4 million compounds. Compounds were ranked based on functional scores obtained using their respective methods, and the top 181 compounds from each group were selected. Our results from the 2015 contest show an improved hit rate when compared to results from the 2014 contest. In addition, we have successfully identified a statistically-warranted method for identifying target inhibitors. Quantitative analysis of the most successful method gave additional insights into important characteristics of the method used.
Collapse
|
127
|
Sensoy O, Almeida JG, Shabbir J, Moreira IS, Morra G. Computational studies of G protein-coupled receptor complexes: Structure and dynamics. Methods Cell Biol 2017; 142:205-245. [PMID: 28964337 DOI: 10.1016/bs.mcb.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are ubiquitously expressed transmembrane proteins associated with a wide range of diseases such as Alzheimer's, Parkinson, schizophrenia, and also implicated in in several abnormal heart conditions. As such, this family of receptors is regarded as excellent drug targets. However, due to the high number of intracellular signaling partners, these receptors have a complex interaction networks and it becomes challenging to modulate their function. Experimentally determined structures give detailed information on the salient structural properties of these signaling complexes but they are far away from providing mechanistic insights into the underlying process. This chapter presents some of the computational tools, namely molecular dynamics, molecular docking, and molecular modeling and related analyses methods that have been used to complement experimental findings.
Collapse
Affiliation(s)
- Ozge Sensoy
- Istanbul Medipol University, The School of Engineering and Natural Sciences, Istanbul, Turkey
| | - Jose G Almeida
- CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Javeria Shabbir
- Istanbul Medipol University, The School of Engineering and Natural Sciences, Istanbul, Turkey
| | - Irina S Moreira
- CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal; Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Giulia Morra
- Weill-Cornell Medical College, Cornell University, New York, New York, United States; ICRM-CNR Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
128
|
Joseph RE, Wales TE, Fulton DB, Engen JR, Andreotti AH. Achieving a Graded Immune Response: BTK Adopts a Range of Active/Inactive Conformations Dictated by Multiple Interdomain Contacts. Structure 2017; 25:1481-1494.e4. [PMID: 28867612 DOI: 10.1016/j.str.2017.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 01/27/2023]
Abstract
Capturing the functionally relevant forms of dynamic, multidomain proteins is extremely challenging. Bruton's tyrosine kinase (BTK), a kinase essential for B and mast cell function, has stubbornly resisted crystallization in its full-length form. Here, nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry show that BTK adopts a closed conformation in dynamic equilibrium with open, active conformations. BTK lacks the phosphotyrosine regulatory tail of the SRC kinases, yet nevertheless achieves a phosphotyrosine-independent C-terminal latch. The unique proline-rich region is an internal "on" switch pushing the autoinhibited kinase toward its active state. Newly identified autoinhibitory contacts in the BTK pleckstrin homology domain are sensitive to phospholipid binding, which induces large-scale allosteric changes. The multiplicity of these regulatory contacts suggests a clear mechanism for gradual or "analog" kinase activation as opposed to a binary "on/off" switch. The findings illustrate how previously modeled information for recalcitrant full-length proteins can be expanded and validated with a convergent multidisciplinary experimental approach.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
129
|
Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chüeh AC, Tran M, Anasir MI, Verkade H, Zhu HJ, Turk BE, Smithgall TE, Ang CS, Griffin M, Cheng HC. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Commun Signal 2017; 15:29. [PMID: 28784162 PMCID: PMC5547543 DOI: 10.1186/s12964-017-0186-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis. Second, they employ a non-catalytic inhibitory mechanism involving direct binding of Csk and Chk to the active forms of SFKs that is independent of phosphorylation of their C-terminal tail. Csk and Chk are co-expressed in many cell types. Contributions of the two mechanisms towards the inhibitory activity of Csk and Chk are not fully clear. Furthermore, the determinants in Csk and Chk governing their inhibition of SFKs by the non-catalytic inhibitory mechanism are yet to be defined. Methods We determined the contributions of the two mechanisms towards the inhibitory activity of Csk and Chk both in vitro and in transduced colorectal cancer cells. Specifically, we assayed the catalytic activities of Csk and Chk in phosphorylating a specific peptide substrate and a recombinant SFK member Src. We employed surface plasmon resonance spectroscopy to measure the kinetic parameters of binding of Csk, Chk and their mutants to a constitutively active mutant of the SFK member Hck. Finally, we determined the effects of expression of recombinant Chk on anchorage-independent growth and SFK catalytic activity in Chk-deficient colorectal cancer cells. Results Our results revealed Csk as a robust enzyme catalysing phosphorylation of the C-terminal tail tyrosine of SFKs but a weak non-catalytic inhibitor of SFKs. In contrast, Chk is a poor catalyst of SFK tail phosphorylation but binds SFKs with high affinity, enabling it to efficiently inhibit SFKs with the non-catalytic inhibitory mechanism both in vitro and in transduced colorectal cancer cells. Further analyses mapped some of the determinants governing this non-catalytic inhibitory mechanism of Chk to its kinase domain. Conclusions SFKs are activated by different upstream signals to adopt multiple active conformations in cells. SFKs adopting these conformations can effectively be constrained by the two complementary inhibitory mechanisms of Csk and Chk. Furthermore, the lack of this non-catalytic inhibitory mechanism accounts for SFK overactivation in the Chk-deficient colorectal cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0186-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gahana Advani
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ya Chee Lim
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bruno Catimel
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daisy Sio Seng Lio
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nadia L Y Ng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anderly C Chüeh
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mai Tran
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mohd Ishtiaq Anasir
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Heather Verkade
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ching-Seng Ang
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael Griffin
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia. .,Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
130
|
Dwivedi M, Mejuch T, Waldmann H, Winter R. Lateral Organization of Host Heterogeneous Raft-like Membranes Altered by the Myristoyl Modification of Tyrosine Kinase c-Src. Angew Chem Int Ed Engl 2017; 56:10511-10515. [DOI: 10.1002/anie.201706233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mridula Dwivedi
- Department of Chemistry and Chemical Biology, Physical Chemistry; Technical University of Dortmund; Otto-Hahn-Str.4a 44221 Dortmund Germany
| | - Tom Mejuch
- Department of Chemistry and Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemistry and Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry; Technical University of Dortmund; Otto-Hahn-Str.4a 44221 Dortmund Germany
| |
Collapse
|
131
|
Dwivedi M, Mejuch T, Waldmann H, Winter R. Lateral Organization of Host Heterogeneous Raft-like Membranes Altered by the Myristoyl Modification of Tyrosine Kinase c-Src. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mridula Dwivedi
- Department of Chemistry and Chemical Biology, Physical Chemistry; Technical University of Dortmund; Otto-Hahn-Str.4a 44221 Dortmund Germany
| | - Tom Mejuch
- Department of Chemistry and Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemistry and Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry; Technical University of Dortmund; Otto-Hahn-Str.4a 44221 Dortmund Germany
| |
Collapse
|
132
|
Courtney AH, Amacher JF, Kadlecek TA, Mollenauer MN, Au-Yeung BB, Kuriyan J, Weiss A. A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Mol Cell 2017; 67:498-511.e6. [PMID: 28735895 DOI: 10.1016/j.molcel.2017.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
The Src Family kinase Lck sets a critical threshold for T cell activation because it phosphorylates the TCR complex and the Zap70 kinase. How a T cell controls the abundance of active Lck molecules remains poorly understood. We have identified an unappreciated role for a phosphosite, Y192, within the Lck SH2 domain that profoundly affects the amount of active Lck in cells. Notably, mutation of Y192 blocks critical TCR-proximal signaling events and impairs thymocyte development in retrogenic mice. We determined that these defects are caused by hyperphosphorylation of the inhibitory C-terminal tail of Lck. Our findings reveal that modification of Y192 inhibits the ability of CD45 to associate with Lck in cells and dephosphorylate the C-terminal tail of Lck, which prevents its adoption of an active open conformation. These results suggest a negative feedback loop that responds to signaling events that tune active Lck amounts and TCR sensitivity.
Collapse
Affiliation(s)
- Adam H Courtney
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanine F Amacher
- Departments of Molecular and Cell Biology and Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theresa A Kadlecek
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA
| | - Marianne N Mollenauer
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA
| | - Byron B Au-Yeung
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Kuriyan
- Departments of Molecular and Cell Biology and Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; The Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA.
| |
Collapse
|
133
|
Lin LF, Wu MH, Pidugu VK, Ho IC, Su TL, Lee TC. P-glycoprotein attenuates DNA repair activity in multidrug-resistant cells by acting through the Cbp-Csk-Src cascade. Oncotarget 2017; 8:45072-45087. [PMID: 28178691 PMCID: PMC5542168 DOI: 10.18632/oncotarget.15065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Recent studies have demonstrated that P-glycoprotein (P-gp) expression impairs DNA interstrand cross-linking agent-induced DNA repair efficiency in multidrug-resistant (MDR) cells. To date, the detailed molecular mechanisms underlying how P-gp interferes with Src activation and subsequent DNA repair activity remain unclear. In this study, we determined that the C-terminal Src kinase-binding protein (Cbp) signaling pathway involved in the negative control of Src activation is enhanced in MDR cells. We also demonstrated that cells that ectopically express P-gp exhibit reduced activation of DNA damage response regulators, such as ATM, Chk2, Braca1 and Nbs1 and hence attenuated DNA double-strand break repair capacity and become more susceptible than vector control cells to DNA interstrand cross-linking (ICL) agents. Moreover, we demonstrated that P-gp can not only interact with Cbp and Src but also enhance the formation of inhibitory C-terminal Src kinase (Csk)-Cbp complexes that reduce phosphorylation of the Src activation residue Y416 and increase phosphorylation of the Src negative regulatory residue Y527. Notably, suppression of Cbp expression in MDR cells restores cisplatin-induced Src activation, improves DNA repair capacity, and increases resistance to ICL agents. Ectopic expression of Cbp attenuates cisplatin-induced Src activation and increases the susceptibility of cells to ICL agents. Together, the current results indicate that P-gp inhibits DNA repair activity by modulating Src activation via Cbp-Csk-Src cascade. These results suggest that DNA ICL agents are likely to have therapeutic potential against MDR cells with P-gp-overexpression.
Collapse
Affiliation(s)
- Li-Fang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Vijaya Kumar Pidugu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei 11529, Taiwan
| | - I-Ching Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei 11529, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
134
|
Momin M, Xin Y, Hamelberg D. Allosteric Fine-Tuning of the Binding Pocket Dynamics in the ITK SH2 Domain by a Distal Molecular Switch: An Atomistic Perspective. J Phys Chem B 2017; 121:6131-6138. [PMID: 28570811 DOI: 10.1021/acs.jpcb.7b03470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the regulation of function of proteins by allosteric interactions has been identified in many subcellular processes, molecular switches are also known to induce long-range conformational changes in proteins. A less well understood molecular switch involving cis-trans isomerization of a peptidyl-prolyl bond could induce a conformational change directly to the backbone that is propagated to other parts of the protein. However, these switches are elusive and hard to identify because they are intrinsic to biomolecules that are inherently dynamic. Here, we explore the conformational dynamics and free energy landscape of the SH2 domain of interleukin-2-inducible T-cell or tyrosine kinase (ITK) to fully understand the conformational coupling between the distal cis-trans molecular switch and its binding pocket of the phosphotyrosine motif. We use multiple microsecond-long all-atom molecular dynamics simulations in explicit water for over a total of 60 μs. We show that cis-trans isomerization of the Asn286-Pro287 peptidyl-prolyl bond is directly coupled to the dynamics of the binding pocket of the phosphotyrosine motif, in agreement with previous NMR experiments. Unlike the cis state that is localized and less dynamic in a single free energy basin, the trans state samples two distinct conformations of the binding pocket-one that recognizes the phosphotyrosine motif and the other that is somewhat similar to that of the cis state. The results provide an atomic-level description of a less well understood allosteric regulation by a peptidyl-prolyl cis-trans molecular switch that could aid in the understanding of normal and aberrant subcellular processes and the identification of these elusive molecular switches in other proteins.
Collapse
Affiliation(s)
- Mohamed Momin
- Department of Chemistry and ‡Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States
| | - Yao Xin
- Department of Chemistry and ‡Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry and ‡Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
135
|
Wang J, Zhuang S. Src family kinases in chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F721-F728. [PMID: 28615246 PMCID: PMC5625110 DOI: 10.1152/ajprenal.00141.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Src family kinases (SFKs) belong to nonreceptor protein tyrosine kinases and have been implicated in the regulation of numerous cellular processes, including cell proliferation, differentiation, migration and invasion, and angiogenesis. The role and mechanisms of SFKs in tumorgenesis have been extensively investigated, and some SFK inhibitors are currently under clinical trials for tumor treatment. Recent studies have also demonstrated the importance of SFKs in regulating the development of various fibrosis-related chronic diseases (e.g., idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, and systemic sclerosis). In this article, we summarize the roles of SFKs in various chronic kidney diseases, including glomerulonephritis, diabetic nephropathy, human immunodeficiency virus-associated nephropathy, autosomal dominant form of polycystic kidney disease, and obesity-associated kidney disease, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and .,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
136
|
Devkota S, Joseph RE, Boyken SE, Fulton DB, Andreotti AH. An Autoinhibitory Role for the Pleckstrin Homology Domain of Interleukin-2-Inducible Tyrosine Kinase and Its Interplay with Canonical Phospholipid Recognition. Biochemistry 2017; 56:2938-2949. [PMID: 28516764 DOI: 10.1021/acs.biochem.6b01182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pleckstrin homology (PH) domains are well-known as phospholipid binding modules, yet evidence that PH domain function extends beyond lipid recognition is mounting. In this work, we characterize a protein binding function for the PH domain of interleukin-2-inducible tyrosine kinase (ITK), an immune cell specific signaling protein that belongs to the TEC family of nonreceptor tyrosine kinases. Its N-terminal PH domain is a well-characterized lipid binding module that localizes ITK to the membrane via phosphatidylinositol 3,4,5-trisphosphate (PIP3) binding. Using a combination of nuclear magnetic resonance spectroscopy and mutagenesis, we have mapped an autoregulatory protein interaction site on the ITK PH domain that makes direct contact with the catalytic kinase domain of ITK, inhibiting the phospho-transfer reaction. Moreover, we have elucidated an important interplay between lipid binding by the ITK PH domain and the stability of the autoinhibitory complex formed by full length ITK. The ITK activation loop in the kinase domain becomes accessible to phosphorylation to the exogenous kinase LCK upon binding of the ITK PH domain to PIP3. By clarifying the allosteric role of the ITK PH domain in controlling ITK function, we have expanded the functional repertoire of the PH domain generally and opened the door to alternative strategies to target this specific kinase in the context of immune cell signaling.
Collapse
Affiliation(s)
- Sujan Devkota
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Scott E Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
137
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
138
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1096] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
139
|
Scanlon DP, Bah A, Krzeminski M, Zhang W, Leduc-Pessah HL, Dong YN, Forman-Kay JD, Salter MW. An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors. Nat Commun 2017; 8:15220. [PMID: 28508887 PMCID: PMC5440837 DOI: 10.1038/ncomms15220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
The non-receptor tyrosine kinase Src is a key signalling hub for upregulating the function of N-methyl D-aspartate receptors (NMDARs). Src is anchored within the NMDAR complex via NADH dehydrogenase subunit 2 (ND2), a mitochondrially encoded adaptor protein. The interacting regions between Src and ND2 have been broadly identified, but the interaction between ND2 and the NMDAR has remained elusive. Here we generate a homology model of ND2 and dock it onto the NMDAR via the transmembrane domain of GluN1. This interaction is enabled by the evolutionary loss of three helices in bilaterian ND2 proteins compared to their ancestral homologues. We experimentally validate our model and demonstrate that blocking this interaction with an ND2 fragment identified in our experimental studies prevents Src-mediated upregulation of NMDAR currents in neurons. Our findings establish the mode of interaction between an NMDAR accessory protein with one of the core subunits of the receptor. N-methyl D-aspartate receptor (NMDAR) activity is modulated by Src tyrosine kinase via the mitochondrial protein NADH dehydrogenase subunit 2 (ND2). Here the authors show that ND2 interacts with the transmembrane region of NMDAR GluN1 subunit, a process that is crucial for Src regulation of NMDAR activity.
Collapse
Affiliation(s)
- David P Scanlon
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Alaji Bah
- Program in Molecular Medicine, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Mickaël Krzeminski
- Program in Molecular Medicine, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Wenbo Zhang
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Heather L Leduc-Pessah
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Yi Na Dong
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael W Salter
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
140
|
Fajer M, Meng Y, Roux B. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. J Phys Chem B 2017; 121:3352-3363. [PMID: 27715044 PMCID: PMC5398919 DOI: 10.1021/acs.jpcb.6b08409] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Collapse
Affiliation(s)
| | | | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
141
|
Steinbrecher T, Zhu C, Wang L, Abel R, Negron C, Pearlman D, Feyfant E, Duan J, Sherman W. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability—Large-Scale Validation of MD-Based Relative Free Energy Calculations. J Mol Biol 2017; 429:948-963. [DOI: 10.1016/j.jmb.2016.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
|
142
|
Lakunina VA, Burnysheva KM, Mitkevich VA, Makarov AA, Petrushanko IY. Changes in the receptor function of Na,K-ATPase during hypoxia and ischemia. Mol Biol 2017. [DOI: 10.1134/s0026893317010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
143
|
Infectious Bursal Disease Virus Activates c-Src To Promote α4β1 Integrin-Dependent Viral Entry by Modulating the Downstream Akt-RhoA GTPase-Actin Rearrangement Cascade. J Virol 2017; 91:JVI.01891-16. [PMID: 27881656 DOI: 10.1128/jvi.01891-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
While the entry of infectious bursal disease virus (IBDV) is initiated by the binding of the virus to the two major receptors integrin and HSP90, the signaling events after receptor binding and how they contribute to virus entry remain elusive. We show here that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src both in DF-1 chicken fibroblasts and in vivo in the bursa of Fabricius from specific-pathogen-free (SPF) chickens. Importantly, inactivated IBDV fails to stimulate c-Src Y416 phosphorylation, and a very virulent IBDV strain induces a much higher level of c-Src Y416 phosphorylation than does an attenuated strain. Inhibition of c-Src activation by an Src kinase inhibitor or expression of a c-Src dominant negative mutant results in a significant decrease in the internalization of IBDV but has little effect on virus adhesion. Furthermore, short hairpin RNA (shRNA) downregulation of integrin, either the α4 or β1 subunit, but not HSP90 remarkably attenuates IBDV-induced c-Src Y416 phosphorylation, resulting in a decrease in IBDV internalization but not virus adhesion. Moreover, interestingly, inhibition of either c-Src downstream of the phosphatidylinositol 3-kinase (PI3K)/Akt-RhoA signaling cascade or actin rearrangement leads to a significant decrease in IBDV internalization irrespective of the IBDV-induced high levels of c-Src phosphorylation. Cumulatively, our results suggest a novel feed-forward model whereby IBDV activates c-Src for benefiting its cell entry via an integrin-mediated pathway by the activation of downstream PI3K/Akt-RhoA signaling and cytoskeleton actin rearrangement. IMPORTANCE While IBDV-caused immunosuppression is highly related to viral invasion, the molecular basis of the cellular entry of IBDV remains elusive. In this study, we demonstrate that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src to promote virus internalization but not virus adhesion. The ability to induce the level of c-Src Y416 phosphorylation correlates with the pathogenicity of an IBDV strain. IBDV-induced c-Src Y416 activation is α4β1 integrin but not HSP90 dependent and involves the activation of the downstream PI3K/Akt-RhoA GTPase-actin rearrangement cascade. Thus, our findings provide new insights into the IBDV infection process and the potential for c-Src as a candidate target for the development of IBDV therapeutic drugs.
Collapse
|
144
|
Philipsen L, Reddycherla AV, Hartig R, Gumz J, Kästle M, Kritikos A, Poltorak MP, Prokazov Y, Turbin E, Weber A, Zuschratter W, Schraven B, Simeoni L, Müller AJ. De novo phosphorylation and conformational opening of the tyrosine kinase Lck act in concert to initiate T cell receptor signaling. Sci Signal 2017; 10:10/462/eaaf4736. [DOI: 10.1126/scisignal.aaf4736] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
145
|
Gottlieb-Abraham E, Gutman O, Pai GM, Rubio I, Henis YI. The residue at position 5 of the N-terminal region of Src and Fyn modulates their myristoylation, palmitoylation, and membrane interactions. Mol Biol Cell 2016; 27:3926-3936. [PMID: 27733622 PMCID: PMC5170614 DOI: 10.1091/mbc.e16-08-0622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023] Open
Abstract
Using biophysical methods in live cells and palmitoylation mutants of Src and Fyn, we show that palmitoylation stabilizes the interactions of SFKs with the plasma membrane. Moreover, we show that the amino acid at position 5 regulates the myristoylation and palmitoylation of these proteins, and thereby their targeting to raft domains. The interactions of Src family kinases (SFKs) with the plasma membrane are crucial for their activity. They depend on their fatty-acylated N-termini, containing N-myristate and either a polybasic cluster (in Src) or palmitoylation sites (e.g., Fyn). To investigate the roles of these moieties in SFK membrane association, we used fluorescence recovery after photobleaching beam-size analysis to study the membrane interactions of c-Src-GFP (green fluorescent protein) or Fyn-GFP fatty-acylation mutants. Our studies showed for the first time that the membrane association of Fyn is more stable than that of Src, an effect lost in a Fyn mutant lacking the palmitoylation sites. Unexpectedly, Src-S3C/S6C (containing cysteines at positions 3/6, which are palmitoylated in Fyn) exhibited fast cytoplasmic diffusion insensitive to palmitoylation inhibitors, suggesting defective fatty acylation. Further replacement of the charged Lys-5 by neutral Gln to resemble Fyn (Src-S3C/S6C/K5Q) restored Fyn-like membrane interactions, indicating that Lys-5 in the context of Src-S3C/S6C interferes with its myristoylation/palmitoylation. This was validated by direct myristoylation and palmitoylation studies, which indicated that the residue at position 5 regulates the membrane interactions of Src versus Fyn. Moreover, the palmitoylation levels correlated with targeting to detergent-resistant membranes (rafts) and to caveolin-1. Palmitoylation-dependent preferential containment of Fyn in rafts may contribute to its lower transformation potential.
Collapse
Affiliation(s)
- Efrat Gottlieb-Abraham
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Govind M Pai
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Jena 07745, Germany
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Jena 07745, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
146
|
La Sala G, Riccardi L, Gaspari R, Cavalli A, Hantschel O, De Vivo M. HRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase. J Chem Theory Comput 2016; 12:5563-5574. [DOI: 10.1021/acs.jctc.6b00600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Andrea Cavalli
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Oliver Hantschel
- Swiss
Institute for Experimental Cancer Research (ISREC), School of Life
Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- ISREC Foundation Chair in Translational Oncology, 1015 Lausanne, Switzerland
| | - Marco De Vivo
- IAS-S/INM-9 Computational Biomedicine Forschungszentrum, Jülich Wilhelm-Johnen-Staße, 52428 Jülich, Germany
| |
Collapse
|
147
|
Matsushima S, Kuroda J, Zhai P, Liu T, Ikeda S, Nagarajan N, Oka SI, Yokota T, Kinugawa S, Hsu CP, Li H, Tsutsui H, Sadoshima J. Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling. J Clin Invest 2016; 126:3403-16. [PMID: 27525436 DOI: 10.1172/jci85624] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/30/2016] [Indexed: 01/05/2023] Open
Abstract
NADPH oxidases (Noxes) produce ROS that regulate cell growth and death. NOX4 expression in cardiomyocytes (CMs) plays an important role in cardiac remodeling and injury, but the posttranslational mechanisms that modulate this enzyme are poorly understood. Here, we determined that FYN, a Src family tyrosine kinase, interacts with the C-terminal domain of NOX4. FYN and NOX4 colocalized in perinuclear mitochondria, ER, and nuclear fractions in CMs, and FYN expression negatively regulated NOX4-induced O2- production and apoptosis in CMs. Mechanistically, we found that direct phosphorylation of tyrosine 566 on NOX4 was critical for this FYN-mediated negative regulation. Transverse aortic constriction activated FYN in the left ventricle (LV), and FYN-deficient mice displayed exacerbated cardiac hypertrophy and dysfunction and increased ROS production and apoptosis. Deletion of Nox4 rescued the exaggerated LV remodeling in FYN-deficient mice. Furthermore, FYN expression was markedly decreased in failing human hearts, corroborating its role as a regulator of cardiac cell death and ROS production. In conclusion, FYN is activated by oxidative stress and serves as a negative feedback regulator of NOX4 in CMs during cardiac remodeling.
Collapse
|
148
|
Maa MC, Leu TH. Src is required for migration, phagocytosis, and interferon beta production in Toll-like receptor-engaged macrophages. Biomedicine (Taipei) 2016; 6:14. [PMID: 27514533 PMCID: PMC4980824 DOI: 10.7603/s40681-016-0014-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/31/2016] [Indexed: 02/06/2023] Open
Abstract
As an evolutionarily conserved mechanism, innate immunity controls self-nonself
discrimination to protect a host from invasive pathogens. Macrophages are major
participants of the innate immune system. Through the activation of diverse
Toll-like receptors (TLRs), macrophages are triggered to initiate a variety of
functions including locomotion, phagocytosis, and secretion of cytokines that
requires the participation of tyrosine kinases. Fgr, Hck, and Lyn are
myeloid-specific Src family kinases. Despite their constitutively high expression in
macrophages, their absence does not impair LPS responsiveness. In contrast, Src, a
barely detectable tyrosine kinase in resting macrophages, becomes greatly inducible
in response to TLR engagement, implicating its role in macrophage activation.
Indeed, silencing Src suppresses the activated TLR-mediated migration, phagocytosis,
and interferon-beta (IFN-β) secretion in macrophages. And these physiological
defects can be restored by the introduction of siRNA-resistant Src. Notably, the
elevated expression and activity of Src is inducible nitric oxide synthase
(iNOS)-dependent. Due to (1) iNOS being a NF-κB target, which can be induced by
various TLR ligands, (2) Src can mediate NF-κB activation, therefore, there ought to
exist a loop of signal amplification that regulates macrophage physiology in
response to the engagement of TLRs.
Collapse
Affiliation(s)
- Ming-Chei Maa
- Graduate Institute of Basic Medical Science, China Medical University, 404, Taichung, Taiwan.
| | - Tzeng-Horng Leu
- Institute of Basic Medical Sciences, China Medical University, 404, Taichung, Taiwan.,Department of Pharmacology, China Medical University, 404, Taichung, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, 701, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, 701, Tainan, Taiwan
| |
Collapse
|
149
|
Tsutsui Y, Deredge D, Wintrode PL, Hays FA. Imatinib binding to human c-Src is coupled to inter-domain allostery and suggests a novel kinase inhibition strategy. Sci Rep 2016; 6:30832. [PMID: 27480221 PMCID: PMC4969603 DOI: 10.1038/srep30832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Imatinib (Gleevec), a non-receptor tyrosine kinase inhibitor (nRTKI), is one of the most successful anti-neoplastic drugs in clinical use. However, imatinib-resistant mutations are increasingly prevalent in patient tissues and driving development of novel imatinib analogs. We present a detailed study of the conformational dynamics, in the presence and absence of bound imatinib, for full-length human c-Src using hydrogen-deuterium exchange and mass spectrometry. Our results demonstrate that imatinib binding to the kinase domain effects dynamics of proline-rich or phosphorylated peptide ligand binding sites in distal c-Src SH3 and SH2 domains. These dynamic changes in functional regulatory sites, distal to the imatinib binding pocket, show similarities to structural transitions involved in kinase activation. These data also identify imatinib-sensitive, and imatinib-resistant, mutation sites. Thus, the current study identifies novel c-Src allosteric sites associated with imatinib binding and kinase activation and provide a framework for follow-on development of TKI binding modulators.
Collapse
Affiliation(s)
- Yuko Tsutsui
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
150
|
Abstract
We have developed a general methodology to produce bivalent kinase inhibitors for c-Src that interact with the SH2 and ATP binding pockets. Our approach led to a highly selective bivalent inhibitor of c-Src. We demonstrate impressive selectivity for c-Src over homologous kinases. Exploration of the unexpected high level of selectivity yielded insight into the inherent flexibility of homologous kinases. Finally, we demonstrate that our methodology is modular and both the ATP-competitive fragment and conjugation chemistry can be swapped.
Collapse
Affiliation(s)
- Taylor K. Johnson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Matthew B. Soellner
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|