101
|
Nakatsu F, Messa M, Nández R, Czapla H, Zou Y, Strittmatter SM, De Camilli P. Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway. ACTA ACUST UNITED AC 2015; 209:85-95. [PMID: 25869668 PMCID: PMC4395491 DOI: 10.1083/jcb.201409064] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The function of Sac2/INPP5F in the endocytic pathway and its activity as a 4-phosphatase suggest that Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 in a partnership that mimics that of the two phosphatase modules of synaptojanin. The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL–Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Mirko Messa
- Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Ramiro Nández
- Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Heather Czapla
- Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Yixiao Zou
- Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Stephen M Strittmatter
- Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Howard Hughes Medical Institute, Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
102
|
Human Urine as a Noninvasive Source of Kidney Cells. Stem Cells Int 2015; 2015:362562. [PMID: 26089913 PMCID: PMC4451513 DOI: 10.1155/2015/362562] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 01/14/2023] Open
Abstract
Urine represents an unlimited source of patient-specific kidney cells that can be harvested noninvasively. Urine derived podocytes and proximal tubule cells have been used to study disease mechanisms and to screen for novel drug therapies in a variety of human kidney disorders. The urinary kidney stem/progenitor cells and extracellular vesicles, instead, might be promising for therapeutic treatments of kidney injury. The greatest advantages of urine as a source of viable cells are the easy collection and less complicated ethical issues. However, extensive characterization and in vivo studies still have to be performed before the clinical use of urine-derived kidney progenitors.
Collapse
|
103
|
Sartorius R, D'Apice L, Trovato M, Cuccaro F, Costa V, De Leo MG, Marzullo VM, Biondo C, D'Auria S, De Matteis MA, Ciccodicola A, De Berardinis P. Antigen delivery by filamentous bacteriophage fd displaying an anti-DEC-205 single-chain variable fragment confers adjuvanticity by triggering a TLR9-mediated immune response. EMBO Mol Med 2015; 7:973-88. [PMID: 25888235 PMCID: PMC4520660 DOI: 10.15252/emmm.201404525] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Filamentous bacteriophage fd particles delivering antigenic determinants via DEC-205 (fdsc-αDEC) represent a powerful delivery system that induces CD8+ T-cell responses even when administered in the absence of adjuvants or maturation stimuli for dendritic cells. In order to investigate the mechanisms of this activity, RNA-Sequencing of fd-pulsed dendritic cells was performed. A significant differential expression of genes involved in innate immunity, co-stimulation and cytokine production was observed. In agreement with these findings, we demonstrate that induction of proinflammatory cytokines and type I interferon by fdsc-αDEC was MYD88 mediated and TLR9 dependent. We also found that fdsc-αDEC is delivered into LAMP-1-positive compartments and co-localizes with TLR9. Thus, phage particles containing a single-strand DNA genome rich in CpG motifs delivered via DEC-205 are able to intercept and trigger the active TLR9 innate immune receptor into late endosome/lysosomes and to enhance the immunogenicity of the displayed antigenic determinants. These findings make fd bacteriophage a valuable tool for immunization without administering exogenous adjuvants.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy
| | - Luciana D'Apice
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy
| | - Maria Trovato
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy
| | - Fausta Cuccaro
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics A. Buzzati-Traverso, National Council of Research, Naples, Italy
| | | | - Vincenzo Manuel Marzullo
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy Telethon Institute of Genetics and Medicine, Pozzuoli (NA), Italy
| | - Carmelo Biondo
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Sabato D'Auria
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy Institute of Food Science, National Council of Research, Avellino, Italy
| | | | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics A. Buzzati-Traverso, National Council of Research, Naples, Italy Department of Science and Technology, University Parthenope of Naples, Naples, Italy
| | | |
Collapse
|
104
|
Oltrabella F, Pietka G, Ramirez IBR, Mironov A, Starborg T, Drummond IA, Hinchliffe KA, Lowe M. The Lowe syndrome protein OCRL1 is required for endocytosis in the zebrafish pronephric tubule. PLoS Genet 2015; 11:e1005058. [PMID: 25838181 PMCID: PMC4383555 DOI: 10.1371/journal.pgen.1005058] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/07/2015] [Indexed: 02/03/2023] Open
Abstract
Lowe syndrome and Dent-2 disease are caused by mutation of the inositol 5-phosphatase OCRL1. Despite our increased understanding of the cellular functions of OCRL1, the underlying basis for the renal tubulopathy seen in both human disorders, of which a hallmark is low molecular weight proteinuria, is currently unknown. Here, we show that deficiency in OCRL1 causes a defect in endocytosis in the zebrafish pronephric tubule, a model for the mammalian renal tubule. This coincides with a reduction in levels of the scavenger receptor megalin and its accumulation in endocytic compartments, consistent with reduced recycling within the endocytic pathway. We also observe reduced numbers of early endocytic compartments and enlarged vacuolar endosomes in the sub-apical region of pronephric cells. Cell polarity within the pronephric tubule is unaffected in mutant embryos. The OCRL1-deficient embryos exhibit a mild ciliogenesis defect, but this cannot account for the observed impairment of endocytosis. Catalytic activity of OCRL1 is required for renal tubular endocytosis and the endocytic defect can be rescued by suppression of PIP5K. These results indicate for the first time that OCRL1 is required for endocytic trafficking in vivo, and strongly support the hypothesis that endocytic defects are responsible for the renal tubulopathy in Lowe syndrome and Dent-2 disease. Moreover, our results reveal PIP5K as a potential therapeutic target for Lowe syndrome and Dent-2 disease. Phosphoinositide lipids are key regulators of cellular physiology and consequently enzymes that generate or remove these lipids are of fundamental importance. Mutation of one such enzyme, called OCRL1, causes two disorders in humans, Lowe syndrome and Dent-2 disease. However, the underlying mechanisms remain poorly defined. Here, we demonstrate that OCRL1 regulates endocytosis, the process by which cells internalize material from their extracellular environment. Importantly, this is demonstrated in a physiologically relevant tissue in vivo, namely the zebrafish renal tubule. Defective endocytosis can explain the renal symptoms seen in Lowe syndrome and Dent-2 patients. We also report that defects in cell polarity or cilia formation cannot explain the renal symptoms. This study not only increases our understanding of the endocytic pathway, it also provides a mechanistic explanation for the renal defects observed in Lowe syndrome and Dent-2 patients.
Collapse
Affiliation(s)
| | - Grzegorz Pietka
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Aleksandr Mironov
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Toby Starborg
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Iain A Drummond
- Nephrology Division, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | | | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
105
|
Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin. PLoS One 2015; 10:e0120998. [PMID: 25811383 PMCID: PMC4374958 DOI: 10.1371/journal.pone.0120998] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC) deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.
Collapse
|
106
|
Madhivanan K, Ramadesikan S, Aguilar RC. Role of Ocrl1 in primary cilia assembly. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:331-47. [PMID: 26008789 DOI: 10.1016/bs.ircmb.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lowe syndrome is a lethal X-linked genetic disorder characterized by congenital cataracts, mental retardation, and kidney dysfunction. It is caused by mutations in the OCRL1 (oculocerebrorenal syndrome of Lowe) gene that encodes a phosphatidylinositol 5-phosphatase (EC 3.1.3.36). The gene product Ocrl1 has been linked to a multitude of functions due to the central role played by phosphoinositides in signaling. Moreover, this protein also has the ability to bind Rho GTPases, the master regulators of the actin cytoskeleton, and to interact with elements of the vesicle trafficking machinery. It is currently under investigation how deficiencies in Ocrl1 affect these different processes and contribute to patient symptoms. This chapter outlines the known physiological roles of Ocrl1 which might be relevant to the mechanism underlying Lowe syndrome.
Collapse
Affiliation(s)
| | - Swetha Ramadesikan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - R Claudio Aguilar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
107
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
108
|
Tan X, Sun Y, Thapa N, Liao Y, Hedman AC, Anderson RA. LAPTM4B is a PtdIns(4,5)P2 effector that regulates EGFR signaling, lysosomal sorting, and degradation. EMBO J 2015; 34:475-90. [PMID: 25588945 DOI: 10.15252/embj.201489425] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lysosomal degradation is essential for the termination of EGF-stimulated EGF receptor (EGFR) signaling. This requires EGFR sorting to the intraluminal vesicles (ILVs) of multi-vesicular endosomes (MVEs). Cytosolic proteins including the ESCRT machineries are key regulators of EGFR intraluminal sorting, but roles for endosomal transmembrane proteins in receptor sorting are poorly defined. Here, we show that LAPTM4B, an endosomal transmembrane oncoprotein, inhibits EGF-induced EGFR intraluminal sorting and lysosomal degradation, leading to enhanced and prolonged EGFR signaling. LAPTM4B blocks EGFR sorting by promoting ubiquitination of Hrs (an ESCRT-0 subunit), which inhibits the Hrs association with ubiquitinated EGFR. This is counteracted by the endosomal PIP kinase, PIPKIγi5, which directly binds LAPTM4B and neutralizes the inhibitory function of LAPTM4B in EGFR sorting by generating PtdIns(4,5)P2 and recruiting SNX5. PtdIns(4,5)P2 and SNX5 function together to protect Hrs from ubiquitination, thereby promoting EGFR intraluminal sorting. These results reveal an essential layer of EGFR trafficking regulated by LAPTM4B, PtdIns(4,5)P2 signaling, and the ESCRT complex and define a mechanism by which the oncoprotein LAPTM4B can transform cells and promote tumor progression.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Yue Sun
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Yihan Liao
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Andrew C Hedman
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
109
|
Waugh MG. Chromosomal Instability and Phosphoinositide Pathway Gene Signatures in Glioblastoma Multiforme. Mol Neurobiol 2014; 53:621-630. [PMID: 25502460 PMCID: PMC4703635 DOI: 10.1007/s12035-014-9034-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/30/2014] [Indexed: 12/29/2022]
Abstract
Structural rearrangements of chromosome 10 are frequently observed in glioblastoma multiforme and over 80 % of tumour samples archived in the catalogue of somatic mutations in cancer database had gene copy number loss for PI4K2A which encodes phosphatidylinositol 4-kinase type IIalpha. PI4K2A loss of heterozygosity mirrored that of PTEN, another enzyme that regulates phosphoinositide levels and also PIK3AP1, MINPP1, INPP5A and INPP5F. These results indicated a reduction in copy number for a set of phosphoinositide signalling genes that co-localise to chromosome 10q. This analysis was extended to a panel of phosphoinositide pathway genes on other chromosomes and revealed a number of previously unreported associations with glioblastoma multiforme. Of particular note were highly penetrant copy number losses for a group of X-linked phosphoinositide phosphatase genes OCRL, MTM1 and MTMR8; copy number amplifications for the chromosome 19 genes PIP5K1C, AKT2 and PIK3R2, and also for the phospholipase C genes PLCB1, PLCB4 and PLCG1 on chromosome 20. These mutations are likely to affect signalling and trafficking functions dependent on the PI(4,5)P2, PI(3,4,5)P3 and PI(3,5)P2 lipids as well as the inositol phosphates IP3, IP5 and IP6. Analysis of flanking genes with functionally unrelated products indicated that chromosomal instability as opposed to a phosphoinositide-specific process underlay this pattern of copy number variation. This in silico study suggests that in glioblastoma multiforme, karyotypic changes have the potential to cause multiple abnormalities in sets of genes involved in phosphoinositide metabolism and this may be important for understanding drug resistance and phosphoinositide pathway redundancy in the advanced disease state.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
110
|
Mendelian disorders of PI metabolizing enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:867-81. [PMID: 25510381 DOI: 10.1016/j.bbalip.2014.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022]
Abstract
More than twenty different genetic diseases have been described that are caused by mutations in phosphoinositide metabolizing enzymes, mostly in phosphoinositide phosphatases. Although generally ubiquitously expressed, mutations in these enzymes, which are mainly loss-of-function, result in tissue-restricted clinical manifestations through mechanisms that are not completely understood. Here we analyze selected disorders of phosphoinositide metabolism grouped according to the principle tissue affected: the nervous system, muscle, kidney, the osteoskeletal system, the eye, and the immune system. We will highlight what has been learnt so far from the study of these disorders about not only the cellular and molecular pathways that are involved or are governed by phosphoinositides, but also the many gaps that remain to be filled to gain a full understanding of the pathophysiological mechanisms underlying the clinical manifestations of this steadily growing class of diseases, most of which still remain orphan in terms of treatment. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
111
|
Surendran K, Vitiello SP, Pearce DA. Lysosome dysfunction in the pathogenesis of kidney diseases. Pediatr Nephrol 2014; 29:2253-61. [PMID: 24217784 PMCID: PMC4018427 DOI: 10.1007/s00467-013-2652-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022]
Abstract
The lysosome, an organelle central to macromolecule degradation and recycling, plays a pivotal role in normal cell processes, ranging from autophagy to redox regulation. Not surprisingly, lysosomes are an integral part of the renal epithelial molecular machinery that facilitates normal renal physiology. Two inherited diseases that manifest as kidney dysfunction are Fabry's disease and cystinosis, each of which is caused by a primary biochemical defect at the lysosome resulting from loss-of-function mutations in genes that encode lysosomal proteins. The functions of the lysosomes in the kidney and how lysosomal dysfunction might contribute to Fabry's disease and cystinosis are discussed. Unlike most other pediatric renal diseases, therapies are available for Fabry's disease and cystinosis, but require early diagnosis. Recent analysis of ceroid neuronal lipofuscinosis type 3 (Cln3) null mice, a mouse model of lysosomal disease that is primarily associated with neurological deficits, revealed renal functional abnormalities. As current and future therapeutics increase the life-span of those suffering from diseases like neuronal ceroid lipofuscinosis, it remains a distinct possibility that many more lysosomal disorders that primarily manifest as infant and juvenile neurodegenerative diseases may also include renal disease phenotypes.
Collapse
Affiliation(s)
- Kameswaran Surendran
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA,Department of Pediatrics, Sanford School of Medicine, Sioux Falls, SD 57104, USA
| | - Seasson P. Vitiello
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA,Augustana College, Sioux Falls, SD
| | - David A. Pearce
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA,Department of Pediatrics, Sanford School of Medicine, Sioux Falls, SD 57104, USA,Corresponding Author: David A. Pearce, Sanford Research/USD, 2301 East 60th Street North, Sioux Falls, SD, 57104-0589, Telephone: 605 312-6004, FAX: 605 312-6071,
| |
Collapse
|
112
|
Pusch M, Zifarelli G. ClC-5: Physiological role and biophysical mechanisms. Cell Calcium 2014; 58:57-66. [PMID: 25443653 DOI: 10.1016/j.ceca.2014.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 01/05/2023]
Abstract
Cl(-) transport in animal cells has fundamental physiological roles and it is mediated by a variety of protein families, one of them being the CLC family of ion channels and transporters. Besides their physiological relevance, CLC proteins show peculiar biophysical properties. This review will focus on a member of the CLC protein family, the endosomal Cl(-)/H(+) antiporter ClC-5. ClC-5 mutations cause Dent's disease, a renal syndrome due to defective protein reabsorption in the proximal tubule. This established the critical function of ClC-5 for endocytosis. However, our understanding of ClC-5's molecular role in endosomes and of its biophysical properties has proved elusive in spite of important progress achieved in the last two decades. Early models in which ClC-5 would provide a shunt conductance to enable efficient endosomal acidification conflicted with the antiport activity of ClC-5 that has more recently emerged. Currently, the physiological role of ClC-5 is hotly debated and its biophysical properties are still not fully understood.
Collapse
Affiliation(s)
- Michael Pusch
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genoa, Italy
| | | |
Collapse
|
113
|
Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:832-43. [PMID: 25449648 DOI: 10.1016/j.bbalip.2014.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are low abundant but essential phospholipids in eukaryotic cells and refer to phosphatidylinositol and its seven polyphospho-derivatives. In this review, we summarize our current knowledge on phosphoinositides in multiple aspects of cell division in animal cells, including mitotic cell rounding, longitudinal cell elongation, cytokinesis furrow ingression, intercellular bridge abscission and post-cytokinesis events. PtdIns(4,5)P₂production plays critical roles in spindle orientation, mitotic cell shape and bridge stability after furrow ingression by recruiting force generator complexes and numerous cytoskeleton binding proteins. Later, PtdIns(4,5)P₂hydrolysis and PtdIns3P production are essential for normal cytokinesis abscission. Finally, emerging functions of PtdIns3P and likely PtdIns(4,5)P₂have recently been reported for midbody remnant clearance after abscission. We describe how the multiple functions of phosphoinositides in cell division reflect their distinct roles in local recruitment of protein complexes, membrane traffic and cytoskeleton remodeling. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
114
|
Montjean R, Aoidi R, Desbois P, Rucci J, Trichet M, Salomon R, Rendu J, Fauré J, Lunardi J, Gacon G, Billuart P, Dorseuil O. OCRL-mutated fibroblasts from patients with Dent-2 disease exhibit INPP5B-independent phenotypic variability relatively to Lowe syndrome cells. Hum Mol Genet 2014; 24:994-1006. [PMID: 25305077 DOI: 10.1093/hmg/ddu514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OCRL mutations are associated with both Lowe syndrome and Dent-2 disease, two rare X-linked conditions. Lowe syndrome is an oculo-cerebro-renal disorder, whereas Dent-2 patients mainly present renal proximal tubulopathy. Loss of OCRL-1, a phosphoinositide-5-phosphatase, leads in Lowe patients' fibroblasts to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) accumulation, with defects in F-actin network, α-actinin distribution and ciliogenesis, whereas fibroblasts of Dent-2 patients are still uncharacterized. To search for mechanisms linked to clinical variability observed between these two OCRL mutation-associated pathologies, we compared dermal fibroblasts from independent patients, four affected by Dent-2 disease and six with Lowe syndrome. For the first time, we describe that Dent-2 fibroblasts with OCRL loss-of-function (LOF) mutations exhibit decrease in actin stress fibers, appearance of punctate α-actinin signals and alteration in primary cilia formation. Interestingly, we quantified these phenotypes as clearly intermediate between Lowe and control fibroblasts, thus suggesting that levels of these defects correlate with clinical variations observed between patients with OCRL mutations. In addition, we show that Lowe and Dent-2 fibroblasts display similar PI(4,5)P2 accumulation levels. Finally, we analyzed INPP5B, a paralogous gene already reported to exhibit functional redundancy with OCRL, and report neither differences in its expression at RNA or protein levels, nor specific allelic variations between fibroblasts of patients. Altogether, we describe here differential phenotypes between fibroblasts from Lowe and Dent-2 patients, both associated with OCRL LOF mutations, we exclude direct roles of PI(4,5)P2 and INPP5B in this phenotypic variability and we underline potential key alterations leading to ocular and neurological clinical features in Lowe syndrome.
Collapse
Affiliation(s)
- Rodrick Montjean
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Rifdat Aoidi
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Pierrette Desbois
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Julien Rucci
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Michaël Trichet
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Rémi Salomon
- Service de Néphrologie Pédiatrique, Hôpital Necker Enfants Malades, Paris, France and
| | - John Rendu
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Grenoble, Grenoble, France
| | - Julien Fauré
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Grenoble, Grenoble, France
| | - Joël Lunardi
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Grenoble, Grenoble, France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Pierre Billuart
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Olivier Dorseuil
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France,
| |
Collapse
|
115
|
Abstract
The specific interaction of phosphoinositides with proteins is critical for a plethora of cellular processes, including cytoskeleton remodelling, mitogenic signalling, ion channel regulation and membrane traffic. The spatiotemporal restriction of different phosphoinositide species helps to define compartments within the cell, and this is particularly important for membrane trafficking within both the secretory and endocytic pathways. Phosphoinositide homoeostasis is tightly regulated by a large number of inositol kinases and phosphatases, which respectively phosphorylate and dephosphorylate distinct phosphoinositide species. Many of these enzymes have been implicated in regulating membrane trafficking and, accordingly, their dysregulation has been linked to a number of human diseases. In the present review, we focus on the inositol phosphatases, concentrating on their roles in membrane trafficking and the human diseases with which they have been associated.
Collapse
|
116
|
Nández R, Balkin DM, Messa M, Liang L, Paradise S, Czapla H, Hein MY, Duncan JS, Mann M, De Camilli P. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells. eLife 2014; 3:e02975. [PMID: 25107275 PMCID: PMC4358339 DOI: 10.7554/elife.02975] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022] Open
Abstract
Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations. DOI:http://dx.doi.org/10.7554/eLife.02975.001 Oculo-Cerebro-Renal syndrome of Lowe (Lowe syndrome) is a rare genetic disorder that can cause cataracts, mental disabilities and kidney dysfunction. It is caused by mutations in the gene encoding OCRL, a protein that modifies a membrane lipid and that is found on membranes transporting molecules (cargo) into cells by a process known as endocytosis. During endocytosis, the cell outer membrane is deformed into a pit that engulfs the cargo to be taken up by the cell. The pit then pinches off from the outer membrane to form a vesicle—a bubble-like compartment—inside the cell that transports the cargo to its destination. In one type of endocytosis, this process is mediated by a basket-like coat primarily made up from the protein clathrin that assembles at the membrane patch to be internalized. After the vesicle is released from the cell membrane, the clathrin coat is broken apart and its components are shed and recycled for use by new budding endocytic vesicles. The OCRL protein had previously been observed associated to newly forming clathrin-coated vesicles, but the significance of this was not known. Now, Nández et al. have used a range of imaging and analytical techniques to further investigate the properties of OCRL, taking advantage of cells from patients with Lowe syndrome. These cells lack OCRL, and so allow the effect of OCRL's absence on cell function to be deduced. OCRL destroys the membrane lipid that helps to connect the clathrin coat to the membrane, and Nández et al. show that without OCRL the newly formed vesicle moves into the cell but fails to efficiently shed its clathrin coat. Thus, a large fraction of clathrin coat components remain trapped on the vesicles, reducing the amount of such components available to help new pits develop into vesicles. As a consequence, the cell has difficulty internalizing molecules. Collectively, the findings of Nández et al. outline that OCRL plays a role in the regulation of endocytosis in addition to its previously reported actions in the control of intracellular membrane traffic. The results also help to explain some of the symptoms seen in Lowe syndrome patients. DOI:http://dx.doi.org/10.7554/eLife.02975.002
Collapse
Affiliation(s)
- Ramiro Nández
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Daniel M Balkin
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Mirko Messa
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Liang Liang
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, United States
| | - Summer Paradise
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Heather Czapla
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - James S Duncan
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
117
|
Lipatova Z, Segev N. Ypt/Rab GTPases regulate two intersections of the secretory and the endosomal/lysosomal pathways. CELLULAR LOGISTICS 2014; 4:e954870. [PMID: 25610722 DOI: 10.4161/21592780.2014.954870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
A prevailing question in the Ypt/Rab field is whether these conserved GTPases are specific to cellular compartments. The established role for Ypt1 and its human homolog Rab1 is in endoplasmic reticulum (ER)-to-Golgi transport. More recently these regulators were implicated also in autophagy. Two different TRAPP complexes, I and III, were identified as the guanine-nucleotide-exchange factors (GEFs) of Ypt1 in ER-to-Golgi transport and autophagy, respectively. Confusingly, Ypt1 and TRAPP III were also suggested to regulate endosome-to-Golgi transport, implying that they function at multiple cellular compartments, and bringing into question the nature of Ypt/Rab specificity. Recently, we showed that the role of TRAPP III and Ypt1 in autophagy occurs at the ER and that they do not regulate endosome-to-Golgi transport. Here, we discuss the significance of this conclusion to the idea that Ypt/Rabs are specific to cellular compartments. We postulate that Ypt1 regulates 2 alternative routes emanating from the ER toward the Golgi and the lysosome/vacuole. We further propose that the secretory and endocytic/lysosomal pathways intersect in 2 junctures, and 2 Ypts, Ypt1 and Ypt31, coordinate transport in the 2 intersections: Ypt1 links ER-to-Golgi and ER-to-autophagy transport, whereas Ypt31 links Golgi-to-plasma membrane (PM) transport with PM-to-Golgi recycling through endosomes.
Collapse
Affiliation(s)
- Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago ; Chicago, IL USA
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago ; Chicago, IL USA
| |
Collapse
|
118
|
Pirruccello M, Nandez R, Idevall-Hagren O, Alcazar-Roman A, Abriola L, Berwick SA, Lucast L, Morel D, De Camilli P. Identification of inhibitors of inositol 5-phosphatases through multiple screening strategies. ACS Chem Biol 2014; 9:1359-68. [PMID: 24742366 PMCID: PMC4076014 DOI: 10.1021/cb500161z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Phosphoinositides are low abundance
membrane phospholipids that
have key roles in signaling, membrane trafficking, and cytoskeletal
dynamics in all cells. Until recently, strategies for robust and quantitative
development of pharmacological tools for manipulating phosphoinositide
levels have focused selectively on PI(3,4,5)P3 due to the
importance of this lipid in growth factor signaling and cell proliferation.
However, drugs that affect levels of other phosphoinositides have
potential therapeutic applications and will be powerful research tools.
Here, we describe methodology for the high-throughput screening of
small molecule modulators of the inositol 5-phosphatases, which dephosphorylate
PI(4,5)P2 (the precursor for PI(3,4,5)P3) and
PI(3,4,5)P3). We developed three complementary in vitro activity assays, tested hit compounds on a panel
of 5-phosphatases, and monitored efficacy toward various substrates.
Two prominent chemical scaffolds were identified with high nanomolar/low
micromolar activity, with one class showing inhibitory activity toward
all 5-phosphatases tested and the other selective activity toward
OCRL and INPP5B, which are closely related to each other. One highly
soluble OCRL/INPP5B-specific inhibitor shows a direct interaction
with the catalytic domain of INPP5B. The efficacy of this compound
in living cells was validated through its property to enhance actin
nucleation at the cell cortex, a PI(4,5)P2 dependent process,
and to inhibit PI(4,5)P2 dephosphorylation by OCRL (both
overexpressed and endogenous enzyme). The assays and screening strategies
described here are applicable to other phosphoinositide-metabolizing
enzymes, at least several of which have major clinical relevance.
Most importantly, this study identifies the first OCRL/INPP5B specific
inhibitor and provides a platform for the design of more potent inhibitors
of this family of enzymes.
Collapse
Affiliation(s)
- Michelle Pirruccello
- Department
of Cell Biology, Howard Hughes Medical Institute and Program in Cellular
Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven Connecticut 06510, United States
| | - Ramiro Nandez
- Department
of Cell Biology, Howard Hughes Medical Institute and Program in Cellular
Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven Connecticut 06510, United States
| | - Olof Idevall-Hagren
- Department
of Cell Biology, Howard Hughes Medical Institute and Program in Cellular
Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven Connecticut 06510, United States
| | - Abel Alcazar-Roman
- Department
of Cell Biology, Howard Hughes Medical Institute and Program in Cellular
Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven Connecticut 06510, United States
| | - Laura Abriola
- Yale
Center for Molecular Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Shana Alexandra Berwick
- Department
of Cell Biology, Howard Hughes Medical Institute and Program in Cellular
Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven Connecticut 06510, United States
| | - Louise Lucast
- Department
of Cell Biology, Howard Hughes Medical Institute and Program in Cellular
Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven Connecticut 06510, United States
| | - Dayna Morel
- Department
of Cell Biology, Howard Hughes Medical Institute and Program in Cellular
Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven Connecticut 06510, United States
| | - Pietro De Camilli
- Department
of Cell Biology, Howard Hughes Medical Institute and Program in Cellular
Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven Connecticut 06510, United States
| |
Collapse
|
119
|
Salamon RS, Backer JM. Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases. Bioessays 2014; 35:602-11. [PMID: 23765576 DOI: 10.1002/bies.201200176] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Class I PI 3-kinases signal by producing the signaling lipid phosphatidylinositol(3,4,5) trisphosphate, which in turn acts by recruiting downstream effectors that contain specific lipid-binding domains. The class I PI 3-kinases comprise four distinct catalytic subunits linked to one of seven different regulatory subunits. All the class I PI 3-kinases produce the same signaling lipid, PIP3, and the different isoforms have overlapping expression patterns and are coupled to overlapping sets of upstream activators. Nonetheless, studies in cultured cells and in animals have demonstrated that the different isoforms are coupled to distinct ranges of downstream responses. This review focuses on the mechanisms by which the production of a common product, PIP3, can produce isoform-specific signaling by PI 3-kinases.
Collapse
Affiliation(s)
- Rachel Schnur Salamon
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
120
|
Schill NJ, Hedman AC, Choi S, Anderson RA. Isoform 5 of PIPKIγ regulates the endosomal trafficking and degradation of E-cadherin. J Cell Sci 2014; 127:2189-203. [PMID: 24610942 DOI: 10.1242/jcs.132423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) have distinct cellular targeting, allowing for site-specific synthesis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to activate specific signaling cascades required for cellular processes. Several C-terminal splice variants of PIPKIγ (also known as PIP5K1C) exist, and have been implicated in a multitude of cellular roles. PI(4,5)P2 serves as a fundamental regulator of E-cadherin transport, and PI(4,5)P2-generating enzymes are important signaling relays in these pathways. We present evidence that the isoform 5 splice variant of PIPKIγ (PIPKIγi5) associates with E-cadherin and promotes its lysosomal degradation. Additionally, we show that the endosomal trafficking proteins SNX5 and SNX6 associate with PIPKIγi5 and inhibit PIPKIγi5-mediated E-cadherin degradation. Following HGF stimulation, activated Src directly phosphorylates PIPKIγi5. Phosphorylation of the PIPKIγi5 C-terminus regulates its association with SNX5 and, consequently, E-cadherin degradation. Additionally, this PIPKIγi5-mediated pathway requires Rab7 to promote degradation of internalized E-cadherin. Taken together, the data indicate that PIPKIγi5 and SNX5 are crucial regulators of E-cadherin sorting and degradation. PIPKIγi5, SNX and phosphoinositide regulation of lysosomal sorting represent a novel area of PI(4,5)P2 signaling and research. PIPKIγi5 regulation of E-cadherin sorting for degradation might have broad implications in development and tissue maintenance, and enhanced PIPKIγi5 function might have pathogenic consequences due to downregulation of E-cadherin.
Collapse
Affiliation(s)
- Nicholas J Schill
- Department of Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Andrew C Hedman
- Department of Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- Program in Cellular & Molecular Biology, Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Richard A Anderson
- Department of Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
121
|
Mehta ZB, Pietka G, Lowe M. The cellular and physiological functions of the Lowe syndrome protein OCRL1. Traffic 2014; 15:471-87. [PMID: 24499450 PMCID: PMC4278560 DOI: 10.1111/tra.12160] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/17/2022]
Abstract
Phosphoinositide lipids play a key role in cellular physiology, participating in a wide array of cellular processes. Consequently, mutation of phosphoinositide-metabolizing enzymes is responsible for a growing number of diseases in humans. Two related disorders, oculocerebrorenal syndrome of Lowe (OCRL) and Dent-2 disease, are caused by mutation of the inositol 5-phosphatase OCRL1. Here, we review recent advances in our understanding of OCRL1 function. OCRL1 appears to regulate many processes within the cell, most of which depend upon coordination of membrane dynamics with remodeling of the actin cytoskeleton. Recently developed animal models have managed to recapitulate features of Lowe syndrome and Dent-2 disease, and revealed new insights into the underlying mechanisms of these disorders. The continued use of both cell-based approaches and animal models will be key to fully unraveling OCRL1 function, how its loss leads to disease and, importantly, the development of therapeutics to treat patients.
Collapse
Affiliation(s)
- Zenobia B Mehta
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK; Current address: Faculty of Medicine, Imperial College, London, UK
| | | | | |
Collapse
|
122
|
De Matteis MA, Vicinanza M, Venditti R, Wilson C. Cellular Assays for Drug Discovery in Genetic Disorders of Intracellular Trafficking. Annu Rev Genomics Hum Genet 2013; 14:159-90. [DOI: 10.1146/annurev-genom-091212-153415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy;
| |
Collapse
|
123
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
124
|
Carpentier S, N'Kuli F, Grieco G, Van Der Smissen P, Janssens V, Emonard H, Bilanges B, Vanhaesebroeck B, Gaide Chevronnay HP, Pierreux CE, Tyteca D, Courtoy PJ. Class III phosphoinositide 3-kinase/VPS34 and dynamin are critical for apical endocytic recycling. Traffic 2013; 14:933-48. [PMID: 23621784 DOI: 10.1111/tra.12079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 12/27/2022]
Abstract
Recycling is a limiting step for receptor-mediated endocytosis. We first report three in vitro or in vivo evidences that class III PI3K/VPS34 is the key PI3K isoform regulating apical recycling. A substractive approach, comparing in Opossum Kidney (OK) cells a pan-class I/II/III PI3K inhibitor (LY294002) with a class I/II PI3K inhibitor (ZSTK474), suggested that class III PI3K/VPS34 inhibition induced selective apical endosome swelling and sequestration of the endocytic receptor, megalin/LRP-2, causing surface down-regulation. GFP-(FYVE)x2 overexpression to sequester PI(3)P caused undistinguishable apical endosome swelling. In mouse kidney proximal tubular cells, conditional Vps34 inactivation also led to vacuolation and intracellular megalin redistribution. We next report that removal of LY294002 from LY294002-treated OK cells induced a spectacular burst of recycling tubules and restoration of megalin surface pool. Acute triggering of recycling tubules revealed recruitment of dynamin-GFP and dependence of dynamin-GTPase, guidance directionality by microtubules, and suggested that a microfilamentous net constrained endosomal swelling. We conclude that (i) besides its role in endosome fusion, PI3K-III is essential for endosome fission/recycling; and (ii) besides its role in endocytic entry, dynamin also supports tubulation of recycling endosomes. The unleashing of recycling upon acute reversal of PI3K inhibition may help study its dynamics and associated machineries.
Collapse
Affiliation(s)
- Sarah Carpentier
- CELL Unit, Université catholique de Louvain & de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator. Cell Death Differ 2013; 20:1101-15. [PMID: 23686137 DOI: 10.1038/cdd.2013.46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
Mismanaged protein trafficking by the proteostasis network contributes to several conformational diseases, including cystic fibrosis, the most frequent lethal inherited disease in Caucasians. Proteostasis regulators, as cystamine, enable the beneficial action of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators in ΔF508-CFTR airways beyond drug washout. Here we tested the hypothesis that functional CFTR protein can sustain its own plasma membrane (PM) stability. Depletion or inhibition of wild-type CFTR present in bronchial epithelial cells reduced the availability of the small GTPase Rab5 by causing Rab5 sequestration within the detergent-insoluble protein fraction together with its accumulation in aggresomes. CFTR depletion decreased the recruitment of the Rab5 effector early endosome antigen 1 to endosomes, thus reducing the local generation of phosphatidylinositol-3-phosphate. This diverts recycling of surface proteins, including transferrin receptor and CFTR itself. Inhibiting CFTR function also resulted in its ubiquitination and interaction with SQSTM1/p62 at the PM, favoring its disposal. Addition of cystamine prevented the recycling defect of CFTR by enhancing BECN1 expression and reducing SQSTM1 accumulation. Our results unravel an unexpected link between CFTR protein and function, the latter regulating the levels of CFTR surface expression in a positive feed-forward loop, and highlight CFTR as a pivot of proteostasis in bronchial epithelial cells.
Collapse
|
126
|
Farfán P, Lee J, Larios J, Sotelo P, Bu G, Marzolo MP. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome. Traffic 2013; 14:823-38. [PMID: 23593972 DOI: 10.1111/tra.12076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 12/12/2022]
Abstract
Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE.
Collapse
Affiliation(s)
- Pamela Farfán
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
127
|
Sun Y, Hedman AC, Tan X, Schill NJ, Anderson RA. Endosomal type Iγ PIP 5-kinase controls EGF receptor lysosomal sorting. Dev Cell 2013; 25:144-55. [PMID: 23602387 DOI: 10.1016/j.devcel.2013.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/24/2013] [Accepted: 03/15/2013] [Indexed: 12/24/2022]
Abstract
Endosomal trafficking and degradation of epidermal growth factor receptor (EGFR) play an essential role in the control of its signaling. Phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2)) is an established regulator of endocytosis, whereas PtdIns3P modulates endosomal trafficking. However, we demonstrate here that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes PtdIns4,5P(2), controls endosome-to-lysosome sorting of EGFR. In this pathway, PIPKIγi5 interacts with sorting nexin 5 (SNX5), a protein that binds PtdIns4,5P(2) and other phosphoinositides. PIPKIγi5 and SNX5 localize to endosomes, and loss of either protein blocks EGFR sorting into intraluminal vesicles (ILVs) of the multivesicular body. Loss of ILV sorting greatly enhances and prolongs EGFR signaling. PIPKIγi5 and SNX5 prevent Hrs ubiquitination, and this facilitates the Hrs association with EGFR that is required for ILV sorting. These findings reveal that PIPKIγi5 and SNX5 form a signaling nexus that controls EGFR endosomal sorting, degradation, and signaling.
Collapse
Affiliation(s)
- Yue Sun
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
128
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
129
|
Sun Y, Thapa N, Hedman AC, Anderson RA. Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. Bioessays 2013; 35:513-22. [PMID: 23575577 DOI: 10.1002/bies.201200171] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) is a key lipid signaling molecule that regulates a vast array of biological activities. PI4,5P(2) can act directly as a messenger or can be utilized as a precursor to generate other messengers: inositol trisphosphate, diacylglycerol, or phosphatidylinositol 3,4,5-trisphosphate. PI4,5P(2) interacts with hundreds of different effector proteins. The enormous diversity of PI4,5P(2) effector proteins and the spatio-temporal control of PI4,5P(2) generation allow PI4,5P(2) signaling to control a broad spectrum of cellular functions. PI4,5P(2) is synthesized by phosphatidylinositol phosphate kinases (PIPKs). The array of PIPKs in cells enables their targeting to specific subcellular compartments through interactions with targeting factors that are often PI4,5P(2) effectors. These interactions are a mechanism to define spatial and temporal PI4,5P(2) synthesis and the specificity of PI4,5P(2) signaling. In turn, the regulation of PI4,5P(2) effectors at specific cellular compartments has implications for understanding how PI4,5P(2) controls cellular processes and its role in diseases.
Collapse
Affiliation(s)
- Yue Sun
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
130
|
Hagemann N, Hou X, Goody RS, Itzen A, Erdmann KS. Crystal structure of the Rab binding domain of OCRL1 in complex with Rab8 and functional implications of the OCRL1/Rab8 module for Lowe syndrome. Small GTPases 2013; 3:107-10. [PMID: 22790198 DOI: 10.4161/sgtp.19380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mutations of the inositol-5-phosphatase OCRL1 cause Lowe syndrome. Lowe syndrome is an inherited disease characterized by renal dysfunction and impaired development of the eye and the nervous system. OCRL1 is a Rab effector protein that can bind to a large number of different Rab proteins. We have recently determined the X-ray structure of the Rab-binding domain of OCRL1 in complex with Rab8. Furthermore, we have characterized point mutations that abolish binding to Rab proteins and cause Lowe syndrome. Here we shortly review our recent biophysical and structural work and discuss possible functional implications of our finding that Rab8 binds with the highest affinity to OCRL1 among the Rab proteins tested. This could direct further work on OCRL1 leading to a better understanding of the complex disease mechanism of Lowe syndrome.
Collapse
Affiliation(s)
- Nina Hagemann
- Department of Biochemistry II, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | |
Collapse
|
131
|
Gericke A, Leslie NR, Lösche M, Ross AH. PtdIns(4,5)P2-mediated cell signaling: emerging principles and PTEN as a paradigm for regulatory mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:85-104. [PMID: 23775692 DOI: 10.1007/978-94-007-6331-9_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) is a relatively common anionic lipid that regulates cellular functions by multiple mechanisms. Hydrolysis of PtdIns(4,5)P2 by phospholipase C yields inositol trisphosphate and diacylglycerol. Phosphorylation by phosphoinositide 3-kinase yields PtdIns(3,4,5)P3, which is a potent signal for survival and proliferation. Also, PtdIns(4,5)P2 can bind directly to integral and peripheral membrane proteins. As an example of regulation by PtdIns(4,5)P2, we discuss phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in detail. PTEN is an important tumor suppressor and hydrolyzes PtdIns(3,4,5)P3. PtdIns(4,5)P2 enhances PTEN association with the plasma membrane and activates its phosphatase activity. This is a critical regulatory mechanism, but a detailed description of this process from a structural point of view is lacking. The disordered lipid bilayer environment hinders structural determinations of membrane-bound PTEN. A new method to analyze membrane-bound protein measures neutron reflectivity for proteins bound to tethered phospholipid membranes. These methods allow determination of the orientation and shape of membrane-bound proteins. In combination with molecular dynamics simulations, these studies will provide crucial structural information that can serve as a foundation for our understanding of PTEN regulation in normal and pathological processes.
Collapse
Affiliation(s)
- Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | |
Collapse
|
132
|
Phosphatidylinositol 4-Kinases and PI4P Metabolism in the Nervous System: Roles in Psychiatric and Neurological Diseases. Mol Neurobiol 2012; 47:361-72. [DOI: 10.1007/s12035-012-8358-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/27/2012] [Indexed: 01/18/2023]
|
133
|
Ben El Kadhi K, Emery G, Carreno S. The unexpected role of Drosophila OCRL during cytokinesis. Commun Integr Biol 2012; 5:291-3. [PMID: 22896796 PMCID: PMC3419118 DOI: 10.4161/cib.19914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Inositides are intrinsic components of cell membranes that regulate a wide variety of cellular functions. PtdIns(4,5)P2, one of the most abundant phosphoinositides, is restricted at the plasma membrane where it regulates numerous functions including cell division. We have recently established that the Drosophila inositol 5-phosphatase, dOCRL, is essential for cytokinesis, the last step of cell division (Ben El Kadhi et al. 2011).8 We demonstrated that dOCRL is required for the dephosphorylation of PtdIns(4,5)P2 at the surface of endosomes, resulting in the restriction of this phosphoinositide to the cell cortex during cytokinesis. dOCRL is the Drosophila ortholog of human OCRL1, a PtdIns(4,5)P2 phosphatase mutated in the X-linked disorder oculocerebrorenal Lowe syndrome. Here, we discuss the relevance of our findings with reference to the role of human OCRL1 in non-pathological and pathological conditions.
Collapse
|
134
|
Echard A. Phosphoinositides and cytokinesis: the "PIP" of the iceberg. Cytoskeleton (Hoboken) 2012; 69:893-912. [PMID: 23012232 DOI: 10.1002/cm.21067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022]
Abstract
Phosphoinositides [Phosphatidylinositol (PtdIns), phosphatidylinositol 3-monophosphate (PtdIns3P), phosphatidylinositol 4-monophosphate (PtdIns4P), phosphatidylinositol 5-monophosphate (PtdIns5P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2) ), phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2) ), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2) ), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3) )] are lowly abundant acidic lipids found at the cytosolic leaflet of the plasma membrane and intracellular membranes. Initially discovered as precursors of second messengers in signal transduction, phosphoinositides are now known to directly or indirectly control key cellular functions, such as cell polarity, cell migration, cell survival, cytoskeletal dynamics, and vesicular traffic. Phosphoinositides actually play a central role at the interface between membranes and cytoskeletons and contribute to the identity of the cellular compartments by recruiting specific proteins. Increasing evidence indicates that several phosphoinositides, particularly PtdIns(4,5)P(2) , are essential for cytokinesis, notably after furrow ingression. The present knowledge about the specific phosphoinositides and phosphoinositide modifying-enzymes involved in cytokinesis will be first presented. The review of the current data will then show that furrow stability and cytokinesis abscission require that both phosphoinositide production and hydrolysis are regulated in space and time. Finally, I will further discuss recent mechanistic insights on how phosphoinositides regulate membrane trafficking and cytoskeletal remodeling for successful furrow ingression and intercellular bridge abscission. This will highlight unanticipated connections between cytokinesis and enzymes implicated in human diseases, such as the Lowe syndrome.
Collapse
Affiliation(s)
- Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, 28 rue du Dr Roux 75015 Paris, France; CNRS URA2582, Paris, France.
| |
Collapse
|
135
|
van Rahden VA, Brand K, Najm J, Heeren J, Pfeffer SR, Braulke T, Kutsche K. The 5-phosphatase OCRL mediates retrograde transport of the mannose 6-phosphate receptor by regulating a Rac1-cofilin signalling module. Hum Mol Genet 2012; 21:5019-38. [PMID: 22907655 DOI: 10.1093/hmg/dds343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the OCRL gene encoding the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) 5-phosphatase OCRL cause Lowe syndrome (LS), which is characterized by intellectual disability, cataracts and selective proximal tubulopathy. OCRL localizes membrane-bound compartments and is implicated in intracellular transport. Comprehensive analysis of clathrin-mediated endocytosis in fibroblasts of patients with LS did not reveal any difference in trafficking of epidermal growth factor, low density lipoprotein or transferrin, compared with normal fibroblasts. However, LS fibroblasts displayed reduced mannose 6-phosphate receptor (MPR)-mediated re-uptake of the lysosomal enzyme arylsulfatase B. In addition, endosome-to-trans Golgi network (TGN) transport of MPRs was decreased significantly, leading to higher levels of cell surface MPRs and their enrichment in enlarged, retromer-positive endosomes in OCRL-depleted HeLa cells. In line with the higher steady-state concentration of MPRs in the endosomal compartment in equilibrium with the cell surface, anterograde transport of the lysosomal enzyme, cathepsin D was impaired. Wild-type OCRL counteracted accumulation of MPR in endosomes in an activity-dependent manner, suggesting that PI(4,5)P(2) modulates the activity state of proteins regulated by this phosphoinositide. Indeed, we detected an increased amount of the inactive, phosphorylated form of cofilin and lower levels of the active form of PAK3 upon OCRL depletion. Levels of active Rac1 and RhoA were reduced or enhanced, respectively. Overexpression of Rac1 rescued both enhanced levels of phosphorylated cofilin and MPR accumulation in enlarged endosomes. Our data suggest that PI(4,5)P(2) dephosphorylation through OCRL regulates a Rac1-cofilin signalling cascade implicated in MPR trafficking from endosomes to the TGN.
Collapse
Affiliation(s)
- Vanessa A van Rahden
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
136
|
Conduit SE, Dyson JM, Mitchell CA. Inositol polyphosphate 5-phosphatases; new players in the regulation of cilia and ciliopathies. FEBS Lett 2012; 586:2846-57. [PMID: 22828281 DOI: 10.1016/j.febslet.2012.07.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
Phosphoinositides regulate numerous cellular events via the recruitment and activation of multiple lipid-binding effector proteins. The precise temporal and spatial regulation of phosphoinositide signals by the co-ordinated activities of phosphoinositide kinases and phosphatases is essential for homeostasis and development. Mutations in two inositol polyphosphate 5-phosphatases, INPP5E and OCRL, cause the cerebrorenal syndromes of Joubert and Lowe's, respectively. INPP5E and OCRL exhibit overlapping phosphoinositide substrate specificity and subcellular localisation, including an association with the primary cilia. Here, we review recent studies that identify a new role for these enzymes in the regulation of primary cilia function. Joubert syndrome has been extensively linked to primary cilia defects, and Lowe's may represent a new class of 'ciliopathy associated' syndromes.
Collapse
Affiliation(s)
- Sarah E Conduit
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
137
|
Rbaibi Y, Cui S, Mo D, Carattino M, Rohatgi R, Satlin LM, Szalinski CM, Swanhart LM, Fölsch H, Hukriede NA, Weisz OA. OCRL1 modulates cilia length in renal epithelial cells. Traffic 2012; 13:1295-305. [PMID: 22680056 DOI: 10.1111/j.1600-0854.2012.01387.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/18/2023]
Abstract
Lowe syndrome is an X-linked disorder characterized by cataracts at birth, mental retardation and progressive renal malfunction that results from loss of function of the OCRL1 (oculocerebrorenal syndrome of Lowe) protein. OCRL1 is a lipid phosphatase that converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The renal pathogenesis of Lowe syndrome patients has been suggested to result from alterations in membrane trafficking, but this cannot fully explain the disease progression. We found that knockdown of OCRL1 in zebrafish caused developmental defects consistent with disruption of ciliary function, including body axis curvature, pericardial edema, hydrocephaly and impaired renal clearance. In addition, cilia in the proximal tubule of the zebrafish pronephric kidney were longer in ocrl morphant embryos. We also found that knockdown of OCRL1 in polarized renal epithelial cells caused elongation of the primary cilium and disrupted formation of cysts in three-dimensional cultures. Calcium release in response to ATP was blunted in OCRL1 knockdown cells, suggesting changes in signaling that could lead to altered cell function. Our results suggest a new role for OCRL1 in renal epithelial cell function that could contribute to the pathogenesis of Lowe syndrome.
Collapse
Affiliation(s)
- Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Luo N, West CC, Murga-Zamalloa CA, Sun L, Anderson RM, Wells CD, Weinreb RN, Travers JB, Khanna H, Sun Y. OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome. Hum Mol Genet 2012; 21:3333-44. [PMID: 22543976 PMCID: PMC3392109 DOI: 10.1093/hmg/dds163] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oculocerebral renal syndrome of Lowe (OCRL or Lowe syndrome), a severe X-linked congenital disorder characterized by congenital cataracts and glaucoma, mental retardation and kidney dysfunction, is caused by mutations in the OCRL gene. OCRL is a phosphoinositide 5-phosphatase that interacts with small GTPases and is involved in intracellular trafficking. Despite extensive studies, it is unclear how OCRL mutations result in a myriad of phenotypes found in Lowe syndrome. Our results show that OCRL localizes to the primary cilium of retinal pigment epithelial cells, fibroblasts and kidney tubular cells. Lowe syndrome-associated mutations in OCRL result in shortened cilia and this phenotype can be rescued by the introduction of wild-type OCRL; in vivo, knockdown of ocrl in zebrafish embryos results in defective cilia formation in Kupffer vesicles and cilia-dependent phenotypes. Cumulatively, our data provide evidence for a role of OCRL in cilia maintenance and suggest the involvement of ciliary dysfunction in the manifestation of Lowe syndrome.
Collapse
Affiliation(s)
- Na Luo
- Department of Ophthalmology, Glick Eye Institute, Indiana University, 1601 W Michigan St., Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Wu G, Zhang W, Na T, Jing H, Wu H, Peng JB. Suppression of intestinal calcium entry channel TRPV6 by OCRL, a lipid phosphatase associated with Lowe syndrome and Dent disease. Am J Physiol Cell Physiol 2012; 302:C1479-91. [PMID: 22378746 DOI: 10.1152/ajpcell.00277.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oculocerebrorenal syndrome of Lowe (OCRL) gene product is a phosphatidyl inositol 4,5-bisphosphate [PI(4,5)P(2)] 5-phosphatase, and mutations of OCRL cause Lowe syndrome and Dent disease, both of which are frequently associated with hypercalciuria. Transient receptor potential, vanilloid subfamily, subtype 6 (TRPV6) is an intestinal epithelial Ca(2+) channel mediating active Ca(2+) absorption. Hyperabsorption of Ca(2+) was found in patients of Dent disease with increased Ca(2+) excretion. In this study, we tested whether TRPV6 is regulated by OCRL and, if so, to what extent it is altered by Dent-causing OCRL mutations using Xenopus laevis oocyte expression system. Exogenous OCRL decreased TRPV6-mediated Ca(2+) uptake by regulating the function and trafficking of TRPV6 through different domains of OCRL. The PI(4,5)P(2) 5-phosphatase domain suppressed the TRPV6-mediated Ca(2+) transport likely through regulating the PI(4,5)P(2) level needed for TRPV6 function without affecting TRPV6 protein abundance of TRPV6 at the cell surface. The forward trafficking of TRPV6 was decreased by OCRL. The Rab binding domain in OCRL was involved in regulating the trafficking of TRPV6. Knocking down endogenous X. laevis OCRL by antisense approach increased TRPV6-mediated Ca(2+) transport and TRPV6 forward trafficking. All seven Dent-causing OCRL mutations examined exhibited alleviation of the inhibitory effect on TRPV6-mediated Ca(2+) transport together with decreased overall PI(4,5)P(2) 5-phosphatase activity. In conclusion, OCRL suppresses TRPV6 via two separate mechanisms. The disruption of PI(4,5)P(2) 5-phosphatase activity by Dent-causing mutations of OCRL may lead to increased intestinal Ca(2+) absorption and, in turn, hypercalciuria.
Collapse
Affiliation(s)
- Guojin Wu
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | | | | | | | | | | |
Collapse
|
140
|
Pirruccello M, De Camilli P. Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL. Trends Biochem Sci 2012; 37:134-43. [PMID: 22381590 DOI: 10.1016/j.tibs.2012.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 12/01/2022]
Abstract
The precise regulation of phosphoinositide lipids in cellular membranes is crucial for cellular survival and function. Inositol 5-phosphatases have been implicated in a variety of disorders, including various cancers, obesity, type 2 diabetes, neurodegenerative diseases and rare genetic conditions. Despite the obvious impact on human health, relatively little structural and biochemical information is available for this family. Here, we review recent structural and mechanistic work on the 5-phosphatases with a focus on OCRL, whose loss of function results in oculocerebrorenal syndrome of Lowe and Dent 2 disease. Studies of OCRL emphasize how the actions of 5-phosphatases rely on both intrinsic and extrinsic membrane recognition properties for full catalytic function. Additionally, structural analysis of missense mutations in the catalytic domain of OCRL provides insight into the phenotypic heterogeneity observed in Lowe syndrome and Dent disease.
Collapse
Affiliation(s)
- Michelle Pirruccello
- Department of Cell Biology, HHMI and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
141
|
Kühbacher A, Dambournet D, Echard A, Cossart P, Pizarro-Cerdá J. Phosphatidylinositol 5-phosphatase oculocerebrorenal syndrome of Lowe protein (OCRL) controls actin dynamics during early steps of Listeria monocytogenes infection. J Biol Chem 2012; 287:13128-36. [PMID: 22351770 DOI: 10.1074/jbc.m111.315788] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that induces its own entry into a broad range of mammalian cells through interaction of the bacterial surface protein InlB with the cellular receptor Met, promoting an actin polymerization/depolymerization process that leads to pathogen engulfment. Phosphatidylinositol bisphosphate (PI[4,5]P(2)) and trisphosphate (PI[3,4,5]P(3)) are two major phosphoinositide species that function as molecular scaffolds, recruiting cellular effectors that regulate actin dynamics during L. monocytogenes infection. Because the phosphatidylinositol 5'-phosphatase OCRL dephosphorylates PI(4,5)P(2) and to a lesser extent PI(3,4,5)P(3), we investigated whether this phosphatase modulates cell invasion by L. monocytogenes. Inactivation of OCRL by small interfering RNA (siRNA) leads to an increase in the internalization levels of L. monocytogenes in HeLa cells. Interestingly, OCRL depletion does not increase but rather decreases the surface expression of the receptor Met, suggesting that OCRL controls bacterial internalization by modulating signaling cascades downstream of Met. Immuno-fluorescence microscopy reveals that endogenous and overexpressed OCRL are present at L. monocytogenes invasion foci; live-cell imaging additionally shows that actin depolymerization coincides with EGFP-OCRL-a accumulation around invading bacteria. Together, these observations suggest that OCRL promotes actin depolymerization during L. monocytogenes infection; in agreement with this hypothesis, OCRL depletion leads to an increase in actin, PI(4,5)P(2), and PI(3,4,5)P(3) levels at bacterial internalization foci. Furthermore, in cells knocked down for OCRL, transfection of enzymatically active EGFP-OCRL-a (but not of a phosphatase-dead enzyme) decreases the levels of intracellular L. monocytogenes and of actin associated with invading bacteria. These results demonstrate that through its phosphatase activity, OCRL restricts L. monocytogenes invasion by modulating actin dynamics at bacterial internalization sites.
Collapse
Affiliation(s)
- Andreas Kühbacher
- Unité des Interactions Bactéries Cellules, Institut Pasteur, F-75015 Paris, France
| | | | | | | | | |
Collapse
|
142
|
Mayinger P. Phosphoinositides and vesicular membrane traffic. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1104-13. [PMID: 22281700 DOI: 10.1016/j.bbalip.2012.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/27/2011] [Accepted: 01/02/2012] [Indexed: 01/08/2023]
Abstract
Phosphoinositide lipids were initially discovered as precursors for specific second messengers involved in signal transduction, but have now taken the center stage in controlling many essential processes at virtually every cellular membrane. In particular, phosphoinositides play a critical role in regulating membrane dynamics and vesicular transport. The unique distribution of certain phosphoinositides at specific intracellular membranes makes these molecules uniquely suited to direct organelle-specific trafficking reactions. In this regulatory role, phosphoinositides cooperate specifically with small GTPases from the Arf and Rab families. This review will summarize recent progress in the study of phosphoinositides in membrane trafficking and organellar organization and highlight the particular relevance of these signaling pathways in disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Peter Mayinger
- Division of Nephrology & Hypertension and Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
143
|
Abstract
Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
144
|
Ramirez IBR, Pietka G, Jones DR, Divecha N, Alia A, Baraban SC, Hurlstone AFL, Lowe M. Impaired neural development in a zebrafish model for Lowe syndrome. Hum Mol Genet 2011; 21:1744-59. [PMID: 22210625 PMCID: PMC3313792 DOI: 10.1093/hmg/ddr608] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lowe syndrome, which is characterized by defects in the central nervous system, eyes and kidneys, is caused by mutation of the phosphoinositide 5-phosphatase OCRL1. The mechanisms by which loss of OCRL1 leads to the phenotypic manifestations of Lowe syndrome are currently unclear, in part, owing to the lack of an animal model that recapitulates the disease phenotype. Here, we describe a zebrafish model for Lowe syndrome using stable and transient suppression of OCRL1 expression. Deficiency of OCRL1, which is enriched in the brain, leads to neurological defects similar to those reported in Lowe syndrome patients, namely increased susceptibility to heat-induced seizures and cystic brain lesions. In OCRL1-deficient embryos, Akt signalling is reduced and there is both increased apoptosis and reduced proliferation, most strikingly in the neural tissue. Rescue experiments indicate that catalytic activity and binding to the vesicle coat protein clathrin are essential for OCRL1 function in these processes. Our results indicate a novel role for OCRL1 in neural development, and support a model whereby dysregulation of phosphoinositide metabolism and clathrin-mediated membrane traffic leads to the neurological symptoms of Lowe syndrome.
Collapse
|
145
|
Anitei M, Hoflack B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat Cell Biol 2011; 14:11-9. [PMID: 22193159 DOI: 10.1038/ncb2409] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transport carriers regulate membrane flow between compartments of the secretory and endocytic pathways in eukaryotic cells. Carrier biogenesis is assisted by microtubules, actin filaments and their associated motors that link to membrane-associated coats, adaptors and accessory proteins. We summarize here how the biochemical properties of membranes inform their interactions with cytoskeletal regulators. We also discuss how the forces generated by the cytoskeleton and motor proteins alter the biophysical properties and the shape of membranes. The interplay between the cytoskeleton and membrane proteins ensures tight spatial and temporal control of carrier biogenesis, which is essential for cellular homeostasis.
Collapse
Affiliation(s)
- Mihaela Anitei
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | |
Collapse
|