101
|
Multiparity and Aging Impact Chondrogenic and Osteogenic Potential at Symphyseal Enthesis: New Insights into Interpubic Joint Remodeling. Int J Mol Sci 2023; 24:ijms24054573. [PMID: 36902004 PMCID: PMC10003663 DOI: 10.3390/ijms24054573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pregnancy and childbirth cause adaptations to the birth canal to allow for delivery and fast recovery. To accommodate delivery through the birth canal, the pubic symphysis undergoes changes that lead to the interpubic ligament (IpL) and enthesis formation in primiparous mice. However, successive deliveries influence joint recovery. We aimed to understand tissue morphology and chondrogenic and osteogenic potential at symphyseal enthesis during pregnancy and postpartum in primiparous and multiparous senescent female mice. Morphological and molecular differences were found at the symphyseal enthesis among the study groups. Despite the apparent incapacity to restore cartilage in multiparous senescent animals, the symphyseal enthesis cells are active. However, these cells have reduced expression of chondrogenic and osteogenic markers and are immersed in densely packed collagen fibers contiguous to the persistent IpL. These findings may indicate alterations of key molecules in the progenitor cell population maintenance of the chondrocytic and osteogenic lineages at the symphyseal enthesis in multiparous senescent animals, possibly compromising the mouse joint histoarchitecture recovery. This sheds light on the distention of the birth canal and the pelvic floor that may play a role in pubic symphysis diastasis (PSD) and pelvic organ prolapse (POP), both in orthopedic and urogynecological practice in women.
Collapse
|
102
|
Gajjala PR, Singh P, Odayar V, Ediga HH, McCormack FX, Madala SK. Wilms Tumor 1-Driven Fibroblast Activation and Subpleural Thickening in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:2850. [PMID: 36769178 PMCID: PMC9918078 DOI: 10.3390/ijms24032850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is often fatal due to the formation of irreversible scar tissue in the distal areas of the lung. Although the pathological and radiological features of IPF lungs are well defined, the lack of insight into the fibrogenic role of fibroblasts that accumulate in distinct anatomical regions of the lungs is a critical knowledge gap. Fibrotic lesions have been shown to originate in the subpleural areas and extend into the lung parenchyma through processes of dysregulated fibroproliferation, migration, fibroblast-to-myofibroblast transformation, and extracellular matrix production. Identifying the molecular targets underlying subpleural thickening at the early and late stages of fibrosis could facilitate the development of new therapies to attenuate fibroblast activation and improve the survival of patients with IPF. Here, we discuss the key cellular and molecular events that contribute to (myo)fibroblast activation and subpleural thickening in IPF. In particular, we highlight the transcriptional programs involved in mesothelial to mesenchymal transformation and fibroblast dysfunction that can be targeted to alter the course of the progressive expansion of fibrotic lesions in the distal areas of IPF lungs.
Collapse
Affiliation(s)
| | | | | | | | | | - Satish K. Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA
| |
Collapse
|
103
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
104
|
Hanai A, Kawabata A, Nakajima K, Masuda K, Urakawa I, Abe M, Yamazaki Y, Fukumoto S. Single-cell RNA sequencing identifies Fgf23-expressing osteocytes in response to 1,25-dihydroxyvitamin D 3 treatment. Front Physiol 2023; 14:1102751. [PMID: 36776964 PMCID: PMC9911654 DOI: 10.3389/fphys.2023.1102751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23), a hormone, mainly produced by osteocytes, regulates phosphate and vitamin D metabolism. By contrast, 1,25-dihydroxyvitamin D3, the active form of vitamin D, has been shown to enhance FGF23 production. While it is likely that osteocytes are heterogenous in terms of gene expression profiles, specific subpopulations of Fgf23-expressing osteocytes have not been identified. Single-cell RNA sequencing (scRNA-seq) technology can characterize the transcriptome of an individual cell. Recently, scRNA-seq has been used for bone tissue analysis. However, owing to technical difficulties associated with isolation of osteocytes, studies using scRNA-seq analysis to characterize FGF23-producing osteocytes are lacking. In this study, we characterized osteocytes secreting FGF23 from murine femurs in response to calcitriol (1,25-dihydroxyvitamin D3) using scRNA-seq. We first detected Dmp1, Mepe, and Phex expression in murine osteocytes by in situ hybridization and used these as marker genes of osteocytes. After decalcification, enzyme digestion, and removal of CD45+ cells, femoral bone cells were subjected to scRNA-seq. We identified cell clusters containing osteocytes using marker gene expression. While Fgf23 expression was observed in some osteocytes isolated from femurs of calcitriol-injected mice, no Fgf23 expression was detected in untreated mice. In addition, the expression of several genes which are known to be changed after 1,25-dihydroxyvitamin D3 treatment such as Ccnd2, Fn1, Igfbp7, Pdgfa, and Timp1 was also affected by calcitriol treatment in Fgf23-expressing osteocytes, but not in those lacking Fgf23 expression, even after calcitriol administration. Furthermore, box-and-whisker plots indicated that Fgf23 expression was observed in osteocytes with higher expression levels of the Fam20c, Dmp1, and Phex genes, whose inactivating mutations have been shown to cause FGF23-related hypophosphatemic diseases. These results indicate that osteocytes are heterogeneous with respect to their responsiveness to 1,25-dihydroxyvitamin D3, and sensitivity to 1,25-dihydroxyvitamin D3 is one of the characteristics of osteocytes with Fgf23 expression. It is likely that there is a subpopulation of osteocytes expressing several genes, including Fgf23, involved in phosphate metabolism.
Collapse
Affiliation(s)
- Ayako Hanai
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan,Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan,*Correspondence: Ayako Hanai,
| | | | | | | | | | - Masahiro Abe
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | | | - Seiji Fukumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
105
|
Li DX, Ma Z, Szojka ARA, Lan X, Kunze M, Mulet-Sierra A, Westover L, Adesida AB. Non-hypertrophic chondrogenesis of mesenchymal stem cells through mechano-hypoxia programing. J Tissue Eng 2023; 14:20417314231172574. [PMID: 37216035 PMCID: PMC10192798 DOI: 10.1177/20417314231172574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
Cartilage tissue engineering aims to generate functional replacements to treat cartilage defects from damage and osteoarthritis. Human bone marrow-derived mesenchymal stem cells (hBM-MSC) are a promising cell source for making cartilage, but current differentiation protocols require the supplementation of growth factors like TGF-β1 or -β3. This can lead to undesirable hypertrophic differentiation of hBM-MSC that progress to bone. We have found previously that exposing engineered human meniscus tissues to physiologically relevant conditions of the knee (mechanical loading and hypoxia; hence, mechano-hypoxia conditioning) increased the gene expression of hyaline cartilage markers, SOX9 and COL2A1, inhibited hypertrophic marker COL10A1, and promoted bulk mechanical property development. Adding further to this protocol, we hypothesize that combined mechano-hypoxia conditioning with TGF-β3 growth factor withdrawal will promote stable, non-hypertrophic chondrogenesis of hBM-MSC embedded in an HA-hydrogel. We found that the combined treatment upregulated many cartilage matrix- and development-related markers while suppressing many hypertrophic- and bone development-related markers. Tissue level assessments with biochemical assays, immunofluorescence, and histochemical staining confirmed the gene expression data. Further, mechanical property development in the dynamic compression treatment shows promise toward generating functional engineered cartilage through more optimized and longer culture conditions. In summary, this study introduced a novel protocol to differentiate hBM-MSC into stable, cartilage-forming cells.
Collapse
Affiliation(s)
- David Xinzheyang Li
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Zhiyao Ma
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander RA Szojka
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering,
Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
106
|
Fatica M, D'Antonio A, Novelli L, Triggianese P, Conigliaro P, Greco E, Bergamini A, Perricone C, Chimenti MS. How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management. Curr Rheumatol Rep 2023; 25:12-33. [PMID: 36308677 PMCID: PMC9825525 DOI: 10.1007/s11926-022-01092-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner. RECENT FINDINGS In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.
Collapse
Affiliation(s)
- Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
107
|
Pagani CA, Bancroft AC, Tower RJ, Livingston N, Sun Y, Hong JY, Kent RN, Strong AL, Nunez JH, Medrano JMR, Patel N, Nanes BA, Dean KM, Li Z, Ge C, Baker BM, James AW, Weiss SJ, Franceschi RT, Levi B. Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. SCIENCE ADVANCES 2022; 8:eabq6152. [PMID: 36542719 PMCID: PMC9770942 DOI: 10.1126/sciadv.abq6152] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Extracellular matrix (ECM) interactions regulate both the cell transcriptome and proteome, thereby determining cell fate. Traumatic heterotopic ossification (HO) is a disorder characterized by aberrant mesenchymal lineage (MLin) cell differentiation, forming bone within soft tissues of the musculoskeletal system following traumatic injury. Recent work has shown that HO is influenced by ECM-MLin cell receptor signaling, but how ECM binding affects cellular outcomes remains unclear. Using time course transcriptomic and proteomic analyses, we identified discoidin domain receptor 2 (DDR2), a cell surface receptor for fibrillar collagen, as a key MLin cell regulator in HO formation. Inhibition of DDR2 signaling, through either constitutive or conditional Ddr2 deletion or pharmaceutical inhibition, reduced HO formation in mice. Mechanistically, DDR2 perturbation alters focal adhesion orientation and subsequent matrix organization, modulating Focal Adhesion Kinase (FAK) and Yes1 Associated Transcriptional Regulator and WW Domain Containing Transcription Regulator 1 (YAP/TAZ)-mediated MLin cell signaling. Hence, ECM-DDR2 interactions are critical in driving HO and could serve as a previously unknown therapeutic target for treating this disease process.
Collapse
Affiliation(s)
- Chase A. Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Alec C. Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Robert J. Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Nicholas Livingston
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Jonathan Y. Hong
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Robert N. Kent
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy L. Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Johanna H. Nunez
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Jessica Marie R. Medrano
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin A. Nanes
- Department of Dermatology, University of Texas Southwestern, Dallas, TX, USA
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern, Dallas, TX, USA
| | - Kevin M. Dean
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern, Dallas, TX, USA
- Cecil H. and The Ida Green Center for Systems Biology, University of Texas Southwestern, Dallas, TX, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Chunxi Ge
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M. Baker
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen J. Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
108
|
Hsieh CC, Yen BL, Chang CC, Hsu PJ, Lee YW, Yen ML, Yet SF, Chen L. Wnt antagonism without TGFβ induces rapid MSC chondrogenesis via increasing AJ interactions and restricting lineage commitment. iScience 2022; 26:105713. [PMID: 36582823 PMCID: PMC9792887 DOI: 10.1016/j.isci.2022.105713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) remain one of the best cell sources for cartilage, a tissue without regenerative capacity. However, MSC chondrogenesis is commonly induced through TGFβ, a pleomorphic growth factor without specificity for this lineage. Using tissue- and induced pluripotent stem cell-derived MSCs, we demonstrate an efficient and precise approach to induce chondrogenesis through Wnt/β-catenin antagonism alone without TGFβ. Compared to TGFβ, Wnt/β-catenin antagonism more rapidly induced MSC chondrogenesis without eliciting off-target lineage specification toward smooth muscle or hypertrophy; this was mediated through increasing N-cadherin levels and β-catenin interactions-key components of the adherens junctions (AJ)-and increasing cytoskeleton-mediated condensation. Validation with transcriptomic analysis of human chondrocytes compared to MSCs and osteoblasts showed significant downregulation of Wnt/β-catenin and TGFβ signaling along with upregulation of α-catenin as an upstream regulator. Our findings underscore the importance of understanding developmental pathways and structural modifications in achieving efficient MSC chondrogenesis for translational application.
Collapse
Affiliation(s)
- Chen-Chan Hsieh
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
- Corresponding author
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Yu-Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei, Taiwan
| | - Shaw-Fang Yet
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
109
|
Chen Q, Dai J, Bian Q. Integration of 3D genome topology and local chromatin features uncovers enhancers underlying craniofacial-specific cartilage defects. SCIENCE ADVANCES 2022; 8:eabo3648. [PMID: 36417512 PMCID: PMC9683718 DOI: 10.1126/sciadv.abo3648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aberrations in tissue-specific enhancers underlie many developmental defects. Disrupting a noncoding region distal from the human SOX9 gene causes the Pierre Robin sequence (PRS) characterized by the undersized lower jaw. Such a craniofacial-specific defect has been previously linked to enhancers transiently active in cranial neural crest cells (CNCCs). We demonstrate that the PRS region also strongly regulates Sox9 in CNCC-derived Meckel's cartilage (MC), but not in limb cartilages, even after decommissioning of CNCC enhancers. Such an MC-specific regulatory effect correlates with the MC-specific chromatin contacts between the PRS region and Sox9, highlighting the importance of lineage-dependent chromatin topology in instructing enhancer usage. By integrating the enhancer signatures and chromatin topology, we uncovered >10,000 enhancers that function differentially between MC and limb cartilages and demonstrated their association with human diseases. Our findings provide critical insights for understanding the choreography of gene regulation during development and interpreting the genetic basis of craniofacial pathologies.
Collapse
Affiliation(s)
- Qiming Chen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Jiewen Dai
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Corresponding author. (J.D.); (Q.B.)
| | - Qian Bian
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Institute of Precision Medicine, Shanghai, 200125, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding author. (J.D.); (Q.B.)
| |
Collapse
|
110
|
Ryan CNM, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs MJ, Griffin MD, Zeugolis DI. The synergistic effect of physicochemical in vitro microenvironment modulators in human bone marrow stem cell cultures. BIOMATERIALS ADVANCES 2022; 144:213196. [PMID: 36455498 DOI: 10.1016/j.bioadv.2022.213196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Modern bioengineering utilises biomimetic cell culture approaches to control cell fate during in vitro expansion. In this spirit, herein we assessed the influence of bidirectional surface topography, substrate rigidity, collagen type I coating and macromolecular crowding (MMC) in human bone marrow stem cell cultures. In the absence of MMC, surface topography was a strong modulator of cell morphology. MMC significantly increased extracellular matrix deposition, albeit in a globular manner, independently of the surface topography, substrate rigidity and collagen type I coating. Collagen type I coating significantly increased cell metabolic activity and none of the assessed parameters affected cell viability. At day 14, in the absence of MMC, none of the assessed genes was affected by surface topography, substrate rigidity and collagen type I coating, whilst in the presence of MMC, in general, collagen type I α1 chain, tenascin C, osteonectin, bone sialoprotein, aggrecan, cartilage oligomeric protein and runt-related transcription factor were downregulated. Interestingly, in the presence of the MMC, the 1000 kPa grooved substrate without collagen type I coating upregulated aggrecan, cartilage oligomeric protein, scleraxis homolog A, tenomodulin and thrombospondin 4, indicative of tenogenic differentiation. This study further supports the notion for multifactorial bioengineering to control cell fate in culture.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Peadar Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md Nahidul Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - Manus J Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Matthew D Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
111
|
Zhao X, Tang L, Le TP, Nguyen BH, Chen W, Zheng M, Yamaguchi H, Dawson B, You S, Martinez-Traverso IM, Erhardt S, Wang J, Li M, Martin JF, Lee BH, Komatsu Y, Wang J. Yap and Taz promote osteogenesis and prevent chondrogenesis in neural crest cells in vitro and in vivo. Sci Signal 2022; 15:eabn9009. [PMID: 36282910 PMCID: PMC9938793 DOI: 10.1126/scisignal.abn9009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neural crest cells (NCCs) are multipotent stem cells that can differentiate into multiple cell types, including the osteoblasts and chondrocytes, and constitute most of the craniofacial skeleton. Here, we show through in vitro and in vivo studies that the transcriptional regulators Yap and Taz have redundant functions as key determinants of the specification and differentiation of NCCs into osteoblasts or chondrocytes. Primary and cultured NCCs deficient in Yap and Taz switched from osteogenesis to chondrogenesis, and NCC-specific deficiency for Yap and Taz resulted in bone loss and ectopic cartilage in mice. Yap bound to the regulatory elements of key genes that govern osteogenesis and chondrogenesis in NCCs and directly regulated the expression of these genes, some of which also contained binding sites for the TCF/LEF transcription factors that interact with the Wnt effector β-catenin. During differentiation of NCCs in vitro and NCC-derived osteogenesis in vivo, Yap and Taz promoted the expression of osteogenic genes such as Runx2 and Sp7 but repressed the expression of chondrogenic genes such as Sox9 and Col2a1. Furthermore, Yap and Taz interacted with β-catenin in NCCs to coordinately promote osteoblast differentiation and repress chondrogenesis. Together, our data indicate that Yap and Taz promote osteogenesis in NCCs and prevent chondrogenesis, partly through interactions with the Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Li Tang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tram P. Le
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Bao H. Nguyen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, US
| | - Wen Chen
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Shuangjie You
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030, USA
| | - Idaliz M. Martinez-Traverso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, US
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030, USA
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, US
- Texas Heart Institute, Houston, Texas 77030, USA
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030, USA
| |
Collapse
|
112
|
Nagata K, Hojo H, Chang SH, Okada H, Yano F, Chijimatsu R, Omata Y, Mori D, Makii Y, Kawata M, Kaneko T, Iwanaga Y, Nakamoto H, Maenohara Y, Tachibana N, Ishikura H, Higuchi J, Taniguchi Y, Ohba S, Chung UI, Tanaka S, Saito T. Runx2 and Runx3 differentially regulate articular chondrocytes during surgically induced osteoarthritis development. Nat Commun 2022; 13:6187. [PMID: 36261443 PMCID: PMC9581901 DOI: 10.1038/s41467-022-33744-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The Runt-related transcription factor (Runx) family plays various roles in the homeostasis of cartilage. Here, we examined the role of Runx2 and Runx3 for osteoarthritis development in vivo and in vitro. Runx3-knockout mice exhibited accelerated osteoarthritis following surgical induction, accompanied by decreased expression of lubricin and aggrecan. Meanwhile, Runx2 conditional knockout mice showed biphasic phenotypes: heterozygous knockout inhibited osteoarthritis and decreased matrix metallopeptidase 13 (Mmp13) expression, while homozygous knockout of Runx2 accelerated osteoarthritis and reduced type II collagen (Col2a1) expression. Comprehensive transcriptional analyses revealed lubricin and aggrecan as transcriptional target genes of Runx3, and indicated that Runx2 sustained Col2a1 expression through an intron 6 enhancer when Sox9 was decreased. Intra-articular administration of Runx3 adenovirus ameliorated development of surgically induced osteoarthritis. Runx3 protects adult articular cartilage through extracellular matrix protein production under normal conditions, while Runx2 exerts both catabolic and anabolic effects under the inflammatory condition.
Collapse
Affiliation(s)
- Kosei Nagata
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Hironori Hojo
- grid.26999.3d0000 0001 2151 536XCenter for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Song Ho Chang
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Hiroyuki Okada
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan ,grid.26999.3d0000 0001 2151 536XCenter for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Fumiko Yano
- grid.26999.3d0000 0001 2151 536XBone and Cartilage Regenerative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Ryota Chijimatsu
- grid.26999.3d0000 0001 2151 536XBone and Cartilage Regenerative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yasunori Omata
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan ,grid.26999.3d0000 0001 2151 536XBone and Cartilage Regenerative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Daisuke Mori
- grid.26999.3d0000 0001 2151 536XBone and Cartilage Regenerative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yuma Makii
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Manabu Kawata
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Taizo Kaneko
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yasuhide Iwanaga
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Hideki Nakamoto
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yuji Maenohara
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Naohiro Tachibana
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Hisatoshi Ishikura
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Junya Higuchi
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yuki Taniguchi
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Shinsuke Ohba
- grid.26999.3d0000 0001 2151 536XCenter for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan ,grid.174567.60000 0000 8902 2273Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Ung-il Chung
- grid.174567.60000 0000 8902 2273Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Sakae Tanaka
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Taku Saito
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| |
Collapse
|
113
|
Grigoryan A, Zacharaki D, Balhuizen A, Côme CR, Garcia AG, Hidalgo Gil D, Frank AK, Aaltonen K, Mañas A, Esfandyari J, Kjellman P, Englund E, Rodriguez C, Sime W, Massoumi R, Kalantari N, Prithiviraj S, Li Y, Dupard SJ, Isaksson H, Madsen CD, Porse BT, Bexell D, Bourgine PE. Engineering human mini-bones for the standardized modeling of healthy hematopoiesis, leukemia, and solid tumor metastasis. Sci Transl Med 2022; 14:eabm6391. [PMID: 36223446 DOI: 10.1126/scitranslmed.abm6391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bone marrow microenvironment provides indispensable factors to sustain blood production throughout life. It is also a hotspot for the progression of hematologic disorders and the most frequent site of solid tumor metastasis. Preclinical research relies on xenograft mouse models, but these models preclude the human-specific functional interactions of stem cells with their bone marrow microenvironment. Instead, human mesenchymal cells can be exploited for the in vivo engineering of humanized niches, which confer robust engraftment of human healthy and malignant blood samples. However, mesenchymal cells are associated with major reproducibility issues in tissue formation. Here, we report the fast and standardized generation of human mini-bones by a custom-designed human mesenchymal cell line. These resulting humanized ossicles (hOss) consist of fully mature bone and bone marrow structures hosting a human mesenchymal niche with retained stem cell properties. As compared to mouse bones, we demonstrate superior engraftment of human cord blood hematopoietic cells and primary acute myeloid leukemia samples and also validate hOss as a metastatic site for breast cancer cells. We further report the engraftment of neuroblastoma patient-derived xenograft cells in a humanized model, recapitulating clinically described osteolytic lesions. Collectively, our human mini-bones constitute a powerful preclinical platform to model bone-developing tumors using patient-derived materials.
Collapse
Affiliation(s)
- Ani Grigoryan
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Dimitra Zacharaki
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Alexander Balhuizen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christophe Rm Côme
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alejandro Garcia Garcia
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - David Hidalgo Gil
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Anne-Katrine Frank
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Javanshir Esfandyari
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Pontus Kjellman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Emelie Englund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Carmen Rodriguez
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Wondossen Sime
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Ramin Massoumi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Nasim Kalantari
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Sujeethkumar Prithiviraj
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Yuan Li
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Steven J Dupard
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, 221 85 Lund, Sweden
| | - Chris D Madsen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Paul E Bourgine
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
114
|
Liu ZM, Shen PC, Lu CC, Chou SH, Tien YC. Suramin enhances chondrogenic properties by regulating the p67 phox/PI3K/AKT/SOX9 signalling pathway. Bone Joint Res 2022; 11:723-738. [PMID: 36222195 PMCID: PMC9582866 DOI: 10.1302/2046-3758.1110.bjr-2022-0013.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance. Results Suramin enhanced the COL2A1 and ACAN expression and lowered COL1A1 synthesis. Also, in 3D pellet culture GAG and COL2A1 production was significantly higher in pellets consisting of chondrocytes expanded with suramin compared to controls. Surprisingly, suramin also increased ROS generation, which is largely caused by enhanced NOX (p67phox) activity and membrane translocation. Overexpression of p67phox but not p67phoxAD (deleting amino acid (a.a) 199 to 212) mutant, which does not support ROS production in chondrocytes, significantly enhanced chondrocyte phenotype maintenance, SOX9 expression, and AKT (S473) phosphorylation. Knockdown of p67phox with its specific short hairpin (sh) RNA (shRNA) abolished the suramin-induced effects. Moreover, when these cells were treated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor LY294002 or shRNA of AKT1, p67phox-induced COL2A1 and ACAN expression was significantly inhibited. Conclusion Suramin could redifferentiate dedifferentiated chondrocytes dependent on p67phox activation, which is mediated by the PI3K/AKT/SOX9 signalling pathway. Cite this article: Bone Joint Res 2022;11(10):723–738.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopaedic Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Yin-Chun Tien. E-mail:
| |
Collapse
|
115
|
Fu J, Zhang J, Jiang T, Ao X, Li P, Lian Z, Li C, Zhang X, Liu J, Huang M, Zhang Z, Wang L. mTORC1 coordinates NF-κB signaling pathway to promote chondrogenic differentiation of tendon cells in heterotopic ossification. Bone 2022; 163:116507. [PMID: 35908648 DOI: 10.1016/j.bone.2022.116507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Heterotopic ossification (HO) is a pathological bone formation based on endochondral ossification distinguished by ossification within muscles, tendons, or other soft tissues. There has been growing studies focusing on the treatment with rapamycin to inhibit HO, but the mechanism of mTORC1 on HO remains unclear. Tendon cells (TDs) are the first cells to form during tendon heterotopic ossification. Here, we used an in vivo model of HO and an in vitro model of chondrogenesis induction to elucidate the effect and underlying mechanism of mTORC1 in HO. The current study highlights the effect of rapamycin on murine Achilles tenotomy-induced HO and the role of mTORC1 signaling pathway on TDs. Our result showed that mTORC1 was activation in the early stage of HO, whereas the mTORC1 maintained low expression in the mature ectopic cartilage tissue and the ectopic bone formation sites. The use of mTORC1-specific inhibitor (rapamycin) immediately after Achilles tendon injury could suppress the formation of HO; once ectopic cartilage and bone had formed, treatment with rapamycin could not significantly inhibit the progression of HO. Mechanistically, mTORC1 stimulation by silencing of TSC1 promoted the expression of the chondrogenic markers in TDs. In TDs, treated with mTORC1 stimulation by silencing of TSC1, mTORC1 increased the activation of the NF-κB signaling pathway. NF-κB selective inhibitor BAY11-7082 significantly suppressed the chondrogenesis of TDs that treated with mTORC1 stimulation by silencing of TSC1. Together, our findings demonstrated that mTORC1 promoted HO by regulating TDs chondrogenesis partly through the NF-κB signaling pathway; and rapamycin could be a viable HO therapeutic regimen.
Collapse
Affiliation(s)
- Jiaming Fu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Tao Jiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengnan Lian
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Chenglong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xibing Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China.
| |
Collapse
|
116
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
117
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
118
|
Zhou Y, Yang Y, Guo L, Qian J, Ge J, Sinner D, Ding H, Califano A, Cardoso WV. Airway basal cells show regionally distinct potential to undergo metaplastic differentiation. eLife 2022; 11:e80083. [PMID: 36178196 PMCID: PMC9578702 DOI: 10.7554/elife.80083] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/29/2022] [Indexed: 02/07/2023] Open
Abstract
Basal cells are multipotent stem cells of a variety of organs, including the respiratory tract, where they are major components of the airway epithelium. However, it remains unclear how diverse basal cells are and how distinct subpopulations respond to airway challenges. Using single cell RNA-sequencing and functional approaches, we report a significant and previously underappreciated degree of heterogeneity in the basal cell pool, leading to identification of six subpopulations in the adult murine trachea. Among these, we found two major subpopulations, collectively comprising the most uncommitted of all the pools, but with distinct gene expression signatures. Notably, these occupy distinct ventral and dorsal tracheal niches and differ in their ability to self-renew and initiate a program of differentiation in response to environmental perturbations in primary cultures and in mouse injury models in vivo. We found that such heterogeneity is acquired prenatally, when the basal cell pool and local niches are still being established, and depends on the integrity of these niches, as supported by the altered basal cell phenotype of tracheal cartilage-deficient mouse mutants. Finally, we show that features that distinguish these progenitor subpopulations in murine airways are conserved in humans. Together, the data provide novel insights into the origin and impact of basal cell heterogeneity on the establishment of regionally distinct responses of the airway epithelium during injury-repair and in disease conditions.
Collapse
Affiliation(s)
- Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| | - Ying Yang
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Lihao Guo
- Department of Pharmacy Practice and Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| | - Jian Ge
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of MedicineCincinnatiUnited States
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Andrea Califano
- Departments of Systems Biology, Biochemistry & Molecular Biophysics, Biomedical Informatics, Medicine; JP Sulzberger Columbia Genome Center; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
119
|
MPSI Manifestations and Treatment Outcome: Skeletal Focus. Int J Mol Sci 2022; 23:ijms231911168. [PMID: 36232472 PMCID: PMC9569890 DOI: 10.3390/ijms231911168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients’ quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.
Collapse
|
120
|
Yang Y, Huang C, Zheng H, Meng Z, Heng BC, Zhou T, Jiang S, Wei Y. Superwettable and injectable GelMA-MSC microspheres promote cartilage repair in temporomandibular joints. Front Bioeng Biotechnol 2022; 10:1026911. [PMID: 36225601 PMCID: PMC9549523 DOI: 10.3389/fbioe.2022.1026911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Temporomandibular disorders (TMD) can be treated by promoting cartilage regeneration with biomaterials. However, there are deficiencies in the infiltration function of bone filler biological materials. In this study, stems cells were loaded onto gelatin methacryloyl (GelMA) hydrogel microspheres endowed with superwettable properties and TGF-β sustained-release function, which can quickly infiltrate the irregular surface of the temporomandibular joint (TMJ) bone defect area and accelerate cartilage healing. First, to improve cell adhesion and spreading function, the BMSCs-coated GelMA microspheres were endowed with superwetting property. At the same time, the swelling adsorption characteristics of gelatin microspheres could be used to load recombinant TGF-β within the microspheres, which could in turn promote the chondrogenic differentiation of multi-potent bone marrow mesenchymal stem cells. The SEM imaging demonstrated that BMSCs-coated GelMA microsphere has superwettable and superhydrophilic property, which enabled rapid adaptation to the bone defect surface morphology, which is conducive to tissue repair. Furthermore, the cartilage defect model showed that rBMSCs-coated GelMA microspheres promote temporomandibular joint arthritis repair. In conclusion, our study established that BMSC-coated GelMA microspheres endowed with superwetting properties, can colonize the bone defect repair site better with sustained release of growth factors, thus providing an innovative strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Yue Yang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chenyan Huang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huimin Zheng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhaoqiang Meng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tuanfeng Zhou
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shengjie Jiang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Shengjie Jiang, ; Yan Wei,
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Shengjie Jiang, ; Yan Wei,
| |
Collapse
|
121
|
Martins TF, Braga Magalhães AF, Verardo LL, Santos GC, Silva Fernandes AA, Gomes Vieira JI, Irano N, dos Santos DB. Functional analysis of litter size and number of teats in pigs: From GWAS to post-GWAS. Theriogenology 2022; 193:157-166. [DOI: 10.1016/j.theriogenology.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
|
122
|
Bedell ML, Torres AL, Hogan KJ, Wang Z, Wang B, Melchiorri AJ, Grande-Allen KJ, Mikos AG. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Biofabrication 2022; 14:10.1088/1758-5090/ac8768. [PMID: 35931060 PMCID: PMC9633045 DOI: 10.1088/1758-5090/ac8768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
The investigation of novel hydrogel systems allows for the study of relationships between biomaterials, cells, and other factors within osteochondral tissue engineering. Three-dimensional (3D) printing is a popular research method that can allow for further interrogation of these questions via the fabrication of 3D hydrogel environments that mimic tissue-specific, complex architectures. However, the adaptation of promising hydrogel biomaterial systems into 3D-printable bioinks remains a challenge. Here, we delineated an approach to that process. First, we characterized a novel methacryloylated gelatin composite hydrogel system and assessed how calcium phosphate and glycosaminoglycan additives upregulated bone- and cartilage-like matrix deposition and certain genetic markers of differentiation within human mesenchymal stem cells (hMSCs), such as RUNX2 and SOX9. Then, new assays were developed and utilized to study the effects of xanthan gum and nanofibrillated cellulose, which allowed for cohesive fiber deposition, reliable droplet formation, and non-fracturing digital light processing (DLP)-printed constructs within extrusion, inkjet, and DLP techniques, respectively. Finally, these bioinks were used to 3D print constructs containing viable encapsulated hMSCs over a 7 d period, where DLP printed constructs facilitated the highest observed increase in cell number over 7 d (∼2.4×). The results presented here describe the promotion of osteochondral phenotypes via these novel composite hydrogel formulations, establish their ability to bioprint viable, cell-encapsulating constructs using three different 3D printing methods on multiple bioprinters, and document how a library of modular bioink additives affected those physicochemical properties important to printability.
Collapse
Affiliation(s)
| | | | - Katie J. Hogan
- Department of Bioengineering, Rice University, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Ziwen Wang
- Department of Bioengineering, Rice University, Houston, TX
| | - Bonnie Wang
- Department of Bioengineering, Rice University, Houston, TX
| | | | | | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX
- NIBIB/NIH Center for Engineering Complex Tissues, USA
| |
Collapse
|
123
|
Wang L, You X, Ruan D, Shao R, Dai HQ, Shen W, Xu GL, Liu W, Zou W. TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes. Nat Commun 2022; 13:4709. [PMID: 35953487 PMCID: PMC9372040 DOI: 10.1038/s41467-022-32138-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
The Ten-eleven translocation (TET) family of dioxygenases mediate cytosine demethylation by catalyzing the oxidation of 5-methylcytosine (5mC). TET-mediated DNA demethylation controls the proper differentiation of embryonic stem cells and TET members display functional redundancy during early gastrulation. However, it is unclear if TET proteins have functional significance in mammalian skeletal development. Here, we report that Tet genes deficiency in mesoderm mesenchymal stem cells results in severe defects of bone development. The existence of any single Tet gene allele can support early bone formation, suggesting a functional redundancy of TET proteins. Integrative analyses of RNA-seq, Whole Genome Bisulfite Sequencing (WGBS), 5hmC-Seal and Assay for Transposase-Accessible Chromatin (ATAC-seq) demonstrate that TET-mediated demethylation increases the chromatin accessibility of target genes by RUNX2 and facilities RUNX2-regulated transcription. In addition, TET proteins interact with RUNX2 through their catalytic domain to regulate cytosine methylation around RUNX2 binding region. The catalytic domain is indispensable for TET enzymes to regulate RUNX2 transcription activity on its target genes and to regulate bone development. These results demonstrate that TET enzymes function to regulate RUNX2 activity and maintain skeletal homeostasis. Here the authors investigate the role of the TET family of DNA demethylases in mammalian skeletal development. They find that loss of TETs leads to hypermethylation that results in decreased chromatin accessibility of RUNX2 target genes, repressing osteoblast differentiation and leading to skeletal defects in mouse such as short limbs.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiuling You
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Rui Shao
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hai-Qiang Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Guo-Liang Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Wanlu Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China. .,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China.
| | - Weiguo Zou
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
124
|
Saito T, Nakamichi R, Yoshida A, Hiranaka T, Okazaki Y, Nezu S, Matsuhashi M, Shimamura Y, Furumatsu T, Nishida K, Ozaki T. The effect of mechanical stress on enthesis homeostasis in a rat Achilles enthesis organ culture model. J Orthop Res 2022; 40:1872-1882. [PMID: 34783068 DOI: 10.1002/jor.25210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/19/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
Tendons and ligaments are jointed to bones via an enthesis that is essential to the proper function of the muscular and skeletal structures. The aim of the study is to investigate the effect of mechanical stress on the enthesis. We used ex vivo models in organ cultures of rat Achilles tendons with calcaneus including the enthesis. The organ was attached to a mechanical stretching apparatus that can conduct cyclic tensile strain. We made the models of 1-mm elongation (0.5 Hz, 3% elongation), 2-mm elongation (0.5 Hz, 5% elongation), and no stress. Histological evaluation by Safranin O staining and Toluidin Blue and Picro Sirius red staining was conducted. Expression of sex-determining region Y-box 9 (Sox9), scleraxis (Scx), Runt-related transcription factor 2 (Runx2), and matrix metalloproteinase 13 (Mmp13) were examined by real-time polymerase chain reaction and immunocytochemistry. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end-labeling and live/dead staining and was conducted for evaluation of the apoptosis and cell viability. The structure of the enthesis was most maintained in the model of 1-mm elongation. The electronic microscope showed that the enthesis of the no stress model had ill-defined borders between fibrocartilage and mineralized fibrocartilage, and that calcification of mineralized fibrocartilage occurred in the model of 2-mm elongation. Sox9 and Scx was upregulated by 1-mm elongation, whereas Runx2 and Mmp13 were upregulated by 2-mm elongation. Apoptosis was inhibited by low stress. The results of this study suggested that 1-mm elongation can maintain the structure of the enthesis, while 2-mm elongation promotes degenerative changes.
Collapse
Affiliation(s)
- Taichi Saito
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryo Nakamichi
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takaaki Hiranaka
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Okazaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Nezu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Minami Matsuhashi
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasunori Shimamura
- Department of Sports Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichiro Nishida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
125
|
Double – Network Hydrogel Based on Exopolysaccharides as a Biomimetic Extracellular Matrix to Augment Articular Cartilage Regeneration. Acta Biomater 2022; 152:124-143. [DOI: 10.1016/j.actbio.2022.08.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022]
|
126
|
Liu HW, Su WT, Liu CY, Huang CC. Highly Organized Porous Gelatin-Based Scaffold by Microfluidic 3D-Foaming Technology and Dynamic Culture for Cartilage Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158449. [PMID: 35955581 PMCID: PMC9369316 DOI: 10.3390/ijms23158449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
A gelatin-based hydrogel scaffold with highly uniform pore size and biocompatibility was fabricated for cartilage tissue engineering using microfluidic 3D-foaming technology. Mainly, bubbles with different diameters, such as 100 μm and 160 μm, were produced by introducing an optimized nitrogen gas and gelatin solution at an optimized flow rate, and N2/gelatin bubbles were formed. Furthermore, a cross-linking agent (1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide, EDC) was employed for the cross-linking reaction of the gelatin-based hydrogel scaffold with uniform bubbles, and then the interface between the close cells were broken by degassing. The pore uniformity of the gelatin-based hydrogel scaffolds was confirmed by use of a bright field microscope, conjugate focus microscope and scanning electron microscope. The in vitro degradation rate, mechanical properties, and swelling rate of gelatin-based hydrogel scaffolds with highly uniform pore size were studied. Rabbit knee cartilage was cultured, and its extracellular matrix content was analyzed. Histological analysis and immunofluorescence staining were employed to confirm the activity of the rabbit knee chondrocytes. The chondrocytes were seeded into the resulting 3D porous gelatin-based hydrogel scaffolds. The growth conditions of the chondrocyte culture on the resulting 3D porous gelatin-based hydrogel scaffolds were evaluated by MTT analysis, live/dead cell activity analysis, and extracellular matrix content analysis. Additionally, a dynamic culture of cartilage tissue was performed, and the expression of cartilage-specific proteins within the culture time was studied by immunofluorescence staining analysis. The gelatin-based hydrogel scaffold encouraged chondrocyte proliferation, promoting the expression of collagen type II, aggrecan, and sox9 while retaining the structural stability and durability of the cartilage after dynamic compression and promoting cartilage repair.
Collapse
Affiliation(s)
- Hsia-Wei Liu
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (H.-W.L.); (C.-Y.L.)
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wen-Ta Su
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Ching-Yi Liu
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (H.-W.L.); (C.-Y.L.)
| | - Ching-Cheng Huang
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan 333321, Taiwan
- PARSD Biomedical Material Research Center, Taichung 407428, Taiwan
- Correspondence:
| |
Collapse
|
127
|
Fuglerud BM, Drissler S, Lotto J, Stephan TL, Thakur A, Cullum R, Hoodless PA. SOX9 reprograms endothelial cells by altering the chromatin landscape. Nucleic Acids Res 2022; 50:8547-8565. [PMID: 35904801 PMCID: PMC9410909 DOI: 10.1093/nar/gkac652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 01/08/2023] Open
Abstract
The transcription factor SOX9 is activated at the onset of endothelial-to-mesenchymal transition (EndMT) during embryonic development and in pathological conditions. Its roles in regulating these processes, however, are not clear. Using human umbilical vein endothelial cells (HUVECs) as an EndMT model, we show that SOX9 expression alone is sufficient to activate mesenchymal genes and steer endothelial cells towards a mesenchymal fate. By genome-wide mapping of the chromatin landscape, we show that SOX9 displays features of a pioneer transcription factor, such as opening of chromatin and leading to deposition of active histone modifications at silent chromatin regions, guided by SOX dimer motifs and H2A.Z enrichment. We further observe highly transient and dynamic SOX9 binding, possibly promoted through its eviction by histone phosphorylation. However, while SOX9 binding is dynamic, changes in the chromatin landscape and cell fate induced by SOX9 are persistent. Finally, our analysis of single-cell chromatin accessibility indicates that SOX9 opens chromatin to drive EndMT in atherosclerotic lesions in vivo. This study provides new insight into key molecular functions of SOX9 and mechanisms of EndMT and highlights the crucial developmental role of SOX9 and relevance to human disease.
Collapse
Affiliation(s)
- Bettina M Fuglerud
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Cell and Developmental Biology Program, University of British Columbia V6T 1Z3, Vancouver, British Columbia, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Cell and Developmental Biology Program, University of British Columbia V6T 1Z3, Vancouver, British Columbia, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Cell and Developmental Biology Program, University of British Columbia V6T 1Z3, Vancouver, British Columbia, Canada
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,Cell and Developmental Biology Program, University of British Columbia V6T 1Z3, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
128
|
Zhu Y, Zhang H, Yang Y, Zhang C, Ou-Yang L, Bai L, Deng M, Yi M, Liu S, Wang C. Discovery of pan-cancer related genes via integrative network analysis. Brief Funct Genomics 2022; 21:325-338. [PMID: 35760070 DOI: 10.1093/bfgp/elac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 01/02/2023] Open
Abstract
Identification of cancer-related genes is helpful for understanding the pathogenesis of cancer, developing targeted drugs and creating new diagnostic and therapeutic methods. Considering the complexity of the biological laboratory methods, many network-based methods have been proposed to identify cancer-related genes at the global perspective with the increasing availability of high-throughput data. Some studies have focused on the tissue-specific cancer networks. However, cancers from different tissues may share common features, and those methods may ignore the differences and similarities across cancers during the establishment of modeling. In this work, in order to make full use of global information of the network, we first establish the pan-cancer network via differential network algorithm, which not only contains heterogeneous data across multiple cancer types but also contains heterogeneous data between tumor samples and normal samples. Second, the node representation vectors are learned by network embedding. In contrast to ranking analysis-based methods, with the help of integrative network analysis, we transform the cancer-related gene identification problem into a binary classification problem. The final results are obtained via ensemble classification. We further applied these methods to the most commonly used gene expression data involving six tissue-specific cancer types. As a result, an integrative pan-cancer network and several biologically meaningful results were obtained. As examples, nine genes were ultimately identified as potential pan-cancer-related genes. Most of these genes have been reported in published studies, thus showing our method's potential for application in identifying driver gene candidates for further biological experimental verification.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Automation, China University of Geosciences, Lumo Road, 430074, Wuhan, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Lumo Road, 430074, Wuhan, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Lumo Road, 430074, Wuhan, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence(Fudan University), Ministry of Education, Handan Road, 200433, Shanghai, China
| | - Houwang Zhang
- Electrical Engineering, City University of HongKong, Kowloon, 999077, HongKong, China
| | - Yuanhang Yang
- School of Mathematics and Physics, China University of Geosciences, Lumo Road, 430074, Wuhan, China
| | - Chaoyang Zhang
- School of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, USA
| | - Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, Shenzhen University, Nanhai Avenue, 518060, Shenzhen, China
| | - Litai Bai
- School of Automation, China University of Geosciences, Lumo Road, 430074, Wuhan, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Lumo Road, 430074, Wuhan, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Lumo Road, 430074, Wuhan, China
| | - Minghua Deng
- School of Mathematical Sciences, Peking University, No.5 Yiheyuan Road, 100871, Beijing, China
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, Lumo Road, 430074, Wuhan, China
| | - Song Liu
- School of Automation, China University of Geosciences, Lumo Road, 430074, Wuhan, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Lumo Road, 430074, Wuhan, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Lumo Road, 430074, Wuhan, China
| | - Chao Wang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, 430030, Wuhan, China
| |
Collapse
|
129
|
Liang R, Yang X, Yew PYM, Sugiarto S, Zhu Q, Zhao J, Loh XJ, Zheng L, Kai D. PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment. J Nanobiotechnology 2022; 20:327. [PMID: 35842720 PMCID: PMC9287996 DOI: 10.1186/s12951-022-01534-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Osteoarthritis (OA) is common musculoskeletal disorders associated with overgeneration of free radicals, and it causes joint pain, inflammation, and cartilage degradation. Lignin as a natural antioxidant biopolymer has shown its great potential for biomedical applications. In this work, we developed a series of lignin-based nanofibers as antioxidative scaffolds for cartilage tissue engineering. Results The nanofibers were engineered by grafting poly(lactic acid) (PLA) into lignin via ring-opening polymerization and followed by electrospinning. Varying the lignin content in the system was able to adjust the physiochemical properties of the resulting nanofibers, including fiber diameters, mechanical and viscoelastic properties, and antioxidant activity. In vitro study demonstrated that the PLA-lignin nanofibers could protect bone marrow-derived mesenchymal stem/stromal cells (BMSCs) from oxidative stress and promote the chondrogenic differentiation. Moreover, the animal study showed that the lignin nanofibers could promote cartilage regeneration and repair cartilage defects within 6 weeks of implantation. Conclusion Our study indicated that lignin-based nanofibers could serve as an antioxidant tissue engineering scaffold and facilitate the cartilage regrowth for OA treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01534-2.
Collapse
Affiliation(s)
- Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Xingchen Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Pek Yin Michelle Yew
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China. .,Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore. .,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.
| |
Collapse
|
130
|
Jiang W, Glaeser JD, Salehi K, Kaneda G, Mathkar P, Wagner A, Ho R, Sheyn D. Single-cell atlas unveils cellular heterogeneity and novel markers in human neonatal and adult intervertebral discs. iScience 2022; 25:104504. [PMID: 35754733 PMCID: PMC9213722 DOI: 10.1016/j.isci.2022.104504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022] Open
Abstract
The origin, composition, distribution, and function of cells in the human intervertebral disc (IVD) have not been fully understood. Here, cell atlases of both human neonatal and adult IVDs have been generated and further assessed by gene ontology pathway enrichment, pseudo-time trajectory, histology, and immunofluorescence. Comparison of cell atlases revealed the presence of two subpopulations of notochordal cells (NCs) and their associated markers in both the neonatal and adult IVDs. Developmental trajectories predicted 7 different cell states that describe the developmental process from neonatal to adult cells in IVD and analyzed the NC’s role in the IVD development. A high heterogeneity and gradual transition of annulus fibrosus cells (AFCs) in the neonatal IVD was detected and their potential relevance in IVD development assessed. Collectively, comparing single-cell atlases between neonatal and adult IVDs delineates the landscape of IVD cell biology and may help discover novel therapeutic targets for IVD degeneration. Compared scRNA-seq between human neonatal and adult IVD Identified two notochordal cell populations in adults and their novel markers Notochordal cells preserved their identity and functions into adulthood Unveiled heterogeneity of nucleus pulposus and annulus fibrosus cells in human IVD
Collapse
Affiliation(s)
- Wensen Jiang
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliane D. Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pranav Mathkar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anton Wagner
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
131
|
Kim P, Park J, Lee DJ, Mizuno S, Shinohara M, Hong CP, Jeong Y, Yun R, Park H, Park S, Yang KM, Lee MJ, Jang SP, Kim HY, Lee SJ, Song SU, Park KS, Tanaka M, Ohshima H, Cho JW, Sugiyama F, Takahashi S, Jung HS, Kim SJ. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat Commun 2022; 13:3960. [PMID: 35803931 PMCID: PMC9270402 DOI: 10.1038/s41467-022-31697-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) differentiation into different lineages is precisely controlled by signaling pathways. Given that protein kinases play a crucial role in signal transduction, here we show that Microtubule Associated Serine/Threonine Kinase Family Member 4 (Mast4) serves as an important mediator of TGF-β and Wnt signal transduction in regulating chondro-osteogenic differentiation of MSCs. Suppression of Mast4 by TGF-β1 led to increased Sox9 stability by blocking Mast4-induced Sox9 serine 494 phosphorylation and subsequent proteasomal degradation, ultimately enhancing chondrogenesis of MSCs. On the other hand, Mast4 protein, which stability was enhanced by Wnt-mediated inhibition of GSK-3β and subsequent Smurf1 recruitment, promoted β-catenin nuclear localization and Runx2 activity, increasing osteogenesis of MSCs. Consistently, Mast4-/- mice demonstrated excessive cartilage synthesis, while exhibiting osteoporotic phenotype. Interestingly, Mast4 depletion in MSCs facilitated cartilage formation and regeneration in vivo. Altogether, our findings uncover essential roles of Mast4 in determining the fate of MSC development into cartilage or bone.
Collapse
Affiliation(s)
- Pyunggang Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Kyunggi-do, Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
- Amoris Bio Inc, Seoul, 06668, Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
| | | | - Yealeen Jeong
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Rebecca Yun
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Hyeyeon Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | | | - Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | | | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
- NGeneS Inc., Ansan-si, 15495, Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sun U Song
- Research Institute, SCM Lifescience Inc., Incheon, Korea
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Kyunggi-do, Korea
| | - Mikako Tanaka
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
- Division of Dental Laboratory Technology, Meirin College, Niigata, 950-2086, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Jin Won Cho
- Department of Systems Biology and Glycosylation Network Research Center, Yonsei University, Seoul, Korea
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea.
- Medpacto Inc., Seoul, 06668, Korea.
- TheragenEtex Co., Gyeonggi-do, Korea.
| |
Collapse
|
132
|
Vibration exposure uncovers a critical early developmental window for zebrafish caudal fin development. Dev Genes Evol 2022; 232:67-79. [PMID: 35798873 DOI: 10.1007/s00427-022-00691-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Mechanical influencers have long been shown to affect mature bone. Bone mechanosensation is a key feature that allows the skeleton to adapt to environmental constraints. In this study, we describe the response of immature, developing bones to a mechanical stimulus. To do so, zebrafish larvae at different stages of development were exposed to whole-body vibration (WBV) at a low frequency of 20 Hz, for up to 4 days. Whole mount Alizarin red and Alcian blue staining revealed age-related and bone type-specific defects. Specifically, the parhypural and hypural 1 caudal fin endoskeletal elements were affected when the exposure to WBV started early during their development. We show that these WBV-induced parhypural and hypural 1 patterning defects are triggered by a Sox9-independent pathway, potentially by reducing the distance separating adjacent chondrogenic condensations in the developing tail skeleton. The remaining hypurals were unaffected by the WBV treatment. Altogether, our results indicate that, upon exposure to vibration, chondrogenic cell progenitors can react to mechanical stimuli early during their development, which ultimately affects the skeletal patterning of the growing zebrafish larvae. These findings open a new research avenue to better understand the cellular processes involved in developing, patterning, and maintaining skeletal tissue.
Collapse
|
133
|
Liao H, Tu Q, Kang Y, Mao G, Li Z, Hu S, Sheng P, Wang X, Xu Y, Long D, Xu Y, Kang Y, Zhang Z. CircNFIX
regulates chondrogenesis and cartilage homeostasis by targeting the
miR758
‐3p/
KDM6A
axis. Cell Prolif 2022; 55:e13302. [PMID: 35791460 PMCID: PMC9628241 DOI: 10.1111/cpr.13302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 01/20/2023] Open
Abstract
Objectives Osteoarthritis (OA) is a degenerative disease causing the progressive destruction of articular cartilage; however, the aetiology has not yet been elucidated. Circular RNAs (circRNAs) are reportedly involved in cartilage degeneration and OA development. In the present study, we identified that circNFIX regulates chondrogenesis and cartilage homeostasis. Materials and Methods Microarray analysis was performed to explore circRNA expression during the chondrogenic differentiation of human adipose‐drived stem cells (hADSCs). CircNFIX expression was determined using quantitative reverse transcription‐polymerase chain reaction and in situ hybridization. Gain‐ and loss‐of‐function assays were performed to validate the role of circNFIX in cartilage homeostasis. RNA pull‐down, Argonaute2‐RNA immunoprecipitation and luciferase reporter assays were performed to evaluate the interactions among circNFIX, miR758‐3p and KDM6A. Results CircNFIX expression was upregulated in the early and middle stages, whereas downregulated in the late stage of hADSC chondrogenesis. CircNFIX inhibition attenuated hADSC chondrogenesis. CircNFIX was remarkably downregulated in OA samples, circNFIX overexpression protected against chondrocyte degradation and alleviated OA progression in the destabilization of the medial meniscus OA model. Mechanistically, circNFIX acted as a sponge of miR758‐3p and played a role in the chondrogenesis and chondrocyte degeneration by targeting the miR‐758‐3p/KDM6A axis. Conclusions Our results revealed a key role of circNFIX in chondrogenesis and cartilage homeostasis, which may provide a potential therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Hongyi Liao
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Qingqiang Tu
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Yunze Kang
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Guping Mao
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Zhiwen Li
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Shu Hu
- Department of Joint Surgery, Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Xudong Wang
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Yiyang Xu
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Dianbo Long
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Yuanyuan Xu
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Yan Kang
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| |
Collapse
|
134
|
Kalmari A, Arash V, Colagar AH. Influence of COL2A1-G1405S polymorphism on mandibular skeletal malocclusions: A genetic association study and in silico analysis. Arch Oral Biol 2022; 142:105500. [PMID: 35810711 DOI: 10.1016/j.archoralbio.2022.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The current study aimed to assess the association between collagen type II alpha 1 chain (COL2A1) single nucleotide polymorphism (SNP: rs2070739; C>T; G1405S) and mandibular skeletal malocclusions in the population of Mazandaran (North Iran). DESIGN During 13 months, 102 control samples, 81 samples with skeletal Class III malocclusion contributed by mandibular prognathism and 82 samples with skeletal Class II malocclusion contributed by mandibular retrognathism were screened. Cephalometric analysis was performed to determine the type of abnormalities. COL2A1-G1405S genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The HOPE tool was used to investigate the effect of COL2A1-G1405S on the three-dimensional structure of protein. RESULTS Results showed that there is no significant correlation between genotypes and alleles related to COL2A1-G1405S and mandibular prognathism (CT genotype: p-value= 0.210; T allele: p-value= 0.222). On the other hand, an association was observed between COL2A1-G1405S and mandibular retrognathism (CT genotype: p-value= 0.008; T allele: p-value= 0.011). The outputs of the HOPE tool also showed that COL2A1-G1405S can disrupt the NC1 domain of the protein. CONCLUSIONS Here, we provide evidence that COL2A1-G1405S polymorphism may have positive correlation with the risk of skeletal Class II malocclusion contributed by mandibular retrognathism in the population of Mazandaran. Given that the COL2A1-G1405S occurs in NC1 domain, it is possible that this domain plays an important role in signaling pathways related to ossification. So, we suggest that the study of COL2A1 SNPs can help researchers understand the significant role of this collagen in mandibular skeletal malocclusions.
Collapse
Affiliation(s)
- Amin Kalmari
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar PC:47416-95447, Mazandaran, Iran.
| | - Valiollah Arash
- Department of Orthodontics, Babol University of Medical Sciences, Babol PC: 47176-47745, Mazandaran, Iran.
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar PC:47416-95447, Mazandaran, Iran.
| |
Collapse
|
135
|
On the evolutionary origins and regionalization of the neural crest. Semin Cell Dev Biol 2022; 138:28-35. [PMID: 35787974 DOI: 10.1016/j.semcdb.2022.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/19/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
Abstract
The neural crest is a vertebrate-specific embryonic stem cell population that gives rise to a vast array of cell types throughout the animal body plan. These cells are first born at the edges of the central nervous system, from which they migrate extensively and differentiate into multiple cellular derivatives. Given the unique set of structures these cells comprise, the origin of the neural crest is thought to have important implications for the evolution and diversification of the vertebrate clade. In jawed vertebrates, neural crest cells exist as distinct subpopulations along the anterior-posterior axis. These subpopulations differ in terms of their respective differentiation potential and cellular derivatives. Thus, the modern neural crest is characterized as multipotent, migratory, and regionally segregated throughout the embryo. Here, we retrace the evolutionary origins of the neural crest, from the appearance of conserved regulatory circuitry in basal chordates to the emergence of neural crest subpopulations in higher vertebrates. Finally, we discuss a stepwise trajectory by which these cells may have arisen and diversified throughout vertebrate evolution.
Collapse
|
136
|
Sreenivasan R, Gonen N, Sinclair A. SOX Genes and Their Role in Disorders of Sex Development. Sex Dev 2022; 16:80-91. [PMID: 35760052 DOI: 10.1159/000524453] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
SOX genesare master regulatory genes controlling development and are fundamental to the establishment of sex determination in a multitude of organisms. The discovery of the master sex-determining gene SRY in 1990 was pivotal for the understanding of how testis development is initiated in mammals. With this discovery, an entire family of SOX factors were uncovered that play crucial roles in cell fate decisions during development. The importance of SOX genes in human reproductive development is evident from the various disorders of sex development (DSD) upon loss or overexpression of SOX gene function. Here, we review the roles that SOX genes play in gonad development and their involvement in DSD. We start with an overview of sex determination and differentiation, DSDs, and the SOX gene family and function. We then provide detailed information and discussion on SOX genes that have been implicated in DSDs, both at the gene and regulatory level. These include SRY, SOX9, SOX3, SOX8, and SOX10. This review provides insights on the crucial balance of SOX gene expression levels needed for gonad development and maintenance and how changes in these levels can lead to DSDs.
Collapse
Affiliation(s)
- Rajini Sreenivasan
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Andrew Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
137
|
Venkatesan JK, Schmitt G, Speicher-Mentges S, Orth P, Madry H, Cucchiarini M. Effects of rAAV-mediated overexpression of bone morphogenetic protein 3 (BMP-3) on the chondrogenic fate of human bone marrow-derived mesenchymal stromal cells. Hum Gene Ther 2022; 33:950-958. [PMID: 35722904 DOI: 10.1089/hum.2022.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Implantation of genetically modified chondrogenically competent human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to improve cartilage repair. The goal of this study was to examine the potential benefits of transferring a sequence coding for the bone morphogenetic protein 3 (BMP-3) that modulates bone and cartilage formation, using recombinant adeno-associated virus (rAAV) vectors on the chondroreparative activities of hMSCs. Undifferentiated and chondrogenically induced primary human MSCs were treated with an rAAV-hBMP-3 construct to evaluate its effects on the proliferative, metabolic, and chondrogenic activities of the cells compared with control (reporter rAAV-lacZ vector) condition. Effective BMP-3 expression was noted both in undifferentiated and chondrogenically differentiated cells in the presence of rAAV-hBMP-3 relative to rAAV-lacZ, stimulating cell proliferation and extracellular matrix (proteoglycans, type-II collagen) deposition together with higher levels of chondrogenic SOX9 expression. rAAV-hBMP-3 also advantageously decreased terminal differentiation, hypertrophy, and osteogenesis (type-I/-X collagen and alkaline phosphatase expression), with reduced levels of osteoblast-related RUNX-2 transcription factor and β-catenin (osteodifferentiation mediator) and enhanced PTHrP expression (inhibitor of hypertrophic maturation, calcification, and bone formation). This study shows the advantage of modifying hMSCs with rAAV-hBMP-3 to trigger adapted chondroreparative activities as a source of improved cells for transplantation protocols in cartilage defects.
Collapse
Affiliation(s)
- Jagadeesh Kumar Venkatesan
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Gertrud Schmitt
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Susanne Speicher-Mentges
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Patrick Orth
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Henning Madry
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Magali Cucchiarini
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Germany, 66421;
| |
Collapse
|
138
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
139
|
Fujii Y, Liu L, Yagasaki L, Inotsume M, Chiba T, Asahara H. Cartilage Homeostasis and Osteoarthritis. Int J Mol Sci 2022; 23:6316. [PMID: 35682994 PMCID: PMC9181530 DOI: 10.3390/ijms23116316] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Healthy limb joints are important for maintaining health and attaining longevity. Endochondral ossification (the replacement of cartilage with bone, occurring during skeletal development) is essential for bone formation, especially in long-axis bones. In contrast to endochondral ossification, chondrocyte populations in articular cartilage persist and maintain joint tissue into adulthood. Articular cartilage, a connective tissue consisting of chondrocytes and their surrounding extracellular matrices, plays an essential role in the mechanical cushioning of joints in postnatal locomotion. Osteoarthritis (OA) pathology relates to disruptions in the balance between anabolic and catabolic signals, that is, the loss of chondrocyte homeostasis due to aging or overuse of cartilages. The onset of OA increases with age, shortening a person's healthy life expectancy. Although many people with OA experience pain, the mainstay of treatment is symptomatic therapy, and no fundamental treatment has yet been established. To establish regenerative or preventative therapies for cartilage diseases, further understanding of the mechanisms of cartilage development, morphosis, and homeostasis is required. In this review, we describe the general development of cartilage and OA pathology, followed by a discussion on anabolic and catabolic signals in cartilage homeostasis, mainly microRNAs.
Collapse
Affiliation(s)
- Yuta Fujii
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lin Liu
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lisa Yagasaki
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-851, Japan
| | - Maiko Inotsume
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Tomoki Chiba
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
140
|
Calejo I, Labrador‐Rached CJ, Gomez‐Florit M, Docheva D, Reis RL, Domingues RMA, Gomes ME. Bioengineered 3D Living Fibers as In Vitro Human Tissue Models of Tendon Physiology and Pathology. Adv Healthc Mater 2022; 11:e2102863. [PMID: 35596614 DOI: 10.1002/adhm.202102863] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Clinically relevant in vitro models of human tissue's health and disease are urgently needed for a better understanding of biological mechanisms essential for the development of novel therapies. Herein, physiological (healthy) and pathological (disease) tendon states are bioengineered by coupling the biological signaling of platelet lysate components with controlled 3D architectures of electrospun microfibers to drive the fate of human tendon cells in different composite living fibers (CLFs). In the CLFs-healthy model, tendon cells adopt a high cytoskeleton alignment and elongation, express tendon-related markers (scleraxis, tenomodulin, and mohawk) and deposit a dense tenogenic matrix. In contrast, cell crowding with low preferential orientation, high matrix deposition, and phenotypic drift leading to increased expression of nontendon related and fibrotic markers, are characteristics of the CLFs-diseased model. This diseased-like profile, also reflected in the increase of COL3/COL1 ratio, is further evident by the imbalance between matrix remodeling and degradation effectors, characteristic of tendinopathy. In summary, microengineered 3D in vitro models of human tendon healthy and diseased states are successfully fabricated. Most importantly, these innovative and versatile microphysiological models offer major advantages over currently used systems, holding promise for drugs screening and development of new therapies.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Claudia J. Labrador‐Rached
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Manuel Gomez‐Florit
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Denitsa Docheva
- Experimental Trauma Surgery Department of Trauma Surgery University Hospital Regensburg Franz‐Josef Strauss‐Allee 11 93053 Regensburg Germany
| | - Rui L. Reis
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui M. A. Domingues
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Manuela E. Gomes
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
141
|
Gao W, Li R, Ye M, Zhang L, Zheng J, Yang Y, Wei X, Zhao Q. The circadian clock has roles in mesenchymal stem cell fate decision. Stem Cell Res Ther 2022; 13:200. [PMID: 35578353 PMCID: PMC9109355 DOI: 10.1186/s13287-022-02878-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023] Open
Abstract
The circadian clock refers to the intrinsic biological rhythms of physiological functions and behaviours. It synergises with the solar cycle and has profound effects on normal metabolism and organismal fitness. Recent studies have suggested that the circadian clock exerts great influence on the differentiation of stem cells. Here, we focus on the close relationship between the circadian clock and mesenchymal stem cell fate decisions in the skeletal system. The underlying mechanisms include hormone signals and the activation and repression of different transcription factors under circadian regulation. Additionally, the clock interacts with epigenetic modifiers and non-coding RNAs and is even involved in chromatin remodelling. Although the specificity and safety of circadian therapy need to be further studied, the circadian regulation of stem cells can be regarded as a promising candidate for health improvement and disease prevention.
Collapse
Affiliation(s)
- Wenzhen Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meilin Ye
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, 250012, China
| | - Lanxin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiawen Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuqing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
142
|
Smith CA, Humphreys PA, Bates N, Naven MA, Cain SA, Dvir‐Ginzberg M, Kimber SJ. SIRT1 activity orchestrates ECM expression during hESC-chondrogenic differentiation. FASEB J 2022; 36:e22314. [PMID: 35416346 PMCID: PMC9322318 DOI: 10.1096/fj.202200169r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Epigenetic modification is a key driver of differentiation, and the deacetylase Sirtuin1 (SIRT1) is an established regulator of cell function, ageing, and articular cartilage homeostasis. Here we investigate the role of SIRT1 during development of chondrocytes by using human embryonic stem cells (hESCs). HESC-chondroprogenitors were treated with SIRT1 activator; SRT1720, or inhibitor; EX527, during differentiation. Activation of SIRT1 early in 3D-pellet culture led to significant increases in the expression of ECM genes for type-II collagen (COL2A1) and aggrecan (ACAN), and chondrogenic transcription factors SOX5 and ARID5B, with SOX5 ChIP analysis demonstrating enrichment on the chondrocyte specific -10 (A1) enhancer of ACAN. Unexpectedly, when SIRT1 was activated, while ACAN was enhanced, glycosaminoglycans (GAGs) were reduced, paralleled by down regulation of gene expression for N-acetylgalactosaminyltransferase type 1 (GALNT1) responsible for GAG chain initiation/elongation. A positive correlation between ARID5B and COL2A1 was observed, and co-IP assays indicated association of ARID5B with SIRT1, further suggesting that COL2A1 expression is promoted by an ARID5B-SIRT1 interaction. In conclusion, SIRT1 activation positively impacts on the expression of the main ECM proteins, while altering ECM composition and suppressing GAG content during human cartilage development. These results suggest that SIRT1 activity has a differential effect on GAGs and proteins in developing hESC-chondrocytes and could only be beneficial to cartilage development and matrix protein synthesis if balanced by addition of positive GAG mediators.
Collapse
Affiliation(s)
- Christopher A. Smith
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Paul A. Humphreys
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Mark A. Naven
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Stuart A. Cain
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Mona Dvir‐Ginzberg
- Laboratory of Cartilage BiologyFaculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
143
|
Feulner L, van Vliet PP, Puceat M, Andelfinger G. Endocardial Regulation of Cardiac Development. J Cardiovasc Dev Dis 2022; 9:jcdd9050122. [PMID: 35621833 PMCID: PMC9144171 DOI: 10.3390/jcdd9050122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
The endocardium is a specialized form of endothelium that lines the inner side of the heart chambers and plays a crucial role in cardiac development. While comparatively less studied than other cardiac cell types, much progress has been made in understanding the regulation of and by the endocardium over the past two decades. In this review, we will summarize what is currently known regarding endocardial origin and development, the relationship between endocardium and other cardiac cell types, and the various lineages that endocardial cells derive from and contribute to. These processes are driven by key molecular mechanisms such as Notch and BMP signaling. These pathways in particular have been well studied, but other signaling pathways and mechanical cues also play important roles. Finally, we will touch on the contribution of stem cell modeling in combination with single cell sequencing and its potential translational impact for congenital heart defects such as bicuspid aortic valves and hypoplastic left heart syndrome. The detailed understanding of cellular and molecular processes in the endocardium will be vital to further develop representative stem cell-derived models for disease modeling and regenerative medicine in the future.
Collapse
Affiliation(s)
- Lara Feulner
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
| | - Michel Puceat
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
- INSERM U-1251, Marseille Medical Genetics, Aix-Marseille University, 13885 Marseille, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
144
|
Seki S, Iwasaki M, Makino H, Yahara Y, Miyazaki Y, Kamei K, Futakawa H, Nogami M, Tran Canh Tung N, Hirokawa T, Tsuji M, Kawaguchi Y. Direct Reprogramming and Induction of Human Dermal Fibroblasts to Differentiate into iPS-Derived Nucleus Pulposus-like Cells in 3D Culture. Int J Mol Sci 2022; 23:4059. [PMID: 35409417 PMCID: PMC8999916 DOI: 10.3390/ijms23074059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) diseases are common spinal disorders that cause neck or back pain in the presence or absence of an underlying neurological disorder. IVD diseases develop on the basis of degeneration, and there are no established treatments for degeneration. IVD diseases may therefore represent a candidate for the application of regenerative medicine, potentially employing normal human dermal fibroblasts (NHDFs) induced to differentiate into nucleus pulposus (NP) cells. Here, we used a three-dimensional culture system to demonstrate that ectopic expression of MYC, KLF4, NOTO, SOX5, SOX6, and SOX9 in NHDFs generated NP-like cells, detected using Safranin-O staining. Quantitative PCR, microarray analysis, and fluorescence-activated cell sorting revealed that the induced NP cells exhibited a fully differentiated phenotype. These findings may significantly contribute to the development of effective strategies for treating IVD diseases.
Collapse
Affiliation(s)
- Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mami Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Hiroto Makino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yasuhito Yahara
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | | | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Hayato Futakawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Makiko Nogami
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Nguyen Tran Canh Tung
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
- Department of Trauma and Orthopaedic Surgery, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tatsuro Hirokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mamiko Tsuji
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| |
Collapse
|
145
|
Lao M, Hurtado A, de Castro AC, Burgos M, Jiménez R, Barrionuevo FJ. Sox9 is required for nail bed differentiation and digit tip regeneration. J Invest Dermatol 2022; 142:2613-2622.e6. [DOI: 10.1016/j.jid.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
|
146
|
Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res Manag 2022; 2022:6235400. [PMID: 35386857 PMCID: PMC8977320 DOI: 10.1155/2022/6235400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main triggers of low back pain, which is most often associated with patient morbidity and high medical costs. IVDD triggers a wide range of pathologies and clinical syndromes like paresthesia, weakness of extremities, and intermittent/chronic back pain. Mesenchymal stem cells (MSCs) have demonstrated to possess immunomodulatory functions as well as the capability of differentiating into chondrocytes under appropriate microenvironment conditions, which makes them potentially epitome for intervertebral disc (IVD) regeneration. The IVD microenvironment is composed by niche of cells, and their chemical and physical milieus have been exhibited to have robust influence on MSC behavior as well as differentiation. Nevertheless, the contribution of MSCs to the IVD milieu conditions in healthy as well as degeneration situations is still a matter of debate. It is still not clear which factors, if any, are essential for effective and efficient MSC survival, proliferation, and differentiation. IVD microenvironment clues such as nucleopulpocytes, potential of hydrogen (pH), osmotic changes, glucose, hypoxia, apoptosis, pyroptosis, and hydrogels are capable of influencing the MSCs aimed for the treatment of IVDD. Therefore, clinical usage of MSCs ought to take into consideration these microenvironment clues during treatment. Alteration in these factors could function as prognostic indicators during the treatment of patients with IVDD using MSCs. Thus, standardized valves for these microenvironment clues are warranted.
Collapse
|
147
|
Moqbel SAA, Zeng R, Ma D, Xu L, Lin C, He Y, Ma C, Xu K, Ran J, Jiang L, Wu L. The effect of mitochondrial fusion on chondrogenic differentiation of cartilage progenitor/stem cells via Notch2 signal pathway. Stem Cell Res Ther 2022; 13:127. [PMID: 35337368 PMCID: PMC8951683 DOI: 10.1186/s13287-022-02758-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Osteoarthritis (OA) is a debilitating disease that inflicts intractable pain, a major problem that humanity faces, especially in aging populations. Stem cells have been used in the treatment of many chronic diseases, including OA. Cartilage progenitor/stem cells (CPSCs) are a type of stem cells with the ability to self- renew and differentiate. They hold a promising future for the understanding of the progression of OA and for its treatment. Previous studies have reported the relationship between mitochondrial dynamics and mesenchymal stem cell (MSC) proliferation, differentiation and aging. Mitochondrial dynamic and morphology change during stem cell differentiation. Methods This study was performed to access the relationship between mitochondrial dynamics and chondrogenic differentiation of CPSCs. Mitochondrial fusion and fission levels were measured during the chondrogenic differentiation process of CPSCs. After that, we used mitochondrial fusion promoter to induce fusion in CPSCs and then the chondrogenic markers were measured. Transmission electron microscopy (TEM) and confocal microscopy were used to capture the mass and fusion status of mitochondria. Lentiviruses were used to detect the role of mitofusin 2 (Mfn2) in CPSC chondrogenic differentiation. In vivo, Mfn2 was over-expressed in sheets of rat CPSCs, which were then injected intra-articularly into the knees of rats. Results Mitochondrial fusion markers were upregulated during the chondrogenic induction process of CPSCs. The mass of mitochondria was higher in differentiated CPSC, and the fusion status was obvious relative to un-differentiated CPSC. Chondrogenesis of CPSCs was upregulated with the induction by mitochondrial fusion promoter. Mfn2 over-expression significantly increased chondrocyte-specific gene expression and reversed OA through NOTCH2 signal pathway. Conclusions Our study demonstrated that the mitochondrial fusion promotes chondrogenesis differentiation of CPSCs. Mfn2 accelerates the chondrogenesis differentiation of CPSCs through Notch2. In vivo, Mfn2-OE in sheets of rCPSCs ameliorated OA in the rat model. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02758-7.
Collapse
Affiliation(s)
- Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rong Zeng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Diana Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Langhai Xu
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
148
|
Rios‐Arce ND, Murugesh DK, Hum NR, Sebastian A, Jbeily EH, Christiansen BA, Loots GG. Pre‐existing Type 1 Diabetes Mellitus Blunts the Development of
Post‐Traumatic
Osteoarthritis. JBMR Plus 2022; 6:e10625. [PMID: 35509635 PMCID: PMC9059474 DOI: 10.1002/jbm4.10625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Naiomy D. Rios‐Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Elias H. Jbeily
- Department of Orthopedic Surgery UC Davis Medical Center Sacramento CA USA
| | | | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
- Molecular and Cell Biology School of Natural Sciences, UC Merced Merced CA USA
| |
Collapse
|
149
|
Smith AE, Sigurbjörnsdóttir ES, Steingrímsson E, Sigurbjörnsdóttir S. Hedgehog signalling in bone and osteoarthritis: the role of Smoothened and cholesterol. FEBS J 2022. [PMID: 35305060 DOI: 10.1111/febs.16440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Hedgehog signalling is essential for development, crucial for normal anatomical arrangement and activated during tissue damage repair. Dysregulation of hedgehog signalling is associated with cancer, developmental disorders and other diseases including osteoarthritis (OA). The hedgehog gene was first discovered in Drosophila melanogaster, and the pathway is evolutionarily conserved in most animals. Although there are several hedgehog ligands with different protein expression patterns, they share a common plasma membrane receptor, Patched1 and hedgehog signalling pathway activation is transduced through the G-protein-coupled receptor-like protein Smoothened (SMO) and downstream effectors. Functional assays revealed that activation of SMO is dependent on sterol binding, and cholesterol was observed bound to SMO in crystallography experiments. In vertebrates, hedgehog signalling coordinates endochondral ossification and balances osteoblast and osteoclast activation to maintain homeostasis. A recently discovered mutation of SMO in humans (SMOR173C ) is predicted to alter cholesterol binding and is associated with a higher risk of hip OA. Functional studies in mice and human tissue analysis provide evidence that hedgehog signalling is pathologically activated in chondrocytes of osteoarthritic cartilage.
Collapse
Affiliation(s)
- Abbi Elise Smith
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Elín Sóley Sigurbjörnsdóttir
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Eiríkur Steingrímsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Sara Sigurbjörnsdóttir
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland.,Faculty of Life and Environmental Sciences, School of Engineering and Natural Sciences, BioMedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
150
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|