101
|
Rani V, Deshmukh R, Jaswal P, Kumar P, Bariwal J. Alzheimer's disease: Is this a brain specific diabetic condition? Physiol Behav 2016; 164:259-67. [PMID: 27235734 DOI: 10.1016/j.physbeh.2016.05.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2DM) are the two major health issues affecting millions of elderly people worldwide, with major impacts in the patient's daily life. Numerous studies have demonstrated that patients with diabetes have an increased risk of developing AD compared with healthy individuals. The principal biological mechanisms that associate with the progression of diabetes and AD are not completely understood. Impaired insulin signaling, uncontrolled glucose metabolism, oxidative stress, abnormal protein processing, and the stimulation of inflammatory pathways are common features to both AD and T2DM. In recent years brain specific abnormalities in insulin and insulin like growth factor (IGF) signaling considered as a major trigger involved in the etiopathogenesis of AD, showing T2DM like milieu. This review summarizes the pathways that might link diabetes and AD and the effect of diminished insulin.
Collapse
Affiliation(s)
- Vanita Rani
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Rahul Deshmukh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India.
| | - Priya Jaswal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Puneet Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Jitender Bariwal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
102
|
Del Rio R, Quintanilla RA, Orellana JA, Retamal MA. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Front Physiol 2015; 6:350. [PMID: 26648871 PMCID: PMC4664731 DOI: 10.3389/fphys.2015.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile ; Dirección de Investigación, Universidad Científica del Sur Lima, Perú
| | | | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina. Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
103
|
Cisternas P, Salazar P, Serrano FG, Montecinos-Oliva C, Arredondo SB, Varela-Nallar L, Barja S, Vio CP, Gomez-Pinilla F, Inestrosa NC. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2379-90. [PMID: 26300486 DOI: 10.1016/j.bbadis.2015.08.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 08/19/2015] [Indexed: 01/15/2023]
Abstract
Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe G Serrano
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla Montecinos-Oliva
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián B Arredondo
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Salesa Barja
- Departamento de Pediatria, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos P Vio
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
104
|
Diet-Induced Cognitive Deficits: The Role of Fat and Sugar, Potential Mechanisms and Nutritional Interventions. Nutrients 2015; 7:6719-38. [PMID: 26274972 PMCID: PMC4555146 DOI: 10.3390/nu7085307] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022] Open
Abstract
It is of vital importance to understand how the foods which are making us fat also act to impair cognition. In this review, we compare the effects of acute and chronic exposure to high-energy diets on cognition and examine the relative contributions of fat (saturated and polyunsaturated) and sugar to these deficits. Hippocampal-dependent memory appears to be particularly vulnerable to the effects of high-energy diets and these deficits can occur rapidly and prior to weight gain. More chronic diet exposure seems necessary however to impair other sorts of memory. Many potential mechanisms have been proposed to underlie diet-induced cognitive decline and we will focus on inflammation and the neurotrophic factor, brain-derived neurotrophic factor (BDNF). Finally, given supplementation of diets with omega-3 and curcumin has been shown to have positive effects on cognitive function in healthy ageing humans and in disease states, we will discuss how these nutritional interventions may attenuate diet-induced cognitive decline. We hope this approach will provide important insights into the causes of diet-induced cognitive deficits, and inform the development of novel therapeutics to prevent or ameliorate such memory impairments.
Collapse
|
105
|
High sucrose consumption during pregnancy induced ADHD-like behavioral phenotypes in mice offspring. J Nutr Biochem 2015; 26:1520-6. [PMID: 26452319 DOI: 10.1016/j.jnutbio.2015.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/29/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023]
Abstract
In recent years, the average consumption of sugar in humans from all ages has remarkably increased, exceeding the recommended limit. Pregnancy is a critical time for the global development of offsprings who are vulnerable to the deleterious effects of environmental factors. In this study, we investigated whether high sucrose consumption during pregnancy could affect the attention-deficit hyperactivity disorder (ADHD)-like neurobehavioral outcomes in offspring mice. Pregnant mice were randomly grouped and orally administered with either water as control (Con) or 30% wt/vol sucrose diluted in water at 6 (Suc6) or 9 (Suc9) g/kg dosage per day from gestational days 6 to 15. After the weaning period, offspring mice underwent a series of behavioral testing for locomotor activity, attention, and impulsivity. Although there is no obvious difference in gross development of offspring mice such as weight gain, high sucrose-exposed offspring mice showed a significantly increased locomotor activity. Moreover, these mice exhibited a dose-dependent decrease in attention and increase in impulsivity. In the striatum, a significantly increased dopamine transporter (DAT) mRNA expression was found in the Suc9 group along with dose-dependent decreases in the Drd1, Drd2 and Drd4 dopamine receptor subtypes. Furthermore, synaptosomal DAT protein expression was increased about twofold in the Suc9 group. Prenatal fructose exposure also induced hyperactive behavior in offspring mice suggesting the essential role of fructose in the dysregulated neurobehavioral development. These findings suggest prenatal sucrose consumption as a new risk factor for ADHD, which may need further attention and investigation in humans.
Collapse
|
106
|
Insulin Regulates the Activity of the High-Affinity Choline Transporter CHT. PLoS One 2015; 10:e0132934. [PMID: 26161852 PMCID: PMC4498808 DOI: 10.1371/journal.pone.0132934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/21/2015] [Indexed: 12/22/2022] Open
Abstract
Studies in humans and animal models show that neuronal insulin resistance increases the risk of developing Alzheimer’s Disease (AD), and that insulin treatment may promote memory function. Cholinergic neurons play a critical role in cognitive and attentional processing and their dysfunction early in AD pathology may promote the progression of AD pathology. Synthesis and release of the neurotransmitter acetylcholine (ACh) is closely linked to the activity of the high-affinity choline transporter protein (CHT), but the impact of insulin receptor signaling and neuronal insulin resistance on these aspects of cholinergic function are unknown. In this study, we used differentiated SH-SY5Y cells stably-expressing CHT proteins to study the effect of insulin signaling on CHT activity and function. We find that choline uptake activity measured after acute addition of 20 nM insulin is significantly lower in cells that were grown for 24 h in media containing insulin compared to cells grown in the absence of insulin. This coincides with loss of ability to increase phospho-Protein Kinase B (PKB)/Akt levels in response to acute insulin stimulation in the chronic insulin-treated cells. Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3-kinase) in cells significantly lowers phospho-PKB/Akt levels and decreases choline uptake activity. We show total internal reflection microscopy (TIRF) imaging of the dynamic movement of CHT proteins in live cells in response to depolarization and drug treatments. These data show that acute exposure of depolarized cells to insulin is coupled to transiently increased levels of CHT proteins at the cell surface, and that this is attenuated by chronic insulin exposure. Moreover, prolonged inhibition of PI3-kinase results in enhanced levels of CHT proteins at the cell surface by decreasing their rate of internalization.
Collapse
|
107
|
Liu Z, Patil IY, Jiang T, Sancheti H, Walsh JP, Stiles BL, Yin F, Cadenas E. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS One 2015; 10:e0128274. [PMID: 26023930 PMCID: PMC4449222 DOI: 10.1371/journal.pone.0128274] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/23/2015] [Indexed: 01/07/2023] Open
Abstract
High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts profoundly on brain activity, i.e., synaptic plasticity.
Collapse
Affiliation(s)
- Zhigang Liu
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States of America
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ishan Y. Patil
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States of America
| | - Tianyi Jiang
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States of America
| | - Harsh Sancheti
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States of America
| | - John P. Walsh
- Davis School of Gerontology and Program in Neuroscience, University of Southern California, Los Angeles, CA, 90089, United States of America
| | - Bangyan L. Stiles
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States of America
| | - Fei Yin
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States of America
| | - Enrique Cadenas
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States of America
- * E-mail:
| |
Collapse
|
108
|
Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience 2015; 309:125-39. [PMID: 25934036 DOI: 10.1016/j.neuroscience.2015.04.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/05/2023]
Abstract
Clinical studies suggest that obesity and Type 2 (insulin-resistant) diabetes impair the structural integrity of medial temporal lobe regions involved in memory and confer greater vulnerability to neurological insults. While eliminating obesity and its endocrine comorbidities would be the most straightforward way to minimize cognitive risk, structural barriers to physical activity and the widespread availability of calorically dense, highly palatable foods will likely necessitate additional strategies to maintain brain health over the lifespan. Research in rodents has identified numerous correlates of hippocampal functional impairment in obesity and diabetes, with several studies demonstrating causality in subsequent mechanistic studies. This review highlights recent work on pathways and cell-cell interactions underlying the synaptic consequences of obesity, diabetes, or in models with both pathological conditions. Although the mechanisms vary across different animal models, immune activation has emerged as a shared feature of obesity and diabetes, with synergistic exacerbation of neuroinflammation in model systems with both conditions. This review discusses these findings with reference to the benefits of incorporating existing models from the fields of obesity and metabolic disease. Many transgenic lines with basal metabolic alterations or differential susceptibility to diet-induced obesity have yet to be characterized with respect to their cognitive and synaptic phenotype. Adopting these models, and building on the extensive knowledge base used to generate them, is a promising avenue for understanding interactions between peripheral disease states and neurodegenerative disorders.
Collapse
|
109
|
Thierry M, Pasquis B, Buteau B, Fourgeux C, Dembele D, Leclere L, Gambert-Nicot S, Acar N, Bron AM, Creuzot-Garcher CP, Bretillon L. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats. Exp Eye Res 2015; 135:37-46. [PMID: 25912194 DOI: 10.1016/j.exer.2015.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
The lack of plasticity of neurons to respond to dietary changes, such as high fat and high fructose diets, by modulating gene and protein expression has been associated with functional and behavioral impairments that can have detrimental consequences. The inhibition of high fat-induced rewiring of hypothalamic neurons induced obesity. Feeding rodents with high fructose is a recognized and widely used model to trigger obesity and metabolic syndrome. However the adaptive response of the retina to short term feeding with high fructose is poorly documented. We therefore aimed to characterize both the functional and gene expression changes in the neurosensory retina of Brown Norway rats fed during 3 and 8 days with a 60%-rich fructose diet (n = 16 per diet and per time point). Glucose, insulin, leptin, triacylglycerols, total cholesterol, HDL-cholesterol, LDL-cholesterol and fructosamine were quantified in plasma (n = 8 in each group). Functionality of the inner retina was studied using scotopic single flash electroretinography (n = 8 in each group) and the individual response of rod and cone photoreceptors was determined using 8.02 Hz Flicker electroretinography (n = 8 in each group). Analysis of gene expression in the neurosensory retina was performed by Affymetrix genechips, and confirmed by RT-qPCR (n = 6 in each group). Elevated glycemia (+13%), insulinemia (+83%), and leptinemia (+172%) was observed after 8 days of fructose feeding. The cone photoreceptor response was altered at day 8 in high fructose fed rats (Δ = 0.5 log unit of light stimulus intensity). Affymetrix analysis of gene expression highlighted significant modulation of the pathways of eIF2 signaling and endoplasmic reticulum stress, regulation of eIF4 and p70S6K signaling, as well as mTOR signaling and mitochondrial dysfunction. RT-qPCR analysis confirmed the down regulation of Crystallins, Npy, Nid1 and Optc genes after 3 days of fructose feeding, and up regulation of End2. Meanwhile, a trend towards an increased expression of αA- and αB-crystallin proteins was observed at day 8. Our results are consistent with early alterations of the functioning and gene expression in the retina in a pro diabetogenic environment.
Collapse
Affiliation(s)
- Magalie Thierry
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Bruno Pasquis
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Bénédicte Buteau
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Cynthia Fourgeux
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Doulaye Dembele
- INSERM, UMR964 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67404 Illkirch, France; CNRS, UMR7104 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67404 Illkirch, France; Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67404 Illkirch, France; IGBMC, Microarray and Sequencing Platform, F-67404 Illkirch, France
| | - Laurent Leclere
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Ségolène Gambert-Nicot
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; University Hospital, Department of Clinical Chemistry, F-21000 Dijon, France
| | - Niyazi Acar
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Alain M Bron
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; University Hospital, Department of Ophthalmology, F-21000 Dijon, France
| | - Catherine P Creuzot-Garcher
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; University Hospital, Department of Ophthalmology, F-21000 Dijon, France
| | - Lionel Bretillon
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.
| |
Collapse
|
110
|
Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med 2015; 47:e149. [PMID: 25766618 PMCID: PMC4351418 DOI: 10.1038/emm.2015.3] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that includes obesity, diabetes, and dyslipidemia. Accumulating evidence implies that MetS contributes to the development and progression of Alzheimer's disease (AD); however, the factors connecting this association have not been determined. Insulin resistance (IR) is at the core of MetS and likely represent the key link between MetS and AD. In the central nervous system, insulin plays key roles in learning and memory, and AD patients exhibit impaired insulin signaling that is similar to that observed in MetS. As we face an alarming increase in obesity and T2D in all age groups, understanding the relationship between MetS and AD is vital for the identification of potential therapeutic targets. Recently, several diabetes therapies that enhance insulin signaling are being tested for a potential therapeutic benefit in AD and dementia. In this review, we will discuss MetS as a risk factor for AD, focusing on IR and the recent progress and future directions of insulin-based therapies.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
111
|
Huang CF, Du JX, Deng W, Cheng XC, Zhang SY, Zhao SJ, Tao MJ, Chen GZ, Hao XQ. Effect of prenatal exposure to LPS combined with pre- and post-natal high-fat diet on hippocampus in rat offspring. Neuroscience 2015; 286:364-70. [DOI: 10.1016/j.neuroscience.2014.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/30/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
|
112
|
Suzuki H, Sumiyoshi A, Matsumoto Y, Duffy BA, Yoshikawa T, Lythgoe MF, Yanai K, Taki Y, Kawashima R, Shimokawa H. Structural abnormality of the hippocampus associated with depressive symptoms in heart failure rats. Neuroimage 2015; 105:84-92. [DOI: 10.1016/j.neuroimage.2014.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/18/2014] [Accepted: 10/14/2014] [Indexed: 11/30/2022] Open
|
113
|
Nguyen JCD, Killcross AS, Jenkins TA. Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci 2014; 8:375. [PMID: 25477778 PMCID: PMC4237034 DOI: 10.3389/fnins.2014.00375] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/31/2014] [Indexed: 01/02/2023] Open
Abstract
The incidence of obesity in middle age is increasing markedly, and in parallel the prevalence of metabolic disorders including cardiovascular disease and type II diabetes is also rising. Numerous studies have demonstrated that both obesity and metabolic disorders are associated with poorer cognitive performance, cognitive decline, and dementia. In this review we discuss the effects of obesity on cognitive performance, including both clinical and preclinical observations, and discuss some of the potential mechanisms involved, namely inflammation and vascular and metabolic alterations.
Collapse
Affiliation(s)
- Jason C. D. Nguyen
- Discipline of Pharmaceutical Sciences, School of Medical Sciences, Health Innovations Research Institute, RMIT UniversityBundoora, VIC, Australia
| | | | - Trisha A. Jenkins
- Discipline of Pharmaceutical Sciences, School of Medical Sciences, Health Innovations Research Institute, RMIT UniversityBundoora, VIC, Australia
| |
Collapse
|
114
|
Sripetchwandee J, Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. DPP-4 Inhibitor and PPARγ Agonist Restore the Loss of CA1 Dendritic Spines in Obese Insulin-resistant Rats. Arch Med Res 2014; 45:547-52. [DOI: 10.1016/j.arcmed.2014.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
|