101
|
Täger T, Atar D, Agewall S, Katus HA, Grundtvig M, Cleland JGF, Clark AL, Fröhlich H, Frankenstein L. Comparative efficacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) for cardiovascular outcomes in type 2 diabetes: a systematic review and network meta-analysis of randomised controlled trials. Heart Fail Rev 2021; 26:1421-1435. [PMID: 32314085 PMCID: PMC8510986 DOI: 10.1007/s10741-020-09954-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) improve cardiovascular outcomes in patients with type 2 diabetes mellitus (T2D). The comparative efficacy of individual SGLT2i remains unclear. We searched PubMed, www.clinicaltrials.gov and the Cochrane Central Register of Controlled Trials for randomised controlled trials exploring the use of canagliflozin, dapagliflozin, empagliflozin or ertugliflozin in patients with T2D. Comparators included placebo or any other active treatment. The primary endpoint was all-cause mortality. Secondary endpoints were cardiovascular mortality and worsening heart failure (HF). Evidence was synthesised using network meta-analysis (NMA). Sixty-four trials reporting on 74,874 patients were included. The overall quality of evidence was high. When compared with placebo, empagliflozin and canagliflozin improved all three endpoints, whereas dapagliflozin improved worsening HF. When compared with other SGLT2i, empagliflozin was superior for all-cause and cardiovascular mortality reduction. Empagliflozin, canagliflozin and dapagliflozin had similar effects on improving worsening HF. Ertugliflozin had no effect on any of the three endpoints investigated. Sensitivity analyses including extension periods of trials or excluding studies with a treatment duration of < 52 weeks confirmed the main results. Similar results were obtained when restricting mortality analyses to patients included in cardiovascular outcome trials (n = 38,719). Empagliflozin and canagliflozin improved survival with empagliflozin being superior to the other SGLT2i. Empagliflozin, canagliflozin and dapagliflozin had similar effects on improving worsening HF. Prospective head-to-head comparisons would be needed to confirm these results.
Collapse
Affiliation(s)
- Tobias Täger
- Department of Cardiology, Angiology, and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dan Atar
- Department of Cardiology, Oslo University Hospital, Ulleval and Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - Stefan Agewall
- Department of Cardiology, Oslo University Hospital, Ulleval and Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Morten Grundtvig
- Medical Department, Innlandet Hospital Trust Division Lillehammer, Lillehammer, Norway
| | - John G F Cleland
- National Heart & Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, London, and Robertson Centre for Biostatistics & Clinical Trials, Glasgow, UK
| | - Andrew L Clark
- Castle Hill Hospital of the University of Hull, Cottingham, UK
| | - Hanna Fröhlich
- Department of Cardiology, Angiology, and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Lutz Frankenstein
- Department of Cardiology, Angiology, and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
102
|
Chung MC, Hung PH, Hsiao PJ, Wu LY, Chang CH, Wu MJ, Shieh JJ, Chung CJ. Association of Sodium-Glucose Transport Protein 2 Inhibitor Use for Type 2 Diabetes and Incidence of Gout in Taiwan. JAMA Netw Open 2021; 4:e2135353. [PMID: 34797368 PMCID: PMC8605485 DOI: 10.1001/jamanetworkopen.2021.35353] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE The use of sodium-glucose transport protein 2 (SGLT2) inhibitors is currently a standard intervention in patients with type 2 diabetes (T2DM) and exerts favorable pleiotropic effects to consistently lower blood urate levels. However, to date, no association between SGLT2 inhibitor use and the incidence of gout have been established. OBJECTIVE To investigate whether prescribed SGLT2 inhibitors are associated with lower gout incidence in patients with T2DM. DESIGN, SETTING, AND PARTICIPANTS In a cohort study, all patients with incident T2DM in Taiwan National Health Institution databases between May 1, 2016, and December 31, 2018, were retrospectively analyzed. As a comparator, patients using dipeptidyl peptidase 4 (DPP4) inhibitors were included. A total of 47 905 individuals receiving an SGLT2 inhibitor and 183 303 receiving a DPP4 inhibitor were evaluated, along with 47 405 pairs of patients using an SGLT2 inhibitor or DPP4 inhibitor in 1:1 propensity score-matched analyses. Data analysis was conducted from April 1 to June 30, 2021. MAIN OUTCOMES AND MEASURES A gout diagnosis was based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) and the International Statistical Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM). Multiple Cox proportional hazards regression models were used to calculate hazard ratios (HRs) and 95% CIs. RESULTS In total, 231 208 patients with T2DM were included in the population; 113 812 individuals (49.22%) were women, and the mean (SD) age was 61.53 (12.86) years. The overall gout incidence was 20.26 per 1000 patient-years for SGLT2 inhibitor users and 24.30 per 1000 patient-years for DPP4 inhibitor users. When potential risk factors were adjusted in the propensity score-matched population, use of SGLT2 inhibitors was associated with a lower risk of gout (HR, 0.89; 95% CI, 0.82-0.96) compared with DPP4 inhibitors, particularly for patients receiving dapagliflozin (HR, 0.86; 95% CI, 0.78-0.95). A sensitivity analysis, performed when a gout diagnosis was ascertained using the ICD-9-CM or ICD-10-CM code with gout-related medication, also showed a significantly lower risk for gout incidence of 15% with SGLT2 inhibitors (HR, 0.85; 95% CI, 0.74-0.97). Subgroup analysis indicated that SGLT2 inhibitor benefits in patients with T2DM to achieve a lower gout risk were not different across subgroups. CONCLUSIONS AND RELEVANCE The findings of this study suggest that patients with T2DM who are receiving SGLT2 inhibitors may have a lower risk for gout compared with those receiving DPP4 inhibitors.
Collapse
Affiliation(s)
- Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
- Department of Applied Life Science and Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Po-Jen Hsiao
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan
| | - Laing-You Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Hsiang Chang
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Jer Shieh
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chi-Jung Chung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
103
|
Khosla S, Samakkarnthai P, Monroe DG, Farr JN. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:685-697. [PMID: 34518671 PMCID: PMC8605611 DOI: 10.1038/s41574-021-00555-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Fracture risk is increased in patients with type 2 diabetes mellitus (T2DM). In addition, these patients sustain fractures despite having higher levels of areal bone mineral density, as measured by dual-energy X-ray absorptiometry, than individuals without T2DM. Thus, additional factors such as alterations in bone quality could have important roles in mediating skeletal fragility in patients with T2DM. Although the pathogenesis of increased fracture risk in T2DM is multifactorial, impairments in bone material properties and increases in cortical porosity have emerged as two key skeletal abnormalities that contribute to skeletal fragility in patients with T2DM. In addition, indices of bone formation are uniformly reduced in patients with T2DM, with evidence from mouse studies published over the past few years linking this abnormality to accelerated skeletal ageing, specifically cellular senescence. In this Review, we highlight the latest advances in our understanding of the mechanisms of skeletal fragility in patients with T2DM and suggest potential novel therapeutic approaches to address this problem.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Parinya Samakkarnthai
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Division of Endocrinology, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - David G Monroe
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
104
|
Cao H, Liu Y, Tian Z, Lian Y, Jia J, Liu M, Li D. Sodium-glucose cotransporter 2 inhibitors benefit to kidney and cardiovascular outcomes for patients with type 2 diabetes mellitus and chronic kidney disease 3b-4: A systematic review and meta-analysis of randomized clinical trials. Diabetes Res Clin Pract 2021; 180:109033. [PMID: 34464675 DOI: 10.1016/j.diabres.2021.109033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND A systematic review and meta-analysis was performed to assess the kidney and cardiovascular (CV) outcomes of sodium-glucose cotransporter 2 (SGLT2) inhibitors in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) stage 3b-4. METHOD We conducted a systematic review and meta-analysis of randomized, placebo-controlled trials (RCTs). Medline, Embase, and the Cochrane Central were searched for available trials up to Jan 18, 2021. RESULTS From identifying 1892 citations, we included nine studies into quantitative analyses with a total of 6521 participants. In the patients with T2DM and CKD stage 3b-4, SGLT2 inhibitors significantly decreased the risk of the primary kidney outcome (HR 0.65, 95% CI 0.55-0.76) and slowed the decline in eGFR slope with a difference between treatment and control of 0.46 ml/min/1.73 m2 per year (95% CI 0.37-0.55). SGLT2 inhibitors also reduced the risk of the major adverse cardiovascular events (MACE) (HR 0.75, 95% CI 0.60-0.93). CONCLUSIONS SGLT2 inhibitors can reduce the risk of kidney disease and MACE outcomes for patients with T2DM and CKD stage 3b-4, which may be the most beneficial effects observed in the included trials.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Youxia Liu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixia Tian
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuhang Lian
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Dong Li
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
105
|
Odutayo A, da Costa BR, Pereira TV, Garg V, Iskander S, Roble F, Lalji R, Hincapié CA, Akingbade A, Rodrigues M, Agarwal A, Lawendy B, Saadat P, Udell JA, Cosentino F, Grant PJ, Verma S, Jüni P. Sodium-Glucose Cotransporter 2 Inhibitors, All-Cause Mortality, and Cardiovascular Outcomes in Adults with Type 2 Diabetes: A Bayesian Meta-Analysis and Meta-Regression. J Am Heart Assoc 2021; 10:e019918. [PMID: 34514812 PMCID: PMC8649541 DOI: 10.1161/jaha.120.019918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background This study aimed to assess the effectiveness of sodium‐glucose cotransporter 2 inhibitors in reducing the incidence of mortality and cardiovascular outcomes in adults with type 2 diabetes. Methods and Results We conducted a Bayesian meta‐analysis of randomized controlled trials comparing sodium‐glucose cotransporter 2 inhibitors with placebo. We used meta‐regression to examine the association between treatment effects and control group event rates as measures of cardiovascular baseline risk. Fifty‐three randomized controlled trials were included in our synthesis. Empagliflozin, canagliflozin, and dapagliflozin reduced the incidence of all‐cause mortality (empagliflozin: rate ratio [RR], 0.79; 95% credibility interval [CrI], 0.63–0.97; canagliflozin: RR, 0.86; 95% CrI, 0.69–1.05; dapagliflozin: RR, 0.86; 95% CrI, 0.72–1.01) and cardiovascular mortality (empagliflozin: RR, 0.78; 95% CrI, 0.61–1.00; canagliflozin: RR, 0.83; 95% CrI, 0.63–1.05; dapagliflozin: RR, 0.88; 95% CrI, 0.71–1.08), with a 90.1% to 98.7% probability for the true RR to be <1.00 for both outcomes. There was little evidence for ertugliflozin and sotagliflozin versus placebo for reducing all‐cause and cardiovascular mortality. There was no association between treatment effects for all‐cause and cardiovascular mortality and the control group event rates. There was evidence for a reduction in the incidence of heart failure for empagliflozin, canagliflozin, dapagliflozin, and ertugliflozin versus placebo (probability RR <1.00 of ≥99.3%) and weaker, albeit positive, evidence for acute myocardial infarction for the first 3 agents (probability RR <1.00 of 89.0%–95.2%). There was little evidence of any agent except canagliflozin for reducing the incidence of stroke. Conclusions Empagliflozin, canagliflozin, and dapagliflozin reduced the incidence of all‐cause and cardiovascular mortality versus placebo. Treatment effects of sodium‐glucose cotransporter 2 inhibitors versus placebo do not vary by baseline risk.
Collapse
Affiliation(s)
- Ayodele Odutayo
- Department of Medicine and Institute of Health Policy, Management and Evaluation Applied Health Research Centre (AHRC) Li Ka Shing Knowledge Institute of St. Michael's HospitalUniversity of Toronto Canada
| | - Bruno R da Costa
- Department of Medicine and Institute of Health Policy, Management and Evaluation Applied Health Research Centre (AHRC) Li Ka Shing Knowledge Institute of St. Michael's HospitalUniversity of Toronto Canada
| | - Tiago V Pereira
- Department of Medicine and Institute of Health Policy, Management and Evaluation Applied Health Research Centre (AHRC) Li Ka Shing Knowledge Institute of St. Michael's HospitalUniversity of Toronto Canada.,Department of Health Sciences University of Leicester UK
| | - Vinay Garg
- Faculty of Medicine Department of Medicine University of Toronto Ontario Canada
| | - Samir Iskander
- Department of Medicine and Institute of Health Policy, Management and Evaluation Applied Health Research Centre (AHRC) Li Ka Shing Knowledge Institute of St. Michael's HospitalUniversity of Toronto Canada
| | - Fatimah Roble
- Faculty of Medicine Department of Medicine University of Toronto Ontario Canada
| | - Rahim Lalji
- Department of Chiropractic Medicine Faculty of Medicine University of Zurich and Balgrist University Hospital Zurich Switzerland.,Epidemiology, Biostatistics and Prevention Institute University of Zurich Zurich Switzerland
| | - Cesar A Hincapié
- Department of Medicine and Institute of Health Policy, Management and Evaluation Applied Health Research Centre (AHRC) Li Ka Shing Knowledge Institute of St. Michael's HospitalUniversity of Toronto Canada.,Department of Chiropractic Medicine Faculty of Medicine University of Zurich and Balgrist University Hospital Zurich Switzerland.,Epidemiology, Biostatistics and Prevention Institute University of Zurich Zurich Switzerland
| | | | - Myanca Rodrigues
- Health Research Methodology Graduate Program Department of Health Research Methods, Evidence & Impact Faculty of Health Sciences McMaster University Hamilton Ontario Canada
| | - Arnav Agarwal
- Faculty of Medicine Department of Medicine University of Toronto Ontario Canada
| | - Bishoy Lawendy
- Faculty of Medicine Department of Medicine University of Toronto Ontario Canada
| | - Pakeezah Saadat
- Department of Medicine and Institute of Health Policy, Management and Evaluation Applied Health Research Centre (AHRC) Li Ka Shing Knowledge Institute of St. Michael's HospitalUniversity of Toronto Canada
| | - Jacob A Udell
- Faculty of Medicine Department of Medicine University of Toronto Ontario Canada
| | - Francesco Cosentino
- Cardiology Unit Department of Medicine Solna Karolinska Institute &Karolinska University Hospital Stockholm Sweden
| | - Peter J Grant
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds/Leeds Teaching Hospitals NHS TrustLIGHT Laboratories Leeds UK
| | - Subodh Verma
- Departments of Surgery, and Pharmacology and Toxicology University of Toronto Ontario Canada
| | - Peter Jüni
- Department of Medicine and Institute of Health Policy, Management and Evaluation Applied Health Research Centre (AHRC) Li Ka Shing Knowledge Institute of St. Michael's HospitalUniversity of Toronto Canada
| |
Collapse
|
106
|
Scheen AJ. Pharmacokinetic/Pharmacodynamic Properties and Clinical Use of SGLT2 Inhibitors in Non-Asian and Asian Patients with Type 2 Diabetes and Chronic Kidney Disease. Clin Pharmacokinet 2021; 59:981-994. [PMID: 32201911 DOI: 10.1007/s40262-020-00885-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease is a prevalent complication of type 2 diabetes mellitus (T2DM). Sodium-glucose cotransporter type 2 inhibitors (SGLT2is) have a unique mode of action targeting the kidney. As their glucose-lowering potency declines with the reduction in estimated glomerular filtration rate, their clinical use in patients with T2DM with chronic kidney disease has been submitted to restriction. However, recent observations demonstrated that SGLT2is reduce the progression of renal impairment in patients with mild-to-moderate chronic kidney disease, with or without albuminuria. Furthermore, SGLT2is reduce the incidence of cardiovascular events in patients with T2DM at high cardiovascular risk, independently of baseline estimated glomerular filtration rate. Thus, recent guidelines recommend the prescription of SGLT2is in patients with T2DM with mild-to-moderate chronic kidney disease defined by an estimated glomerular filtration rate between ≥ 30 and < 90 mL/min/1.73 m2 and/or albuminuria. The present comprehensive review describes the pharmacokinetic/pharmacodynamic properties of SGLT2is commercialised worldwide and in Japan in patients with T2DM with mild, moderate and severe chronic kidney disease. Drug exposure increases when the estimated glomerular filtration rate declines but without a clear-cut relationship with the severity of chronic kidney disease and in a rather moderate amplitude that most often does not require a dose reduction in the presence of mild-to-moderate chronic kidney disease. The urinary glucose excretion steadily declines with the reduction in estimated glomerular filtration rate. This may explain a lower effect on glucose control, yet the positive effects on body weight and blood pressure still remain. The efficacy and safety of these SGLT2is are analysed among patients with stages 3a and 3b chronic kidney disease in placebo-controlled randomised clinical trials, with almost similar results in Asian and non-Asian individuals with T2DM. In summary, there is no reason not to prescribe SGLT2is in patients with T2DM with mild-to-moderate chronic kidney disease, especially if the aim is to benefit from cardiovascular and/or renal protection.
Collapse
Affiliation(s)
- André J Scheen
- Division of Clinical Pharmacology, Center for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium. .,Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, CHU Sart Tilman (B35), 4000, Liege 1, Belgium.
| |
Collapse
|
107
|
Xu D, Chandler O, Wee C, Ho C, Affandi JS, Yang D, Liao X, Chen W, Li Y, Reid C, Xiao H. Sodium-Glucose Cotransporter-2 Inhibitor (SGLT2i) as a Primary Preventative Agent in the Healthy Individual: A Need of a Future Randomised Clinical Trial? Front Med (Lausanne) 2021; 8:712671. [PMID: 34497814 PMCID: PMC8419219 DOI: 10.3389/fmed.2021.712671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are a relatively novel class of drug for treating type 2 diabetes mellitus (T2DM) that inhibits glucose reabsorption in the renal proximal tubule to promote glycosuria and reduce blood glucose levels. SGLT2i has been clinically indicated for treating T2DM, with numerous recent publications focussing on both primary and secondary prevention of cardiovascular and renal events in Type 2 diabetic patients. The most recent clinical trials showed that SGLT2i have moderately significant beneficial effects on atherosclerotic major adverse cardiovascular events (MACE) in patients with histories of atherosclerotic cardiovascular disease. In this review and analysis, SGLT2i have however demonstrated clinically significant benefits in reducing hospitalisation for heart failure and worsening of chronic kidney disease (CKD) irrespective of pre-existing atherosclerotic cardiovascular disease or previous heart failure history. A meta-analysis suggests that all SGLT2 inhibitors demonstrated the therapeutic benefit on all-cause and cardiovascular mortality, as shown in EMPAREG OUTCOME study with a significant decrease in myocardial infarction, without increased stroke risk. All the above clinical trial recruited type 2 diabetic patients. This article aims to postulate and review the possible primary prevention role of SGLT2i in healthy individuals by reviewing the current literature and provide a prospective overview. The emphasis will include primary prevention of Type 2 Diabetes, Heart Failure, CKD, Hypertension, Obesity and Dyslipidaemia in healthy individuals, whom are defined as healthy, low or intermediate risks patients.
Collapse
Affiliation(s)
- Dan Xu
- Faculty of Health Sciences, CCRE, Curtin School of Population Health, Curtin University, Perth, WA, Australia.,Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth, WA, Australia.,Department of Medical Education, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Owain Chandler
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Cleo Wee
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Chau Ho
- Faculty of Health Sciences, CCRE, Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Jacquita S Affandi
- Faculty of Health Sciences, CCRE, Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Daya Yang
- Department of Medical Education, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxue Liao
- Department of Medical Education, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Medical Education, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Renal Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Medical Education, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Christopher Reid
- Faculty of Health Sciences, CCRE, Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Haipeng Xiao
- Department of Medical Education, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
108
|
Influence of receptor selectivity on benefits from SGLT2 inhibitors in patients with heart failure: a systematic review and head-to-head comparative efficacy network meta-analysis. Clin Res Cardiol 2021; 111:428-439. [PMID: 34498169 PMCID: PMC8971161 DOI: 10.1007/s00392-021-01913-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
Background Receptor selectivity of sodium-glucose cotransporter-2 inhibitors (SGLT2i) varies greatly between agents. The overall improvement of cardiovascular (CV) outcomes in heart failure (HF) patients varies between trials. We, therefore, evaluated the comparative efficacy of individual SGLT2i and the influence of their respective receptor selectivity thereon. Methods We identified randomized controlled trials investigating the use of SGLT2i in patients with HF—either as the target cohort or as a subgroup of it. Comparators included placebo or any other active treatment. The primary endpoint was the composite of hospitalization for HF or CV death. Secondary outcomes included all-cause mortality, CV mortality, hospitalization for HF, worsening renal function (RF), and the composite of worsening RF or CV death. Evidence was synthesized using network meta-analysis. In addition, the impact of receptor selectivity on outcomes was analysed using meta-regression. Results We identified 18,265 patients included in 22 trials. Compared to placebo, selective and non-selective SGLT2i improved fatal and non-fatal HF events. Head-to-head comparisons suggest superior efficacy with sotagliflozin as compared to dapagliflozin, empagliflozin or ertugliflozin. No significant difference was found between canagliflozin and sotagliflozin. Meta-regression analyses show a decreasing benefit on HF events with increasing receptor selectivity of SGLT2i. In contrast, receptor selectivity did not affect mortality and renal endpoints and no significant difference between individual SGLT2i was noted. Conclusion Our data point towards a class-effect of SGLT2i on mortality and renal outcomes. However, non-selective SGLT2i such as sotagliflozin may be superior to highly selective SGLT2i in terms of HF outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00392-021-01913-z.
Collapse
|
109
|
Janež A, Fioretto P. SGLT2 Inhibitors and the Clinical Implications of Associated Weight Loss in Type 2 Diabetes: A Narrative Review. Diabetes Ther 2021; 12:2249-2261. [PMID: 34244976 PMCID: PMC8342745 DOI: 10.1007/s13300-021-01104-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The obesity epidemic is closely linked to the rising prevalence of type 2 diabetes (T2D). Body weight reduction remains an important challenge in patients with T2D, as it requires changing their overall metabolic control. Of all glucose-lowering therapies, only sodium-glucose cotransporter 2 inhibitors (SGLT2is) and glucagon-like peptide 1 receptor agonists (GLP-1 RAs) consistently result in weight improvement. Moreover, the same two classes have important cardiovascular and renal benefits. We summarize the key available information related to the weight loss effect of SGLT2is in T2D, focusing on the unexploited potential of these drugs. METHODS Data on weight change with SGLT2is in patients with T2D were extracted from published cardiovascular outcomes trials (CVOTs). A discussion on patient perspectives about weight change is based on key preclinical and clinical trials, meta-analyses, and reviews and is supplemented by the authors' clinical judgment and research experience in the field. RESULTS SGLT2is have a unique mode of action resulting in caloric loss through glycosuria. The anticipated weight loss with SGLT2is is not reflected in clinical trial results. There is a discrepancy between the magnitude of improvement in glycemic control and the weight loss, cardiovascular, and renal benefits obtained in large clinical trials. CONCLUSION The relationships between the magnitude of weight loss, improvement in glycemic control, and cardiorenal benefits with SGLT2i are still unclear. Potential mechanisms other than simple glycemic efficacy should be revealed and explained. Better weight control may be achieved if adequately intensive lifestyle changes are implemented and monitored in the T2D population treated with SGLT2is.
Collapse
Affiliation(s)
- Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000, Ljubljana, Slovenia.
| | - Paola Fioretto
- Department of Medicine, University of Padua, Padua, Italy
- Unit of Medical Clinic 3, Hospital of Padua, Padua, Italy
| |
Collapse
|
110
|
Azzam O, Carnagarin R, Lugo-Gavidia LM, Nolde J, Matthews VB, Schlaich MP. Bexagliflozin for type 2 diabetes: an overview of the data. Expert Opin Pharmacother 2021; 22:2095-2103. [PMID: 34292100 DOI: 10.1080/14656566.2021.1959915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a relatively novel glucose-lowering drugs (GLDs) which additionally promote weight loss and blood pressure reduction among other beneficial effects.Areas covered: This review reflects on the extra-glycemic effects of SGLT2 inhibitors and their impact on important clinical endpoints, and provides an overview of data relating to a newer member of the SGLT2 inhibitor class, bexagliflozin.Expert opinion: SGLT2 inhibitors, while consolidating glycemic control as adjunctive therapy, indisputably affect cardio-renal benefits in the T2D population which is prevalently afflicted by heightened cardiovascular risk and a disproportionately increased incidence of unfavorable cardiovascular and renal outcomes. The data from landmark trials demonstrate that beneficial effects of SGLT2 inhibitors extend to non-diabetic patients with chronic kidney disease (CKD) and/or heart failure with reduced ejection fraction (HFrEF). Preliminary findings from the BEST trial suggest that Bexagliflozin's effects reflect those of other licensed drugs in its class. Bexagliflozin has also been shown to be safe and effective in patients with diabetes and CKD stage 3b. If and when approved, it presents physicians with the prospect of an additional therapeutic option in managing patients with type 2 diabetes mellitus (T2D), and conceivably also, nondiabetic patients with established CKD and/or HFrEF.
Collapse
Affiliation(s)
- Omar Azzam
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia, Perth, Australia.,Department of Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
| | - Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
| | - Janis Nolde
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia, Perth, Australia.,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
111
|
Chiodini I, Gaudio A, Palermo A, Napoli N, Vescini F, Falchetti A, Merlotti D, Eller-Vainicher C, Carnevale V, Scillitani A, Pugliese G, Rendina D, Salcuni A, Bertoldo F, Gonnelli S, Nuti R, Toscano V, Triggiani V, Cenci S, Gennari L. Management of bone fragility in type 2 diabetes: Perspective from an interdisciplinary expert panel. Nutr Metab Cardiovasc Dis 2021; 31:2210-2233. [PMID: 34059385 DOI: 10.1016/j.numecd.2021.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
AIM Bone fragility is increasingly recognized as a relevant complication of type 2 diabetes (T2D) and diabetic patients with fragility fractures have higher mortality rates than non diabetic individuals or diabetic patients without fractures. However, current diagnostic approaches for fracture risk stratification, such as bone mineral density measurement or the use of risk assessment algorithms, largely underestimate fracture risk in T2D patients. A multidisciplinary expert panel was established in order to in order to formulate clinical consensus recommendations on bone health assessment and management of fracture risk in patients with T2D. DATA SYNTHESIS The following key questions were addressed: a) which are the risk factors for bone fragility in T2D?, b) which diagnostic procedures can be currently used to stratify fracture risk in T2D patients?, c) which are the effects of antidiabetic treatments on bone?, and d) how to prevent and treat bone fragility in T2D patients? Based on the available data members of this panel suggest that the stratification of fracture risk in patients with diabetes should firstly rely on the presence of a previous fragility fracture and on the individual risk profile, with the inclusion of T2D-specific risk factors (namely T2D duration above 10 yrs, presence of chronic T2D complications, use of insulin or thiazolidinediones and persistent HbA1c levels above 8% for at least 1 year). Two independent diagnostic approaches were then suggested in the presence or the absence of a prevalent fragility fracture, respectively. CONCLUSIONS Clinical trials in T2D patients at risk for fragility fractures are needed to determine the efficacy and safety of available antiresorptive and anabolic agents in this specific setting.
Collapse
Affiliation(s)
- Iacopo Chiodini
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Science and Community Health, University of Milan, Milan, Italy
| | - Agostino Gaudio
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital "G. Rodolico" Catania, Italy
| | - Andrea Palermo
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Nicola Napoli
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. M. Misericordia of Udine, Italy
| | - Alberto Falchetti
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy; EndOsMet, Villa Donatello Private Hospital, Florence, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Vincenzo Carnevale
- Unit of Internal Medicine, "Casa Sollievo della Sofferenza" Hospital, IRCCS, San Giovanni Rotondo, (FG), Italy
| | - Alfredo Scillitani
- Unit of Endocrinology, "Casa Sollievo della Sofferenza" Hospital, IRCCS, San Giovanni Rotondo, (FG), Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples, Naples, Italy
| | - Antonio Salcuni
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Bertoldo
- Department of Medicine, University of Verona, Policlinico GB Rossi, Verona, Italy
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Vincenzo Toscano
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", Bari, Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy.
| |
Collapse
|
112
|
Gerber C, Wang X, David V, Quaggin SE, Isakova T, Martin A. Long-Term Effects of Sglt2 Deletion on Bone and Mineral Metabolism in Mice. JBMR Plus 2021; 5:e10526. [PMID: 34368611 PMCID: PMC8328801 DOI: 10.1002/jbm4.10526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Sodium‐glucose cotransporter 2 (SGLT2) inhibitors improve kidney and cardiovascular outcomes in patients with type 2 diabetes mellitus (T2DM). However, bone fragility has emerged as a side effect in some but not in all human studies. Because use of SGLT2 inhibitors in humans affects mineral metabolism, we investigated the long‐term effects of genetic loss of Sglt2 function on bone and mineral metabolism in mice. Slc5a2 nonsense mutation in Sweet Pee (SP) mice results in total loss of Sglt2 function. We collected urine, serum, and bone samples from 15‐week‐old and 25‐week‐old wild‐type (WT) and SP mice fasted from food overnight. We measured parameters of renal function and mineral metabolism and we assessed bone growth, microarchitecture, and mineralization. As expected, 15‐week‐old and 25‐week‐old SP mice showed increased glucosuria, and normal kidney function compared to age‐matched WT mice. At 15 weeks, SP mice did not show alterations in mineral metabolism parameters. At 25 weeks, SP mice showed reduced fasting 24‐hour urinary calcium excretion and increased fractional excretion of phosphate, but normal serum calcium and phosphate, parathyroid hormone (PTH), vitamin D (1,25(OH)2D), and fibroblast growth factor (FGF23) levels. At 25 weeks, but not at 15 weeks, SP mice showed reduced body weight compared to WT. This was associated with reduced femur length at 25 weeks, suggesting impaired skeletal growth. SP mice did not show trabecular or cortical bone microarchitectural modifications but showed reduced cortical bone mineral density compared to WT mice at 25 weeks. These results suggest that loss of Sglt2 function in mice in the absence of T2DM does not alter regulatory hormones FGF23, PTH, and 1,25(OH)2D, but may contribute to bone fragility over the long term. Future studies are required to determine how loss of Sglt2 function impacts bone fragility in T2DM. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Claire Gerber
- Division of Nephrology and Hypertension, Feinberg School of Medicine Northwestern University Chicago IL USA.,Center for Translational Metabolism and Health, Institute for Public Health and Medicine Northwestern University Chicago IL USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Feinberg School of Medicine Northwestern University Chicago IL USA.,Center for Translational Metabolism and Health, Institute for Public Health and Medicine Northwestern University Chicago IL USA.,Feinberg Cardiovascular and Renal Research Institute Northwestern University Chicago IL USA
| | - Valentin David
- Division of Nephrology and Hypertension, Feinberg School of Medicine Northwestern University Chicago IL USA.,Center for Translational Metabolism and Health, Institute for Public Health and Medicine Northwestern University Chicago IL USA.,Feinberg Cardiovascular and Renal Research Institute Northwestern University Chicago IL USA
| | - Susan E Quaggin
- Division of Nephrology and Hypertension, Feinberg School of Medicine Northwestern University Chicago IL USA.,Feinberg Cardiovascular and Renal Research Institute Northwestern University Chicago IL USA
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Feinberg School of Medicine Northwestern University Chicago IL USA.,Center for Translational Metabolism and Health, Institute for Public Health and Medicine Northwestern University Chicago IL USA
| | - Aline Martin
- Division of Nephrology and Hypertension, Feinberg School of Medicine Northwestern University Chicago IL USA.,Center for Translational Metabolism and Health, Institute for Public Health and Medicine Northwestern University Chicago IL USA.,Feinberg Cardiovascular and Renal Research Institute Northwestern University Chicago IL USA
| |
Collapse
|
113
|
Wu VCC, Li YR, Wang CY. Impact of Sodium-Glucose Co-Transporter 2 Inhibitors on Cardiac Protection. Int J Mol Sci 2021; 22:ijms22137170. [PMID: 34281221 PMCID: PMC8268177 DOI: 10.3390/ijms22137170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium–glucose co-transporter 2 (SGLT2) inhibitors have been approved as a new class of anti-diabetic drugs for type 2 diabetes mellitus (T2DM). The SGLT2 inhibitors reduce glucose reabsorption through renal systems, thus improving glycemic control in all stages of diabetes mellitus, independent of insulin. This class of drugs has the advantages of no clinically relevant hypoglycemia and working in synergy when combined with currently available anti-diabetic drugs. While improving sugar level control in these patients, SGLT2 inhibitors also have the advantages of blood-pressure improvement and bodyweight reduction, with potential cardiac and renal protection. In randomized control trials for patients with diabetes, SGLT2 inhibitors not only improved cardiovascular and renal outcomes, but also hospitalization for heart failure, with this effect extending to those without diabetes mellitus. Recently, dynamic communication between autophagy and the innate immune system with Beclin 1-TLR9-SIRT3 complexes in response to SGLT2 inhibitors that may serve as a potential treatment strategy for heart failure was discovered. In this review, the background molecular pathways leading to the clinical benefits are examined in this new class of anti-diabetic drugs, the SGLT2 inhibitors.
Collapse
Affiliation(s)
- Victor Chien-Chia Wu
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Yan-Rong Li
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence:
| |
Collapse
|
114
|
Jing M, Cen Y, Gao F, Wang T, Jiang J, Jian Q, Wu L, Guo B, Luo F, Zhang G, Wang Y, Xu L, Zhang Z, Sun Y, Wang Y. Nephroprotective Effects of Tetramethylpyrazine Nitrone TBN in Diabetic Kidney Disease. Front Pharmacol 2021; 12:680336. [PMID: 34248629 PMCID: PMC8264657 DOI: 10.3389/fphar.2021.680336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal failure, but therapeutic options for nephroprotection are limited. Oxidative stress plays a key role in the pathogenesis of DKD. Our previous studies demonstrated that tetramethylpyrazine nitrone (TBN), a novel nitrone derivative of tetramethylpyrazine with potent free radical-scavenging activity, exerted multifunctional neuroprotection in neurological diseases. However, the effect of TBN on DKD and its underlying mechanisms of action are not yet clear. Herein, we performed streptozotocin-induced rat models of DKD and found that TBN administrated orally twice daily for 6 weeks significantly lowered urinary albumin, N-acetyl-β-D-glycosaminidase, cystatin C, malonaldehyde, and 8-hydroxy-2′-deoxyguanosine levels. TBN also ameliorated renal histopathological changes. More importantly, in a nonhuman primate model of spontaneous stage III DKD, TBN increased the estimated glomerular filtration rate, decreased serum 3-nitrotyrosine, malonaldehyde and 8-hydroxy-2′-deoxyguanosine levels, and improved metabolic abnormalities. In HK-2 cells, TBN increased glycolytic and mitochondrial functions. The protective mechanism of TBN might involve the activation of AMPK/PGC-1α-mediated downstream signaling pathways, thereby improving mitochondrial function and reducing oxidative stress in the kidneys of DKD rodent models. These results support the clinical development of TBN for the treatment of DKD.
Collapse
Affiliation(s)
- Mei Jing
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China.,Department of Gerontology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun Cen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Fangfang Gao
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Ting Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinxin Jiang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Qianqian Jian
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Liangmiao Wu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Fangcheng Luo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao
| | - Lipeng Xu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Yewei Sun
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
115
|
Effects of dapagliflozin and gliclazide on the cardiorenal axis in people with type 2 diabetes. J Hypertens 2021; 38:1811-1819. [PMID: 32516291 DOI: 10.1097/hjh.0000000000002480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES There is a bidirectional relationship between cardiovascular and renal disease. The drug-class of SGLT2 inhibitors improves outcomes at both ends of this so called cardiorenal axis. We assessed the effects of SGLT2 inhibition and sulfonylurea treatment on systemic hemodynamic function and investigated whether SGLT2 inhibitor-induced changes in systemic hemodynamics correlate with changes in renal hemodynamics. METHODS Forty-four people with type 2 diabetes were randomized to 12 weeks of dapagliflozin 10 mg/day or gliclazide 30 mg/day treatment. Systemic hemodynamic function, autonomic nervous system activity, and vascular stiffness were measured noninvasively, whereas renal hemodynamics, glomerular filtration rate (GFR) and effective renal plasma flow, were assessed with gold-standard urinary clearances of inulin or iohexol and para-aminohippuric acid, respectively. Correlation analyses were performed to assess relationships between dapagliflozin-induced changes in cardiovascular and renal variables. RESULTS Dapagliflozin reduced stroke volume by 4%, cardiac output by 5%, vascular stiffness by 11%, and mean arterial pressure by 5% from baseline, without increasing heart rate or sympathetic activity, while simultaneously lowering glomerular filtration rate by 8%. Despite similar improvements in glycemic control by dapagliflozin and gliclazide (-0.5 ± 0.5 versus-0.7 ± 0.5%; P = 0.12), gliclazide did not affect any of these measurements. There was no clear association between the dapagliflozin-induced changes in cardiovascular and renal physiology. CONCLUSION Dapagliflozin seemingly influences systemic and renal hemodynamics independently and beyond glucose lowering in people with type 2 diabetes.This clinical trial was registered at https://clinicalTrials.gov (ID: NCT02682563).
Collapse
|
116
|
Shi N, Shi Y, Xu J, Si Y, Yang T, Zhang M, Ng DM, Li X, Xie F. SGLT-2i and Risk of Malignancy in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Front Public Health 2021; 9:668368. [PMID: 34164370 PMCID: PMC8215266 DOI: 10.3389/fpubh.2021.668368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Currently, the association between sodium-glucose cotransporter 2 inhibitor (SGLT-2i) and malignancy risk has yet to be fully elucidated. This meta-analysis aimed to determine the relationship between SGLT-2i and malignancy risk in type 2 diabetes (T2D) patients. Methods: We searched PubMed, ScienceDirect, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science to identify randomized controlled trials (RCTs) published up to August 2020 related to T2D patients treated with SGLT-2i vs. placebo or other hypoglycemic agents. The meta-analysis's primary outcome was malignancies' incidence, and the results were evaluated using risk ratio (RR) and 95% confidence interval (CI). Results: We reviewed 76 articles (77 RCTs), comprising 45,162 and 43,811 patients in SGLT-2i and control groups, respectively. Compared with the control group, SGLT-2i had no significant association with augmented overall malignancy risk in T2D patients (RR = 1.05, 95% CI = 0.97–1.14, P = 0.20), but ertugliflozin may upsurge the risk (RR = 1.80, 95% CI = 1.02–3.17, P = 0.04). Compared with active hypoglycemic agents, dapagliflozin may increase (RR = 2.71, 95% CI = 1.46–6.43, P = 0.02) and empagliflozin may decrease (RR = 0.67, 95% CI = 0.45–0.98, P = 0.04) the malignancy risk. Compared with placebo, empagliflozin may exhibit risk increase (RR = 1.25, 95% CI = 1.05–1.49, P = 0.01), primarily in digestive system (RR = 1.48, 95% CI = 0.99–2.21, P = 0.05). Conclusions: Our results proposed that in diverse comparisons, ertugliflozin and dapagliflozin seemed to increase the malignancy risk in T2D patients. Empagliflozin may cause malignancy risk reduction compared with active hypoglycemic agents but increase overall risk primarily in the digestive system compared with placebo. In short, the relationship between SGLT-2i and malignancy in T2D patients remains unclear.
Collapse
Affiliation(s)
- Nanjing Shi
- Department of Endocrinology, Affiliated Hangzhou First People' Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yetan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingsi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Yang
- Department of Tumor High Intensity Focused Ultrasound Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Mengting Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Xiangyuan Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Xie
- Department of Endocrinology, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| |
Collapse
|
117
|
Two-year administration of sodium-glucose co-transporter 2 inhibitor brought about marked reduction of body fat independent of skeletal muscle amount or glycemic improvement in Japanese patients with type 2 diabetes. Diabetol Int 2021; 13:117-123. [DOI: 10.1007/s13340-021-00512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
|
118
|
Valensi P, Prévost G, Pinto S, Halimi JM, Donal E. The impact of diabetes on heart failure development: The cardio-renal-metabolic connection. Diabetes Res Clin Pract 2021; 175:108831. [PMID: 33895192 DOI: 10.1016/j.diabres.2021.108831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 01/01/2023]
Abstract
Heart failure (HF) and chronic kidney disease (CKD) are often associated in type 2 diabetes (T2D), aggravate each other and exert synergistic effects to increase the risk of cardiac and renal events. The risks of renal worsening in HF patients and HF in CKD patients need to be evaluated to tailor preventive therapy. The recent CV and renal trials enriched our knowledge about the natural history of HF and CKD in T2D and provided evidence for the benefit of sodium-glucose cotransporter 2 inhibitors (SGLT2is) in HF and renal decline prevention. SGLT-2is are the best choice in patients with HFrEF to improve CV prognosis and HF-related outcomes and also to prevent kidney-related outcomes, and in CKD patients to slow down renal failure and also reduce hospitalization for HF and CV death. In both situations the number of patients to treat in order to prevent such events in one patient is lower than in the general T2D population at high CV risk. GLP1-receptor agonists could be an alternative in a patient who is intolerant or has a contraindication to SGLT-2is. A tight collaboration between diabetologists, nephrologists and cardiologists should be encouraged for a holistic and effective strategy to reduce the burden of cardio-renal-metabolic interaction.
Collapse
Affiliation(s)
- Paul Valensi
- Unit of Endocrinology-Diabetology-Nutrition, AP-HP, Jean Verdier Hospital, Paris 13 University, Sorbonne Paris Cité, CRNH-IdF, CINFO, Bondy, France.
| | - Gaétan Prévost
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, 76000 Rouen, France
| | - Sara Pinto
- Unit of Endocrinology-Diabetology-Nutrition, AP-HP, Jean Verdier Hospital, Paris 13 University, Sorbonne Paris Cité, CRNH-IdF, CINFO, Bondy, France
| | - Jean-Michel Halimi
- Department of Nephrology, CHU Tours, France and EA4245, Tours University, Tours, France
| | - Erwan Donal
- Department of Cardiology, University of Rennes, CHU Rennes, INSERM, LTSI-UMR 1099, Rennes, France
| |
Collapse
|
119
|
He Y, Pachori A, Chen P, Ma S, Mendonza AE, Amer A, Marbury TC, Hinder M. Glucosuric, renal and haemodynamic effects of licogliflozin, a dual inhibitor of sodium-glucose co-transporter-1 and sodium-glucose co-transporter-2, in patients with chronic kidney disease: A randomized trial. Diabetes Obes Metab 2021; 23:1182-1190. [PMID: 33512754 DOI: 10.1111/dom.14327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/25/2022]
Abstract
AIM To investigate the glucosuric, renal and haemodynamic effects of licogliflozin, a dual sodium-glucose co-transporter-1 and sodium-glucose co-transporter-2 inhibitor, in patients with chronic kidney disease (CKD). METHODS This multiple-dose, parallel-group, phase II mechanistic study randomized 53 participants (aged 18-78 years, body mass index ≤ 50 kg/m2 ) with varying degrees of CKD or normal renal function to treatment with licogliflozin (50 mg once daily) or placebo for 7 days. The effects of licogliflozin on 24-h urinary glucose excretion (UGE24 ), renal function, haemodynamics, pharmacokinetics and safety were assessed. RESULTS Licogliflozin treatment for 7 days significantly (p < .01) increased UGE24 from baseline in participants with normal renal function (adjusted mean change: 41.8 [33.6, 49.9] g) or with mild (32.6 [24.1, 41.0] g), moderate A (35.7 [28.6, 42.9] g) or moderate B (20.3 [13.1, 27.5] g) CKD, but not in severe (6.2 [-0.71, 13.18] g) CKD. Licogliflozin reduced urinary electrolytes (sodium, potassium and chloride), blood pressure and urinary volume to varying extents among different groups. Significant increases in renin (p < .05), angiotensin II (p < .05) and aldosterone (p < .01) levels were observed. Adverse events were generally mild, and most commonly included diarrhoea (94%), flatulence (68%) and abdominal pain (21%). CONCLUSION Licogliflozin treatment results in significantly increased UGE and favourable changes in urinary electrolytes and haemodynamics in patients with varying degrees of CKD (estimated glomerular filtration rate ≥ 45 mL/min/1.73 m2 ).
Collapse
Affiliation(s)
- YanLing He
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Alok Pachori
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Ping Chen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Shenglin Ma
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Anisha E Mendonza
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Ahmed Amer
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Markus Hinder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
120
|
Wang D, Zhang Z, Si Z, Yang Y, Li S, Xue Y. Dapagliflozin reverses the imbalance of T helper 17 and T regulatory cells by inhibiting SGK1 in a mouse model of diabetic kidney disease. FEBS Open Bio 2021; 11:1395-1405. [PMID: 33728820 PMCID: PMC8091586 DOI: 10.1002/2211-5463.13147] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/27/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
An imbalance between T helper 17 (Th17) and T regulatory (Treg) cell subsets contributes to the pathogenesis of diabetic kidney disease (DKD). However, the underlying regulatory mechanisms that cause this imbalance are unknown. Serum/glucocorticoid-regulated kinase 1 (SGK1) has been suggested to affect Th17 polarization in a salt-dependent manner, and sodium/glucose cotransporter 2 inhibitors (SGLT2i) have been demonstrated to regulate sodium-mediated transportation in the renal tubules. This study aimed to evaluate the potential benefits of dapagliflozin (Dap) on DKD, as well as its influence on shifting renal T-cell polarization and related cytokine secretion. We treated male db/db mice with Dap or voglibose (Vog) and measured blood and kidney levels of Th17 and Treg cells using flow cytometry. We found that Th17 cells were significantly increased, while Treg cells were significantly decreased in diabetic mice. Moreover, Dap suppressed the polarization of Th17/Treg cells by inhibiting SGK1 in diabetic kidneys, and this was accompanied by attenuation of albuminuria and tubulointerstitial fibrosis independent of glycemic control. Taken together, these results demonstrate that the imbalance of Th17/Treg cells plays an important role in the progression of DKD. Moreover, Dap protects against DKD by inhibiting SGK1 and reversing the T-cell imbalance.
Collapse
Affiliation(s)
- Dan Wang
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zikun Zhang
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zekun Si
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanlin Yang
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shuangshuang Li
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yaoming Xue
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
121
|
Farooqui KJ, Mithal A, Kerwen AK, Chandran M. Type 2 diabetes and bone fragility- An under-recognized association. Diabetes Metab Syndr 2021; 15:927-935. [PMID: 33932745 DOI: 10.1016/j.dsx.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Diabetes and osteoporosis are common chronic disorders with growing prevalence in the aging population. Skeletal fragility secondary to diabetes increases the risk of fractures and is underestimated by currently available diagnostic tools like fracture risk assessment (FRAX) and dual-energy X-ray absorptiometry (DXA). In this narrative review we describe the relationship and pathophysiology of skeletal fragility and fractures in Type 2 diabetes (T2DM), effect of glucose lowering medications on bone metabolism and the approach to diagnosing and managing osteoporosis and bone fragility in people with diabetes (PWD). METHODS A literature search was conducted on PubMed for articles in English that focused on T2DM and osteoporosis or bone/skeletal fragility. Articles considered to be of direct clinical relevance to physicians practicing diabetes were included. RESULTS T2DM is associated with skeletal fragility secondary to compromised bone remodeling and bone turnover. Long duration, poor glycemic control, presence of chronic complications, impaired muscle function, and anti-diabetic medications like thiazolidinediones (TZD) are risk factors for fractures among PWD. Conventional diagnostic tools like DXA and FRAX tool underestimate fracture risk in diabetes. Presence of diabetes does not alter response to anti-osteoporotic treatment in post-menopausal women. CONCLUSION Estimation of fragility fracture risk should be included in standard of care for T2DM along with screening for traditional complications. Physicians should proactively screen for and manage osteoporosis in people with diabetes. It is important to consider effects on bone health when selecting glucose lowering agents in people at risk for fragility fractures.
Collapse
Affiliation(s)
- Khalid J Farooqui
- Max Institute of Endocrinology and Diabetes, Max Super Speciality Hospital, Saket, Delhi, India.
| | - Ambrish Mithal
- Max Institute of Endocrinology and Diabetes, Max Super Speciality Hospital, Saket, Delhi, India
| | - Ann Kwee Kerwen
- Osteoporosis and Bone Metabolism Unit Department of Endocrinology, Singapore General Hospital, Singapore
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit Department of Endocrinology, Singapore General Hospital, Singapore
| |
Collapse
|
122
|
Mima A. Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Non-Diabetic Chronic Kidney Disease. Adv Ther 2021; 38:2201-2212. [PMID: 33860925 DOI: 10.1007/s12325-021-01735-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors can reduce cardiovascular morbidity and mortality in patients with type 2 diabetes. Furthermore, recent clinical studies have revealed that SGLT2 inhibitors decrease the risk of renal function impairment in patients with type 2 diabetes. However, the effects of SGLT2 inhibitors on non-diabetic chronic kidney disease (CKD) remains unclear. Regarding long-term clinical outcomes, the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure (DAPA-HF) trial explicitly showed improvements in cardiovascular outcomes in patients presenting with heart failure, even in the absence of diabetes. The reduction in heart failure in patients without diabetes was confirmed following empagliflozin administration in the EMPagliflozin outcomE tRial in patients with chrOnic heart failure with Reduced ejection fraction (EMPEROR-Reduced) trial. A recent systematic review and meta-analysis of DAPA-HF and EMPEROR-Reduced showed improvements in the composite renal endpoint regardless of the presence of diabetes or baseline estimated glomerular filtration rate. The Dapagliflozin and Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) trial evaluated patients with CKD with or without type 2 diabetes, irrespective of whether SGLT2 inhibitor dapagliflozin was added for renin-angiotensin system blockade as background renoprotective therapy. In this trial, dapagliflozin reduced the hazard ratio for a composite renal and cardiovascular death endpoint in patients with CKD attributed to various causes, with or without type 2 diabetes.
Collapse
|
123
|
SGLT2is and Renal Protection: From Biological Mechanisms to Real-World Clinical Benefits. Int J Mol Sci 2021; 22:ijms22094441. [PMID: 33922865 PMCID: PMC8122991 DOI: 10.3390/ijms22094441] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, following the publication of results from several RCTs, first on cardiovascular and more recently on renal outcomes, SGLT2is have become the standard of care to prevent diabetic kidney disease and slow its progression. This narrative review focuses on biological mechanisms, both renal and extrarenal, underlying kidney protection with SGLT2is. Furthermore, data from cardiovascular as well as renal outcome trials, mostly conducted in diabetic patients, are presented and discussed to provide an overview of current uses as well as the future therapeutic potential of these drugs.
Collapse
|
124
|
Cardiovascular benefits of sodium-glucose cotransporter 2 inhibitors in diabetic and nondiabetic patients. Cardiovasc Diabetol 2021; 20:78. [PMID: 33827579 PMCID: PMC8028072 DOI: 10.1186/s12933-021-01266-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were developed as antidiabetic agents, but accumulating evidence has shown their beneficial effects on the cardiovascular system. Analyses of the EMPA-REG OUTCOME trial (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) suggested that these benefits are independent of glycemic control. Several large-scale outcome trials of SGLT2i also showed cardiovascular benefits in nondiabetic patients, strengthening this perspective. Extensive animal and clinical studies have likewise shown that mechanisms other than the antihyperglycemic effect underlie the cardiovascular benefits. Recent clinical guidelines recommend the use of SGLT2i in patients with type 2 diabetes mellitus and cardiovascular diseases because of the proven cardiovascular protective effects. Since the cardiovascular benefits are independent of glycemic control, the therapeutic spectrum of SGLT2i will likely be extended to nondiabetic patients.
Collapse
|
125
|
Benham JL, Booth JE, Sigal RJ, Daskalopoulou SS, Leung AA, Rabi DM. Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes. IJC HEART & VASCULATURE 2021; 33:100725. [PMID: 33659605 PMCID: PMC7892922 DOI: 10.1016/j.ijcha.2021.100725] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Clinical trials suggest that SGLT2 inhibitors reduce the risk of cardiovascular mortality in patients with type 2 diabetes, however the mechanism is unclear. Our objective was to test the hypothesis that blood pressure reduction is one potential mechanism underlying the observed improvements in cardiovascular outcomes with SGLT2 inhibitors. METHODS We searched MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials (inception-June 2019) for randomized controlled trials that reported the effect of SGLT2 inhibitors compared with placebo on cardiovascular outcomes in adults with type 2 diabetes. Two reviewers independently extracted data and assessed study quality. Random effects meta-analyses, stratified meta-analyses and meta-regressions were conducted to evaluate the association between blood pressure reduction in SGLT2 inhibitor treated patients and cardiovascular outcomes. RESULTS Of 11,232 articles identified, 40 articles (n = 54,279 participants) were included. The relative risk of cardiovascular mortality was reduced by 18% with the use of SGLT2 inhibitors compared with placebo (RR 0.82; 95%CI 0.74, 0.91, I2 = 0.0%). Meta-regression analysis revealed no detectable difference in cardiovascular mortality (RR 0.93; 95%CI 0.88, 1.13, p = 0.483), 3-point major adverse cardiovascular events (p = 0.839) or congestive heart failure hospitalizations (p = 0.844) with change in mean systolic blood pressure. CONCLUSIONS Cardiovascular events are reduced in participants with type 2 diabetes treated with SGLT2 inhibitors compared with placebo. There was no significant relationship between the risk of developing adverse cardiovascular events and blood pressure reduction with SGLT2 inhibitors. There is insufficient evidence to suggest that blood pressure reduction is a significant contributor to the cardiovascular benefits observed.
Collapse
Affiliation(s)
- Jamie L. Benham
- Departments of Medicine and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jane E. Booth
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronald J. Sigal
- Departments of Medicine, Community Health Sciences, Cardiac Sciences and Faculty of Kinesiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Alexander A. Leung
- Departments of Medicine and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Doreen M. Rabi
- Departments of Medicine, Community Health Sciences and Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
126
|
Bae JH, Park EG, Kim S, Kim SG, Hahn S, Kim NH. Comparative Renal Effects of Dipeptidyl Peptidase-4 Inhibitors and Sodium-Glucose Cotransporter 2 Inhibitors on Individual Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Endocrinol Metab (Seoul) 2021; 36:388-400. [PMID: 33789035 PMCID: PMC8090474 DOI: 10.3803/enm.2020.912] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND To compare the renal effects of dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors on individual outcomes in patients with type 2 diabetes. METHODS We searched electronic databases (MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials) from inception to June 2019 to identity eligible randomized controlled trials of DPP-4 inhibitors or SGLT2 inhibitors that reported at least one kidney outcome in patients with type 2 diabetes. Outcomes of interest were microalbuminuria, macroalbuminuria, worsening nephropathy, and end-stage kidney disease (ESKD). We performed an arm-based network meta-analysis using Bayesian methods and calculated absolute risks and rank probabilities of each treatment for the outcomes. RESULTS Seventeen studies with 87,263 patients were included. SGLT2 inhibitors significantly lowered the risks of individual kidney outcomes, including microalbuminuria (odds ratio [OR], 0.64; 95% credible interval [CrI], 0.41 to 0.93), macroalbuminuria (OR, 0.48; 95% CrI, 0.24 to 0.72), worsening nephropathy (OR, 0.65; 95% CrI, 0.44 to 0.91), and ESKD (OR, 0.65; 95% CrI, 0.46 to 0.98) as compared with placebo. However, DPP-4 inhibitors did not lower the risks. SGLT2 inhibitors were considerably associated with higher absolute risk reductions in all kidney outcomes than DPP-4 inhibitors, although the benefits were statistically insignificant. The rank probabilities showed that SGLT2 inhibitors were better treatments for lowering the risk of albuminuria and ESKD than placebo or DPP-4 inhibitors. CONCLUSION SGLT2 inhibitors were superior to DPP-4 inhibitors in reducing the risk of albuminuria and ESKD in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Eun-Gee Park
- Interdisciplinary Program in Medical Informatics, Seoul National University College of Medicine, Seoul,
Korea
| | - Sunhee Kim
- Interdisciplinary Program in Medical Informatics, Seoul National University College of Medicine, Seoul,
Korea
| | - Sin Gon Kim
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Seokyung Hahn
- Division of Medical Statistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul,
Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul,
Korea
- Institute of Health Policy and Management, Medical Research Center, Seoul National University, Seoul,
Korea
| | - Nam Hoon Kim
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul,
Korea
| |
Collapse
|
127
|
SGLT2 inhibition versus sulfonylurea treatment effects on electrolyte and acid-base balance: secondary analysis of a clinical trial reaching glycemic equipoise: Tubular effects of SGLT2 inhibition in Type 2 diabetes. Clin Sci (Lond) 2021; 134:3107-3118. [PMID: 33205810 DOI: 10.1042/cs20201274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Sodium-glucose transporter (SGLT)2 inhibitors increase plasma magnesium and plasma phosphate and may cause ketoacidosis, but the contribution of improved glycemic control to these observations as well as effects on other electrolytes and acid-base parameters remain unknown. Therefore, our objective was to compare the effects of SGLT2 inhibitors dapagliflozin and sulfonylurea gliclazide on plasma electrolytes, urinary electrolyte excretion, and acid-base balance in people with Type 2 diabetes (T2D). We assessed the effects of dapagliflozin and gliclazide treatment on plasma electrolytes and bicarbonate, 24-hour urinary pH and excretions of electrolytes, ammonium, citrate, and sulfate in 44 metformin-treated people with T2D and preserved kidney function. Compared with gliclazide, dapagliflozin increased plasma chloride by 1.4 mmol/l (95% CI 0.4-2.4), plasma magnesium by 0.03 mmol/l (95% CI 0.01-0.06), and plasma sulfate by 0.02 mmol/l (95% CI 0.01-0.04). Compared with baseline, dapagliflozin also significantly increased plasma phosphate, but the same trend was observed with gliclazide. From baseline to week 12, dapagliflozin increased the urinary excretion of citrate by 0.93 ± 1.72 mmol/day, acetoacetate by 48 μmol/day (IQR 17-138), and β-hydroxybutyrate by 59 μmol/day (IQR 0-336), without disturbing acid-base balance. In conclusion, dapagliflozin increases plasma magnesium, chloride, and sulfate compared with gliclazide, while reaching similar glucose-lowering in people with T2D. Dapagliflozin also increases urinary ketone excretion without changing acid-base balance. Therefore, the increase in urinary citrate excretion by dapagliflozin may reflect an effect on cellular metabolism including the tricarboxylic acid cycle. This potentially contributes to kidney protection.
Collapse
|
128
|
Navaneethan SD, Zoungas S, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, Liew A, Michos ED, Olowu WA, Sadusky T, Tandon N, Tuttle KR, Wanner C, Wilkens KG, Lytvyn L, Craig JC, Tunnicliffe DJ, Howell M, Tonelli M, Cheung M, Earley A, Rossing P, de Boer IH, Khunti K. Diabetes Management in Chronic Kidney Disease: Synopsis of the 2020 KDIGO Clinical Practice Guideline. Ann Intern Med 2021; 174:385-394. [PMID: 33166222 DOI: 10.7326/m20-5938] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DESCRIPTION The Kidney Disease: Improving Global Outcomes (KDIGO) organization developed a clinical practice guideline in 2020 for the management of patients with diabetes and chronic kidney disease (CKD). METHODS The KDIGO Work Group (WG) was tasked with developing the guideline for diabetes management in CKD. It defined the scope of the guideline, gathered evidence, determined systematic review topics, and graded evidence that had been summarized by an evidence review team. The English-language literature searches, which were initially done through October 2018, were updated in February 2020. The WG used the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach to appraise evidence and rate the strength of the recommendations. Expert judgment was used to develop consensus practice points supplementary to the evidence-based graded recommendations. The guideline document underwent open public review. Comments from various stakeholders, subject matter experts, and industry and national organizations were considered before the document was finalized. RECOMMENDATIONS The guideline includes 12 recommendations and 48 practice points for clinicians caring for patients with diabetes and CKD. This synopsis focuses on the key recommendations pertinent to the following issues: comprehensive care needs, glycemic monitoring and targets, lifestyle interventions, antihyperglycemic therapies, and educational and integrated care approaches.
Collapse
Affiliation(s)
- Sankar D Navaneethan
- Section of Nephrology and Institute of Clinical and Translational Research, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, Texas (S.D.N.)
| | - Sophia Zoungas
- Monash University, School of Public Health and Preventive Medicine, Melbourne, Victoria, Australia (S.Z.)
| | | | - Juliana C N Chan
- Hong Kong Institute of Diabetes and Obesity and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China (J.C.C.)
| | - Hiddo J L Heerspink
- University of Groningen and University Medical Center, Groningen, the Netherlands (H.J.H.)
| | | | - Adrian Liew
- Mount Elizabeth Novena Hospital, Singapore (A.L.)
| | - Erin D Michos
- Johns Hopkins University School of Medicine, Baltimore, Maryland (E.D.M.)
| | - Wasiu A Olowu
- Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun, Nigeria (W.A.O.)
| | | | - Nikhil Tandon
- All India Institute of Medical Sciences, New Delhi, India (N.T.)
| | | | | | | | - Lyubov Lytvyn
- MAGIC Evidence Ecosystem Foundation, McMaster University, Hamilton, Ontario, Canada (L.L.)
| | - Jonathan C Craig
- College of Medicine and Public Health, Flinders University, and Cochrane Kidney and Transplant, Adelaide, Australia (J.C.C.)
| | - David J Tunnicliffe
- School of Public Health, The University of Sydney, and Cochrane Kidney and Transplant, Sydney, Australia (D.J.T., M.H.)
| | - Martin Howell
- School of Public Health, The University of Sydney, and Cochrane Kidney and Transplant, Sydney, Australia (D.J.T., M.H.)
| | | | | | | | - Peter Rossing
- Steno Diabetes Center and University of Copenhagen, Copenhagen, Denmark (P.R.)
| | - Ian H de Boer
- University of Washington, Kidney Research Institute, Seattle, Washington (I.H.D.)
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, and Leicester General Hospital, Leicester, United Kingdom (K.K.)
| |
Collapse
|
129
|
Yu B, Dong C, Hu Z, Liu B. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24655. [PMID: 33663074 PMCID: PMC7909223 DOI: 10.1097/md.0000000000024655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Many studies have shown the effects of SGLT2 inhibitors on type 2 diabetes, but the effects in patients with type 2 diabetes with chronic kidney disease remains unclear. This study aims to evaluate the effects of SGLT2 inhibitors on renal outcomes in patients with type 2 diabetes mellitus with chronic kidney disease. METHODS We conducted systematic searches of PubMed, Embase, and Cochrane Central Register of Controlled Trials up to April 30, 2020 and included randomized controlled trials of SGLT2 inhibitors in adult type 2 diabetes mellitus (T2DM) patients with chronic kidney disease (CKD) reporting estimated glomerular filtration rate (eGFR) and/or urine albumin/creatinine ratio (UACR) changes and/or acute kidney injury or failure (AKI). Random effects models were adopted to measure the pooled outcomes. RESULTS Nine studies with 8826 participants were included. SGLT2 inhibitors were not associated with a significant change in eGFR (mean difference (MD), -0.75 ml/minutes per 1.73 m2, 95% CI -1.61 to 0.10, P = .09) in type 2 diabetic patients with CKD. UACR reduction after SGLT2 inhibitors was significant in type 2 diabetic patients with CKD (MD -24.27 mg/g, 95% CI -44.46 to -4.09, P = .02). SGLT2 inhibitors associated with AKI in the patients were significant (OR 0.80, 95% CI [0.66 to 0.98], P = .03). CONCLUSION SGLT2 inhibitors had no significant effect on kidney function (eGFR measured) in the pooled analysis. And SGLT2 inhibitors effectively reduced UACR in T2DM with CKD. Besides, SGLT2 inhibitors could reduce the incidence of AKI.
Collapse
|
130
|
Zeng Q, Zhou Q, Liu W, Wang Y, Xu X, Xu D. Mechanisms and Perspectives of Sodium-Glucose Co-transporter 2 Inhibitors in Heart Failure. Front Cardiovasc Med 2021; 8:636152. [PMID: 33644138 PMCID: PMC7902509 DOI: 10.3389/fcvm.2021.636152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a common complication or late-stage manifestation of various heart diseases. Numerous risk factors and underlying causes may contribute to the occurrence and progression of HF. The pathophysiological mechanisms of HF are very complicated. Despite accumulating advances in treatment for HF during recent decades, it remains an intractable clinical syndrome with poor outcomes, significantly reducing the quality of life and expectancy of patients, and imposing a heavy economic burden on society and families. Although initially classified as antidiabetic agents, sodium-glucose co-transporter 2 (SGLT2) inhibitors have demonstrated reduced the prevalence of hospitalization for HF, cardiovascular death, and all-cause death in several large-scale randomized controlled clinical trials. These beneficial effects of SGLT-2 inhibitors can be attributed to multiple hemodynamic, inflammatory and metabolic mechanisms, not only reducing the serum glucose level. SGLT2 inhibitors have been used increasingly in treatment for patients with HF with reduced ejection fraction due to their surprising performance in improving the prognosis. In addition, their roles and mechanisms in patients with HF with preserved ejection fraction or acute HF have also attracted attention. In this review article, we discuss the possible mechanisms and applications of SGLT2 inhibitors in HF.
Collapse
Affiliation(s)
- Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qing Zhou
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Weitao Liu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yutong Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University, Göttingen, Germany
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
131
|
Idzerda NMA, Stefansson BV, Pena MJ, Sjostrom DC, Wheeler DC, Heerspink HJL. Prediction of the effect of dapagliflozin on kidney and heart failure outcomes based on short-term changes in multiple risk markers. Nephrol Dial Transplant 2021; 35:1570-1576. [PMID: 31005993 PMCID: PMC7473803 DOI: 10.1093/ndt/gfz064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Besides improving glucose control, sodium-glucose co-transporter 2 inhibition with dapagliflozin reduces blood pressure, body weight and urinary albumin:creatinine ratio (UACR) in patients with type 2 diabetes (T2DM). The parameter response efficacy (PRE) score was developed to predict how short-term drug effects on cardiovascular risk markers translate into long-term changes in clinical outcomes. We applied the PRE score to clinical trials of dapagliflozin to model the effect of the drug on kidney and heart failure (HF) outcomes in patients with T2DM and impaired kidney function. METHODS The relationships between multiple risk markers and long-term outcome were determined in a background population of patients with T2DM with a multivariable Cox model. These relationships were then applied to short-term changes in risk markers observed in a pooled database of dapagliflozin trials (n = 7) that recruited patients with albuminuria to predict the drug-induced changes to kidney and HF outcomes. RESULTS A total of 132 and 350 patients had UACR >200 mg/g and >30 mg/g at baseline, respectively, and were selected for analysis. The PRE score predicted a risk change for kidney events of -40.8% [95% confidence interval (CI) -51.7 to -29.4) and -40.4% (95% CI -48.4 to -31.1) with dapagliflozin 10 mg compared with placebo for the UACR >200 mg/g and >30 mg/g subgroups. The predicted change in risk for HF events was -27.3% (95% CI -47.7 to -5.1) and -21.2% (95% CI -35.0 to -7.8), respectively. Simulation analyses showed that even with a smaller albuminuria-lowering effect of dapagliflozin (10% instead of the observed 35% in both groups), the estimated kidney risk reduction was still 26.5 and 26.8%, respectively. CONCLUSIONS The PRE score predicted clinically meaningful reductions in kidney and HF events associated with dapagliflozin therapy in patients with diabetic kidney disease. These results support a large long-term outcome trial in this population to confirm the benefits of the drug on these endpoints.
Collapse
Affiliation(s)
- Nienke M A Idzerda
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Michelle J Pena
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - David C Wheeler
- Department of Renal Medicine, University College London, London, UK
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
132
|
Kuchay MS, Farooqui KJ, Mishra SK, Mithal A. Glucose Lowering Efficacy and Pleiotropic Effects of Sodium-Glucose Cotransporter 2 Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:213-230. [PMID: 32006266 DOI: 10.1007/5584_2020_479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In type 2 diabetes, the maladaptive upregulation of sodium-glucose cotransporter 2 (SGLT2) protein expression and activity contribute to the maintenance of hyperglycemia. By inhibiting these proteins, SGLT2 inhibitors increase urinary glucose excretion (UGE) that leads to fall in plasma glucose concentrations and improvement in all glycemic parameters. Clinical studies have demonstrated that in patients with type 2 diabetes, SGLT2 inhibitors resulted in sustained reductions in glycated hemoglobin (HbA1C), body weight, blood pressure and serum uric acid levels. Interestingly, the cardiovascular (CV) and renal outcome trials revealed the beneficial effects of SGLT2 inhibitors on CV and renal functions. Because the benefits were seen soon after initiation of SGLT2 inhibitors, these observations are explained by effects beyond their glucose lowering capacity. SGLT2 inhibitors also reduce liver fat in patients with nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. This chapter describes the basic information about SGLT2 inhibitors, current status of SGLT2 inhibitors in the management of type 2 diabetes and their beneficial effects in addition to glycemic control.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta The Medicity Hospital, Gurugram, Haryana, India.
| | - Khalid Jamal Farooqui
- Division of Endocrinology and Diabetes, Medanta The Medicity Hospital, Gurugram, Haryana, India
| | - Sunil Kumar Mishra
- Division of Endocrinology and Diabetes, Medanta The Medicity Hospital, Gurugram, Haryana, India
| | - Ambrish Mithal
- Division of Endocrinology and Diabetes, Medanta The Medicity Hospital, Gurugram, Haryana, India
| |
Collapse
|
133
|
Salukhov VV, Khalimov YS, Shustov SB, Popov SI. SGLT2 inhibitors and kidneys: mechanisms and main effects in diabetes mellitus patients. DIABETES MELLITUS 2021. [DOI: 10.14341/dm12123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the cause of the development of diabetic nephropathy — a complication that determines the high degree of disability and mortality of such patients. Until recently, approaches to normalizing glucose levels did not have a significant possibility of influencing the outcome of kidney damage in diabetes. Type 2 sodium glucose cotransporter inhibitors (SGLT2) are a new class of glucose-lowering drugs that improve glycemic control due to an insulin-independent mechanism of action associated with increased urinary glucose excretion. The review provides an analysis of the results of studies on the assessment of nephroprotective actions — one of the pleiotropic actions of this drugs group. These materials show the properties of SGLT2 inhibitors to reduce the risk of developing and the progression of albuminuria, to save glomerular filtration rate, to reduce the frequency of end-stage renal disease and the need for renal replacement therapy in patients with T2DM. The article gives and analyzes the currently existing hypotheses of the mechanism of action of these glucose-lowering drugs. The risk of the most common renal complications with the use of SGLT2 inhibitors is considered. The practical aspects of the use of SGLT2 inhibitors in modern algorithms for the care of patients with T2DM are indicated, as well as the prospects for new randomized clinical trials.
Collapse
|
134
|
Palmer SC, Tendal B, Mustafa RA, Vandvik PO, Li S, Hao Q, Tunnicliffe D, Ruospo M, Natale P, Saglimbene V, Nicolucci A, Johnson DW, Tonelli M, Rossi MC, Badve SV, Cho Y, Nadeau-Fredette AC, Burke M, Faruque LI, Lloyd A, Ahmad N, Liu Y, Tiv S, Millard T, Gagliardi L, Kolanu N, Barmanray RD, McMorrow R, Raygoza Cortez AK, White H, Chen X, Zhou X, Liu J, Rodríguez AF, González-Colmenero AD, Wang Y, Li L, Sutanto S, Solis RC, Díaz González-Colmenero F, Rodriguez-Gutierrez R, Walsh M, Guyatt G, Strippoli GFM. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 2021; 372:m4573. [PMID: 33441402 PMCID: PMC7804890 DOI: 10.1136/bmj.m4573] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate sodium-glucose cotransporter-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists in patients with type 2 diabetes at varying cardiovascular and renal risk. DESIGN Network meta-analysis. DATA SOURCES Medline, Embase, and Cochrane CENTRAL up to 11 August 2020. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomised controlled trials comparing SGLT-2 inhibitors or GLP-1 receptor agonists with placebo, standard care, or other glucose lowering treatment in adults with type 2 diabetes with follow up of 24 weeks or longer. Studies were screened independently by two reviewers for eligibility, extracted data, and assessed risk of bias. MAIN OUTCOME MEASURES Frequentist random effects network meta-analysis was carried out and GRADE (grading of recommendations assessment, development, and evaluation) used to assess evidence certainty. Results included estimated absolute effects of treatment per 1000 patients treated for five years for patients at very low risk (no cardiovascular risk factors), low risk (three or more cardiovascular risk factors), moderate risk (cardiovascular disease), high risk (chronic kidney disease), and very high risk (cardiovascular disease and kidney disease). A guideline panel provided oversight of the systematic review. RESULTS 764 trials including 421 346 patients proved eligible. All results refer to the addition of SGLT-2 inhibitors and GLP-1 receptor agonists to existing diabetes treatment. Both classes of drugs lowered all cause mortality, cardiovascular mortality, non-fatal myocardial infarction, and kidney failure (high certainty evidence). Notable differences were found between the two agents: SGLT-2 inhibitors reduced admission to hospital for heart failure more than GLP-1 receptor agonists, and GLP-1 receptor agonists reduced non-fatal stroke more than SGLT-2 inhibitors (which appeared to have no effect). SGLT-2 inhibitors caused genital infection (high certainty), whereas GLP-1 receptor agonists might cause severe gastrointestinal events (low certainty). Low certainty evidence suggested that SGLT-2 inhibitors and GLP-1 receptor agonists might lower body weight. Little or no evidence was found for the effect of SGLT-2 inhibitors or GLP-1 receptor agonists on limb amputation, blindness, eye disease, neuropathic pain, or health related quality of life. The absolute benefits of these drugs vary substantially across patients from low to very high risk of cardiovascular and renal outcomes (eg, SGLT-2 inhibitors resulted in 3 to 40 fewer deaths in 1000 patients over five years; see interactive decision support tool (https://magicevidence.org/match-it/200820dist/#!/) for all outcomes. CONCLUSIONS In patients with type 2 diabetes, SGLT-2 inhibitors and GLP-1 receptor agonists reduced cardiovascular and renal outcomes, with some differences in benefits and harms. Absolute benefits are determined by individual risk profiles of patients, with clear implications for clinical practice, as reflected in the BMJ Rapid Recommendations directly informed by this systematic review. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019153180.
Collapse
Affiliation(s)
- Suetonia C Palmer
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Britta Tendal
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Reem A Mustafa
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas, Kansas City, KS, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Per Olav Vandvik
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Sheyu Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Qiukui Hao
- Centre for Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - David Tunnicliffe
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Marinella Ruospo
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio CESARE, 70124 Bari, Italy
| | - Patrizia Natale
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio CESARE, 70124 Bari, Italy
| | - Valeria Saglimbene
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio CESARE, 70124 Bari, Italy
| | - Antonio Nicolucci
- Centre for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
| | - David W Johnson
- Department of Nephrology, Division of Medicine, University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Marcello Tonelli
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Chiara Rossi
- Centre for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
| | - Sunil V Badve
- George Institute for Global Health, Sydney, NSW, Australia
| | - Yeoungjee Cho
- Department of Nephrology, Division of Medicine, University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | | | | | - Labib I Faruque
- Department of Nephrology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anita Lloyd
- Department of Nephrology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nasreen Ahmad
- Department of Nephrology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yuanchen Liu
- Department of Nephrology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sophanny Tiv
- Department of Nephrology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tanya Millard
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Lucia Gagliardi
- Endocrine and Diabetes Unit, Queen Elizabeth Hospital, Woodville, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Nithin Kolanu
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Rahul D Barmanray
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Rita McMorrow
- Department of General Practice and Primary Health Care, University of Melbourne, Melbourne, VIC, Australia
| | - Ana Karina Raygoza Cortez
- Plataforma INVEST Medicina UANL-KER Unit Mayo Clinic (KER Unit Mexico), Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Heath White
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Xiangyang Chen
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Zhou
- Evidence-based Medicine Research Centre, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiali Liu
- Chinese Evidence-based Medicine Centre, Cochrane China Centre
| | - Andrea Flores Rodríguez
- Plataforma INVEST Medicina UANL-KER Unit Mayo Clinic (KER Unit Mexico), Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | | | - Yang Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ling Li
- Chinese Evidence-based Medicine Centre, Cochrane China Centre
| | - Surya Sutanto
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ricardo Cesar Solis
- Plataforma INVEST Medicina UANL-KER Unit Mayo Clinic (KER Unit Mexico), Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | | | - René Rodriguez-Gutierrez
- Plataforma INVEST Medicina UANL-KER Unit Mayo Clinic (KER Unit Mexico), Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Michael Walsh
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Gordon Guyatt
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Giovanni F M Strippoli
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio CESARE, 70124 Bari, Italy
| |
Collapse
|
135
|
Tuttle KR, Brosius FC, Cavender MA, Fioretto P, Fowler KJ, Heerspink HJ, Manley T, McGuire DK, Molitch ME, Mottl AK, Perreault L, Rosas SE, Rossing P, Sola L, Vallon V, Wanner C, Perkovic V. SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Am J Kidney Dis 2021; 77:94-109. [DOI: 10.1053/j.ajkd.2020.08.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022]
|
136
|
D'Marco L, Morillo V, Gorriz JL, Suarez MK, Nava M, Ortega Á, Parra H, Villasmil N, Rojas-Quintero J, Bermúdez V. SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence. J Diabetes Res 2021; 2021:9032378. [PMID: 34790827 PMCID: PMC8592766 DOI: 10.1155/2021/9032378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in proinflammatory cytokines and with an improvement in the inflammatory profile in chronic endocrine-metabolic diseases. Hence, these drugs have been positioned as first-line therapy in the management of diabetes and its multiple comorbidities, such as obesity, which has been associated with persistent inflammatory states that induce dysfunction of the adipose tissue. Moreover, other frequent comorbidities in long-standing diabetic patients are chronic complications such as diabetic kidney disease, whose progression can be slowed by SGLT2i and/or GLP-1RA. The neuroendocrine and immunometabolism mechanisms underlying adipose tissue inflammation in individuals with diabetes and cardiometabolic and renal diseases are complex and not fully understood. Summary. This review intends to expose the probable molecular mechanisms and compile evidence of the synergistic or additive anti-inflammatory effects of SGLT2i and GLP-1RA and their potential impact on the management of patients with obesity and cardiorenal compromise.
Collapse
Affiliation(s)
- Luis D'Marco
- Hospital Clínico Universitario de Valencia, INCLIVA, Valencia 46010, Spain
- CEU Cardenal Herrera University, Valencia 46115, Spain
| | - Valery Morillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Gorriz
- Hospital Clínico Universitario de Valencia, INCLIVA, Valencia 46010, Spain
| | - María K. Suarez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 77054, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080002, Colombia
| |
Collapse
|
137
|
Tuttle KR, Brosius FC, Cavender MA, Fioretto P, Fowler KJ, Heerspink HJL, Manley T, McGuire DK, Molitch ME, Mottl AK, Perreault L, Rosas SE, Rossing P, Sola L, Vallon V, Wanner C, Perkovic V. SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Diabetes 2021; 70:1-16. [PMID: 33106255 PMCID: PMC8162454 DOI: 10.2337/dbi20-0040] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
Abstract
Diabetes is the most frequent cause of chronic kidney disease (CKD), leading to nearly half of all cases of kidney failure requiring replacement therapy. The principal cause of death among patients with diabetes and CKD is cardiovascular disease (CVD). Sodium/glucose cotransporter 2 (SGLT2) inhibitors were developed to lower blood glucose levels by inhibiting glucose reabsorption in the proximal tubule. In clinical trials designed to demonstrate the CVD safety of SGLT2 inhibitors in type 2 diabetes mellitus (T2DM), consistent reductions in risks for secondary kidney disease end points (albuminuria and a composite of serum creatinine doubling or 40% estimated glomerular filtration rate decline, kidney failure, or death), along with reductions in CVD events, were observed. In patients with CKD, the kidney and CVD benefits of canagliflozin were established by the CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) trial in patients with T2DM, urinary albumin-creatinine ratio >300 mg/g, and estimated glomerular filtration rate of 30 to <90 mL/min/1.73 m2 To clarify and support the role of SGLT2 inhibitors for treatment of T2DM and CKD, the National Kidney Foundation convened a scientific workshop with an international panel of more than 80 experts. They discussed the current state of knowledge and unanswered questions in order to propose therapeutic approaches and delineate future research. SGLT2 inhibitors improve glomerular hemodynamic function and are thought to ameliorate other local and systemic mechanisms involved in the pathogenesis of CKD and CVD. SGLT2 inhibitors should be used when possible by people with T2DM to reduce risks for CKD and CVD in alignment with the clinical trial entry criteria. Important risks of SGLT2 inhibitors include euglycemic ketoacidosis, genital mycotic infections, and volume depletion. Careful consideration should be given to the balance of benefits and harms of SGLT2 inhibitors and risk mitigation strategies. Effective implementation strategies are needed to achieve widespread use of these life-saving medications.
Collapse
Affiliation(s)
- Katherine R Tuttle
- Providence Health Care and University of Washington School of Medicine, Spokane, WA
| | | | | | - Paola Fioretto
- Department of Medicine, University of Padua, Padua, Italy
| | | | | | - Tom Manley
- National Kidney Foundation, New York, NY
| | | | - Mark E Molitch
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern, University Feinberg School of Medicine, Chicago, IL
| | - Amy K Mottl
- University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Sylvia E Rosas
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Laura Sola
- University of the Republic, Montevideo, Uruguay
| | | | - Christoph Wanner
- Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
| | - Vlado Perkovic
- George Institute for Global Health, UNSW Sydney, Australia
| |
Collapse
|
138
|
Nada AM, Younan MA. Dapagliflozin improves cardiovascular risk factors in Emirati patients with T2DM. Ther Adv Endocrinol Metab 2021; 12:2042018821995364. [PMID: 33796252 PMCID: PMC7970182 DOI: 10.1177/2042018821995364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dapagliflozin is a sodium-glucose co transporter-2 inhibitor that proved efficacy in reduction of blood glucose level through extrusion of glucose in urine. It is used in treatment of type 2 diabetes mellitus (T2DM). It also has reported cardiovascular and renal benefits in patients with T2DM. Data are very limited about its effects in Emirati patients with diabetes. Our aim was to evaluate dapagliflozin treatment in Emirati patients with T2DM. PATIENTS AND METHODS This is a retrospective study involving 89 diabetes patients who were using dapagliflozin 10 mg once daily as add-on therapy for 12 months. All patients had T2DM, aged over 18 years and had an estimated glomerular filtration rate (eGFR) over 60 ml/min/1.73 m². Body weight, height, body mass index, sitting blood pressure and heart rate were collected. Fasting plasma glucose, glycosylated hemoglobin (HbA1c), lipid profile and other available biochemical parameters, for example, creatinine, blood urea nitrogen, and urine albumin/creatinine ratio were traced from medical records and eGFR was calculated. RESULTS Patients were aged 62.3 ± 9.4 years with a median duration of diabetes of 15 (10-20) years. Data were analyzed before, at 6 months and 12 months of treatment. Fasting plasma glucose, HbA1c, body mass index, systolic and diastolic blood pressure significantly decreased (p = 0.002, p < 0.0005, p < 0.002, p < 0.0005, p < 0.0005, respectively). The median reduction of HbA1c was 0.7% (0.2-1.2) and 0.9% (0.5-1.8) at 6 and 12 months, respectively. Systolic blood pressure decreased by a median of 7 mmHg (4-20 mmHg) and 9 mmHg (1-10 mmHg) on the 6th and 12th month of treatment, respectively, while the diastolic decreased by a median of 3 mmHg (4 to 10 mmHg) and 6 mmHg (1-10 mmHg); without increase in heart rate (p = 0.188). A significant reduction of body mass index, C-reactive protein and rate pressure product was noticed (p = 0.002, p = 0.001, p < 0.0005, respectively). No decline in eGFR or microalbuminuria was noticed. Stage I chronic kidney disease with eGFR < 90 ml/min/1.73 m² showed continuous progressive reduction of HbA1c without a significant change in other variables. CONCLUSION Our data indicate improved cardiovascular risk profile in dapagliflozin-treated Emirati patients with T2DM.
Collapse
Affiliation(s)
| | - Mariam Adel Younan
- Assistant Professor of Clinical Pathology, Cairo
Medical School, Kasr Al-Ainy, Egypt; Specialist Clinical Pathologist,
Zulekha Hospital, Sharjah, UAE
| |
Collapse
|
139
|
Qian BB, Chen Q, Li L, Yan CF. Association between combined treatment with SGLT2 inhibitors and metformin for type 2 diabetes mellitus on fracture risk: a meta-analysis of randomized controlled trials. Osteoporos Int 2020; 31:2313-2320. [PMID: 32780153 DOI: 10.1007/s00198-020-05590-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
UNLABELLED This study analyzed the effects of combination therapy with sodium-glucose transporter-2 inhibitors (SGLT2is) and metformin on fracture risk. Summarizing available randomized controlled trials, we found that SGLT2is combined with metformin therapy did not influence fracture risk compared with metformin monotherapy or other comparators in patients with T2DM. INTRODUCTION No study is available evaluating the association between sodium-glucose transporter-2 inhibitors (SGLT2is) in combination with metformin use and fracture risk. Our study aimed to investigate the fracture risk of combination therapy with SGLT2is and metformin in patients with type 2 diabetes mellitus (T2DM). METHODS PubMed, Embase, ClinicalTrials.gov site, and the Cochrane Library databases were scrutinized for all eligible randomized controlled trials (RCTs). The summarized odds ratios (ORs) and their 95% confidence intervals (CI) were calculated using Review Manager 5.3 software. RESULTS A total of 25 RCTs involving 19,500 participants with T2DM were included in our studies. There were 88 fracture cases in the SGLT2is in combination with metformin therapy group and 79 in the control group. SGLT2is combined with metformin use did not influence fracture risk compared with metformin monotherapy or other comparators in patients with T2DM (OR = 0.97, 95% CI 0.71-1.32). After stratification by drug type, follow-up time, control regimen, and type of fracture, the upshots were still stable. CONCLUSION SGLT2is and metformin combination therapy did not influence fracture risk compared with metformin monotherapy or other comparators in patients with T2DM. PROSPERO REGISTRATION NUMBER CRD42020168435.
Collapse
Affiliation(s)
- B-B Qian
- Department of Endocrinology, Northern Jiangsu People's Hospital, The Second Clinical College of Dalian Medical University, Yangzhou, 225001, Jiangsu, China
| | - Q Chen
- Department of Endocrinology, Northern Jiangsu People's Hospital, The Second Clinical College of Dalian Medical University, Yangzhou, 225001, Jiangsu, China
| | - L Li
- Department of Endocrinology, Northern Jiangsu People's Hospital, The Second Clinical College of Dalian Medical University, Yangzhou, 225001, Jiangsu, China
| | - C-F Yan
- Department of Endocrinology, Northern Jiangsu People's Hospital, The Second Clinical College of Dalian Medical University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
140
|
Miyazaki R, Miyagi K, Yoshida M. Two Japanese patients with stage G3b chronic kidney disease and impaired glucose metabolism after renal transplantation successfully treated with empagliflozin. RENAL REPLACEMENT THERAPY 2020. [DOI: 10.1186/s41100-020-00303-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
Renal transplant recipients with chronic kidney disease (CKD) often develop abnormal glucose metabolism. Although recent studies have reported the protective effects of sodium-glucose transport protein 2 (SGLT2) inhibitors on the heart and kidneys, few have assessed their effect in renal transplant patients. Moreover, to our knowledge, there have been no studies on the effects of SGLT2 inhibitors in renal transplant recipients in Japan.
Case presentation
Case 1 was a 67-year-old male renal transplant recipient with post-transplant diabetes mellitus. He was administered empagliflozin 10 mg once a day for 9 months. Over time, his HbA1c levels decreased from 6.8 to 6.0%. Case 2 was a 56-year-old male renal transplant recipient with fatty liver disease. He was administered empagliflozin 10 mg once a day for 9 months. His ALT, γ-GTP, and LDL-cholesterol levels all decreased. In both patients, body weight and the urine albumin to creatinine ratio (UACR) decreased after empagliflozin administration, but there were no changes in the estimated glomerular filtration rate. No adverse events occurred in either case.
Conclusions
Administration of empagliflozin had favorable outcomes in two patients with stage G3b CKD and abnormal glucose metabolism after renal transplantation. Further studies will be required to clarify the efficacy and safety of SGLT2 inhibitors in a larger population of patients with similar medical conditions.
Collapse
|
141
|
Giorgino F, Vora J, Fenici P, Solini A. Renoprotection with SGLT2 inhibitors in type 2 diabetes over a spectrum of cardiovascular and renal risk. Cardiovasc Diabetol 2020; 19:196. [PMID: 33222693 PMCID: PMC7680601 DOI: 10.1186/s12933-020-01163-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Approximately half of all patients with type 2 diabetes (T2D) develop a certain degree of renal impairment. In many of them, chronic kidney disease (CKD) progresses over time, eventually leading to end-stage kidney disease (ESKD) requiring dialysis and conveying a substantially increased risk of cardiovascular morbidity and mortality. Even with widespread use of renin-angiotensin system blockers and tight glycemic control, a substantial residual risk of nephropathy progression remains. Recent cardiovascular outcomes trials investigating sodium-glucose cotransporter 2 (SGLT2) inhibitors have suggested that these therapies have renoprotective effects distinct from their glucose-lowering action, including the potential to reduce the rates of ESKD and acute kidney injury. Although patients in most cardiovascular outcomes trials had higher prevalence of existing cardiovascular disease compared with those normally seen in clinical practice, the proportion of patients with renal impairment was similar to that observed in a real-world context. Patient cardiovascular risk profiles did not relevantly impact the renoprotective benefits observed in these studies. Benefits were observed in patients across a spectrum of renal risk, but were evident also in those without renal damage, suggesting a role for SGLT2 inhibition in the prevention of CKD in people with T2D. In addition, recent studies such as CREDENCE and DAPA-CKD offer a greater insight into the renoprotective effects of SGLT2 inhibitors in patients with moderate-to-severe CKD. This review outlines the evidence that SGLT2 inhibitors may prevent the development of CKD and prevent and delay the worsening of CKD in people with T2D at different levels of renal risk.
Collapse
Affiliation(s)
- Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Policlinico, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - Jiten Vora
- Diabetes and Endocrinology, University of Liverpool, Liverpool, UK
| | | | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
142
|
Chewcharat A, Prasitlumkum N, Thongprayoon C, Bathini T, Medaura J, Vallabhajosyula S, Cheungpasitporn W. Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Med Sci (Basel) 2020; 8:E47. [PMID: 33213078 PMCID: PMC7712903 DOI: 10.3390/medsci8040047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The objective of this systematic review was to evaluate the efficacy and safety profiles of sodium-glucose co-transporter 2 (SGLT-2) inhibitors for treatment of diabetes mellitus (DM) among kidney transplant patients. METHODS We conducted electronic searches in Medline, Embase, Scopus, and Cochrane databases from inception through April 2020 to identify studies that investigated the efficacy and safety of SGLT-2 inhibitors in kidney transplant patients with DM. Study results were pooled and analyzed utilizing random-effects model. RESULTS Eight studies with 132 patients (baseline estimated glomerular filtration rate (eGFR) of 64.5 ± 19.9 mL/min/1.73m2) treated with SGLT-2 inhibitors were included in our meta-analysis. SGLT-2 inhibitors demonstrated significantly lower hemoglobin A1c (HbA1c) (WMD = -0.56% [95%CI: -0.97, -0.16]; p = 0.007) and body weight (WMD = -2.16 kg [95%CI: -3.08, -1.24]; p < 0.001) at end of study compared to baseline level. There were no significant changes in eGFR, serum creatinine, urine protein creatinine ratio, and blood pressure. By subgroup analysis, empagliflozin demonstrated a significant reduction in body mass index (BMI) and body weight. Canagliflozin revealed a significant decrease in HbA1C and systolic blood pressure. In terms of safety profiles, fourteen patients had urinary tract infection. Only one had genital mycosis, one had acute kidney injury, and one had cellulitis. There were no reported cases of euglycemic ketoacidosis or acute rejection during the treatment. CONCLUSION Among kidney transplant patients with excellent kidney function, SGLT-2 inhibitors for treatment of DM are effective in lowering HbA1C, reducing body weight, and preserving kidney function without reporting of serious adverse events, including euglycemic ketoacidosis and acute rejection.
Collapse
Affiliation(s)
- Api Chewcharat
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Charat Thongprayoon
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tuscon, AZ 85721, USA;
| | - Juan Medaura
- Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Saraschandra Vallabhajosyula
- Section of Interventional Cardiology, Department of Medicine, Division of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Wisit Cheungpasitporn
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| |
Collapse
|
143
|
Abstract
INTRODUCTION Preclinical, clinical, and population-based studies have provided evidence that anti-diabetic drugs affect bone metabolism and may affect the risk of fracture in diabetic patients. AREAS COVERED An overview of the skeletal effects of anti-diabetic drugs used in type 2 diabetes is provided. Searches on AdisInsight, PubMed, and Medline databases were conducted up to 1st July 2020. The latest evidence from randomized clinical trials and population-based studies on the skeletal safety of the most recent drugs (DPP-4i, GLP-1RA, and SGLT-2i) is provided. EXPERT OPINION Diabetic patients present with a higher risk of fracture for a given bone mineral density suggesting a role of bone quality in the etiology of diabetic fracture. Bone quality is difficult to assess in human clinical practice and the use of preclinical models provides valuable information on diabetic bone alterations. As several links have been established between bone and energy homeostasis, it is interesting to study the safety of anti-diabetic drugs on the skeleton. So far, evidence for the newest molecules suggests a neutral fracture risk, but further studies, especially in different types of patient populations (patients at risk or with history of cardiovascular disease, renal impairment, neuropathy) are required to fully appreciate this matter.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Service Commun d'Imagerie et Analyses Microscopiques, SCIAM, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Bone pathology unit, Angers University hospital , Angers Cedex, France
| | - Béatrice Bouvard
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Rheumatology department, Angers University Hospital , Angers Cedex, France
| |
Collapse
|
144
|
Milder TY, Stocker SL, Day RO, Greenfield JR. Potential Safety Issues with Use of Sodium-Glucose Cotransporter 2 Inhibitors, Particularly in People with Type 2 Diabetes and Chronic Kidney Disease. Drug Saf 2020; 43:1211-1221. [PMID: 33095409 PMCID: PMC7582030 DOI: 10.1007/s40264-020-01010-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a major advance in the fields of diabetology, nephrology, and cardiology. The cardiovascular and renal benefits of SGLT2 inhibitors are likely largely independent of their glycaemic effects, and this understanding is central to the use of these agents in the high-risk population of people with type 2 diabetes and chronic kidney disease. There are a number of potential safety issues associated with the use of SGLT2 inhibitors. These include the rare but serious risks of diabetic ketoacidosis and necrotising fasciitis of the perineum. The data regarding a possibly increased risk of lower limb amputation and fracture with SGLT2 inhibitor therapy are conflicting. This article aims to explore the potential safety issues associated with the use of SGLT2 inhibitors, with a particular focus on the safety of these drugs in people with type 2 diabetes and chronic kidney disease. We discuss strategies that clinicians can implement to minimise the risk of adverse effects including diabetic ketoacidosis and volume depletion. Risk mitigation strategies with respect to SGLT2 inhibitor-associated diabetic ketoacidosis are of particular importance during the current coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Tamara Y Milder
- Department of Diabetes and Endocrinology, St. Vincent's Hospital, Sydney, Australia.,Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, Australia.,Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, Australia
| | - Sophie L Stocker
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, Australia
| | - Richard O Day
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, Australia
| | - Jerry R Greenfield
- Department of Diabetes and Endocrinology, St. Vincent's Hospital, Sydney, Australia. .,Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, Australia. .,St. Vincent's Clinical School, University of NSW, Sydney, Australia.
| |
Collapse
|
145
|
Lou Y, Yu Y, Duan J, Bi S, Swe KNC, Xi Z, Gao Y, Zhou Y, Nie X, Liu W. Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Ther Adv Chronic Dis 2020; 11:2040622320961599. [PMID: 33062238 PMCID: PMC7534105 DOI: 10.1177/2040622320961599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Patients with type 2 diabetes mellitus (T2DM) have an increased risk of fracture compared with those without T2DM. Some oral glucose-lowering agents may increase the incidence of fracture. Whether sodium-glucose co-transporter 2 inhibitors (SGLT2is) are associated with increased risk of fracture remains unclear. Methods: We retrieved articles from PubMed, Embase, Cochrane Library database, and other sources up to 24 October 2019. We included randomized controlled trials (RCTs) that reported fractures and analyzed the fracture incidence of SGLT2i, canagliflozin, dapagliflozin, and empagliflozin. Subgroup analysis was also performed based on baseline characteristics. Results: A total of 78 RCTs with 85,122 patients were included in our analysis. The overall SGLT2i fracture incidence was 2.56% versus 2.77% in the control group [odds ratio (OR), 1.03; 95% confidence interval (CI) (0.95, 1.12); p = 0.49]. Compared with the control treatment, treatment with canagliflozin led to a higher rate of fractures [OR, 1.17; 95% CI (1.00, 1.37); p = 0.05], but no significant difference was observed when compared with dapagliflozin [OR, 1.02; 95% CI (0.90, 1.15); p = 0.79] or empagliflozin [OR, 0.89; 95% CI (0.73, 1.10); p = 0.30]. Subgroup analysis showed that, in a follow-up of less than 52 weeks, SGLT2i decreased the incidence of fracture by 29% [OR, 0.71; 95% CI (0.55, 0.93); p = 0.01], but this benefit was lost when the follow-up extended to more than 52 weeks [OR, 1.08; 95% CI (0.98, 1.18); p = 0.12]. Conclusion: Canagliflozin seems to increase the risk of fracture, while other SGLT2is do not result in a higher incidence of fracture.
Collapse
Affiliation(s)
- Yake Lou
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Chaoyang District, Beijing, China
| | - Ying Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Sining Bi
- Department of Emergency, The Third Hospital of Jinan, Shandong, China
| | | | - Ziwei Xi
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Chaoyang District, Beijing, China
| | - Yanan Gao
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Chaoyang District, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Chaoyang District, Beijing, China
| | - Xiaomin Nie
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Wei Liu
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Anzhen Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
146
|
Yin D, Hui Y, Yang C, Xu Y. Effects of dapagliflozin on cardiovascular outcomes in type 2 diabetes: Study protocol of a randomized controlled trial. Medicine (Baltimore) 2020; 99:e22660. [PMID: 33031329 PMCID: PMC7544418 DOI: 10.1097/md.0000000000022660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Dapagliflozin, a novel inhibitor of renal sodium-glucose cotransporter 2, allows an insulin-independent approach to improve type 2 diabetes hyperglycemia. This current research is a double blinded, randomized, and prospective trial to determine the effect of dapagliflozin on cardiovascular outcomes in type 2 diabetes. METHODS This randomized controlled, double-blinded, single center trial is carried out according to the principles of Declaration of Helsinki. This present study was approved in institutional review committee of the Lianyungang Hospital affiliated to Xuzhou Medical University (LW-20200901001). All the patients received the informed consent. Diabetic patients were randomized equally to receive 28-week treatment with dapagliflozin or matching placebo. The major outcome of our current study was the change in the level of hemoglobin A1c (HbA1c) from the baseline to week 28. Secondary outcome measures contained the levels of fasting blood glucose, the mean change in seated systolic and diastolic blood pressure, body weight, and the mean change in calculated average daily insulin dose in patients treated with insulin at baseline, the other laboratory variables, and self-reported adverse events. The P < .05 was regarded as statistically significant. RESULTS We assumed that the dapagliflozin administration in patients with type 2 diabetes would reduce HbA1c, body weight, systolic blood pressure, and achieve the goal of glycemic control, without adversely impacting cardiovascular risk. TRIAL REGISTRATION This study protocol was registered in Research Registry (researchregistry5987).
Collapse
|
147
|
Scheen AJ. Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2020; 16:556-577. [PMID: 32855502 DOI: 10.1038/s41574-020-0392-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
The management of type 2 diabetes mellitus (T2DM) is becoming increasingly complex. Sodium-glucose cotransporter type 2 inhibitors (SGLT2is) are the newest antidiabetic agents for T2DM. By targeting the kidney, they have a unique mechanism of action, which results in enhanced glucosuria, osmotic diuresis and natriuresis, thereby improving glucose control with a limited risk of hypoglycaemia and exerting additional positive effects such as weight loss and the lowering of blood pressure. Several outcome studies with canagliflozin, dapagliflozin or empagliflozin reported a statistically significant reduction in major cardiovascular events, hospitalization for heart failure and progression to advanced renal disease in patients with T2DM who have established atherosclerotic cardiovascular disease, several cardiovascular risk factors, albuminuric mild to moderate chronic kidney disease or heart failure. Current guidelines proposed a new paradigm in the management of T2DM, with a preferential place for SGLT2is, after metformin, in patients with atherosclerotic cardiovascular disease, heart failure and progressive kidney disease. Ongoing trials might extend the therapeutic potential of SGLT2is in patients with, but also without, T2DM. This Review provides an update of the current knowledge on SGLT2is, moving from their use as glucose-lowering medications to their new positioning as cardiovascular and renal protective agents.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium.
- Division of Clinical Pharmacology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium.
| |
Collapse
|
148
|
de Boer IH, Caramori ML, Chan JC, Heerspink HJ, Hurst C, Khunti K, Liew A, Michos ED, Navaneethan SD, Olowu WA, Sadusky T, Tandon N, Tuttle KR, Wanner C, Wilkens KG, Zoungas S, Rossing P. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 2020; 98:S1-S115. [PMID: 32998798 DOI: 10.1016/j.kint.2020.06.019] [Citation(s) in RCA: 637] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
|
149
|
Hallow KM, Boulton DW, Penland RC, Helmlinger G, Nieves EH, van Raalte DH, Heerspink HL, Greasley PJ. Renal Effects of Dapagliflozin in People with and without Diabetes with Moderate or Severe Renal Dysfunction: Prospective Modeling of an Ongoing Clinical Trial. J Pharmacol Exp Ther 2020; 375:76-91. [PMID: 32764153 DOI: 10.1124/jpet.120.000040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) reduce cardiovascular events and onset and progression of renal disease by mechanisms that remain incompletely understood but may include clearance of interstitial congestion and reduced glomerular hydrostatic pressure. The ongoing DAPASALT mechanistic clinical study will evaluate natriuretic, diuretic, plasma/extracellular volume, and blood pressure responses to dapagliflozin in people with type 2 diabetes with normal or impaired renal function (D-PRF and D-IRF, respectively) and in normoglycemic individuals with renal impairment (N-IRF). In this study, a mathematical model of renal physiology, pathophysiology, and pharmacology was used to prospectively predict changes in sodium excretion, blood and interstitial fluid volume (IFV), blood pressure, glomerular filtration rate, and albuminuria in DAPASALT. After validating the model with previous diabetic nephropathy trials, virtual patients were matched to DAPASALT inclusion/exclusion criteria, and the DAPASALT protocol was simulated. Predicted changes in glycosuria, blood pressure, glomerular filtration rate, and albuminuria were consistent with other recent studies in similar populations. Predicted albuminuria reductions were 46% in D-PRF, 34.8% in D-IRF, and 14.2% in N-IRF. The model predicts a similarly large IFV reduction between D-PRF and D-IRF and less, but still substantial, IFV reduction in N-IRF, even though glycosuria is attenuated in groups with impaired renal function. When DAPASALT results become available, comparison with these simulations will provide a basis for evaluating how well we understand the cardiorenal mechanism(s) of SGLT2i. Meanwhile, these simulations link dapagliflozin's renal mechanisms to changes in IFV and renal biomarkers, suggesting that these benefits may extend to those with impaired renal function and individuals without diabetes. SIGNIFICANCE STATEMENT: Mechanisms of SGLT2 inhibitors' cardiorenal benefits remain incompletely understood. We used a mathematical model of renal physiology/pharmacology to prospectively predict responses to dapagliflozin in the ongoing DAPASALT study. Key predictions include similarly large interstitial fluid volume (IFV) reductions between subjects with normal and impaired renal function and less, but still substantial, IFV reduction in those without diabetes, even though glycosuria is attenuated in these groups. Comparing prospective simulations and study results will assess how well we understand the cardiorenal mechanism(s) of SGLT2 inhibitors.
Collapse
Affiliation(s)
- K Melissa Hallow
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia (K.M.W., E.N.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland (D.W.B.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts (R.C.P., G.H.); Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands (D.H.v.R.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands (H.L.H.); The George Institute for Global Health, Sydney, Australia (H.L.H.); and Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (P.J.G.)
| | - David W Boulton
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia (K.M.W., E.N.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland (D.W.B.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts (R.C.P., G.H.); Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands (D.H.v.R.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands (H.L.H.); The George Institute for Global Health, Sydney, Australia (H.L.H.); and Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (P.J.G.)
| | - Robert C Penland
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia (K.M.W., E.N.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland (D.W.B.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts (R.C.P., G.H.); Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands (D.H.v.R.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands (H.L.H.); The George Institute for Global Health, Sydney, Australia (H.L.H.); and Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (P.J.G.)
| | - Gabriel Helmlinger
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia (K.M.W., E.N.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland (D.W.B.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts (R.C.P., G.H.); Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands (D.H.v.R.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands (H.L.H.); The George Institute for Global Health, Sydney, Australia (H.L.H.); and Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (P.J.G.)
| | - Emily H Nieves
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia (K.M.W., E.N.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland (D.W.B.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts (R.C.P., G.H.); Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands (D.H.v.R.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands (H.L.H.); The George Institute for Global Health, Sydney, Australia (H.L.H.); and Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (P.J.G.)
| | - Daniël H van Raalte
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia (K.M.W., E.N.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland (D.W.B.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts (R.C.P., G.H.); Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands (D.H.v.R.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands (H.L.H.); The George Institute for Global Health, Sydney, Australia (H.L.H.); and Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (P.J.G.)
| | - Hiddo L Heerspink
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia (K.M.W., E.N.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland (D.W.B.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts (R.C.P., G.H.); Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands (D.H.v.R.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands (H.L.H.); The George Institute for Global Health, Sydney, Australia (H.L.H.); and Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (P.J.G.)
| | - Peter J Greasley
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia (K.M.W., E.N.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland (D.W.B.); Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts (R.C.P., G.H.); Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands (D.H.v.R.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands (H.L.H.); The George Institute for Global Health, Sydney, Australia (H.L.H.); and Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (P.J.G.)
| |
Collapse
|
150
|
Jackson K, Moseley KF. Diabetes and Bone Fragility: SGLT2 Inhibitor Use in the Context of Renal and Cardiovascular Benefits. Curr Osteoporos Rep 2020; 18:439-448. [PMID: 32710428 DOI: 10.1007/s11914-020-00609-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Type 2 diabetes mellitus (T2DM) has been shown to negatively impact bone quality and increase fracture risk. While the pathophysiology of bone fragility in T2DM is not clear and likely multifactorial, medications used to treat T2DM are increasingly scrutinized for their potential role in aberrant bone metabolism. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are gaining popularity in patients with T2DM. In addition to lowering blood glucose, there is evidence that these drugs offer cardiac and renal benefit to individuals with T2DM, leading to FDA-approved indications for use in at-risk individuals. At the same time, there remain concerns that SGLT2 inhibitors, specifically canagliflozin, have adverse effects on bone metabolism and increase fracture risk in T2DM. This review seeks to further clarify the impact of these agents on the skeleton. RECENT FINDINGS SGLT2 inhibitors may indirectly disrupt calcium and phosphate homeostasis, contribute to weight loss, and cause hypotension, resulting in bone mineral density (BMD) losses and increased falls. The true long-term impact of SGLT2 inhibitors on the diabetic skeleton is still unclear; this review summarizes the results in studies investigating the impact of SGLT2 inhibitors on fracture risk in T2DM. Whereas studies performed with dapagliflozin and empagliflozin have not shown an increased risk of bone fractures compared with placebo, some studies have shown increased markers of bone turnover and reduced bone mineral density with canagliflozin treatment. While an increased fracture risk was observed with canagliflozin in the CANVAS trial (HR 1.26; 95% CI 1.04, 1.52), an increased risk was not seen in the CANVAS-R (HR 0.86) or CREDENCE (HR 0.98) trials. There is substantial evidence of the cardiac and renal protective benefits of SGLT2 inhibitors. There does not appear to be an increased fracture risk with the use of dapagliflozin or empagliflozin. Given the possible association between canagliflozin and adverse bone outcomes described in CANVAS, canagliflozin use should be pursued in individuals with T2DM only after careful consideration of the individual's skeletal risk.
Collapse
Affiliation(s)
- Kristen Jackson
- School of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University, 5501 Hopkins Bayview Circle, 2A62, Baltimore, MD, 21224, USA
| | - Kendall F Moseley
- School of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University, 5501 Hopkins Bayview Circle, 2A62, Baltimore, MD, 21224, USA.
| |
Collapse
|